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We study the dynamical Casimir effect resulting from the oscillatory motion of either one or two flat
semitransparent mirrors, coupled to a quantum real and massless scalar field. Our approach is based on a
perturbative evaluation, in the coupling between mirrors and field, of the corresponding effective action,
which is used to compute the particle creation rate. The amplitude of the oscillation is not necessarily small.
We first obtain results for a single mirror, both for nonrelativistic and for relativistic motions, showing that
only for the latter may the effects be significant. For two mirrors, on the other hand, we show that there are
interesting interference effects, and that in some particular cases the results differ from those obtained
assuming small amplitudes, already for nonrelativistic motions.
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I. INTRODUCTION

The dynamical Casimir effect (DCE), or motion-induced
radiation, refers to a plethora of phenomena in which real
particles are created from the quantum vacuum due to the
presence of external, time-dependent conditions. The crea-
tion of particles in a one-dimensional cavity with a moving
perfect mirror was first studied by Moore [1], and sub-
sequently by Fulling and Davies [2], as a toy model of
black hole evaporation. Over the years, theDCE has received
increasing attention and has become a relevant topic in
studies on cavity quantum electrodynamics and cavity
optomechanics, superconducting waveguides with time-
dependent boundary conditions, refractive index perturba-
tions in optical fibers, quantum friction, etc., in addition
to analogue gravity models. For some recent reviews, see
Refs. [3–6].
In this work, we evaluate the particle creation rate for a

system which consists of either one or two flat, infinite,
parallel semitransparent mirrors, undergoing oscillatory
motion. Nonperfect moving mirrors have been considered
a long time ago in Ref. [7], where the authors studied the
quantum radiation from a dispersive mirror moving non-
relativistically in 1þ 1 dimensions. Later on, more general
models have been considered by several authors [8].
Our approach here relies on a main assumption: namely,

that of the mirrors being semitransparent, which justifies
our use of a perturbative expansion in the strength of the
coupling between each mirror and the quantum field. This
approach is the dynamical counterpart of the perturbative
calculations of the static Casimir force for dilute dielectric
bodies [9,10], in which the small parameter is ϵ − 1, where
ϵ is the permittivity.
Since the amplitude of the oscillatory motion(s) is not

assumed to be necessarily small, our results will be non-
perturbative in that amplitude, and therefore our approach

may be regarded as complementary to others which are
nonperturbative in themirror-field couplings but restricted to
small amplitudes and nonrelativistic motion. We will con-
sider a simplifiedmodel involving a vacuum real scalar field,
with the mirrors described bymeans of δ-potentials, and will
present calculations up to second order in the coupling
constants. The results could be generalized to more realistic
models involving the electromagnetic field and to higher
perturbative orders. In particular, we have in mind situations
in which there is particle creation due to a varying refractive
index perturbation nðt;xÞ¼n0þδnðt;xÞ with δn≪1 [5,11].
The model considered in this paper has been first

analyzed in the context of the DCE in Ref. [7], in 1þ 1
dimensions. It was pointed out there that, due to infrared
divergences, an approach perturbative in the coupling
constant is not possible. However, these divergences are
typical for two-dimensional massless fields. As we will see,
they disappear in higher dimensions, and the perturbative
calculations are perfectly well defined (to our knowledge,
this point has not been explored before). Generalizations of
the δ-potential models have been considered more recently
in the context of optomechanics [12].
This paper is organized as follows: in Sec. II, we describe

the system that we consider subsequently and introduce
our conventions and notation. Then we consider the in-out
effective action, presenting the corresponding weak-
coupling expansion. In Sec. III, we compute the imaginary
part of the effective action for the case of an oscillating
single mirror. Using the Jacobi-Anger expansion, it is
possible to compute the imaginary part of the effective
action for oscillatory motions of arbitrary amplitude,
including relativistic corrections. In Sec. IV, we consider
the case of two oscillating mirrors. We discuss interference
effects and compare the results with those coming from a
small-amplitude approximation. Section V contains the
conclusions of our work.
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II. CLASSICAL MODEL AND IN-OUT
EFFECTIVE ACTION

A. The classical action

We follow the functional integral formalism, whereby the
system is defined in terms of its (real time) action S, for a
real scalar field φ inD≡ dþ 1 dimensions. The action also
depends on the configuration of the mirror (or mirrors),
which play the role of “external fields” here. In the examples
that we shall consider, they are assumed to be infinite and
parallel planes [13]; it is sufficient to give just one function of
time to determine the position of each mirror. Furthermore,
we assume S to have the structure

S ¼ S0 þ SI; ð1Þ

where S0 denotes the free real scalar field action:

S0ðφÞ ¼
1

2

Z
dDx∂μφ∂μφ; ð2Þ

the part of the total action which is independent of the
configurations of the mirrors. The SI term accounts, on the
other hand, for the interaction between the field and
the mirror(s). For a single, flat, zero-width mirror, moving
along the normal direction to its plane, its instantaneous
position may be completely determined by an equation with
the form

xd ¼ qðx0Þ; ð3Þ

where xd denotes the coordinate normal to the plane.
The class of mirrors considered in this work has, therefore,
translation invariance along the spatial “parallel” coordinates
x∥≡ ðx1;…;xd−1Þ. Besides this, the coordinates which are
relevant to describe the motion will also be denoted
(irrespective of the value of d) as z≡ xd, and t≡ x0, and
we will assume its action SI to be given by

SI ¼ −
λ

2

Z
ddþ1xγ−1ðtÞδ½z − qðtÞ�φ2ðxÞ; ð4Þ

where λ is a constant that determines the strength of the
coupling, and γðtÞ denotes the Lorentz factor: γðtÞ≡
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _q2ðtÞ

p
, which is only relevant to the relativistic-

motion case (in our conventions, the speed of light c≡ 1).
When considering two mirrors, denoted by L and R, no

direct coupling is assumed to exist between them, aside from
the indirect one which will result from the mediation of
the scalar field. Thus, the total interaction action becomes the
sum of the corresponding terms S ¼ SL þ SR, where

SL;R ¼ −
λL;R
2

Z
dDxγ−1L;RðtÞδ½z − qL;RðtÞ�φ2ðxÞ; ð5Þ

with γL;RðtÞ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _q2L;RðtÞ

q
, where the functions qL and

qR define the motion of the respective mirror.
The action considered here can be thought of as a toy

model for the interaction of a nonperfect mirror with the
electromagnetic field and, with some modifications, for a
situation in which a refractive index perturbation concen-
trated on a plane travels along a trajectory given by
xd ¼ qðx0Þ.

B. The effective action

The (in-out) effective action is a functional of the
functions that determine the instantaneous position of
the mirrors, and is simply related to the vacuum persistence
amplitude, namely

eiΓ ¼
Z

DφeiSðφÞ ¼ h0outj0iniqðx0Þ: ð6Þ

The probability P of pair creation of real particles asso-
ciated with the vacuum field, during the whole motion of
the mirror(s), is given by

e−2Im½Γ� ¼ 1 − P: ð7Þ
We note first that Γ can be split as Γ ¼ Γ0 þ ΓI, where Γ0

is the effective action corresponding to the free action S0,
and therefore it will be discarded. On the other hand,

eiΓI ¼ heiSIðφÞi; ð8Þ
where the average symbol of a given functional of the
vacuum field is understood in the functional sense, with S0

defining a (complex) Gaussian weight:

h…i≡
R
Dφ…eiS0ðφÞR
DφeiS0ðφÞ : ð9Þ

For weak coupling, we use an expansion in cumulants,
which proceeds as follows: we assume the strength of
the SI term, controlled by the value of the λ coefficients,
is such that we may expand Γ in powers of that term.

ΓI may then be expanded in powers of SI; denoting by Γ
ðkÞ
I

the kth-order term in that expansion, we see that

ΓI ¼ Γð1Þ
I þ Γð2Þ

I þ…þ ΓðkÞ
I þ…; ð10Þ

where

Γð1Þ
I ¼ hSIi; Γð2Þ

I ¼ i
2
hðSI − hSIiÞ2i;…;ΓðnÞ

I

¼ in−1

n!
hðSIÞnic;…; ð11Þ

where the subscript c denotes the connected part of the
Feynman diagrams (resulting from the application ofWick’s
theorem to the calculation of the Gaussian averages).
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In what follows, we deal with the explicit evaluation of
the imaginary part of the effective action for either one or
two mirrors [as mentioned previously, this quantity is
related to the probability of particle creation in Eq. (7)].
Our focus shall be on the D ¼ 4 case, although we will
also comment on some particular cases where different
values of D produce qualitatively different results.

III. A SINGLE MIRROR

The first-order term in Eq. (11) leads to

Γð1Þ
I ¼ −

λ

2

Z
d4xγ−1ðtÞδðz − qðtÞÞhφðxÞφðxÞi; ð12Þ

which may be interpreted as an infinite renormalization for
the mirror, regarded as a particle moving in one spatial

dimension (corresponding to the z coordinate). Thus, Γð1Þ
I

may be written as follows:

Γð1Þ
I ¼ −mΛ

Z
dτ; ð13Þ

where τ denotes the proper time corresponding to the
trajectory defined by qðtÞ, and the mass mΛ, regularized by
means of a UV cutoff Λ, is given by

mΛ ¼ λ

2
Ld−1hφ2ðxÞiΛ

¼ λ

2
Ld−1

Z
Λ

dDp
ð2πÞD

1

p2
¼ ξλðLΛÞd−1; ð14Þ

where L has the dimension of length, and Ld−1 is the total
“volume” of the mirror, as measured along the d − 1 spatial
coordinates which are parallel to its surface. ξ is a
dimensionless, regularization-dependent constant.
For the second-order term, we see that

Γð2Þ
I ¼ iλ2

4

Z
dDx

Z
dDx0γ−1ðtÞδðz − qðtÞÞγ−1

× ðt0Þδðz0 − qðt0ÞÞðhφðxÞφðx0ÞiÞ2

≡ 1

2

Z
dDx

Z
dDx0γ−1ðtÞδðz − qðtÞÞΠð2Þ

× ðx; x0Þγ−1ðt0Þδðz0 − qðt0ÞÞ; ð15Þ

where

Πð2Þðx; x0Þ ¼ iλ2

2
ðGðx; x0ÞÞ2; ð16Þ

with the free Feynman propagator G for the scalar field
given by

Gðx; x0Þ ¼ Gðx − x0Þ ¼ hφðxÞφðx0Þi

¼
Z

dDp
ð2πÞD e−ip·ðx−x0Þ ~GðpÞ;

~GðpÞ≡ 1

p2 þ i0þ
: ð17Þ

Thus, in Fourier space, Eq. (15) becomes

Γð2Þ
I ¼ 1

2

Z
dDk
ð2πÞD

~Πð2ÞðkÞj ~FγðkÞj2; ð18Þ

where

~Πð2ÞðkÞ ¼ iλ2

2

Z
dDp
ð2πÞD

~GðpÞ ~Gðp − kÞ ð19Þ

and

~FγðkÞ ¼
Z

dDxeik·xγ−1ðx0Þδ½xd − qðx0Þ�

¼ ð2πÞd−1δd−1ðk∥Þ ~fγðk0; kdÞ ð20Þ

~fγðk0; kdÞ ¼
Z þ∞

−∞
dtγ−1ðtÞeik0te−ikdqðtÞ: ð21Þ

In this perturbative approach, the probability of creation
of a pair of particles is

P ≃ 2Im½Γð2Þ
I � ¼

Z
dDk
ð2πÞD Im½ ~Πð2ÞðkÞ�j ~FγðkÞj2; ð22Þ

and therefore the total energy E of the created particles
reads

E ≃
Z

dDk
ð2πÞD Im½ ~Πð2ÞðkÞ�j ~FγðkÞj2jk0j: ð23Þ

A. Low-velocity motion

We now assume the explicit form of qðtÞ, the mirror’s
oscillatory motion, to be harmonic:

qðtÞ ¼ ϵ cosΩt: ð24Þ
Wewill first consider a nonrelativistic motion, with ϵΩ ≪ 1

and therefore γ ≃ 1 (in which we will denote ~fγ ≡ ~f),
and then compute corrections in powers of the maximum
velocity v ¼ ϵΩ.
The usual approaches to this problem consider small

amplitudes for the oscillation, and then the exponential in
Eq. (21) is expanded in powers of ϵ:

e−ik
dqðtÞ ≃ 1 − ikdϵ cosΩt −

1

2
ðkdϵ cosΩtÞ2 þ…: ð25Þ
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Instead of doing this, we use the Jacobi-Anger expansion
and get

~fðk0; kdÞ ¼ 2π
Xþ∞

n¼−∞
inJnðkdϵÞδðk0 − nΩÞ; ð26Þ

where Jn denotes a Bessel function of the first kind.
This expression is valid for any amplitude value. The

effective action Γð2Þ
I becomes extensive in the volume of

the mirror, and proportional to the extent T of the time

coordinate. Thus, defining γð2ÞI ≡ Γð2Þ
I =ðTLd−1Þ, which has

the dimension of energy per unit of (d − 1)-dimensional
volume,

γð2ÞI ¼ 1

4π

Xþ∞

n¼−∞

Z þ∞

−∞
dkd½ ~Πð2ÞðkÞ�jk0¼nΩ;k∥¼0½JnðkdϵÞ�2:

ð27Þ

Finally, since we are interested in the imaginary part of the
effective action, we get, to this order,

Im½γð2ÞI � ¼ 1

4π

Xþ∞

n¼−∞

×
Z þ∞

−∞
dkdIm½ ~Πð2ÞðkÞ�jk0¼nΩ;k∥¼0½JnðkdϵÞ�2:

ð28Þ

In other words, the imaginary part of the effective action is
determined by the imaginary part of ~Πð2Þ, at some special
points in momentum space, which depend on the properties
of the mirror’s oscillation.
To proceed, we need a more explicit expression for

~Πð2ÞðkÞ. This object is, generally, UV divergent, but not
its imaginary part, since the divergences are (at most)
polynomials in k, i.e., entire functions.
By using a Feynman parameter α, the p momentum

integral can be performed using dimensional regularization,
the result being

~Πð2ÞðkÞ ¼ −
λ2

2

Γð2 −D=2Þ
ð4πÞD2

Z
1

0

dα½−αð1 − αÞk2�D−4
2 : ð29Þ

This is IR divergent when D ¼ 2, while for D ¼ 3 it is IR
and UV finite, its form being

~Πð2ÞðkÞ ¼ −
λ2

16
ð−k2Þ−1=2: ð30Þ

Thus,

Im½ ~Πð2ÞðkÞ� ¼ λ2

16
θðjk0j − jkjÞðk2Þ−1=2 ðD ¼ 3Þ: ð31Þ

In the particular case of D ¼ 4, we have a UV-divergent
term which, being a constant, does not contribute to the
imaginary part of the effective action. Thus, from the
minimally subtracted part,

~Πð2ÞðkÞ ¼ λ2

32π2
logð−k2Þ; ð32Þ

we obtain

Im½ ~Πð2ÞðkÞ� ¼ λ2

32π2
θðjk0j − jkjÞπ ðD ¼ 4Þ; ð33Þ

where θ denotes Heaviside’s step function.
We can then write down the explicit results for D ¼ 3

and D ¼ 4 to this order:

Im½γð2ÞI �D¼3 ¼
λ2

16π

Xþ∞

n¼1

Z
njΩj

0

dkd
½JnðkdϵÞ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnΩÞ2 − ðkdÞ2

p ;

Im½γð2ÞI �D¼4 ¼
λ2

32π2
Xþ∞

n¼1

Z
njΩj

0

dkd½JnðkdϵÞ�2: ð34Þ

Note that from Eq. (23), one could also extract the total
power dissipated per unit area: one should insert a factor
2nΩ into the series in Eq. (34) and divide the result by the
total time elapsed.
Let us now compare ourD ¼ 4 result in Eq. (34) with the

result of a calculation perturbative in the amplitude. To that
end, we expand the Bessel functions for small arguments;
we see that the leading contribution comes just from the
n ¼ 1 term. Hence,

Im½γð2ÞI �D¼4 ¼
λ2

32π2
Xþ∞

n¼1

Z
njΩj

0

dkd½JnðkdϵÞ�2 ≃ λ2ϵ2jΩj3
384π2

;

ð35Þ

which is consistent with the results in Ref. [14] for the
specific motion of the mirror defined by Eq. (24). A
numerical evaluation of the series shows that the leading
perturbative result is highly accurate in the nonrelativistic
limit ϵΩ ≤ 0.1. This is illustrated in Fig. 1.
We now compute the relativistic corrections to these

results, expanding the γ−1 factor in ~fγ in powers of v. From
Eq. (21) we obtain

~fγ − ~f ≡ Δ ~f ¼ −
v2

2

Z þ∞

−∞
dteik

0te−ik
dqðtÞsin2ΩtþOðv4Þ:

ð36Þ

Using again the Jacobi-Anger expansion, we get
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Δ ~f ¼ v2π
4

X∞
n¼−∞

ð−iÞnJnðkdϵÞ½δðk0 − ðnþ 2ÞΩÞ

þ δðk0 − ðn − 2ÞΩÞ − 2δðk0 − nΩÞ�; ð37Þ

and therefore

ΔIm½γð2ÞI �D¼4 ¼
λ2v2

128π2

×
Xþ∞

n¼1

Z
njΩj

0

dkdJnðJnþ2þ Jn−2 − 2JnÞjkdϵ:

ð38Þ

To compare this with the nonrelativistic result, we write
both in a way which shows the dependence in v more
explicitly:

Im½γð2ÞI �D¼4 ¼
λ2Ω
32π2

1

v

Xþ∞

n¼1

Z
nv

0

du½JnðuÞ�2 ð39Þ

and

ΔIm½γð2ÞI �D¼4 ¼
λ2Ωv
32π2

Xþ∞

n¼1

Z
nv

0

duJnðuÞ
d2Jn
du2

ðuÞ; ð40Þ

where the latter has been obtained from Eq. (38) by using
recurrence relations of the Bessel functions.
We made a numerical evaluation of these expressions

and found that the series in Eqs. (39) and (40) are
dominated by the first terms, and are of the same order
of magnitude. More concretely, we found that the relativ-
istic correction can be fitted as

ΔIm½γð2ÞI �D¼4

Im½γð2ÞI �D¼4

≃ 0.25v2 ð41Þ

for v < 0.3.

B. Ultrarelativistic motion

In order to obtain closed analytical expressions in the
ultrarelativistic case, we have found it convenient to
consider, instead of a harmonic motion, the oscillatory
motion qðtÞ ¼ ϵηðtÞ, where ϵ sets the amplitude of motion,
and ηðtÞ oscillates between −1 and 1, depending linearly on
t in each half-period:

ηðtÞ ¼
(
1 −Ωt; 0 ≤ t < 2

Ω

1þΩðt − 4
ΩÞ; 2

Ω ≤ t < 4
Ω

: ð42Þ

Note that this motion has infinite acceleration at the return
points. Physically, this is an idealization of a smooth
trajectory in which the change of velocity at the return
points takes place during a small finite time interval
Δt ≪ 1=Ω, and therefore the acceleration at those points
is of the order jaj ¼ 2ϵΩ=Δt. We shall keep in mind that
this finite returning time Δtwill act as a “cutoff,” a fact that
will reflect itself when encountering a UV divergence
below. Note that this cutoff is a parameter of the motion,
not an artifact of the calculation. A similar motion (but with
a single half-period) has been considered before by Moore
[1] and Fulling and Davies [2] in 1þ 1 dimensions.
The main reason to introduce the idealization above is a

practical one: it simplifies the calculation. Indeed, (neglect-
ing the contribution of this small interval) the velocity in
Eq. (42) always has modulus v ¼ ϵΩ, and the Lorentz
factor becomes time independent. Thus,

~fγðk0; kdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϵΩÞ2

q Z þ∞

−∞
dteik

0te−ik
dϵηðtÞ: ð43Þ

Noting that e−ik
dϵηðtÞ has a period τ ¼ 4=Ω, we expand it in

Fourier space,

e−ik
dϵηðtÞ ¼

Xþ∞

n¼−∞
Cne−iωnt; ð44Þ

with ωn ¼ 2πn
τ , and

Cn ¼
1

τ

Z
τ

0

dte−ik
dϵηðtÞeiωnt: ð45Þ

By means of the usual “uncertainty relation” between time
and frequency, we note that the Fourier series above have
an implicit cutoff:

jωnjmax ∼ ðΔtÞ−1 ð46Þ
or

jnmaxj ∼ ðΩΔtÞ−1: ð47Þ
The explicit form of the Fourier coefficients is

~fγðk0; kdÞ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϵΩÞ2

q Xþ∞

n¼−∞
Cnδðk0 − ωnÞ; ð48Þ

0.00 0.05 0.10 0.15 0.20
1.00

1.01

1.02
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1.04
Im

2
pe

rt
.

D 4

FIG. 1. Imaginary part of the effective action for a single mirror,
normalized by the perturbative result, as a function of Ωϵ.
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with

Cn ¼
kdϵΩ2

2i
e−ik

dϵ − ð−1Þneikdϵ
ω2
n − ðkdϵΩÞ2 : ð49Þ

Then we see that the effective action per unit time and unit
area becomes

γð2ÞI ¼ 1

2
½1 − ðϵΩÞ2�

×
X

jnj<nmax

Z þ∞

−∞

dkd

2π
½ ~Πð2ÞðkÞ�jk0¼ωn;k∥¼0jCnj2; ð50Þ

and its imaginary part in D ¼ 4 is

Im½γð2ÞI �D¼4 ¼
λ2Ω
64π2

1 − v2

v

Xnmax

n¼1

Z nπ
2
v

0

du
u2

½ðnπ
2
Þ2 − u2�2

× ½1 − ð−1Þn cosð2uÞ�: ð51Þ

By a change of variables in the integral, it may be written as
follows:

Im½γð2ÞI �D¼4 ¼
λ2Ω
32π3

1 − v2

v

Z
v

0

du
u2

ð1 − u2Þ2 g4ðuÞ; ð52Þ

with

g4ðuÞ ¼
Xnmax

n¼1

1 − ð−1Þn cosðnπuÞ
n

: ð53Þ

This sum grows logarithmically with the cutoff. Figure 2
shows the results for different terms in the series as a
function of the velocity. Recalling that nmax ∼ ðΩΔtÞ−1, we
see that the imaginary part of the effective action grows as
− lnðΩΔtÞ, as Δt → 0.

It is worth observing that the dissipative effects vanish
in the ultrarelativistic limit. This is a consequence of the
δ-potential interaction in our model [see Eq. (4)], in which
the effective coupling between the mirror and the quantum
field is λ=γ: the mirror is transparent as v → 1.
It is interesting to repeat this calculation in 2þ 1

dimensions, where this kind of motion produces a finite
imaginary part of the effective action even in the limit of
infinite acceleration. The corresponding result is

Im½γð2ÞI �D¼3 ¼
λ2

4π3
1 − v2

v

Z
v

0

du
u2

ð1 − u2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðuvÞ2

q g3ðuÞ;

ð54Þ

with

g3ðuÞ ¼
Xþ∞

n¼1

1 − ð−1Þn cosðnπuÞ
n2

¼ π2

4
ð1 − u2Þ: ð55Þ

Inserting Eq. (55) into Eq. (54) and performing the integral,
we obtain

Im½γð2ÞI �D¼3 ¼
λ2

32
ð1 − v2Þ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p − 1

�
: ð56Þ

The plot in Fig. 3 shows the same qualitative behavior as
the previous case. The imaginary part of the effective action
has a peak at a velocity close to v ¼ 0.9 and then vanishes
in the ultrarelativistic limit v → 1.
To conclude this section, we have seen that the imaginary

part of the effective action diverges logarithmically with the
maximum acceleration of the mirror in 3þ 1 dimensions,
and is finite in 2þ 1 dimensions. It is also finite in 1þ 1
dimensions [1,2]. The fact that the UV behavior of the
imaginary part of the effective action get worse for higher
dimensions is well known and related to the phase space
available for the created particles.

nmax 5000
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nmax 500

0.0 0.2 0.4 0.6 0.8 1.0
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2.0

Im
2

A

D 4

FIG. 2. Imaginary part of the effective action for a single mirror
with relativistic motion, normalized by A ¼ λ2Ω

64π2
, as a function of

Ωϵ. The different curves in the figure show the dependence with
the returning time, i.e. with the maximum acceleration of the
mirror.
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FIG. 3. Imaginary part of the effective action (multiplied by
102) for a single mirror with relativistic motion, as a function of
v ¼ Ωϵ, in D ¼ 2þ 1. It is finite in the limit Δt → 0 and has the
same qualitative behavior as the case D ¼ 3þ 1.
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IV. TWO MIRRORS

Let us consider now two mirrors, each one moving with a
harmonic time dependence, and having a constant average
distance a:

qLðtÞ ¼ ϵL cosðΩLtþ δLÞ;
qRðtÞ ¼ aþ ϵR cosðΩRtþ δRÞ: ð57Þ

Note that we have included here also the phases δL;R. As we
will see, they become relevant when there are two mirrors.
The first relevant term in the perturbative expansion

corresponds again to order 2. In this term, there are three
contributions:

Γð2Þ
I ¼ i

2
hðSLÞ2ic þ

i
2
hðSRÞ2ic þ ihSLSRic; ð58Þ

the first two of which reduce to the second-order term for
the respective single mirror (the phases disappear in those
terms). Thus, we will only keep the last term, which is also
the only contribution to this order which depends on the
average distance a. This term describes the “interference”
between mirrors in the particle creation rate.
Denoting that contribution by Γð2Þ

LR, we see that

Γð2Þ
LR ¼ i

λL
2

λR
2

Z
dDx

Z
dDx0δðz − qLðtÞÞ2ðhφðxÞφðx0ÞiÞ2

× δðz0 − qRðt0ÞÞ

≡ 1

2

Z
dDx

Z
dDx0δðz − qLðtÞÞΠð2Þ

LRðx; x0Þ

× δðz0 − qRðt0ÞÞ; ð59Þ

where

Πð2Þ
LRðx; x0Þ ¼ iλLλRðGðx; x0ÞÞ2; ð60Þ

which is of course identical to the kernel Πð2Þðx; x0Þ except
for a multiplicative constant.
With a similar notation to the one used in the previous

subsection, we also see that

Γð2Þ
LR ¼ 1

2

Z
dDk
ð2πÞD

~Πð2Þ
LRðkÞð ~FLðkÞÞ� ~FRðkÞ; ð61Þ

where

~Πð2Þ
LRðkÞ ¼ iλLλR

Z
dDp
ð2πÞD

~GðpÞ ~Gðp − kÞ ð62Þ

and

~FL;RðkÞ ¼
Z

dDxeik·xδ½xd − qL;Rðx0Þ�

¼ ð2πÞd−1δd−1ðk∥Þ ~fL;Rðk0; kdÞ;
~fL;Rðk0; kdÞ ¼

Z þ∞

−∞
dteik

0te−ik
dqL;RðtÞ: ð63Þ

Here,

~fLðk0; kdÞ ¼ 2πeik
0 δL
ΩL

Xþ∞

n¼−∞
inJnðkdϵLÞδðk0 − nΩLÞ; ð64Þ

and

~fRðk0; kdÞ ¼ 2πeiðk
0 δR
ΩR

−kdaÞ Xþ∞

n¼−∞
inJnðkdϵRÞδðk0 − nΩRÞ:

ð65Þ
Thus, we see that the second-order term will vanish

unless ΩL and ΩR satisfy

nLΩL ¼ nRΩR ð66Þ
for some natural numbers nL;R—i.e., unless the frequencies
are commensurable. Among the different possibilities for
this to happen, let us first consider the simplest one,
corresponding to equal frequencies: ΩL ¼ ΩR ≡Ω. Then,

Im½γð2ÞLR� ¼
1

4π

Xþ∞

n¼−∞

Z þ∞

−∞
dkd cos nδ cos kda

× Im½ ~Πð2Þ
LRðkÞ�jk0¼nΩ;k∥¼0JnðkdϵLÞJnðkdϵRÞ;

ð67Þ
with δ≡ δR − δL. Note that if we set δ ¼ 0, ϵL ¼ ϵR and

a ¼ 0, the three contributions of Γð2Þ
I reduce to the result

for a single mirror with coupling λL þ λR, as expected.
We will now discuss in some detail the particular case

a > 0, ϵL ¼ ϵR ¼ ϵ in four dimensions. We have

Im½γð2ÞLR� ¼
λ2

16π2a

Xþ∞

n¼1

cos nδ
Z

njΩja

0

dx cos x½Jnðxϵ=aÞ�2:

ð68Þ
As in the case of one mirror, we can evaluate the imaginary
part of the effective action perturbatively in the amplitude
of the oscillation, keeping only the n ¼ 1 term in the series,
and expanding the Bessel function for small arguments.
The result is

Im½γð2ÞLR�≃ λ2ϵ2

64π2a3
½2ΩacosΩaþððΩaÞ2−2ÞsinΩa�cosδ

ð69Þ
and has some interesting properties. We first note that the

sign of Im½γð2ÞLR� is not necessary positive, because this is
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only the interference part of the imaginary part of the
effective action. It vanishes for some particular values
of Ωa ¼ 2.08; 5.94;…, etc., whatever the dephasing δ.
Moreover, it also vanishes for δ ¼ π=2, for any value of a.
In the particular case Ωa ≪ 1, we obtain

Im½γð2ÞLR�≃ λ2ϵ2jΩj3
192π2

cos δ; ð70Þ

which is twice the result for a single mirror [Eq. (35)]
multiplied by cos δ.
It is interesting to assess the accuracy of the perturbative

result in Eq. (69). In Fig. 4(a), we plot Im½γð2ÞLR� for a fixed
value of Ωϵ, as a function of Ωa. The exact [Eq. (68)] and
perturbative [Eq. (69)] results are indistinguishable, unless
Ωa is close to a zero of the perturbative result. This is
illustrated in Fig. 4(b). The terms of higher order produce
only a small shift in the position of the zeros.
In Figs. 5(a) and 5(b), we plot the ratio of the exact and

perturbative results as a function of Ωϵ, for fixed values of

Ωa. These results verify the significant difference between
perturbative and exact results in the region near to the zeros
of the imaginary part of the effective action.

V. HIGHER ORDERS, AND MORE MIRRORS

The results presented in the previous sections can be
easily generalized to include higher-order corrections in λ.
For example, the third-order contribution to the effective
action for a single, nonrelativistic mirror reads

Γð3Þ
I ¼ 1

3!

Z
dDx1

Z
dDx2

Z
dDx3Πð3Þðx1; x2; x3Þ

× δðz1 − qðt1ÞÞδðz2 − qðt2ÞÞδðz3 − qðt3ÞÞ; ð71Þ

where

Πð3Þðx1; x2; x3Þ ¼
1

2
λ3Gðx1 − x2ÞGðx2 − x3ÞGðx3 − x1Þ:

ð72Þ
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FIG. 4. Imaginary part of the effective action for two mirrors [normalized with A ¼ λ2

64π2a × 10−2 for (a) and A ¼ λ2

64π2a × 10−3 for (b)],
as a function of Ωa. (a) The exact (red) and perturbative (blue) results are almost indistinguishable. (b) Zoom near a zero of the
imaginary part of the effective action.
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FIG. 5. Ratio of the exact and perturbative results as a function ofΩϵ, for (a)Ωa ¼ 1 and (b)Ωa ¼ 2. In the case ofΩa ¼ 2, the figure
illustrates the difference between perturbative and exact results in a region close to a zero of the imaginary part of the effective action.
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Now, since Πð3Þ depends only on the differences between
pairs of arguments, its Fourier transform may be written as
follows:

~Πð3Þðk1; k2; k3Þ ¼ ð2πÞDδðk1 þ k2 þ k3Þ ~Πð3Þðk1; k2Þ: ð73Þ
Then, the effective action becomes extensive in time and
the parallel coordinates, defining a density as in the second-
order case:

γð3ÞI ¼ 1

3!

Xþ∞

n1;n2¼−∞

Z
dkd1
2π

dkd2
2π

~Πð3Þðn1Ω; 0∥; kd1; n2Ω; 0∥; kd2Þ

× Jn1ðkd1ϵÞJn2ðkd2ϵÞJ−n1−n2ð−ðkd1 þ kd2ÞϵÞ: ð74Þ

Again, the imaginary part is determined by the correspond-
ing absorptive part in ~Πð3Þ, that is given by

~Πð3Þðk1; k2Þ ¼
λ3

ð4πÞD=2 Γð3 −D=2Þ

×
Z

1

0

dα1

Z
1

0

dα2θð1 − α1 − α2Þ

× ½ðα1k1 þ α2ðk1 þ k2ÞÞ2
− α1k21 − α2ðk1 þ k2Þ2�D=2−3: ð75Þ

More generally, the term of order n can be written as
follows:

ΓðnÞ
I ¼ 1

n!

Z
dDx1

Z
dDx2…

Z
dDxnΠðx1; x2;…; xnÞ

× δðz1 − qðt1ÞÞ…δðzn − qðtnÞÞ; ð76Þ
where

Πðx1; x2;…; xnÞ ¼
in−1

2
ð−1ÞnλnGðx1 − x2Þ

× Gðx2 − x3Þ…Gðxn − x1Þ; ð77Þ
of which only the part which is completely symmetric with
respect to its arguments contributes to Eq. (76).
When considering N mirrors, the interaction action SI

will be of the form

SI ¼
XN
i¼1

SðiÞ
I ; ð78Þ

where each term is proportional to a coupling constant
λðiÞ. The contribution of order n to the effective action
will be proportional to hðSIÞnic. Therefore, we see that the
expansion in powers of the coupling constants λðiÞ (assum-
ing all of them to be of the same order) includes, up to order
n < N, n-body interactions between the mirrors. This is
entirely analogous to what happens for the static Casimir
energy, when computed using a perturbative expansion in
the dielectric contrast [9].

VI. CONCLUSIONS

We have considered the DCE for semitransparent mirrors,
having as the main goal the development of a systematic
perturbative approach to compute the imaginary part of the
effective action in powers of the coupling constant between
the mirrors and the quantum field. The approach is valid in
dimensions D ≥ 3, because of the infrared divergences that
arise in D ¼ 2.
We presented explicit results for the case of one or two

oscillating mirrors, considering both relativistic and non-
relativistic motions, without restricting the calculations to
the small-amplitude limit. Technically, this has been
accomplished by using the Jacobi-Anger expansion. The
resulting expressions for the imaginary part of the effective
action are suitable to compute relativistic corrections,
expanding the γ−1 factors in powers of v2.
For the case of a single mirror undergoing harmonic

oscillations, we have shown that the results in the non-
relativistic case are practically identical to those of a
perturbative expansion in the amplitude of oscillation, to
the lowest nontrivial order. However, in our approach, it is
very simple to incorporate relativistic corrections, going
beyond the usual nonrelativistic results. Then we consid-
ered, for the case of a single mirror, an example of
ultrarelativistic motion which corresponded to accelera-
tions concentrated in time at the return points, having an
essentially constant speed elsewhere. For 2þ 1 and 3þ 1
spacetime dimensions, we found a qualitatively similar
behavior, where the dissipation reaches a maximum at a
relativistic speed, but vanishes when the speed of the
oscillation reaches the speed of light. In 2þ 1 dimensions,
the imaginary part of the effective action is finite in the
limit of infinite acceleration, while in 3þ 1 dimensions, it
diverges logarithmically.
The case of two mirrors oscillating about a constant

distance a is qualitatively different. Indeed, we have found
departures from the calculation perturbative in the ampli-
tudes in the nonrelativistic case (the only case we
considered for two mirrors). Those departures are con-
centrated close to the zeros of the imaginary part of the
effective action, regarded as a function of Ωa. Moreover,
we have found that the interference term in the effective
action vanishes unless the mirrors move with commen-
surable frequencies.
Finally, we considered briefly the calculation of higher-

order corrections for an arbitrary number of mirrors. It is
conceptually interesting to remark that the contribution of
order n to the effective action includes up to n-body
interactions, as happens when computing the static Casimir
energy for dilute bodies [9,10].
Our approach can be generalized to more realistic sit-

uations involving the quantum electromagnetic field where
the “mirrors” are, for instance, refractive index perturbations
or relativistic flying mirrors in a plasma [15]. Moreover, it is
also possible to consider other geometries for the mirrors.

DYNAMICAL CASIMIR EFFECT FOR SEMITRANSPARENT … PHYSICAL REVIEW D 96, 045004 (2017)

045004-9



ACKNOWLEDGMENTS

This work was supported by CONICET, ANPCyT, and UNCuyo. A. G. was supported by a fellowship from CNEA.

[1] G. T. Moore, J. Math. Phys. (N.Y.) 11, 2679 (1970).
[2] P. C. W. Davies and S. A. Fulling, Proc. R. Soc. A 348, 393

(1976); 356, 237 (1977).
[3] V. V. Dodonov, Phys. Scr. 82, 038105 (2010).
[4] D. A. R. Dalvit, P. A. Maia Neto, and F. D. Mazzitelli, Lect.

Notes Phys. 834, 419 (2011).
[5] R. Schutzhold, arXiv:1110.6064.
[6] P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori,

Rev. Mod. Phys. 84, 1 (2012).
[7] G. Barton and A. Calogeracos, Ann. Phys. (N.Y.) 238, 227

(1995).
[8] A. Lambrecht, M. T. Jaekel, and S. Reynaud, Phys. Rev.

Lett. 77, 615 (1996); G. Barton, Ann. Phys. (N.Y.) 245, 361
(1996); V. P. Frolov and D. Singh, Classical Quantum
Gravity 16, 3693 (1999); N. Obadia and R. Parentani,
Phys. Rev. D 64, 044019 (2001); N. Nicolaevici, Classical
Quantum Gravity 18, 619 (2001); J. Haro and E. Elizalde, J.
Phys. A 41, 032002 (2008); N. Nicolaevici, Classical
Quantum Gravity 28, 025014 (2011); C. D. Fosco, F. C.
Lombardo, and F. D. Mazzitelli, Phys. Rev. D 84, 025011
(2011); M. F. Maghrebi, R. Golestanian, and M. Kardar,
Phys. Rev. D 87, 025016 (2013); Q. Wang andW. G. Unruh,

Phys. Rev. D 92, 063520 (2015); J. D. L. Silva, A. N. Braga,
and D. T. Alves, Phys. Rev. D 94, 105009 (2016).

[9] R. Golestanian, Phys. Rev. Lett. 95, 230601 (2005).
[10] K. A. Milton, P. Parashar, and J. Wagner, Phys. Rev. Lett.

101, 160402 (2008).
[11] F. Belgiorno, S. L. Cacciatori, G. Ortenzi, V. G. Sala, and D.

Faccio, Phys. Rev. Lett. 104, 140403 (2010); F. Belgiorno,
S. L. Cacciatori, G. Ortenzi, L. Rizzi, V. Gorini, and D.
Faccio, Phys. Rev. D 83, 024015 (2011); E. Rubino, F.
Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G.
Ortenzi, L. Rizzi, V. G. Sala, M. Kolesik, and D. Faccio,
New J. Phys. 13, 085005 (2011); F. Dalla Piazza, F.
Belgiorno, S. L. Cacciatori, and D. Faccio, Phys. Rev. A
85, 033833 (2012).

[12] C. R. Galley, R. O. Behunin, and B. L. Hu, Phys. Rev. A 87,
043832 (2013).

[13] We use “planes” to denote flat spatial regions with codi-
mension 1 relative to d-dimensional space. They are planes
in the usual sense only when d ¼ 3.

[14] C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Phys.
Rev. D 76, 085007 (2007).

[15] M. Kando et al., Phys. Rev. Lett. 103, 235003 (2009).

FOSCO, GIRALDO, and MAZZITELLI PHYSICAL REVIEW D 96, 045004 (2017)

045004-10

https://doi.org/10.1063/1.1665432
https://doi.org/10.1098/rspa.1976.0045
https://doi.org/10.1098/rspa.1976.0045
https://doi.org/10.1098/rspa.1977.0130
https://doi.org/10.1088/0031-8949/82/03/038105
https://doi.org/10.1007/978-3-642-20288-9
https://doi.org/10.1007/978-3-642-20288-9
http://arXiv.org/abs/1110.6064
https://doi.org/10.1103/RevModPhys.84.1
https://doi.org/10.1006/aphy.1995.1021
https://doi.org/10.1006/aphy.1995.1021
https://doi.org/10.1103/PhysRevLett.77.615
https://doi.org/10.1103/PhysRevLett.77.615
https://doi.org/10.1006/aphy.1996.0013
https://doi.org/10.1006/aphy.1996.0013
https://doi.org/10.1088/0264-9381/16/11/315
https://doi.org/10.1088/0264-9381/16/11/315
https://doi.org/10.1103/PhysRevD.64.044019
https://doi.org/10.1088/0264-9381/18/4/304
https://doi.org/10.1088/0264-9381/18/4/304
https://doi.org/10.1088/1751-8113/41/3/032002
https://doi.org/10.1088/1751-8113/41/3/032002
https://doi.org/10.1088/0264-9381/28/2/025014
https://doi.org/10.1088/0264-9381/28/2/025014
https://doi.org/10.1103/PhysRevD.84.025011
https://doi.org/10.1103/PhysRevD.84.025011
https://doi.org/10.1103/PhysRevD.87.025016
https://doi.org/10.1103/PhysRevD.92.063520
https://doi.org/10.1103/PhysRevD.94.105009
https://doi.org/10.1103/PhysRevLett.95.230601
https://doi.org/10.1103/PhysRevLett.101.160402
https://doi.org/10.1103/PhysRevLett.101.160402
https://doi.org/10.1103/PhysRevLett.104.140403
https://doi.org/10.1103/PhysRevD.83.024015
https://doi.org/10.1088/1367-2630/13/8/085005
https://doi.org/10.1103/PhysRevA.85.033833
https://doi.org/10.1103/PhysRevA.85.033833
https://doi.org/10.1103/PhysRevA.87.043832
https://doi.org/10.1103/PhysRevA.87.043832
https://doi.org/10.1103/PhysRevD.76.085007
https://doi.org/10.1103/PhysRevD.76.085007
https://doi.org/10.1103/PhysRevLett.103.235003

