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We initiate the study of intersecting surface operators/defects in 4D quantum field theories (QFTs). We
characterize these defects by coupled 4D/2D/0D theories constructed by coupling the degrees of freedom
localized at a point and on intersecting surfaces in spacetime to each other and to the 4D QFT. We
construct supersymmetric intersecting surface defects preserving just two supercharges in N ¼ 2 gauge
theories. These defects are amenable to exact analysis by localization of the partition function of the
underlying 4D/2D/0D QFT. We identify the 4D/2D/0D QFTs that describe intersecting surface operators
in N ¼ 2 gauge theories realized by intersecting M2 branes ending on N M5 branes wrapping a Riemann
surface. We conjecture and provide evidence for an explicit equivalence between the squashed
four-sphere partition function of these intersecting defects and correlation functions in Liouville/Toda
CFT with the insertion of arbitrary degenerate vertex operators, which are labeled by two representations
of SUðNÞ.
DOI: 10.1103/PhysRevD.96.045003

I. INTRODUCTION

The rich dynamics that a quantum field theory (QFT) can
display may be probed with defects of various dimensions.
Classic examples are the Wilson and ’t Hooft lines, which
probe the state of the system through the response of an
electrically and magnetically charged heavy particle respec-
tively. In recent years, the construction of novel defects of
various (co)dimensions has significantly enlarged the
probes available to quantum field theorists. Chief amongst
these are codimension two defects, which can discriminate
phases that are otherwise indistinguishable by the classic
Wilson–’t Hooft criterion [1]. Codimension two defects
define surface defects in four dimensions (see [2–11] for
early work) and vortex lines in three dimensions [12–15].
For a recent review on surface defects see [16].
Defects in a QFT can be defined by coupling the bulk

QFT to additional degrees of freedom that are localized
on the support of the defect. Canonically, the coupling
is implemented by gauging global symmetries acting
on the defect degrees of freedom with bulk gauge
symmetries and/or by identifying bulk and defect global
symmetries through couplings between defect and bulk
matter fields. A defect global symmetry associated to the
defect conserved current Jμ is gauged with a bulk gauge
field AM through the following coupling integrated over
the defect:

Z
D
dxAμðx; x⊥ ¼ 0ÞJμðxÞ þ seagull terms: ð1:1Þ

This construction realizes a defect operator as a lower-
dimensional QFT on the support D of the defect interact-
ing with the bulk QFT and provides a uniform description
of the Wilson lines, vortex lines and surface defects,
among others [17]. The realization of defect operators as
defect degrees of freedom coupled to the bulk QFT has
played a key role in unraveling the action of various
dualities on defect operators; see, e.g., [15,18].
The set of defects in a QFT can be enlarged by

considering intersecting defects. These are constructed
intuitively by letting a collection of defects of various
codimensions intersect in spacetime. This picture has a
natural QFT realization. First, each defect comes equipped
with its own localized degrees of freedom which couple to
the bulk QFT as described above, just as if the defect were
inserted in isolation. In the presence of multiple defects,
this construction can be further enriched by adding new
intersection degrees of freedom along the intersection
domain of the defects and letting them couple to the
corresponding defect degrees of freedom (as well as the
bulk). This is again accomplished by gauging the flavor
symmetries acting on the intersection degrees of freedom
with gauge symmetries residing on the various defects
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(and/or bulk) and/or by identifying them with defect (and/
or bulk) global symmetries. Intersecting defects exhibit
quite a rich dynamics as they bring together under a single
roof the intricate dynamics of QFTs in various dimensions.
In this paper we initiate the study of intersecting surface

defects in 4D gauge theories. More precisely, we consider
the case of orthogonal planar surface defects intersecting at
a point (see Fig. 1 for a pictorial representation). We focus
our investigations on intersecting surface defects in 4D
N ¼ 2 supersymmetric field theories that preserve the 0D
dimensional reduction of 2D N ¼ ð0; 2Þ supersymmetry.
These intersecting surface operators on R4 are constructed
by coupling an N ¼ ð0; 2Þ 0D theory [19] at x1 ¼ x2 ¼
x3 ¼ x4 ¼ 0 to a 2DN ¼ ð2; 2Þ theory at x3 ¼ x4 ¼ 0 and
to a 2D N ¼ ð2; 2Þ theory at x1 ¼ x2 ¼ 0. These 2D
theories are in turn coupled to the bulk 4D N ¼ 2 theory
[20]. This construction is very general, and defines a very
large class of intersecting surface defects.
Pleasingly, the expectation values of these intersecting

surface defects in the Ω-background [21] and on the
squashed four sphere [22,23] are amenable to exact
computation by supersymmetric localization, yielding
novel nonperturbative results in 4D QFTs. Consider an
intersecting defect on the squashed four sphere S4b with the
surface defects wrapping orthogonal two spheres S2L and S2R
that intersect at two points, the north pole and south pole of
S4b. We show that the expectation value of the intersecting
defect takes the form

XZ
ZS4b

ZS2L
ZS2R

Zintersection
0D jZinstantonj2; ð1:2Þ

where ZS4b
is the one-loop determinant of the bulk 4D

N ¼ 2 theory together with the classical contribution, and
ZS2L

and ZS2R
denote the one-loop determinants and classical

contributions of the 2D N ¼ ð2; 2Þ theories living on the
respective surface defects, which are coupled to the 4D
theory. Zintersection

0D is the one-loop determinant of the
intersection degrees of freedom pinned at the poles and
coupling to the 2D (and 4D) theories. Finally, jZinstantonj2
are two copies of the instanton partition function, one for

the north pole and one for the south pole of S4b, encoding
the contribution of instantons in the presence of the
intersecting surface defects. The 2D and 0D fields intro-
duce new elements to the instanton computation, by
specifying the allowed singular behavior of the 4D gauge
fields and by contributing extra zero modes to the integral
over the appropriate instanton moduli space. In this paper
we perform the detailed computation of the expectation
value of intersecting defects in 4D theories without gauge
fields (see Sec. III).
We proceed to identify a family of intersecting surface

defects in 4D N ¼ 2 theories which admit an elegant
interpretation in 2D nonrational conformal field theory
(CFT) and realize the low-energy dynamics of two inter-
secting sets of M2 branes ending on nf M5 branes wrapping
a punctured Riemann surface. The configuration of inter-
secting M2 branes is labeled by a pair of irreducible
representations ðR0;RÞ of SUðnfÞ. On the M5 branes
resides a 4D N ¼ 2 theory dictated by the choice of
Riemann surface [24] and the M2 branes insert a surface
operator [25,26], whose field theory description we pro-
vide. Our construction realizes intersecting M2 brane
surface operators in 4D N ¼ 2 theories on M5 branes that
admit a choice of duality frame with an SUðnfÞ × SUðnfÞ ×
Uð1Þ symmetry [27], which allows for the gauging of the
corresponding global symmetries of the defect fields. This
includes, among many other theories, N ¼ 2 SUðnfÞ
supersymmetric quantum chromodynamics (SQCD) with
2nf fundamental hypermultiplets and the N ¼ 2� theory,
that is N ¼ 2 SUðnfÞ super-Yang-Mills with a massive
adjoint hypermultiplet.
We state, for clarity, our results and conjectures for the

simplest 4D N ¼ 2 theory in this class: the theory of n2f
hypermultiplets, living on nf M5 branes wrapping a trinion
with two full and one simple puncture.
Conjecture 1. The M2-brane intersection labeled by

representations ðR0;RÞ of SUðnfÞ ending on the nf M5
branes is described by the joint 4D/2D/0D quiver diagram
in Fig. 2 [28].
The SUðnfÞ × SUðnfÞ ×Uð1Þ global symmetries acting

on the innermost chiral multiplets of the right and leftN ¼
ð2; 2Þ quiver gauge theories are identified with each other
and with those acting on the bulk hypermultiplets via
defect, 2D N ¼ ð2; 2Þ superpotentials, one localized in the
ðx1; x2Þ-plane and the other in the ðx3; x4Þ-plane. Quintic
superpotentials identify the remaining Uð1Þ global sym-
metry of each 2D theory to rotations transverse to the
corresponding plane. The N ¼ ð0; 2Þ Fermi multiplet
localized at x1 ¼ x2 ¼ x3 ¼ x4 ¼ 0 is gauged with the
innermost gauge group factor of the left and right
N ¼ ð2; 2Þ quiver gauge theory. The Fermi multiplet has
an E-term or J-term superpotential [29] quadratic in the 0D
N ¼ ð0; 2Þ restrictions of the 2D chiral multiplets.
The representation data ðR0;RÞ labeling the intersecting

M2 branes are encoded in the ranks of the gauge groups of

FIG. 1. Intersecting codimension two defects supported on
planesR2

12 andR
2
34. There are localized degrees of freedom living

on the planes R2
12 and R2

34 and at the origin; the latter couple to
the former degrees of freedom, which in turn couple to the 4D
gauge theory living in the bulk R4.
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the 2D N ¼ ð2; 2Þ gauge theories on the left and right of
the diagram by realizing ðR0;RÞ by a pair of Young
diagrams, as in Fig. 3. The number of boxes in each column
of the Young diagram determines the rank of the gauge
group of the corresponding N ¼ ð2; 2Þ gauge theory [30].
The complexified FI parameters

τ ¼ iξþ ϑ

2π
ð1:3Þ

for the innermost gauge groups UðnνÞ and Uðn0ν0 Þ are
opposite while the FI parameters for all other gauge groups
vanish [31]. The surviving complexified FI parameter
encodes the position on the Riemann surface where the
intersecting M2 branes end. For the precise brane configu-
ration see Sec. IV.
The same quiver with νþ ν0 arbitrary FI parameters

corresponds to the insertion of ν sets of M2 branes labeled
by antisymmetric representations [32] ð1;∧nκ−nκ−1 □Þ and

ν0 sets labeled by ð∧nf−n0κþn0κ−1 □; 1Þ. Their respective
positions on the Riemann surface are encoded in the FI
parameters [33].
Conjecture 2. The instanton partition function in the

Ω-background R4
ϵ1;ϵ2 of the family of intersecting defects

captured by the 4D/2D/0D quiver diagram in Fig. 2 equals
theWnf conformal block on the four-punctured sphere with
two full punctures, one simple puncture and an arbitrary
degenerate puncture. The choice of internal momentum
labeling the conformal block maps to a choice of boundary
condition for the vector multiplet scalars of the innermost
gauge group factors in the intersecting defect theory.
A degenerate puncture of the Wnf algebra is labeled by

two dominant weights ðΩ0;ΩÞ of SUðnfÞ through the
momentum vector

α ¼ −bΩ −
1

b
Ω0; ð1:4Þ

where b parametrizes the Virasoro central charge [34]. The
data of the degenerate puncture are realized in the quiver
diagram through the irreducible representations ðR0;RÞ,
which have highest weights ðΩ0;ΩÞ. TheR4

ϵ1;ϵ2 deformation
parameters are given in terms of the Virasoro central charge
by ϵ1 ¼ b and ϵ2 ¼ 1=bwith b > 0 [35]. The masses of the
4D and 2D matter fields are encoded in the momenta of the
two full punctures and the simple puncture (see Sec. V).
Conjecture 3. The expectation value on the squashed

four sphere S4b

x20
r2

þ x21 þ x22
l2

þ x23 þ x24
~l2

¼ 1 ð1:5Þ

FIG. 2. 4D/2D/0D quiver diagram (later denoted T Fermi) describing the M2-brane intersection labeled by representations ðR0;RÞ
ending on nf M5 branes wrapping a trinion with two full and one simple puncture. The 4D degrees of freedom are denoted inN ¼ 2

quiver notation, the 2D ones in N ¼ ð2; 2Þ quiver notation, and the 0D ones in the dimensional reduction of 2D N ¼ ð0; 2Þ quiver
notation, with dashed lines representing Fermi multiplets and solid arrows chiral multiplets. The ranks of the gauge groups are
determined by the representations ðR0;RÞ as in Fig. 3 and the complexified Fayet-Iliopoulos (FI) parameters of the innermost gauge
group factors are opposite while the others vanish. In both halves of the quiver the adjoint chiral multiplets are coupled through cubic
superpotentials to their neighboring bifundamental chiral multiplets. The 2D chiral multiplets charged under UðnνÞ or Uðn0ν0 Þ are
coupled through cubic and quintic superpotentials to the 4D degrees of freedom, and appear in E or J terms for the 0D Fermi
multiplet. More generally, the 4D SUðnfÞ × SUðnfÞ × Uð1Þ symmetry can be partly or fully gauged to insert this 4D/2D/0D quiver in
a larger 4D quiver gauge theory; we then call this 4D/2D/0D quiver “local” to insist on the presence of other 4D degrees of freedom.

FIG. 3. Gauge group ranks corresponding to Young diagrams
of ðR0;RÞ.
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of the intersecting surface theory in Fig. 2, with the right
N ¼ ð2; 2Þ quiver on the squashed two sphere at
x3 ¼ x4 ¼ 0, the left N ¼ ð2; 2Þ quiver on the squashed
two sphere at x1 ¼ x2 ¼ 0, and with the bifundamental
N ¼ ð0; 2Þ Fermi multiplet localized at the north and south
poles of S4b at x0 ¼ r and x0 ¼ −r respectively, is given by
the Anf−1 Toda CFT correlator on the four-punctured sphere
with two full punctures, one simple puncture and an
arbitrary degenerate puncture labeled by ðΩ0;ΩÞ. The
Toda CFT central charge parameter is given by b2 ¼ l= ~l.
Conjecture 4. The M2-brane intersection labeled by

representations ðsymn0
□; symn

□Þ of SUðnfÞ ending on the
nf M5 branes allows for an alternative description in terms of
the joint 4D/2D/0D quiver diagram in Fig. 4 [36]. Similarly
to Conjecture 2, the instanton partition function of the 4D/
2D/0D gauge theory coincides with aWnf conformal block
on the four-punctured sphere with two full punctures, one
simple puncture and a degenerate puncture labeled by the
symmetric representations ðsymn0

□; symn
□Þ. Similarly to

Conjecture 3, the S4b expectation value coincides with the
Anf−1 Toda CFT correlator with these four punctures.
These results enrich the fascinating connections uncovered

by Alday, Gaiotto, and Tachikawa (AGT) [37] between 4D
theories (see also [38]) and between 2D theories [26] and 2D
Toda CFT. Our mapping of the intersecting defects in Fig. 2
with the most general Toda degenerate field insertion, which
is labeled by the pair of representations ðR0;RÞ, completes
[26], where one of the representations was taken to be trivial
(see also [25,39–43]). Realizing the most general degenerate
insertion crucially requires considering intersecting defects,
with degrees of freedom localized along intersecting surfaces
and points on spacetime.

Extending our story to other 4DN ¼ 2 theories with the
properties described above is straightforward. In the field
theory, we gauge the SUðnfÞ × SUðnfÞ ×Uð1Þ global sym-
metry of the 2D/0D degrees of freedom with an SUðnfÞ ×
SUðnfÞ ×Uð1Þ symmetry of the 4D theory. In the corre-
spondence with Toda CFT, we insert an extra degenerate
puncture labeled by ðΩ0;ΩÞ on the punctured Riemann
surface realizing the 4DN ¼ 2 theory under consideration.
As an example, the 4D/2D/0D quiver diagram for an M2-
brane intersecting surface operator in 4D SQCD is given by
Fig. 5 [44]. The partition function of this theory is conjec-
turally computed by the TodaCFT five-point function on the
sphere, with two full punctures, two simple punctures and a
degenerate puncture that encodes the choice of the intersect-
ing surface operator.
The paper is organized as follows. In Sec. II we provide a

general framework for the construction of quarter-super-
symmetric intersecting defects in N ¼ 2 QFTs. In Sec. III
we compute exactly the expectation value of intersecting
surface defects on the squashed four sphere. Section IV
discusses theM-theory realization of the intersecting surface
defects of interest to this paper. Here we also show how the
proposed 4D/2D/0D quiver gauge theories of Figs. 2 and 4
naturally arise in theories admitting a type-IIA description.
SectionV states the conjectured relationwithLiouville/Toda
degenerate correlators precisely. It describes the concrete
and nontrivial verifications of our conjectures done in
Appendixes A and B. We conclude with some interesting
open questions and future directions.

II. COUPLING INTERSECTING DEFECTS

A planar, half-supersymmetric surface defect in a 4D
N ¼ 2 theory can preserve either 2D N ¼ ð2; 2Þ or N ¼
ð0; 4Þ supersymmetry. Indeed, the supercharges [46] of the
bulk supersymmetry algebra

fQA
α ; Q̄B

_αg ¼ ϵABPα _α ð2:1Þ

FIG. 4. Joint 4D/2D/0D quiver diagram describing the M2-
brane intersection labeled by the n and n0-fold symmetric
representations ending on nf M5 branes wrapping a trinion with
two full and one simple puncture. The complexified FI param-
eters of the two gauge group factors are equal. Cubic and quartic
superpotentials couple the 4D degrees of freedom to the 2D ones.
The 0D chiral multiplets on the intersection appear in E and
J-type superpotentials for 0D N ¼ ð0; 2Þ Fermi multiplet com-
ponents of the 2D N ¼ ð2; 2Þ (anti) fundamental chiral multip-
lets. As in Fig. 2, the 4D SUðnfÞ × SUðnfÞ × Uð1Þ symmetry can
be global or gauged.

FIG. 5. Joint 4D/2D/0D quiver realizing an M2-brane surface
operator inN ¼ 2 SQCD. This has the same matter content as the
quiver in Fig. 2.
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preserved by a half-supersymmetric defect spanning the
ðx1; x2Þ-plane generate either a 2D N ¼ ð2; 2Þ supersym-
metry algebra, say, ðQ1þ; Q2

−; Q̄2
_þ; Q̄

1
_−Þ, or an N ¼ ð0; 4Þ

algebra, e.g., ðQAþ; Q̄A
_þÞ.

Surface defects preserving these symmetries can be
constructed by coupling a 2D N ¼ ð2; 2Þ or N ¼ ð0; 4Þ
QFT supported on the defect to the 4D theory. This is done
by gauging global symmetries of the defect QFTwith bulk
gauge or global symmetries and by additional potential
terms [47]. The minimal coupling (1.1) and potential terms
must be supersymmetrized. A strategy to write down the
action of these surface defects which makes manifest the
supersymmetry of the defect theory is to rewrite the 4D
N ¼ 2 theory as a 2D N ¼ ð2; 2Þ or N ¼ ð0; 4Þ theory
[48]. Indeed, by decomposing the 4D multiplets in terms of
the 2DN ¼ ð2; 2Þ orN ¼ ð0; 4Þ ones, the bulk Lagrangian
can be reproduced from the action constructed out of the
lower-dimensional multiplets [53]. The coordinates trans-
verse to the defect appear from the lower-dimensional
viewpoint as continuous labels of the multiplets. The
advantage of this approach is that it is now straightforward
and manifestly 2D N ¼ ð2; 2Þ or N ¼ ð0; 4Þ supersym-
metric to couple the bulk theory to a 2D N ¼ ð2; 2Þ or
N ¼ ð0; 4Þ theory by gauging the flavor symmetries of the
defect theorywith bulk symmetries. Themattermultiplets of
the 4D N ¼ 2 theory (i.e., hypermultiplets) can also be
coupled via a localized N ¼ ð2; 2Þ or N ¼ ð0; 4Þ super-
potential to the matter multiplets on the defect, thus
identifying the defect flavor symmetries with either bulk
gauge or global symmetries. In this way, the surface defect
coupled to the bulk is represented as a 2D N ¼ ð2; 2Þ or
N ¼ ð0; 4Þ QFT. Schematically, the action describing the
surface defect takes the form

S ¼ S4D þ S2D þ S2D=4D: ð2:2Þ

This leads to a large family of surface operators in 4D
N ¼ 2 theories.
The class ofN ¼ ð2; 2Þ preserving surface defects that is

most relevant for us is encoded by the local four-dimen-
sional/2D quiver diagram of Fig. 6 [54]. These surface
defects were studied in detail in [26] and given a 2D
CFT interpretation. Related N ¼ ð2; 2Þ surface defects
were analyzed in [45]. The nf fundamental and antifunda-
mental chiral multiplets on the inner end of the 2D quiver
couple to the n2f hypermultiplets via a localized cubic
superpotential preserving 2D N ¼ ð2; 2Þ supersymmetry.
The superpotential identifies the SUðnfÞ×SUðnfÞ×Uð1Þ
flavor symmetry acting on the chiral multiplets with a
subgroup of the symmetry acting on the hypermultiplets.
The hypermultiplet scalars ðQ; ~QÞ, which transform in
conjugate representations of SUðnfÞ × SUðnfÞ × Uð1Þ,
are bottom components of 2D N ¼ ð2; 2Þ chiral multiplets
which we denote ðQ2D; ~Q2DÞ [55]. If we denote by q and ~q

the fundamental and antifundamental 2D chiral multiplets,
the relevant defect superpotential is

Scubic2D=4D ¼
Z

d4xδðx3Þδðx4Þ
Z

d2θq ~qQ2D: ð2:3Þ

This manifestly 2D N ¼ ð2; 2Þ supersymmetric super-
potential couples a gauge invariant meson operator of
the 2D theory to the hypermultiplets. Since masses in
4DN ¼ 2 and 2DN ¼ ð2; 2Þ theories are vacuum expect-
ation values of scalars in background vector multiplets for
the flavor symmetries, the superpotential fixes the masses
of the hypermultiplets in terms of the sum of the masses of
the 2D fundamental and antifundamental chiral multiplets
(see Sec. III). In addition to (2.3), a quintic superpotential
couples the (next-to) innermost bifundamental chiral mul-
tiplets qbif and ~qbif to q and ~q and to the chiral multiplet
whose bottom component is a transverse derivative of Q,

Squintic2D=4D¼
Z

d4xδðx3Þδðx4Þ
Z

d2θqqbif ~qbif ~qðð∂3− i∂4ÞQ2DÞ:

ð2:4Þ

It identifies the remaining 2D flavor symmetryUð1Þ (under
which adjoint and bifundamental chiral multiplets have
charges 2 and −1 respectively) to rotations transverse to the
defect.
In this paper we study intersecting surface defects in 4D

N ¼ 2 theories constructed fromN ¼ ð2; 2Þ planar surface
defects spanning the ðx1; x2Þ-plane and the ðx3; x4Þ-plane.
The defects intersect at the origin of R4. These intersecting
surface defects can preserve two supercharges [56] of the 4D
N ¼ 2 theory: ðQ1þ; Q2

−Þ. The field theory description of
these intersecting defects is invariant under the 0D dimen-
sional reduction of 2D N ¼ ð0; 2Þ supersymmetry. When
the intersecting defect is superconformal it preserves the
following subalgebra of the 4D N ¼ 2 superconformal
algebra:

FIG. 6. Local 4D/2D quiver diagram describing a class ofN ¼
ð2; 2Þ preserving surface defects. The 4D SUðnfÞ × SUðnfÞ ×
Uð1Þ symmetry can be global or gauged.
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suð1j1Þ1 ⊕ suð1j1Þ2 ⊕ uð1Þ3 ⊂ suð2; 2j2Þ: ð2:5Þ

The field theory construction of these intersecting sur-
face defects allows for the insertion of a 2D N ¼ ð0; 2Þ
QFT dimensionally reduced to zero dimensions at the
intersection point. This defectN ¼ ð0; 2Þ QFT can now be
coupled to the 2D N ¼ ð2; 2Þ QFTs living in the ðx1; x2Þ
and ðx3; x4Þ-planes. The global symmetries of the 0D
intersection QFT can be gauged with those of the 2D N ¼
ð2; 2Þ QFTs or 4D N ¼ 2 QFT. This gauging can be
explicitly carried out by first writing down the 2D N ¼
ð2; 2Þ QFTs living in the ðx1; x2Þ and ðx3; x4Þ-planes as 0D
N ¼ ð0; 2Þ theories in the spirit explained above. This
requires decomposing a 2D N ¼ ð2; 2Þ vector multiplet
into a 0D N ¼ ð0; 2Þ vector multiplet and chiral multiplet
and a 2D N ¼ ð2; 2Þ chiral multiplet into a 0D N ¼ ð0; 2Þ
chiral multiplet and Fermi multiplet. In this way, the 2D
N ¼ ð2; 2Þ QFTs can now be rewritten as 0D N ¼ ð0; 2Þ
theories and gauging the flavor symmetries of the 0D N ¼
ð0; 2Þ theory at the intersection with those of the N ¼
ð2; 2Þ theories in the ðx1; x2Þ and ðx3; x4Þ-planes becomes
standard. In general, it is possible to add 0D N ¼ ð0; 2Þ
superpotentials coupling the various matter multiplets in
zero, two and four dimensions while preserving all the
symmetries. Each N ¼ ð0; 2Þ Fermi multiplet admits so-
called E-type and J-type superpotentials [see [57] for more
background material on N ¼ ð0; 2Þ theories]. This con-
struction furnishes the Lagrangian description of our
quarter-supersymmetric surface defects. Schematically it
looks like

S ¼ S4D þ SðLÞ2D þ SðRÞ2D þ S0D þ SðLÞ2D=4D þ SðRÞ2D=4D þ SðLÞ0D=2D

þ SðRÞ0D=2D þ S0D=2D=4D: ð2:6Þ

The schematic action (2.6) captures a large class of
intersecting surface operators. We now describe two cases
of importance for brane systems later in the paper. In both
cases the 0D theories involve N ¼ ð0; 2Þ Fermi or chiral
multiplets (no vector multiplets).
The first class of intersecting surface defects we focus on

in this paper is summarized by the local 4D/2D/0D quiver
diagram of Fig. 2. The left and right 2D N ¼ ð2; 2Þ
theories couple via cubic and quintic superpotentials to
the 4D hypermultiplets. If we denote by ðqðLÞ; ~qðLÞ;
qbifðLÞ; ~q

bif
ðLÞÞ and ðqðRÞ; ~qðRÞ; qbifðRÞ; ~q

bif
ðRÞÞ the inner fundamental,

antifundamental, and bifundamental chiral multiplets of the
left and right N ¼ ð2; 2Þ quivers with respect to their

corresponding gauge group, and by Q2D
ðLÞ and ~Q2D

ðRÞ the 2D

chiral multiplets whose bottom components are the hyper-
multiplet scalars Q and ~Q, then the superpotential cou-
plings are

SðRÞ2D=4D ¼
Z

d4xδðx3Þδðx4Þ
Z

d2θðRÞðqðRÞ ~qðRÞQ2D
ðRÞ

þ qðRÞqbifðRÞ ~q
bif
ðRÞ ~qðRÞðð∂3 − i∂4ÞQ2D

ðRÞÞÞ ð2:7Þ

SðLÞ2D=4D ¼
Z

d4xδðx1Þδðx2Þ
Z

d2θðLÞðqðLÞ ~qðLÞ ~Q2D
ðLÞ

þ qðLÞqbifðLÞ ~q
bif
ðLÞ ~qðLÞðð∂1 − i∂2Þ ~Q2D

ðLÞÞÞ: ð2:8Þ

The cubic superpotentials identify the SUðnfÞ × SUðnfÞ ×
Uð1Þ flavor symmetries acting on the inner fundamental
and antifundamental chiral multiplets of the left and right
N ¼ ð2; 2Þ quiver to each other and to a subgroup of the
symmetry acting on the hypermultiplets. The quintic
superpotentials identify the remaining Uð1Þ flavor sym-
metries acting on bifundamental and adjoint chiral multip-
lets of each 2D theory to rotations transverse to that plane.
In Sec. III we explore the consequences of this identifica-
tion for the masses and R-charges of the various fields.
The 0DN ¼ ð0; 2Þ Fermi multiplet Λ has an S½Uðn0ν0 Þ ×

UðnνÞ� flavor symmetry, which is gauged with the inner-
most gauge group factors of the left and right N ¼ ð2; 2Þ
theories [58]. The couplings of Λ with the 2D fields can be
obtained by embedding a 0D S½Uðn0ν0 Þ × UðnνÞ� N ¼
ð0; 2Þ vector multiplet in the corresponding 2D N ¼
ð2; 2Þ vector multiplets. As explained in [47], gauging
does not eliminate theUð1Þ flavor symmetry acting only on
Λ, and a background vector multiplet for this symmetry
could be added. This is prevented by a 0D N ¼ ð0; 2Þ
E-type or J-type superpotential, for instance E½Λ� ¼
~qðLÞqðRÞ restricted to zero dimensions. Since the S4b parti-
tion function we compute is only sensitive to superpoten-
tials through the global symmetries that they identify, our
methods do not fix them.
The second class of intersecting surface defects

we study in this paper is given by the local 4D/2D/0D
quiver diagram of Fig. 4. In this case the superpotential
couplings are

SðRÞ2D=4D ¼
Z

d4xδðx3Þδðx4Þ
Z

d2θðRÞðqðRÞ ~qðRÞQ2D
ðRÞ

þ qðRÞφðRÞ ~qðRÞðð∂3 − i∂4ÞQ2D
ðRÞÞÞ; ð2:9Þ

SðLÞ2D=4D ¼
Z

d4xδðx1Þδðx2Þ
Z

d2θðLÞðqðLÞ ~qðLÞQ2D
ðLÞ

þ qðLÞφðLÞ ~qðLÞðð∂1 − i∂2ÞQ2D
ðLÞÞÞ; ð2:10Þ

where φðLÞ and φðRÞ denote the adjoint chiral multiplets.
This again identifies the flavor symmetries of the left and
right 2D quiver with the one of the 4D hypermultiplets and
with transverse rotations.
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The 0D N ¼ ð0; 2Þ chiral multiplets χ and ~χ each have
an S½Uðn0ν0 Þ × UðnνÞ� flavor symmetry. Both of these
S½Uðn0ν0 Þ × UðnνÞ� global symmetries are gauged with
the innermost gauge group factors of the left and right
N ¼ ð2; 2Þ theories. As before, gauging does not eliminate
global Uð1Þ symmetries acting only on χ and ~χ and there
should exist E or J-type superpotentials identifying those
symmetries to bulk symmetries. The analysis is compli-
cated by J-type superpotentials due to 2D superpotentials
and E-type superpotentials capturing derivatives in trans-
verse dimensions: the added 0D superpotentials must fulfil
the overall constraint TrðE · JÞ ¼ 0 for supersymmetry.
Since our computations are not sensitive to the precise
superpotential, we do not pursue it here.

III. LOCALIZATION ON S4b
OF INTERSECTING DEFECTS

In this section we perform the exact computation of the
expectation value of quarter-supersymmetric intersecting
surface defects on the squashed four sphere S4b,

x20
r2

þ x21 þ x22
l2

þ x23 þ x24
~l2

¼ 1; ð3:1Þ

where b2 ¼ l= ~l is a dimensionless squashing parameter. A
4D theory on the round four sphere S4 has an OSpð2j4Þ
supersymmetry algebra [22]. Upon squashing the sphere to
S4b, the symmetry of the theory is reduced to SUð1j1Þ. Any
4DN ¼ 2 theory can be placed on S4b while preserving this
symmetry [23].
A 2D N ¼ ð2; 2Þ theory on the round S2 preserves

OSpð2j2Þ [43,59–61]. When the sphere is squashed to S2b,
the symmetry of the theory is SUð1j1Þ [60]. A 2D N ¼
ð2; 2Þ theory on the round S2 can be coupled to a 4DN ¼ 2

theory on S4 while preserving OSpð2j2Þ [49]. Upon
squashing the four sphere to S4b, the combined 4D/2D
system preserves SUð1j1Þ, provided the 2D theory is
placed either on the S2b at x3 ¼ x4 ¼ 0 or at
x1 ¼ x2 ¼ 0, which we call S2ðRÞ and S2ðLÞ respectively. In
fact, we can place a 2D N ¼ ð2; 2Þ theory at x3 ¼ x4 ¼ 0
and another one at x1 ¼ x2 ¼ 0 while preserving SUð1j1Þ.
This allows us to couple the 4D N ¼ 2 theory on S4b to a
2D N ¼ ð2; 2Þ theory on S2ðRÞ and to a 2D N ¼ ð2; 2Þ
theory on S2ðLÞ. This setup can be further enriched by adding
localized degrees of freedom at the intersection of the 2D
theories, that is the north and south poles of S4b at x0 ¼ r
and x0 ¼ −r with x1 ¼ x2 ¼ x3 ¼ x4 ¼ 0 respectively; see
Fig. 7 for a cartoon. The localized degrees of freedom,
pinned at the poles, are the dimensional reduction of a 2D
N ¼ ð0; 2Þ theory down to zero dimensions. Consistently
coupling the N ¼ ð0; 2Þ multiplets to the 4D and 2D
degrees of freedom on S4b requires turning on a background

field for a flavor symmetry of the 0D theory that includes
the Uð1Þ ×Uð1Þ rotations of S4b. This background field is
necessary for the 0D N ¼ ð0; 2Þ theories at the poles of S4b
to be invariant under the SUð1j1Þ symmetry of the
combined system (see below). In this way, the quarter-
supersymmetric intersecting defects we have introduced in
the previous sections can be placed on S4b while preserv-
ing SUð1j1Þ.
Our primary goal is to compute the S4b partition function

of the intersecting defects in Fig. 2. We accomplish this by
supersymmetric localization with respect to the super-
charge Q in SUð1j1Þ. It is precisely this supercharge that
was used to compute the S4b partition function of a 4DN ¼
2 theory [23] and the S2b partition function of a 2D N ¼
ð2; 2Þ theory [60]. We localize the path integral by choosing
the “Coulomb branch localization” Q-exact deformation
terms of the 4D and 2D theories in [23,60]. In the absence
of 4D gauge fields, the saddle points of the 4D and 2D
fields are the same as if the theories were considered in
isolation. Finally, the north and south pole N ¼ ð0; 2Þ
Fermi multiplet action coupled to the saddle points of the
2D and 4D fields can be easily integrated out using the
computation of the index of 1D N ¼ ð0; 2Þ supersymmet-
ric quantum mechanics [62].
Putting all these facts together we arrive at the following

integral representation [63] of the partition function of the
intersecting defects in Fig. 2:

Z ¼ ZfreeHM
S4b

X
BðLÞ

X
BðRÞ

Z
dσðLÞ

ð2πÞrankGðLÞ
dσðRÞ

ð2πÞrankGðRÞ

× ZS2ðLÞ
ðσðLÞ; BðLÞÞZS2ðRÞ

ðσðRÞ; BðRÞÞ
× Zintersection

0D ðσðLÞ; BðLÞ; σðRÞ; BðRÞÞ: ð3:2Þ

FIG. 7. Intersecting surface defects supported on two intersect-
ing two spheres S2ðLÞ and S2ðRÞ. There are localized degrees of
freedom living on the two spheres S2ðLÞ and S2ðRÞ and at their

intersection points, i.e., the north and south poles (denoted NP
and SP in the figure); the latter couple to the former degrees of
freedom, which in turn couple to the 4D gauge theory living in
the bulk S4b.
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Here Zfree HM
S4b

is the S4b partition function [23] [64] of the n
2
f

hypermultiplets with dimensionless masses Mjs, measured

in units of 1=
ffiffiffiffiffiffi
l ~l

p
,

ZfreeHM
S4b

¼
Ynf
j;s¼1

1

ϒbðb2 þ 1
2b − iMjsÞ

: ð3:3Þ

Furthermore, GðLÞ;ðRÞ denote the total gauge groups of
the left/right 2D theories while ZS2b

ðσðL=RÞ; BðL=RÞÞ is

the integrand of the S2b partition function of the 2D
N ¼ ð2; 2Þ theory on the left/right of the quiver diagram.
The integrand is given by [43,59,60] [65]

ZS2b
ðσ; BÞ ¼ ziσþB

2 z̄iσ−
B
2

Y
w∈R

Γð−wðimþ iσ þ B
2
ÞÞ

Γð1þ wðimþ iσ − B
2
ÞÞ

×
1

W

Y
α>0

�
ð−1ÞαB

�
ðασÞ2 þ ðαBÞ2

4

��
ð3:4Þ

with z ¼ e−2πξFIþiϑ, where ξFI is the FI parameter and ϑ its
corresponding topological angle. B and σ take values in the
Cartan subalgebra of the gauge group and α and w are the
roots of the gauge group and weights of the representation
of the chiral multiplets respectively, whileW is the order of
the gauge Weyl group. We use conventions adapted to
quiver gauge theories; i.e., fundamental chiral multiplets
transform antifundamentally under their flavor symmetry
and vice versa. The parameter m in (3.4) is complex: the
real part measures the mass and the imaginary part the
R-charge of the 2D chiral multiplet through [43,59,60]

mðRÞ ¼ lmðRÞ −
i
2
RðRÞ

2D ½qðRÞ�;

~mðRÞ ¼ l ~mðRÞ þ i
2
RðRÞ

2D ½ ~qðRÞ�;

mðLÞ ¼ ~lmðLÞ −
i
2
RðLÞ

2D ½qðLÞ�;

~mðLÞ ¼ ~l ~mðLÞ þ i
2
RðLÞ

2D ½ ~qðLÞ�; ð3:5Þ

where m are masses of fundamental chiral multiplets while
~m denote masses of antifundamental chiral multiplets. The
dimensionless “masses” ðmðRÞ; ~mðRÞÞ and ðmðLÞ; ~mðLÞÞ are
measured in units of 1=l and 1= ~l respectively for the right
and left N ¼ ð2; 2Þ theories. This is because the corre-
sponding squashed two spheres S2b on which the 2D
theories live, which are embedded in S4b, have equatorial
radii l and ~l respectively.
Since the 2D N ¼ ð2; 2Þ theories are coupled to a 4D

N ¼ 2 theory in S4b, the canonical 2D R-charges are
induced by the 4D SUð1j1Þ supersymmetry algebra.

This is a consequence of the SUð1j1Þ-invariant coupling
of the left and right 2DN ¼ ð2; 2Þ theories on the two S2b’s
with the 4D N ¼ 2 theory on S4b. While SUð1j1Þ acts on
4D N ¼ 2 multiplets as [23]

Q2
4D ¼ 1

l
M12 þ

1

~l
M34 −

1

2

�
1

l
þ 1

~l

�
JR3 ; ð3:6Þ

SUð1j1Þ acts on 2D N ¼ ð2; 2Þ multiplets on an S2b with
equatorial radius l as [60]

Q2
2D ¼ 1

l
M12 −

1

2l
R2D: ð3:7Þ

Here Mij denotes the Uð1Þ generator that acts on the
ðxi; xjÞ coordinates defining the squashed sphere, JR3 is the
Cartan generator of the SUð2Þ R-symmetry of the 4D
N ¼ 2 theory in flat space [66] and R2D is the vector
R-symmetry of a 2D N ¼ ð2; 2Þ theory. Since the right
N ¼ ð2; 2Þ theory is on the S2b at x3 ¼ x4 ¼ 0 and the left
N ¼ ð2; 2Þ theory is on the S2b at x1 ¼ x2 ¼ 0, common
SUð1j1Þ-invariance implies that the R-charge generators
for the right and left N ¼ ð2; 2Þ theories are

RðRÞ
2D ¼ ð1þ b2ÞJR3 − 2b2M34

RðLÞ
2D ¼ ð1þ b−2ÞJR3 − 2b−2M12: ð3:8Þ

The formula (3.8) determines the R-charges under RðRÞ
2D

andRðLÞ
2D of the 4D hypermultiplet scalars ðQ; ~QÞ restricted

to each S2b. Recall that chiral multiplets of the right and left
N ¼ ð2; 2Þ theories couple to the corresponding N ¼
ð2; 2Þ bulk chiral multiplets with bottom components Q
and ~Q.
The cubic defect superpotentials in (2.7) and (2.8)

coupling bulk hypermultiplets with innermost chiral mul-
tiplets identify their respective SUðnfÞ × SUðnfÞ ×Uð1Þ
global symmetries. This implies that the masses of the
hypermultiplets and the innermost chiral multiplets obey a
relation, which follows from the common SUðnfÞ ×
SUðnfÞ ×Uð1Þ symmetry acting on these fields. Another
constraint follows from the SUð1j1Þ symmetry of S2b. A 2D
N ¼ ð2; 2Þ superpotential on S2b is supersymmetric if and
only if the R-charge of the superpotential is 2 [60]. This
gives two relations, one arising from (2.7) requiring that

RðRÞ
2D ½Q2D

ðRÞqðRÞ ~qðRÞ� ¼ 2 and the other from (2.8) requiring

that RðLÞ
2D ½ ~Q2D

ðLÞqðLÞ ~qðLÞ� ¼ 2. The hypermultiplet scalars

Q; ~Q have RðRÞ
2D ½Q� ¼ 1þ b2 and RðLÞ

2D ½ ~Q� ¼ 1þ b−2,
since J3R½Q� ¼ J3R½ ~Q� ¼ 1 and they are Lorentz scalars.
In total, the SUðnfÞ × SUðnfÞ ×Uð1Þ global symmetry
constraints and R-symmetry superpotential constraints
neatly combine into the following relation between the
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4D masses Mjs and the 2D complexified masses (3.5) mj

and ~ms for the fundamental and antifundamental chiral
multiplets,

�
Mjsffiffiffiffiffiffi
l ~l

p þ i
2l

þ i

2 ~l

�
þ −mðRÞ

j þ ~mðRÞ
s

l
¼ i

l
; ð3:9Þ

and

�
−
Mjsffiffiffiffiffiffi
l ~l

p þ i
2l

þ i

2 ~l

�
þ −mðLÞ

s þ ~mðLÞ
j

~l
¼ i

~l
: ð3:10Þ

The real part of these equations encodes the SUðnfÞ ×
SUðnfÞ ×Uð1Þ global symmetry constraints on the masses
and the imaginary part the R-charge constraints. The first
relation (3.9) fixes the 4D masses Mjs, which appear in

Zfree HM
S4b

in (3.2), in terms of the 2D masses mðRÞ
j and ~mðRÞ

s .

Adding (3.9) and (3.10) we find the following system of
equations,

−mðRÞ
j þ ~mðRÞ

s

l
þ −mðLÞ

s þ ~mðLÞ
j

~l
¼ 0; ð3:11Þ

whose solution is

b−1 ~mðRÞ
s ¼ bmðLÞ

s þ c; b−1mðRÞ
j ¼ b ~mðLÞ

j þ c; ð3:12Þ

for some constant c which we set to 0 by shifting the vector
multiplet scalars in the left theory by c=b. This relation is
consistent with the R-charges above. We can use this

relation to express in terms of ðmðRÞ
j ; ~mðRÞ

s Þ the masses of
the innermost (fundamental and antifundamental) chirals of
the right and left N ¼ ð2; 2Þ theories that appear in
ZS2b

ðσðRÞ; BðRÞÞ and ZS2b
ðσðLÞ; BðLÞÞ in (3.2).

The quintic superpotentials in (2.7) and (2.8) yield
relations similar to (3.9) and (3.10) which force the
(next-to) innermost bifundamental chiral multiplets to have

zero twisted mass and R-charges RðRÞ
2D ½qðRÞbif � ¼ −b2 and

RðLÞ
2D ½qðLÞbif � ¼ −b−2. The cubic superpotentials of each 2D

theory then proceed to set all twisted masses to 0 and R-
charges to −b2 and 2þ 2b2 for bifundamental and adjoint
chiral multiplets of the theory on the right and −b−2 and
2þ 2b−2 for the one on the left.
Once the path integrals for the 4D and 2D theories have

been localized to zero-mode integrals, we must still
integrate out the fields of the 0D N ¼ ð0; 2Þ theories at
the poles of S4b, captured by two matrix integrals, one for
the theory at the north pole and one for the theory at the
south pole. This requires first understanding how to couple
the 0D N ¼ ð0; 2Þ theories to the other fields on S4b in an
SUð1j1Þ-invariant way. A flat space 0D N ¼ ð0; 2Þ theory,

obtained by trivial dimensional reduction from two dimen-
sions, has nilpotent supercharges. The supersymmetry
algebra can be deformed by turning on a supersymmetric
0D N ¼ ð0; 2Þ vector multiplet background for a flavor
symmetry GF of the theory. The deformed algebra acts on
the fields as

Q2
0D ¼ i

uFffiffiffiffiffiffi
l ~l

p QF; ð3:13Þ

where uF is a constant background value for the dimen-
sionless complex combination of scalars in the 0D
N ¼ ð0; 2Þ vector multiplet invariant under supersymmetry
[67], and QF is the charge under GF. Therefore, in order to
consistently couple a 0D N ¼ ð0; 2Þ theory at a pole with
the rest of the fields of the intersecting defect theory on S4b
in an SUð1j1Þ-invariant way, comparison with the 4D
supersymmetry algebra (3.6) requires that we turn on a
constant background

uF ¼ −i ð3:14Þ

for the 0D flavor symmetry

QF ¼ b−1M12 þ bM34 −
1

2
ðbþ b−1ÞJR3 : ð3:15Þ

Now that we know how to couple the 0D N ¼ ð0; 2Þ
theories at the poles to S4b we can easily compute their path
integrals. The result is obtained by keeping the zero mode
along the circle of the index computation of N ¼ ð0; 2Þ
supersymmetric quantum mechanics in [62]. The formula
for the path integral over a 0D N ¼ ð0; 2Þ Fermi multiplet
coupled to a background vector multiplet through a
representation r and to a background vector multiplet for
a flavor symmetry GF with charge QF is

ZFermi
0D ¼

Y
w∈r

ðwðiuÞ þ iQFuFÞ: ð3:16Þ

Here u are the (dimensionless) scalars in the dynamical
vector multiplet and uF the background value for the GF
global symmetry.
We can now determine the contribution of the 0D

N ¼ ð0; 2Þ Fermi multiplets at the north and south poles
of S4b depicted in Fig. 2 to the intersecting defect partition
function (3.2). It is given by

ZintersectionðσðLÞ;BðLÞ;σðRÞ;BðRÞÞ¼
Ynν
a¼1

Yn0ν0
b¼1

Δþ
abΔ−

ab; ð3:17Þ

with Δ�
ab ¼ b−1ðiσðRÞa � BðRÞ

a
2
Þ − bðiσðLÞb � BðLÞ

b
2
Þ. The factors

with Δþ
ab originate from the N ¼ ð0; 2Þ Fermi at the north

pole while the factors Δ−
ab come from the south pole [68].
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The S½UðnνÞ ×Uðn0ν0 Þ� symmetry is gauged with the inner-
most gauge group factor of the left and right N ¼ ð2; 2Þ
theories. This explains the appearance of σðRÞ and σðLÞ in
(3.17). We have also used the fact that the N ¼ ð0; 2Þ
Fermi multiplets are uncharged under the flavor symmetry
GF: this can be enforced for instance by the E-type
superpotential E½Λ� ¼ ~qðLÞqðRÞ for the Fermi multiplet Λ
put forward above already [see below (2.8)]. Indeed, the
cubic defect superpotentials in (2.7) and (2.8) constrain the
R-charges of qðRÞ, ~qðRÞ, qðLÞ and ~qðLÞ, hence their charge

under Q2=
ffiffiffiffiffiffi
l ~l

p
, and the E-type superpotential fixes the

charge of Λ. The Q2=
ffiffiffiffiffiffi
l ~l

p
charges are given in Table I up

to mixing with 2D Uð1Þ gauge symmetries namely shifting
the integration contour of σðL=RÞ in the imaginary direction.
The E-type superpotential also identifies the Uð1Þ flavor
symmetry of Λ with a combination of 2D gauge
symmetries.
Similarly, we can determine the integral representation of

the partition function of the intersecting defects in Fig. 4,

Z ¼ ZfreeHM
S4b

X
BðLÞ

X
BðRÞ

Z
JK

dσðLÞ

ð2πÞrankGðLÞ
dσðRÞ

ð2πÞrankGðRÞ

× ZS2ðLÞ
ðσðLÞ; BðLÞÞZS2ðRÞ

ðσðRÞ; BðRÞÞ
× ~Zintersection

0D ðσðLÞ; BðLÞ; σðRÞ; BðRÞÞ; ð3:18Þ

where again GðLÞ;ðRÞ denote the total gauge groups of the
two 2D theories. The symbol

R
JK stands for taking a

Jeffrey–Kirwan-like residue prescription (see the definition
below). Similarly as above, the superpotential couplings
(2.9) and (2.10) impose relations among the complexified
mass parameters. In this case they read

�
Mjsffiffiffiffiffiffi
l ~l

p þ i
2l

þ i

2 ~l

�
þ −mðRÞ

j þ ~mðRÞ
s

l
¼ i

l
; ð3:19Þ

and

�
Mjsffiffiffiffiffiffi
l ~l

p þ i
2l

þ i

2 ~l

�
þ −mðLÞ

j þ ~mðLÞ
s

~l
¼ i

~l
: ð3:20Þ

As before, the real part of these equations encode the flavor
symmetry constraints on the masses and the imaginary part
the R-charge constraints. The 4D masses Mjs can be

determined in terms of the dimensional masses mðRÞ
j and

~mðRÞ
s in precisely the same way as above. Moreover,

subtracting (3.9) and (3.10) one obtains

−mðRÞ
j þ ~mðRÞ

s

l
−
−mðLÞ

j þ ~mðLÞ
s

~l
¼ i

l
−

i
~l
; ð3:21Þ

with solution

b−1ðmðRÞ
j þ i=2Þ ¼ bðmðLÞ

j þ i=2Þ þ ~c;

b−1ð ~mðRÞ
s − i=2Þ ¼ bð ~mðLÞ

s − i=2Þ þ ~c; ð3:22Þ

for some constant ~c, which can be absorbed by shifting the
vector multiplet scalars, allowing one to express the masses
of the left quiver in terms of those of the right quiver. The
quartic superpotential sets the real twisted masses of the
adjoint chiral multiplets to 0 and their R-charges to be
−2b2 and −2b−2 respectively.
Using that the formula for the path integral over a 0D

N ¼ ð0; 2Þ chiral multiplet coupled to a background vector
multiplet through a representation r and to a background
vector multiplet for GF with charge QF is

Zchiral
0D ¼

Y
w∈r

1

wðiuÞ þ iQFuF
; ð3:23Þ

we can easily determine the contribution of the 0D N ¼
ð0; 2Þ chiral multiplets at the north and south poles of S4b
depicted in Fig. 4 to the intersecting defect partition
function (3.18). It is given by

~ZintersectionðσðLÞ; BðLÞ; σðRÞ; BðRÞÞ

¼
Yn
a¼1

Yn0
b¼1

��
Δþ

ab þ
bþ b−1

2

��
Δþ

ab −
bþ b−1

2

�

×

�
Δ−

ab þ
bþ b−1

2

��
Δ−

ab −
bþ b−1

2

��
−1
; ð3:24Þ

with Δ�
ab ¼ b−1ðiσðRÞa � BðRÞ

a
2
Þ − bðiσðLÞb � BðLÞ

b
2
Þ as before.

The factors with Δ�
ab originate from the N ¼ ð0; 2Þ chirals

at the north and south pole respectively. The terms in (3.17)
proportional to bþb−1

2
indicate that the N ¼ ð0; 2Þ chiral

multiplets carry charge bþb−1
2

under the global symmetry
GF. This should be explained by a 0D superpotential but
we have not worked it out.
Let us conclude this section with a brief discussion of the

Jeffrey-Kirwan-like residue prescription [69] used in
(3.18). We note that in the absence of the 0D chiral
multiplets, our prescription coincides with the standard
one in [43,59,60] to close the contour according to the sign
of the FI parameter. Let N ¼ nþ n0 denote the total rank of
the gauge groups in the quiver depicted in Fig. 2, and letS
be the notation for the combined N integration variables

TABLE I. Charges of various fields under Q2=
ffiffiffiffiffiffi
l ~l

p
.

Q, ~Q qðRÞ, ~qðRÞ qðLÞ, ~qðLÞ Λ

Q2=
ffiffiffiffiffiffi
l ~l

p −ðbþ b−1Þ=2 ðb − b−1Þ=4 −ðb − b−1Þ=4 0
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ðσðRÞ; σðLÞÞ. The pole equations of the integrand (3.4)
corresponding to the right and left quiver are of the form

wðRÞðiσðRÞÞ þ � � � ¼ 0; wðLÞðiσðLÞÞ þ � � � ¼ 0; ð3:25Þ

where wðR=LÞ is any weight of the representations of the
chiral multiplets in the respective quiver. Denoting byw the
collection of combined weights, which take the form
ðwðRÞ; 0Þ or ð0; wðLÞÞ, it can be written as wðiSÞþ���¼0.
The pole equations of all four factors in the intersection
factor (3.17) can be written similarly as [70]

uabðiSÞ þ � � � ¼ b−1iσðRÞa − biσðLÞb þ � � � ¼ 0 ð3:26Þ

for all a ¼ 1;…; n and b ¼ 1;…; n0.We collectively denote
the chargesw and uab thus defined byW. A collection ofN
linearly independent pole equations [71], associated to
charge vectors WI for I ¼ 1;…; N, define a pole solution
S⋆, whose residue we define to be

JK-ResηFðS⋆Þ ¼
� Res

S→S⋆FðSÞ if η ∈ CðWI¼1;…;NÞ
0 otherwise

ð3:27Þ

where η ¼ ðξðRÞ; ξðLÞÞ is the combined FI parameter under-
stood as an N-dimensional vector, and CðWI¼1;…;NÞ is the
positive cone spanned by the vectors WI . Finally, Res

S→S⋆

denotes the usual residue at the pole S ¼ S⋆, with a sign
determined by the contour.
In this section we have obtained the formula that

computes the exact partition function of the intersecting
defects in Figs. 2 and 4.

IV. M2-BRANE SURFACE DEFECTS

Despite our very incomplete understanding of M theory,
it is known that M2 branes can end on a collection of nf M5
branes along a surface. When the M5 branes wrap a
punctured Riemann surface, the UV curve, the M2 branes
define a half-supersymmetric surface defect in a 4DN ¼ 2
theory. Under favorable circumstances, this surface defect
admits a Lagrangian description in the manner described in
the previous section.
The brane configuration that realizes this half-super-

symmetric surface defect is given in Table II. TheM2-brane

endings on nf M5 branes are labeled by a representationR
of SUðnfÞ. The M50 branes are codimension two defects for
the M5 branes that encode the flavor symmetries of the 4D
N ¼ 2 theory and that are realized by the punctures on the
Riemann surface [24,72].
As argued in [26], when R is the rank nc antisymmetric

representation, the 2DN ¼ ð2; 2Þ theory description of the
surface defect is given by the first quiver diagram in Fig. 8.
If R is the rank nc symmetric representation, the corre-
sponding 2D N ¼ ð2; 2Þ theory is the second quiver
diagram in Fig. 8. For a representation R described by a
generic Young diagram the 2D N ¼ ð2; 2Þ theory has the
quiver diagram representation given in Fig. 9 [73]. The
complexified FI parameters for all gauge group factors
except the one that couples to the nf fundamentals and
antifundamentals must be set to 0.
These 2D N ¼ ð2; 2Þ theories can be coupled to a 4D

N ¼ 2 theory by gauging the SUðnfÞ × SUðnfÞ ×Uð1Þ
flavor symmetries acting on the nf fundamental and
antifundamental chiral multiplets with gauge and/or global
symmetries of the 4D theory. The simplest 4D N ¼ 2
theory in which to consider these surface operators is the
theory of n2f hypermultiplets. This corresponds to com-
pactifying nf M5 branes on a trinion with two full and one
simple puncture, which makes manifest an SUðnfÞ ×
SUðnfÞ ×Uð1Þ flavor symmetry acting on the hypermultip-
lets, which gets identified via the cubic superpotential (2.3)
with the corresponding defect flavor symmetry. For other 4D
theories, such as for conformal SQCD with SUðnfÞ gauge
group and 2nf hypermultiplets or theN ¼ 2� theory, one or
both of the defect SUðnfÞ symmetry factors is gauged with a
dynamical bulk gauge field.
A richer class of surface defects on M5 branes can be

constructed by letting two sets of M2 branes end on the M5
branes as in Table III. This configuration preserves one

TABLE II. Intersection of M2 and M5 branes defining a half-
supersymmetric surface operator.

1 2 3 4 5 6 7 8 9 10 11

M5 1 2 3 4 7 11
M50 1 2 3 4 5 6
M2 1 2 10

FIG. 8. Quiver description of the 2DN ¼ ð2; 2Þ surface defects
corresponding to the rank nc antisymmetric and symmetric
representations, respectively.

FIG. 9. The 2D N ¼ ð2; 2Þ quiver gauge theory corresponding
to the Young diagram of a given representation R.
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quarter of the supersymmetry and defines intersecting
surface defects on the M5 branes. When the M5 branes
wrap a punctured Riemann surface, the brane configuration
engineers an intersecting surface defect in the correspond-
ing 4DN ¼ 2 theory of precisely the kind described in the
previous section. The configuration of intersecting M2
branes is now labeled by a pair ðR0;RÞ of representations
of SUðnfÞ.
We propose that the field theory description of these

intersecting surface defects is precisely the one detailed in
the previous section, and encoded in the quiver diagram in
Fig. 2. For a class of 4D N ¼ 2 theories, the intersecting
defects admit a type-IIA brane realization given in Table IV.
In these cases, we can deduce the low-energy effective field
theory description of the intersecting defect.
As an example, when the 4D N ¼ 2 theory is that of n2f

hypermultiplets, the intersecting defect realized by the M-
theory brane array in Table IV has the type-IIA description
given in Fig. 10. The NS50 branes and NS500 branes on
which the D2 and D20 branes end respectively are away
from the main stack and give rise to the 2D gauge theories
in the quiver in Fig. 2. The 2D N ¼ ð2; 2Þ theories at x3 ¼
x4 ¼ 0 and labeled by a representationR and at x1 ¼ x2 ¼
0 and labeled by a representation R0 live on the D2 branes
and D20 branes respectively. The 0D bifundamental N ¼
ð0; 2Þ Fermi multiplet arises from quantizing the open
strings stretching between the D2 and the D20 branes. The
gaugings and superpotential couplings encoded in the
quiver in Fig. 2 can be inferred from the brane construction
[77]. The intersection degrees of freedom are thus coupled
to the two N ¼ ð2; 2Þ theories.
The FI parameter ξFI corresponding to the lth gauge

group factor of the right 2D N ¼ ð2; 2Þ gauge theories is

encoded in the separation between the lth and ðlþ 1Þth
NS50 brane along the x7 coordinate. We take the NS50

branes to coincide in their location along x7. Thus, all the FI
parameters for gauge group factors with l ≥ 2 vanish [79].
Similarly, the separation in the x7 direction of the NS500
branes encodes the FI parameters of the left quiver, all of
which vanish for l ≥ 2when we take the branes to have the
same x7 coordinate [80]. The complexified FI parameter
(1.3) for the innermost gauge group factor for the left and
right quiver is nonzero and encodes the position of the
respective defect on the UV curve. The case that has the
simplest Toda CFT interpretation is when they are opposite,
i.e., when [81]

ξðLÞ ¼ −ξðRÞ: ð4:1Þ

We thus end up with precisely the QFT encoded in the
4D/2D/0D quiver diagram in Fig. 2. The brane construction
can be easily generalized to other N ¼ 2 theories [82].

TABLE III. Intersection of M2 and M5 branes defining quarter-
supersymmetric intersecting surface defects on the M5 branes.

1 2 3 4 5 6 7 8 9 10 11

M5 1 2 3 4 7 11
M50 1 2 3 4 5 6
M2 1 2 10
M20 3 4 10

TABLE IV. IIA brane realization of intersecting surface defects
arising from M-theory brane intersections. See Fig. 10 for details
on which branes intersect.

1 2 3 4 5 6 7 8 9 10

NS5 1 2 3 4 5 6
NS50 1 2 5 6 8 9
NS500 3 4 5 6 8 9
D4 1 2 3 4 7
D2 1 2 10
D20 3 4 10

FIG. 10. IIA brane realization of intersecting surface defects
arising fromM-theory brane intersections. See Table IV for brane
directions.

FIG. 11. IIA brane diagram for the case of symmetric repre-
sentations, namely the quiver in Fig. 4.
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The brane picture describing the 4D/2D/0D quiver
diagram in Fig. 4 is given in Fig. 11. The right and
left 2D theories live on the D2 and D20 respectively.
The open strings stretching between the D2 and D20

branes provide the 0D N ¼ ð0; 2Þ chiral multiplets. There
is a unique FI parameter measuring the distance between
the NS5 branes in the x7 direction. The brane system
readily generalizes to D2 and D20 branes stretching
between any number of parallel NS5 branes, as depicted
in Fig. 12.

V. LIOUVILLE/TODA DEGENERATE
CORRELATORS

It is now time to test in detail our conjectures on the
quiver description of intersecting M2-brane surface oper-
ators. We give here the precise dictionary between the
partition functions computed in Sec. III and Liouville/Toda
CFT degenerate correlators. We begin in Sec. VAwith the
simplest nontrivial case: a Liouville correlator (nf ¼ 2)
with two generic, one semidegenerate, and one degenerate
operator labeled by ð□;□Þ. We move on to Toda CFT in
Sec. V B devoted to the quiver in Fig. 2, and in Sec. V C to
Fig. 4. In each case we describe the evidence worked out in
the appendixes.

A. Liouville fundamental degenerate

We focus here on the setting of A1 theories (nf ¼ 2) for
the case of a degenerate operator with Liouville momentum
[84] α¼−bΩ□−b−1Ω□¼−b

2
− 1

2b¼−Q=2. The two con-
jectured quiver descriptions of the intersecting M2-brane
surface operators are depicted in Fig. 13, as well as the UV
curve. We prove in Appendix A that the two descriptions
have equal S4b expectation values and check up to fifth order
in vortex expansions that they match a degenerate Liouville
correlator. Namely,

hV̂−Q
2
ðx; x̄ÞV̂α1ð0ÞV̂α2ð1ÞV̂α3ð∞Þi

¼ 1

A1ðx; x̄Þ
ZS4b

½T Fermi� ¼
1

A2ðx; x̄Þ
ZS4b

½T chirals� ð5:1Þ

where the prefactors A1ðx; x̄Þ and A2ðx; x̄Þ given in
Appendix A can be associated to ambiguities in the
definition of the gauge theory partition function, as
explained in [26]. The position x gives the FI and theta
parameters through e−2πξþiϑ ¼ 1=x for the left Uð1Þ of the
first quiver and x for all other gauge groups.
We denote the complexified twisted masses of (anti)

fundamental chiral multiplets of the right and left

theories by ðmðRÞ
j ; ~mðRÞ

s Þ and ðmðLÞ
s ; ~mðLÞ

j Þ for the first
quiver and ðmj; ~msÞ and ðm0

j; ~m
0
sÞ for the second. The

4D/2D superpotentials relate twisted masses of the two
2D theories as (3.12) and (3.22), and twisted masses of
the two quivers are related by Seiberg-like duality as we
later see. Altogether,

b−1imðRÞ
j ¼ bi ~mðLÞ

j ¼ b−1ðimj − 1=2Þ ¼ bðim0
j − 1=2Þ

for j ¼ 1; 2; ð5:2Þ

b−1i ~mðRÞ
s ¼ bimðLÞ

s ¼ b−1ði ~ms þ 1=2Þ ¼ bði ~m0
s þ 1=2Þ

for s ¼ 1; 2: ð5:3Þ

Liouville CFT momenta can then be written in terms of
twisted masses of any of the four 2D theories [85],

FIG. 12. IIA brane diagram and joint 4D/2D/0D quiver
diagram description for multiple M2-brane intersections la-
beled by symmetric representations ending on nf M5 branes
wrapping a trinion with two full and one simple puncture.
Each ðsymn0

□; symn
□Þ M2-brane intersection is encoded as

an NS5 brane (parallel to that on which D4-branes end) on
which n0 D20 and n D2 branes end. Gauge group ranks in the
quiver description are given by the numbers of D20 and D2
branes stretching in each interval. These ranks decrease:
nν ≥ � � � ≥ n1 and n0ν ≥ � � � ≥ n01 (otherwise supersymmetry is
broken) and their differences give the orders ðn0; nÞ of
symmetric representations labeling M2-brane intersections.
The FI parameters of gauge group factors are pairwise equal
and equal to distances between consecutive NS5 branes. In
each 2D theory, cubic superpotentials couple adjoint and
bifundamental chiral multiplets. Cubic and quartic super-
potentials couple the 4D and 2D fields. The intersection
features pairs of chiral multiplets corresponding to strings
stretching between D2 and D20 in the same interval and Fermi
multiplets corresponding to strings stretching between D2 and
D20 in neighboring intervals. Apart from the D4-branes the
brane setup preserves 0D N ¼ ð0; 4Þ supersymmetry; hence
the 0D and 2D fields that are neutral under the SUðnfÞ ×
SUðnfÞ × Uð1Þ flavor symmetry are coupled through quadratic
E-term and J-term superpotentials (see [83]).
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α1 −
Q
2
¼ 1

2b
ðimðRÞ

1 − imðRÞ
2 Þ ¼ b

2
ði ~mðLÞ

1 − i ~mðLÞ
2 Þ

¼ 1

2b
ðim1 − im2Þ ¼

b
2
ðim0

1 − im0
2Þ; ð5:4Þ

α2 −
Q
2
¼ 1

2b
ði ~mðRÞ

1 þ i ~mðRÞ
2 − imðRÞ

1 − imðRÞ
2 Þ

¼ b
2
ðimðLÞ

1 þ imðLÞ
2 − i ~mðLÞ

1 − i ~mðLÞ
2 Þ

¼ 1

b
þ 1

2b
ði ~m1 þ i ~m2 − im1 − im2Þ

¼ bþ b
2
ði ~m0

1 þ i ~m0
2 − im0

1 − im0
2Þ; ð5:5Þ

α3 −
Q
2
¼ 1

2b
ði ~mðRÞ

2 − i ~mðRÞ
1 Þ ¼ b

2
ðimðLÞ

2 − imðLÞ
1 Þ

¼ 1

2b
ði ~m2 − i ~m1Þ ¼

b
2
ði ~m0

2 − i ~m0
1Þ: ð5:6Þ

Let us describe salient aspects of the relation, leaving
details for Appendix A. The operator product expansion
(OPE) of a generic operator V̂α with the degenerate
operator V̂−Q

2
is given by

V̂−Q
2
ðx; x̄ÞV̂α1ð0Þ ∼

X
s1¼�;s2¼�

ðxx̄ÞΔðαs1s2 Þ−Δðα1Þ−Δð−Q=2Þ

× Ĉ
αs1s2
α1;−

Q
2

ðV̂αs1s2
ð0Þ þ � � �Þ; ð5:7Þ

where αs1s2 ¼ α1 þ s1b=2þ s2=ð2bÞ, the structure

constants Ĉα�b=2�1=ð2bÞ
α;−Q=2 are known and the � � � denotes

Virasoro descendant fields multiplied by powers of x or x̄.
In the limit x → 0 the Liouville correlator (5.1) thus admits
an s-channel decomposition as a sum of four terms with
leading powers of xx̄ equal to

Δðα1 þ s1b=2þ s2=ð2bÞÞ − Δðα1Þ − Δð−Q=2Þ
¼ Q2=2 − ðα1 −Q=2Þðs1bþ s2b−1Þ þ ð1 − s1s2Þ=2:

ð5:8Þ

Correspondingly, each of the two gauge theory partition
functions can be written as a sum of contributions from four
Higgs branches in this limit.
In the first quiver, x → 0 is the limit of large positive FI

parameter for the right Uð1Þ and negative FI parameter for

the left Uð1Þ and Higgs branches are located at σðRÞ ¼ mðRÞ
j

and σðLÞ ¼ ~mðLÞ
k for j, k ¼ 1, 2. The leading power of ðxx̄Þ

of the ðj; kÞ Higgs branch contribution is iσðRÞ − iσðLÞ ¼
imðRÞ

j − i ~mðLÞ
k with a sign due to the FI parameter of the left

theory being opposite to that of the right theory. In fact, for
j ¼ k the 0D Fermi multiplet contribution makes zero-
vortex terms in the series vanish, so that the leading power

of ðxx̄Þ is imðRÞ
j − i ~mðLÞ

j þ 1 instead. The partition function
thus takes the form

Z ¼
X2
j¼1

X2
k¼1

ðxx̄ÞimðRÞ
j −i ~mðLÞ

k þδjkðseries in xÞðseries in x̄Þ:

ð5:9Þ

The identification (5.4) of momenta with twisted masses
ensures that the four gauge theory exponents match the
Liouville ones up to the prefactor A1ðx; x̄Þ. In particular the
shift by δjk due to the 0D Fermi multiplet reflects the term
ð1 − s1s2Þ=2 in (5.8).
In the second quiver, x → 0 is the limit of large positive

FI parameters and the Higgs branches are located at σ ¼ mj

and σ0 ¼ m0
k. The 0D chiral multiplet contribution (3.24)

FIG. 13. The left quiver (denoted T Fermi in the text due to its 0D matter content) shows the world volume theory of two intersecting
surface defects, both labeled by the fundamental representation of A1, coupled to the 4D theory of four free hypermultiplets and to a
Fermi multiplet on their intersection. The coupling introduces cubic superpotentials. In the middle, the corresponding UV curve is
depicted: it features three punctures (filled circles) and an additional marked point corresponding to the defect and labeled by its defining
representations. In the AGT correspondence, the latter corresponds to the insertion of a degenerate vertex operator with the indicated
momentum in Liouville theory. The right quiver (T chirals) depicts a dual realization of the same intersecting defect, in which the
intersection features a pair of bifundamental chiral multiplets. Note that the free Uð1Þ adjoint chiral multiplets have been omitted in the
latter quiver.
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has poles that induce additional terms, in effect decreasing
the leading power of ðxx̄Þ by 1 for terms with j ¼ k. The
partition function takes the form

Z¼
X2
j¼1

X2
k¼1

ðxx̄Þimjþim0
k−δjkðseriesinxÞðseriesin x̄Þ: ð5:10Þ

Again, gauge theory and Liouville exponents match. The
shift of the exponent by δjk has opposite signs in the first and
second quivers, which may seem inconsistent. However,
Liouville CFT internal momenta α1 � b=2� 1=ð2bÞ are
identified with different terms ðj; kÞ for the two quivers:
k ¼ 1 and k ¼ 2 are interchanged. The two quivers are in
fact related by a Seiberg-like duality of the left 2D theory and
we leverage this observation in the appendix to prove that
their partition functions are equal.
The Liouville correlator of interest to us has been worked

out in [86] by solving the fourth order differential equation
associated with the degenerate puncture. The leading
coefficients in (5.10) reproduce expected Liouville three-
point functions and we checked up to fifth order that vortex
partition functions of the intersecting surface defects
coincide with conformal blocks. We performed the same
checks (exponents, leading coefficients, vortex partition
functions) in the limit x → ∞ using the OPE of V̂−Q=2

with V̂α3 .
Pleasingly, the dictionary has all the expected

symmetries.
(i) Exchanging the flavors ðmðRÞ

1 ; ~mðLÞ
1 ; m1; m0

1Þ ↔
ðmðRÞ

2 ; ~mðLÞ
2 ; m2; m0

2Þ corresponds to mapping
α1 → Q − α1, which leaves the normalized vertex

operator V̂α1 invariant. Similarly ð ~mðRÞ
1 ;mðLÞ

1 ; ~m1;

~m0
1Þ↔ ð ~mðRÞ

2 ;mðLÞ
2 ; ~m2; ~m0

2Þ is α3 → Q − α3.
(ii) The conformal map x → 1=x which exchanges

α1 ↔ α3 corresponds to charge conjugation for all
gauge groups, which exchanges fundamental and
antifundamental chiral multiplets, changing their
signs as well as those of FI and theta parameters.
The conformal factor ðxx̄Þ2Δð−Q=2Þ coincides with a
change in A1ðx; x̄Þ and A2ðx; x̄Þ.

(iii) For each quiver, the b → 1=b symmetry of the
Liouville correlator exchanges the two two-
dimensional theories (up to charge conjugation for
the case of the first quiver).

For b ¼ 1 the V̂−Q=2 degenerate operator coincides with
V̂−b already studied in [26] and the partition functions
reduce to that of a single 2D theory coupled to the 4D
free hypermultiplets. More precisely, up to a shift of
theta angles by π, the 0D Fermi multiplet contribution
in the first quiver can be written for b ¼ 1 as the one-loop
determinant of a pair of bifundamental 2D chiral multiplets
of R-charge 2,

ð−1ÞBðRÞþBðLÞY
�

� ðiσðRÞ � BðRÞ=2 − iσðLÞ ∓ BðLÞ=2Þ

¼ Γð1þ iσðRÞ þ BðRÞ=2 − iσðLÞ − BðLÞ=2Þ
Γð−iσðRÞ þ BðRÞ=2þ iσðLÞ − BðLÞ=2Þ

×
Γð1 − iσðRÞ − BðRÞ=2þ iσðLÞ þ BðLÞ=2Þ
ΓðiσðRÞ − BðRÞ=2 − iσðLÞ þ BðLÞ=2Þ : ð5:11Þ

As depicted in Fig. 14, the partition function is thus equal to
that of a single 2DUð1Þ ×Uð1Þ gauge theory (coupled to free
hypermultiplets), which is itself equivalent under a Seiberg-
like duality to the quiver corresponding to V̂−b in [26].
Importantly the bifundamental 2D chiral multiplets in the last
quiver have R-charge −1 ¼ −b2. A Uð2Þ gauge theory
description of V̂−b in [26] matches the second quiver for
b ¼ 1 (ignoring free chiral multiplets), as depicted in Fig. 14.
There, the adjoint chiral multiplet hasR-charge−2 ¼ −2b2.
Indeed, its one-loop determinant combines with the Uð2Þ
vector multiplet one-loop determinant to give the 0D chiral
multiplet contribution of the intersecting defects.
As we see in the next section in a more general setting,

the identification of the first quiver with a Liouville
correlator still holds if the FI and theta parameters of the
two gauge groups are taken to be arbitrary rather than
opposite. The partition function then matches a five-point
function with two degenerate operators V̂−b=2ðx; x̄Þ and
V̂−1=ð2bÞðx0; x̄0Þ and the three generic V̂αi . The FI and theta

parameters are given by expð−2πξðRÞ þ iϑðRÞÞ ¼ x and
expð−2πξðLÞ þ iϑðLÞÞ ¼ 1=x0 and other parameters are
unchanged. The quiver with 0D chiral multiplets does
not have the same property: making FI parameters distinct
does not reproduce the Liouville five-point function. This is
not surprising, both in view of the b ¼ 1 case where the
surface defect reduces to one with a single gauge group,
and in view of the IIA realization where D2 and D20 branes
stretch between the same pair of NS5 branes.
We now move on to arbitrary intersecting defects for any

number of flavors nf .

FIG. 14. First row: the partition function of the first intersecting
surface defect coincides for b ¼ 1 with that of a single surface
defect, Seiberg-dual to the one expected from [26]. Second row:
likewise, the partition function of the second intersecting surface
defect reduces for b ¼ 1 to that of a single surface defect.
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B. Quiver with 0D Fermi multiplet

This section presents the quiver description of intersect-
ing defects corresponding to an arbitrary set of Toda CFT
degenerate operators. We focus on degenerate operators
labeled by antisymmetric representations, because all
degenerate operators can be obtained as the dominant term
in the OPE of such degenerate operators (see page 31).
Besides comparing leading terms in several channels as in
the last section, we prove in Appendix B that some braiding
matrices coincide.
The main statement is

Z½T Fermi� ¼ A1ðx; x0; x̄; x̄0Þ
�
V̂α∞ð∞ÞV̂λω1

ð1ÞV̂α0ð0Þ

×
Yν
ι¼1

V̂−bωKι
ðxι; x̄ιÞ

Yν0
ι¼1

V̂−b−1ωnf−K
0
ι
ðx0ι; x̄0ιÞ

	
:

ð5:12Þ
The left-hand side is the expectation value of the intersect-
ing surface defect of Fig. 2 in the theory of n2f free 4D
hypermultiplets: a Uðn1Þ × � � � ×UðnνÞ gauge theory on
S2b, a Uðn01Þ × � � � ×Uðn0ν0 Þ gauge theory on S21=b, and on
their intersection a single 0DN ¼ ð0; 2Þ Fermi multiplet in
the bifundamental representation of UðnνÞ ×Uðn0ν0 Þ with
R-charge 0. Couplings are explained in previous sections.
The right-hand side [87] is a Toda CFT correlator of two

generic vertex operators at∞ and 0, one semidegenerate at 1,
and νþ ν0 degenerates at xι and x0ι. Vertex operators V̂α are
labeled by their momentum α, a linear combination of the
weights h1;…; hnf of the fundamental representation of
SUðnfÞ (the hi sum to 0). We normalize the generic vertex
operators V̂α∞ and V̂α0 such that they are invariant under
α → 2Q − α and under the Weyl group, which permutes
components of α −Q, where Q ¼ ðbþ b−1Þρ with ρ being
the half-sum of positive roots [88]. One degenerate operator
has momentum −bωK proportional to the highest weight
ωK ¼ h1 þ � � � þ hK of the Kth antisymmetric representa-
tion, and the other has momentum −b−1ωnf−K0 correspond-
ing to the conjugate of theK0th antisymmetric representation.
In short, the dictionary is that mass parameters of the

SUðnfÞ × SUðnfÞ ×Uð1Þ flavor symmetry are encoded in
α0, α∞ and λ respectively, complexified FI parameters give
positions of degenerate punctures, and gauge group ranks
determine the antisymmetric representations.
We find Kκ ¼ nκ − nκ−1 and K0

κ ¼ n0κ − n0κ−1 (and
K1 ¼ n1 and K0

1 ¼ n01),

xκ ¼
Yν
ι¼κ

ẑι and x0κ ¼
Yν0
ι¼κ

1

ẑ0ι
: ð5:13Þ

Here, ẑν ¼ ð−1Þnfþnν−1−nνþ1zν and ẑι ¼ ð−1Þnιþ1þnι−1zι for
1 ≤ ι ≤ ν − 1 in terms of zκ ¼ e−2πξκþiϑκ and similarly for ẑ0
and z0.

In quiver conventions, we recall that twisted masses
m and R-charges of (anti)fundamental chiral multiplets

combine as imðRÞ
j ¼ imðRÞ

j =l þ RðRÞ
2D ½qðRÞj �=2 and

i ~mðRÞ
s ¼ i ~mðRÞ

s =l −RðRÞ
2D ½ ~qðRÞs �=2 for the right theory and

imðLÞ
s ¼ imðLÞ

s = ~lþRðLÞ
2D ½qðLÞs �=2 and i ~mðLÞ

j ¼ i ~mðLÞ
j = ~l −

RðLÞ
2D ½ ~qðLÞj �=2 for the left one. As explained in Sec. III,

2D masses are related by (3.12),

b−1mðRÞ
j ¼ b ~mðLÞ

j and b−1 ~mðRÞ
s ¼ bmðLÞ

s ; ð5:14Þ

and 4D hypermultiplets have masses Mjs ¼ b−b−1
2i þ

b−1mðRÞ
j − b−1 ~mðRÞ

s . In the theory on the right, bifunda-

mental chiral multiplets have imðRÞ
bif ¼ b2=2 namely

R-charge −b2 and adjoint chiral multiplets have imðRÞ
adj ¼

−1 − b2 namely R-charge 2þ 2b2. Similarly, imðLÞ
bif ¼

b−2=2 and imðLÞ
adj ¼ −1 − b−2.

The S½UðnfÞ × UðnfÞ� mass parameters correspond to
Toda CFT momenta as [89]

α0 −Q ¼
Xnf
j¼1

b−1imðRÞ
j hj ¼

Xnf
j¼1

bi ~mðLÞ
j hj ð5:15Þ

α∞ −Q ¼ −
Xnf
s¼1

b−1i ~mðRÞ
s hs ¼ −

Xnf
s¼1

bimðLÞ
s hs ð5:16Þ

λ −
bþ b−1

2
nf ¼

�
nν −

nf
2

�
bþ

�
nf
2
− n0ν0

�
b−1

þ
Xnf
s¼1

b−1i ~mðRÞ
s −

Xnf
j¼1

b−1imðRÞ
j : ð5:17Þ

We can immediately perform simple consistency checks.
(i) Permutations of flavors 1 ≤ j ≤ nf permute compo-

nents of α0 −Q and namely perform a Weyl
reflection of this momentum; this leaves the nor-
malized vertex operator V̂α0 invariant. Similarly,
permutations of flavors 1 ≤ s ≤ nf leave V̂α∞
invariant.

(ii) The conformal map x → 1=x exchanging 0 ↔ ∞
corresponds on the gauge theory side to conju-
gating charges of every gauge group. The change
in A1 precisely cancels the conformal factorQ

ν
κ¼1 jxκj4Δð−bωKκ Þ

Q
ν0
κ¼1 jx0κj4Δð−b

−1ωnf−K
0
κ
Þ.

(iii) If we set n1 ¼ 0 then A1, given explicitly in (C1), is
independent of x1; similarly, x01 factors disappear
when setting n01 ¼ 0. The matching also reproduces
results of [26] for ν0 ¼ 0 (or ν ¼ 0) namely for a
single 2D theory. In that case, conjugating all Toda
CFT momenta (ωC

K ¼ ωnf−K) is known to correspond
to a sequence of 2D N ¼ ð2; 2Þ Seiberg dualities.
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Unfortunately, for intersecting defects it is not known
how 0D matter behaves under Seiberg dualities.

(iv) Combining x → 1=x, b → b−1, Toda CFT conjuga-
tion and Weyl reflections give rise to a symmetry of
the gauge theory setup: the two 2D theories are
interchanged. To see this it is useful to note that the
conjugate of λω1 is ðnfðbþ b−1Þ − λÞω1 up to a
Weyl reflection.

(v) For b ¼ 1 there is no distinction between degenerate
operators with momenta −bωK and −b−1ωK. As in
the Liouville case from the previous section, the
equality (5.12) reduces to (a Seiberg dual of) the
matching for a single 2D theory with νþ ν0 gauge
groups corresponding to νþ ν0 antisymmetric de-
generate operators.

While we have found the dictionary and the prefactors by
comparing expansions of the sphere partition function and
the Toda correlator in several limits ẑι → 0; 1;∞ and
ẑ0κ → 0; 1;∞, we only write details explicitly for ν ¼ ν0 ¼
1 (see Appendix B).
A major piece of evidence in this case is that braiding

matrices relating conformal blocks in different Toda CFT
channels (different operator product expansions) match the
analogous matrices in gauge theory. This is proven sche-
matically as follows. The 0D Fermi contribution is recast as
a differential operator acting on the product of (a gener-
alization of) partition functions of the left and right 2D
theories. Braiding (analytically continuing) x around 1
commutes with this differential operator; thus the braiding
matrix coincides with that of the right 2D theory in
isolation, itself known to coincide with the Toda CFT
braiding matrix. More precisely, the presence of an
additional degenerate vertex operator shifts momenta
slightly, and this translates in gauge theory to a different
normalization.
To conclude this section, we determine the dominant

term in the OPE of degenerate vertex operators [90]. The
OPE of two degenerate vertex operators V̂−b−1Ω0

i−bΩi
labeled

by ðR0
1;R1Þ and ðR0

2;R2Þ is known to be

V̂ðR0
1
;R1Þðx1; x̄1ÞV̂ðR0

2
;R2Þðx2; x̄2Þ

¼
X
R0;R

jx1 − x2j2½Δð−Ω0=b−bΩÞ−Δð−Ω1
0=b−bΩ1Þ−Δð−Ω2

0=b−bΩ2Þ�

× ĈðR0;RÞ
ðR0

1
;R1Þ;ðR0

2
;R2ÞðV̂ðR0;RÞ þ � � �Þ ð5:18Þ

whereΩ0 andΩ are the highest weights ofR0 andR and the
sum ranges over irreducible representationsR0 inR0

1 ⊗ R0
2

and R in R1 ⊗ R2. The dominant term in this OPE is that
with the most negative Δð−b−1Ω0 − bΩÞ, and we see that it
is given by the highest weights Ω ¼ Ω1 þΩ2 and Ω0 ¼
Ω0

1 þ Ω0
2 of the tensor products. We sum over irreducible

representationsR inR1 ⊗ R2, whose highest weights take
the form

Ω ¼ Ω1 þ Ω2 −
Xnf−1
i¼1

kiðhi − hiþ1Þ for integers ki ≥ 0

ð5:19Þ

where hi − hiþ1 are the simple roots. They must also be
dominant,

hhi − hiþ1;Ωi ≥ 0 for all 1 ≤ i < nf : ð5:20Þ

The highest weight Ω0 is parametrized similarly by integers
k0i ≥ 0. We prove that Δð−b−1Ω0 − bΩÞ is minimal for
ki ¼ 0 and k0i ¼ 0 by allowing real ki; k0i ≥ 0 and showing
that derivatives are positive in the region (5.20),

∂kiΔð−b−1Ω0 − bΩÞ
¼ h∂kið−b−1Ω0 − bΩÞ; Qþ b−1Ω0 þ bΩi ð5:21Þ

¼ hhi − hiþ1; Qþ b−1Ω0 þ bΩi ≥ bþ b−1: ð5:22Þ

We conclude by noting that the space carved out by (5.20)
is convex.
From the pairwise OPE of degenerate vertex operators

we deduce that the dominant term in the OPE of any
number of degenerate vertex operators has a momentum
equal to the sum of all momenta. Given that any weight is a
sum of fundamental weights ωK, any vertex operator is the
dominant term in the OPE of some set of antisymmetric
degenerate vertex operators. Explicitly in the case where we
fuse all νþ ν0 degenerate operators,

Yν
ι¼1

V̂−bωKι
ðxι; x̄ιÞ

Yν0
ι¼1

V̂−b−1ωnf−K
0
ι
ðx0ι; x̄0ιÞ

¼ aðfxι; x0ιgÞaðfx̄ι; x̄0ιgÞV̂−b−1Ω0−bΩðxÞ þ � � � ð5:23Þ

as xι; x0ι → x (we suppressed subleading terms), where the
prefactor a consists of powers of position differences (the
three-point functions turn out to be 1),

Ω ¼
Xν
ι¼1

ωKι
and Ω0 ¼

Xν0
ι¼1

ωnf−K0
ι
: ð5:24Þ

The Young diagram associated to Ω has ν columns with
K1;…; Kν boxes in some order. The Young diagram
associated to Ω0 has columns with nf − K0

ι boxes, or
equivalently the conjugate representation has a Young
diagram with K0

ι-box columns.
Translating to gauge theory, the fusion limit corresponds

to ẑν ¼ x, ẑ0ν0 ¼ 1=x and all other ẑι ¼ ẑ0κ ¼ 1. Selecting the
leading term in the OPE corresponds to ignoring vacua that
go to infinity along the Coulomb branch when setting FI
parameters to 0.
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In the case depicted in the introduction, namely
K1 ≤ � � � ≤ Kν and K0

1 ≤ � � � ≤ K0
ν0 , many factors in the

prefactors A1 and a cancel. The limit xκ → x and x0κ → x0 is
then smooth, and in the limit x0 → x the partition function
behaves as

Zðx; x0Þ ∼ jx − x0j2
P

ν0
ι¼1

P
ν
κ¼1

maxð0;K0
ιþKκ−nfÞA1ðx; x̄Þ

× hV̂α∞ð∞ÞV̂λω1
ð1ÞV̂α0ð0ÞV̂−b−1Ω0−bΩðx; x̄Þi:

ð5:25Þ

While the simplicity of the factor is convenient for
calculations, and in particular allows one to write an
explicit formula for the Toda CFT four-point function,
one should remember that the prefactors depend on the
renormalization scheme.

C. Quiver with 0D chiral multiplets

We give in this section a dual quiver description of the
intersecting defect labeled by a pair of symmetric repre-
sentations. The main statement is

Z½T chirals� ¼ A2ðx; x̄ÞhV̂α∞ð∞ÞV̂λω1
ð1Þ

× V̂α0ð0ÞV̂−ðn0b−1þnbÞω1
ðx; x̄Þi: ð5:26Þ

The left-hand side is the expectation value, in the theory of
n2f free hypermultiplets on S4b, of the intersecting surface
defect of Fig. 4 described by a UðnÞ theory on one two
sphere and a Uðn0Þ theory on the other, coupled through a
pair of bifundamental 0D chiral multiplets on their inter-
section. Both the UðnÞ and the Uðn0Þ theories have one
adjoint, nf fundamental and nf antifundamental chiral
multiplets. Twisted masses obey

b−1ðimj − 1=2Þ ¼ bðim0
j − 1=2Þ;

b−1ði ~ms þ 1=2Þ ¼ bði ~m0
s þ 1=2Þ; ð5:27Þ

due to cubic superpotential couplings with the free 4D
hypermultiplets. Adjoint chiral multiplets of the UðnÞ and
Uðn0Þ theories have R-charges −2b2 and −2=b2 respec-
tively due to 0D/2D superpotential terms. The two theories
have equal FI and theta parameters.
The prefactor A2 given in (C10) is as before an ambiguity

of the S4b partition function, and the Toda CFT correlator
features two generic and one semidegenerate operator. The
degenerate vertex operator is labeled by the n0th and the nth
symmetric representations of SUðnfÞ and placed at
x ¼ ð−1Þnfe−2πξþiϑ. Momenta encode twisted masses as
follows [91]:

α0 −Q ¼
Xnf
j¼1

b−1imjhj ¼
Xnf
j¼1

bim0
jhj ð5:28Þ

α∞ −Q ¼ −
Xnf
s¼1

b−1i ~mshs ¼ −
Xnf
s¼1

bi ~m0
shs ð5:29Þ

λ −
bþ b−1

2
nf

¼
�
n −

nf
2

�
bþ

�
n0 þ nf

2

�
1

b
þ 1

b

Xnf
s¼1

i ~ms −
1

b

Xnf
j¼1

imj

¼
�
nþ nf

2

�
bþ

�
n0 −

nf
2

�
1

b
þ
Xnf
s¼1

bi ~m0
s −

Xnf
j¼1

bim0
j:

ð5:30Þ

Contrarily to the previous section, the two 2D theories must
share the same FI and theta parameters for the partition
function to coincide with a Toda CFT correlator. In the IIA
brane construction, this is understood by noting that all D2
and D20 branes stretch between a single pair of NS5 branes,
whose separation gives a single FI parameter.
We can immediately perform consistency checks similar

to the previous conjecture.
(i) For nf ¼ 2 and n ¼ n0 ¼ 1 this reduces to the

Liouville matching we discussed earlier.
(ii) Permutations of flavors correspond to Weyl reflec-

tions of momenta.
(iii) The conformal map x → 1=x corresponds to con-

jugating gauge theory charges.
(iv) For n ¼ 0 or n0 ¼ 0 the matching reduces to

previously known results of [26].
(v) A combination of b → b−1 and Weyl reflections

exchanges the two 2D theories.
(vi) For b ¼ 1 the partition function is equal to that of a

single 2D theory with gauge group Uðnþ n0Þ and
one adjoint, nf fundamental and nf antifundamental
chiral multiplets.

(vii) For the cases where nf ¼ 2, 3, 4, n ¼ n0 ¼ 1 in the
quivers with 0D chiral, and nR ¼ 1; nL ¼ nf − 1 in
the quivers with 0D Fermi multiplets, we checked up
to second order in x that the partition functions of
two types of quivers agree.

In the limits x → 0 and x → ∞ both the partition function
and the Toda CFT correlator decompose into a sum of
ðnfþn−1

n Þðnfþn0−1
n0 Þ terms. For each of these terms the leading

coefficient and leading exponent of xx̄ can be compared.
A detailed discussion of constructing these intersecting

surface operators from vortices appears elsewhere [92].

VI. DISCUSSION

In this paper we have initiated the study of intersecting
surface operators in 4D QFTs. When intersecting at a
point, these can be constructed by coupling together
4D/2D/0D degrees of freedom by gauging the global
symmetries of defect fields with symmetries acting on
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higher-dimensional fields. In the context of 4D N ¼ 2
supersymmetry, we have shown how to couple the 4D/2D/
0D degrees of freedom so as to preserve two supercharges.
We have shown that these surface operators are amenable
to supersymmetric localization on the Ω-background and
the squashed four sphere.
We have also identified a class of intersecting surface

operators that describe M2-brane surface operators ending
on a collection of M5 branes wrapping a punctured
Riemann surface. It is this class of intersecting surface
operators whose squashed four-sphere partition function
we conjecturally relate to correlation functions in Toda
CFT in the presence of a general degenerate vertex
operator. We have provided rather nontrivial quantitative
evidence of this connection by showing that the squashed
four-sphere partition function of an intersecting defect in
the theory of hypermultiplets matches in detail the corre-
lation function in Toda/Liouville CFT.
The explicit computation of the expectation value of

our intersecting defects in a general 4D N ¼ 2 gauge
theory becomes more challenging, as the 4D instanton
equations are modified by the pair of 2D and the 0D
degrees of freedom. The explicit 4D/2D/0D quiver
diagram realizing the intersecting surface operator gives
a definition of the allowed gauge field singularities along
the two R2’s and of how these singularities merge at the
origin, where the 0D fields are inserted. The partition
function of an intersecting defect obtained by coupling
0D theories to 2D N ¼ ð2; 2Þ theories and in turn to a 4D
N ¼ 2 gauge theory takes the following form, with
GðLÞ;ðRÞ denoting the total gauge groups of the two 2D
theories [93],

Z
da

X
BðLÞ

X
BðRÞ

Z
JK

dσðLÞ

ð2πÞrankGðLÞ
dσðRÞ

ð2πÞrankGðRÞ

× ZS2b
ðσðLÞ; BðLÞ; aÞZS2b

ðσðRÞ; BðRÞ; aÞZS4b
ðaÞ

× Zintersection
0D ðσðLÞ; BðLÞ; σðRÞ; BðRÞÞ

× jZinstantonða; σðLÞ; BðLÞ; σðRÞ; BðRÞÞj2: ð6:1Þ

There are new ingredients in addition to those appearing
in the analysis in Sec. III, where the formulas for
ZS2b

ðσðL=RÞ; BðL=RÞ; aÞ and Zintersection
0D ðσðLÞ; BðLÞ; σðRÞ;

BðRÞÞ can be found. For a general 4D N ¼ 2 gauge theory
we must also localize the 4D gauge dynamics, which
results in an integral over the vector multiplet scalar zero
mode a in (6.1), where a takes values in the Cartan of
the 4D gauge group. ZS4b

ðaÞ is the familiar classical

and one-loop factor in the computation of the S4b
partition function [22,23]. In this more general case, the
masses of the innermost chiral multiplets in the 4D/2D/0D
quiver diagram can be fixed in terms of the 4D Coulomb
branch parameter a by the localized superpotential.

Zinstantonða; σðLÞ; BðLÞ; σðLÞ; BðLÞÞ is the instanton partition
function of the 4D/2D/0D theory in the Ω-background. It
can be computed by a matrix integral similar to the Atiyah-
Drinfeld-Hitchin-Manin (ADHM) construction, which
computes the equivariant volume of the instanton moduli
space in the presence of the codimension two singularities
induced by the 2D fields and codimension four singular-
ities induced by 0D fields. The ADHM matrix model has
new additional fields in the presence of defect fields (see
[94]). The extra fields in the ADHM matrix model arise
from the 2D fields that couple directly to the 4D gauge
group, that is the innermost chiral multiplets [95]. It would
be interesting to explicitly compute the partition function
of our intersecting defects for gauge theories such as
SQCD. For the computation of instanton calculus in the
Ω-background for the theory living on stacks of intersect-
ing D3 branes see [96].
We proposed that the partition function of our intersect-

ing defects in gauge theories computes the correlation
function in Toda CFT in the presence of a degenerate vertex
operator. In this dictionary, the expansion of the CFT
correlator in conformal blocks is obtained after integrating
over the partition function of the 2D and 0D fields. This is a
rather nontrivial prediction that stems from our analysis.
Our discussion of intersecting defects can be applied to

surface operators of Levi type, where the 4D gauge groupG
is broken at a surface to a Levi subgroup L of G [2]. These
are naturally associated to surface operators engineered by
M5 branes instead of M2 branes [97]. Our 4D/2D/0D field
theory construction allows a more general possibility. We
can consider a 4D theory where the gauge group G is
broken to L1 in the plane x3 ¼ x4 ¼ 0 and to L2 in the
plane x1 ¼ x2 ¼ 0; see Fig. 15. These two singularities are
then glued at the origin, in a way determined by the 0D
fields supported there. An interesting example to consider
using our formalism is an intersecting surface defect in 4D
N ¼ 2 SUðNÞ super-Yang-Mills characterized by a pair of
Levi groups ðL1; L2Þ. Using that one can associate to each
Levi group a canonical 2D N ¼ ð2; 2Þ theory (see e.g.,
[2,45,98]), we can consider as an example of such an
intersecting defect the quiver diagram in Fig. 16.
It is expected that for the choice of Levi groups ðL1; GÞ

obtained by coupling just one 2D N ¼ ð2; 2Þ theory the

FIG. 15. Intersecting Levi-type defects supported on planesR2
12

and R2
34. The gauge group G is broken to L1 in the plane R2

12 and
to L2 in the plane R2

34.
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partition function of the theory computes a correlation
function in Wρ Toda CFT, where ρ is the partition of N
associated to the Levi group L1 [3] (see also, e.g., [97,
99–108]). It would be interesting to find a 2D CFT
interpretation of the partition function of intersecting sur-
face defects with Levi groups ðL1; L2Þ obtained by cou-
pling, as we did in this paper, two 2DN ¼ ð2; 2Þ and a 0D
N ¼ ð0; 2Þ theory to each other and to the bulk.
The discussion of intersecting surface defects inserted in

4D quantum field theories can be straightforwardly gen-
eralized to codimension two defects in 5D theories.
Trivially uplifting all dimensions by one unit, we expect
our results to be relevant for the study of the 5D AGT
correspondence [109–111] as well as for the work in
[112,113].
The vacuum expectation value of intersecting surface

defects labeled by symmetric representations on the four
sphere (or S4 × S1 or S5) can be obtained alternatively via a
Higgsing procedure [94,113–115] or, equivalently, from a
Higgs branch localization computation [116–118] [119].
This computation heavily relies on massaging the instanton
partition function and agrees with our proposal in this
paper. It is presented elsewhere [92].

ACKNOWLEDGMENTS

The authors thank Benjamin Assel, Davide Gaiotto,
Hee-Cheol Kim, Heeyeon Kim, Chan Youn Park, Daniel
Park, Jian Qiu, Jacob Winding and Maxim Zabzine for
helpful conversations and useful suggestions. W. P. is
grateful to Perimeter Institute, the Galileo Galilei
Institute and the Simons Center for Geometry and
Physics during the 2016 Simons Summer Workshop for
their kind hospitality. This research was supported in part
by Perimeter Institute for Theoretical Physics. Research at
Perimeter Institute is supported by the Government of
Canada through Industry Canada and by the Province of
Ontario through the Ministry of Research and Innovation.
Y. P. is supported in part by Vetenskapsrådet under Grant
No. 2014- 5517, by the STINT grant and by the grant

“Geometry and Physics” from the Knut and Alice
Wallenberg foundation. The work of W. P. is supported
in part by the DOE Award No. DOE-SC0010008.

APPENDIX A: LIOUVILLE FUNDAMENTAL
DEGENERATE

In Sec. VAwe wrote (5.1) relating the partition functions
of two 4D/2D/0D quiver gauge theories with 2D gauge
groups Uð1Þ and Uð1Þ and a Liouville four-point function
with three generic vertex operators and one degenerate
vertex operator of momentum α ¼ −bΩ□ − b−1Ω□ ¼
− b

2
− 1

2b ¼ −Q=2. In this appendix we first discuss the
Liouville correlator then match it to a partition function
involving a 0D Fermi multiplet then to one involving a 0D
chiral multiplet, and conclude with a proof that the two
partition functions are equal up to some factors (in
Appendix A 6).

1. The Liouville correlator

Let us start by writing down the Liouville correlation
function we aim at reproducing from the gauge theory point
of view,

hV̂−Q
2
ðz; z̄ÞV̂α1ð0ÞV̂α2ð1ÞV̂α3ð∞Þi: ðA1Þ

It involves one degenerate vertex operator V̂−Q
2

with

Liouville momentum − 1
2
ðbþ b−1Þ ¼ − Q

2
, and three

generic vertex operators V̂αi ; i ¼ 1, 2, 3. Here the hats
indicate that we normalized the operators as follows:

V̂−Q
2
¼ N

ð−Q
2
Þ

deg : V−Q
2
; V̂αi ¼ NðαiÞVαi ; ðA2aÞ

N
ð−Q

2
Þ

deg : ¼ ðπμγðb2Þb2−2b2Þ−Q
2b ðA2bÞ

NðαiÞ ¼ ðπμγðb2Þb2−2b2Þαi−Q=3
b =ðϒ0

bð0Þ
1
3ϒbð2αiÞÞ; ðA2cÞ

FIG. 16. An example of a 4D/2D/0D quiver gauge description of intersecting Levi-type surface defects inserted in pureN ¼ 2 SUðNÞ
super-Yang-Mills. The Levi subgroup L1 is determined by a nondecreasing partition of N, i.e., N ¼ K1 þ K2 þ � � �Kn and Ki ≤ Kiþ1.
The ranks of the gauge groups are then Nj ¼

Pj
i¼1 Ki. The ranks N0

j are similarly determined in terms of the data encoded in L2. Other
choices for the 0D N ¼ ð0; 2Þ theory are possible.
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where μ is the cosmological constant, γðxÞ ¼ ΓðxÞ
Γð1−xÞ, and

ϒ0ð0Þ is the derivative of the Upsilon function evaluated at
0. Recall that the conformal weight of a Liouville vertex
operator Vα is given by ΔðαÞ ¼ αðQ − αÞ [123].
The three-point function of three primary fields Vβj

with generic momenta βj is given by the Dorn-
Otto-Zamolodchikov-Zamolodchikov (DOZZ) formula
[124–126]

Cðβ1; β2; β3Þ
¼ ½πμγðb2Þb2−2b2 �ðQ−βÞ=b

×
ϒ0ð0Þϒð2β1Þϒð2β2Þϒð2β3Þ

ϒðβ −QÞϒðβ − 2β1Þϒðβ − 2β2Þϒðβ − 2β3Þ
;

ðA3Þ

where β ¼ β1 þ β2 þ β3. Including our normalization
(A2), it becomes

Ĉðβ1; β2; β3Þ ¼
1

ϒðβ −QÞQ3
i¼1 ϒðβ − 2βiÞ

: ðA4Þ

Furthermore, the operator product expansion of a generic
operator V̂α1 with the degenerate operator V̂−Q

2
is given by

V̂−Q
2
ðz; z̄ÞV̂α1ð0Þ ∼

X
s1¼�;s2¼�

ðzz̄ÞΔðαs1s2 Þ−Δðα1Þ−Δð−Q=2Þ

× Ĉ
αs1s2
α1;−

Q
2

ðV̂αs1s2
ð0Þ þ � � �Þ; ðA5Þ

where αs1s2 ¼ α1 þ s1bþs2b−1

2
, and the … denotes Virasoro

descendant fields. The structure constants Ĉ
αs1s2
α1;−

Q
2

are

computed by

Ĉ
αs1s2
α1;−

Q
2

¼ Nðα1ÞNð−Q=2Þ
deg :

Nðαs1s2 Þ
Cðα1;−Q=2; Q − αs1s2Þ0: ðA6Þ

Here the prime on the last factor indicates that one should
take the residue of the single pole one finds when inserting
the arguments in (A3) [127].
Given the OPE in (A5), we deduce that the correlator

(A1) has an s-channel conformal block decomposition
involving four intermediate channels with intermediate
momenta αs1s2 ¼ α1 þ ðs1bþ s2b−1Þ=2,

hV̂−Q
2
ðz; z̄ÞV̂α1ð0ÞV̂α2ð1ÞV̂α3ð∞Þi

¼
X

s1¼�;s2¼�
Ĉα2;α3;αs1s2

Ĉ
αs1s2
α1;−

Q
2

jGαs1s2
ðzÞj2: ðA7Þ

The conformal blocks are normalized in the standard way,
Gαs1s2

ðzÞ ¼ zΔðαs1s2 Þ−Δðα1Þ−Δð−Q=2Þð1 þ c1z þ � � �Þ. They
have been computed in closed form in [86] by solving
the fourth order differential equation associated with the
degenerate puncture. Before presenting them, we introduce
various notations, following [86]. We denote

p1 ¼ bðα − 2α1 −Q=2Þ; p3 ¼ bð3Q=2 − αÞ;
p2 ¼ bðα − 2α2 −Q=2Þ; p0

i ¼ b−2pi; ðA8Þ

with α¼α1þα2þα3, use the notation that pij ¼ pi þ pj;
pijk ¼ pi þ pj þ pk, and finally define

F 1ðy1; y2; y3; zÞ
¼ 2F1ð1þ y3; 2þ y1 þ y2 þ y3; 2þ y1 þ y3; zÞ;

F 2ðy1; y2; y3; zÞ
¼ z−1−y1−y3 2F1ð1þ y2;−y1;−y1 − y3; zÞ; ðA9Þ

in terms of the hypergeometric function 2F1. Then the
conformal blocks Gαs1s2

describing the exchange of
momentum αs1s2 in the correlator (A7) are given by [129]

Gαs1s2
ðzÞ ¼ z1þp13þα1Qð1 − zÞ1þp23þα2QGαs1s2

ðzÞ ðA10Þ

Gα−−ðzÞ¼F 2ðp1;p2;p3;zÞF 1ð−p0
1−1;−p0

2;−p0
3;zÞ−

ð1−p0
123Þp1

ð1−p0
13Þp13

F 2ðp1−1;p2;p3;zÞF 1ð−p0
1;−p0

2;−p0
3;zÞ ðA11Þ

GαþþðzÞ ¼ Gα−−ðzÞjpi↔−p0
i

ðA12Þ

Gαþ−
ðzÞ ¼ ð1þ p123Þð1 − p0

13Þ
p2 þ p0

2

F 1ðp1; p2; p3; zÞ × F 1ð−p0
1 − 1;−p0

2;−p0
3; zÞ þ ðpi ↔ −p0

iÞ ðA13Þ

Gα−þðzÞ ¼
p13ð1 − p13Þð1þ p0

13Þ
p3ðp123 þ p0

123Þ
ðF 2ðp1 − 1; p2; p3; zÞF 2ð−p0

1;−p0
2;−p0

3; zÞ − ðpi ↔ −p0
iÞÞ: ðA14Þ
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2. Gauge theory computation I

The partition function of the 2D/0D part of the left quiver gauge theory in Fig. 13 is computed as

Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼

X
BðRÞ∈Z

X
BðLÞ∈Z

Z
dσðRÞ

2π

dσðLÞ

2π

�Y2
j¼1

Γð−iðσðRÞ −mðRÞ
j Þ − BðRÞ=2Þ

Γð1þ iðσðRÞ −mðRÞ
j Þ − BðRÞ=2Þ

Y2
s¼1

Γð−ið−σðRÞ þ ~mðRÞ
s Þ þ BðRÞ=2Þ

Γð1þ ið−σðRÞ þ ~mðRÞ
s Þ þ BðRÞ=2Þ

× e−4πiξðσðRÞ−σðLÞÞþiϑðBðRÞ−BðLÞÞΔþΔ−
Y2
s¼1

Γð−iðσðLÞ −mðLÞ
s Þ − BðLÞ=2Þ

Γð1þ iðσðLÞ −mðLÞ
s Þ − BðLÞ=2Þ

Y2
j¼1

Γð−ið−σðLÞ þ ~mðLÞ
j Þ þ BðLÞ=2Þ

Γð1þ ið−σðLÞ þ ~mðLÞ
j Þ þ BðLÞ=2Þ

�

ðA15Þ

with Δ�¼b−1ðiσðRÞ �BðRÞ=2Þ−bðiσðLÞ �BðLÞ=2Þ. Recall
the mass relations (3.12) (with c ¼ 0)

bmðLÞ
s ¼ b−1 ~mðRÞ

s ; b ~mðLÞ
j ¼ b−1mðRÞ

j : ðA16Þ

In (A15) we have used ξðRÞFI ¼ −ξðLÞFI ¼ ξ and similarly for
ϑ. We also define z ¼ e−2πξþiϑ. For positive FI parameter,
ξ > 0, the naive poles are located at

iσðRÞ �BðRÞ=2¼ imðRÞ
j þp�

j ; with p�
j ≥ 0 for j¼ 1;2;

iσðLÞ �BðLÞ=2¼ i ~mðLÞ
k −q�k ; with q�k ≥ 0 for k¼ 1;2:

ðA17Þ

Using the mass relations (A16), it is easy to see that the
contribution of the Fermi multiplet provides 0’s canceling
the poles (or equivalently, setting their residue to 0) for
j ¼ k and pþ

j ¼ qþj ¼ 0 or p−
j ¼ q−j ¼ 0.

Introducing the quantities for j, k ¼ 1, 2,

ZðRÞ
1-loopðjÞ ¼ γð−imðRÞ

j þ imðRÞ
j0≠jÞ

Y
s¼1;2

γðimðRÞ
j − i ~mðRÞ

s Þ;

ðA18Þ

ZðLÞ
1-loopðkÞ ¼ γði ~mðLÞ

k − imðLÞ
k0≠kÞ

Y
s¼1;2

γð−i ~mðLÞ
k þ imðLÞ

s Þ;

ðA19Þ

and for m ∈ Z≥0,

ZR2;ðRÞ
vortexjðjÞðmÞ ¼

Q
2
s¼1ðimðRÞ

j − imðRÞ
s Þm

m!ð1þ imðRÞ
j − imðRÞ

j0≠jÞm
; ðA20Þ

ZR2;ðLÞ
vortexjðkÞðmÞ ¼

Q
2
s¼1ð−i ~mðLÞ

k þ imðLÞ
s Þm

m!ð1 − i ~mðLÞ
k þ i ~mðLÞ

k0≠kÞm
; ðA21Þ

one easily finds

Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼

X2
j;k¼1

e−4πiξðm
ðRÞ
j − ~mðLÞ

k ÞZðRÞ
1-loopðjÞZðLÞ

1-loopðkÞ

×
X

pþ
j ;q

þ
k ≥0

�
ðb−1ðimðRÞ

j þ pþ
j Þ − bði ~mðLÞ

k − qþk ÞÞ

× zp
þ
j ZR2;ðRÞ

vortexjðjÞðpþ
j Þzq

þ
k ZR2;ðLÞ

vortexjðkÞðqþk Þ
�

×
X

p−
j ;q

−
k ≥0

�
ðb−1ðimðRÞ

j þ p−
j Þ − bði ~mðLÞ

k − q−k ÞÞ

× z̄p
−
j ZR2;ðRÞ

vortexjðjÞðp−
j Þz̄q

−
k ZR2;ðLÞ

vortexjðkÞðq−k Þ
�
: ðA22Þ

Next, we match this expression to the Liouville correlator
after including the contribution of the four free 4D hyper-
multiplets,

ZfreeHM
S4b

¼
Y2
j;s¼1

1

ϒbðb2 þ 1
2b − iMjsÞ

; ðA23Þ

with masses fixed by (3.9) and (3.10),

�
Mjsffiffiffiffiffiffi
l ~l

p þ i
2l

þ i

2 ~l

�
þ −mðRÞ

j þ ~mðRÞ
s

l
¼ i

l
;

�
−

Mjsffiffiffiffiffiffi
l ~l

p þ i
2l

þ i

2 ~l

�
þ −mðLÞ

s þ ~mðLÞ
j

~l
¼ i

~l
: ðA24Þ

3. Matching Liouville to gauge theory I

The detailed match between the Liouville correlator and
the gauge theory computation of the previous section is
given by [130]

Zfree HM
S4b

Zð□;□Þ
S2ðRÞ∪S2ðLÞ

¼ Ajzj2βj1 − zj2γhV̂−Q
2
ðz; z̄ÞV̂α1ð0ÞV̂α2ð1ÞV̂α3ð∞Þi;

ðA25Þ
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where

A ¼ b−4Qðα2−Q=2Þ; ðA26Þ
γ ¼ ðb − b−1Þα2 − bQ; ðA27Þ

β ¼ −
Q2

2
þ i
2b

ðb − b−1ÞðmðRÞ
1 þmðRÞ

2 Þ; ðA28Þ

and with the parameters αi identified with 2D masses as

α1 −
Q
2
¼ i

2b
ðmðRÞ

1 −mðRÞ
2 Þ ¼ ib

2
ð ~mðLÞ

1 − ~mðLÞ
2 Þ;

α2 −
Q
2
¼ i

2b
ð ~mðRÞ

1 þ ~mðRÞ
2 −mðRÞ

1 −mðRÞ
2 Þ

¼ ib
2
ðmðLÞ

1 þmðLÞ
2 − ~mðLÞ

1 − ~mðLÞ
2 Þ;

α3 −
Q
2
¼ −

i
2b

ð ~mðRÞ
1 − ~mðRÞ

2 Þ ¼ −
ib
2
ðmðLÞ

1 −mðLÞ
2 Þ:

ðA29Þ
More in detail, the sum over the four vacua j, k ¼ 1, 2 of

the gauge theory result (A22) corresponds to the four
internal channels of the Liouville correlator (A7) as in
Table V. To present the precise identification, let us
introduce the notation

Zv⊗vðx; j; kÞ ¼
X

pj;qk≥0

�
ðb−1ðimðRÞ

j þ pjÞ − bði ~mðLÞ
k − qkÞÞ

× xpjZR2;ðRÞ
vortexjðjÞðpjÞxqkZR2;ðLÞ

vortexjðkÞðqkÞ
�
;

ðA30Þ

where we note that Zv⊗vðx; j; jÞ has vanishing zeroth order
term in x,

Zv⊗vðx;j;jÞ¼x
�
bZR2;ðLÞ

vortexjðjÞð1Þþb−1ZR2;ðRÞ
vortexjðjÞð1Þ

�
þOðx2Þ:

ðA31Þ

The gauge theory result (A22) can then be reorganized in
the following form,

Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼

X2
j;k¼1
j≠k

�
ZðRÞ
1-loopðjÞZðLÞ

1-loopðkÞðib−1mðRÞ
j − ib ~mðLÞ

k Þ2




 ziðm

ðRÞ
j − ~mðLÞ

k Þ

ib−1mðRÞ
j − ib ~mðLÞ

k

Zv⊗vðz; j; kÞ




2
�

þ
X2
j;k¼1
j¼k

2
64ZðRÞ

1-loopðjÞZðLÞ
1-loopðkÞðbZR2;ðLÞ

vortexjðjÞð1Þ þ b−1ZR2;ðRÞ
vortexjðjÞð1ÞÞ2








ziðm

ðRÞ
j − ~mðLÞ

k Þþ1z−1Zv⊗vðz; j; kÞ
bZR2;ðLÞ

vortexjðjÞð1Þ þ b−1ZR2;ðRÞ
vortexjðjÞð1Þ








2
3
75; ðA32Þ

where j…j2 just means sending z → z̄. Each of the four
summands of (A32) has the structure ½…� × j…j2. These
expressions, using Table V, can be matched to the four
channels of the Liouville four-point function (A7) as
Zfree HM
S4b

× ½…� ¼ AĈ Ĉ, and j…j2 ¼ jzj2βj1 − zj2γjGðzÞj2,
where we used the parameters in (A26)–(A28). In the
ancillary Mathematica file, [131] we use contiguous
relations on hypergeometric functions to prove the equality

for conformal blocks. It would be interesting to obtain a
more straightforward proof.

4. Gauge theory computation II

Let us now compute the S4b partition function of the
theory described by the right quiver gauge theory in
Fig. 13. We denote parameters of the left theory with
primes and the right theory without primes. Omitting
the 4D hypermultiplets, the partition function is

~Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼

X
B∈Z

X
B0∈Z

Z
JK

dσ
2π

dσ0

2π
e−4πiξðσþσ0ÞþiϑðBþB0ÞY2

j¼1

Γð−iðσ−mjÞ−B=2Þ
Γð1þ iðσ−mjÞ−B=2Þ

Y2
s¼1

Γð−ið−σþ ~msÞþB=2Þ
Γð1þ ið−σþ ~msÞþB=2Þ

×

�Y
�

�
Δ�þbþb−1

2

��
Δ�−

bþb−1

2

��−1Y2
j¼1

Γð−iðσ0−m0
jÞ−B0=2Þ

Γð1þ iðσ0−m0
jÞ−B0=2Þ

Y2
s¼1

Γð−ið−σ0 þ ~ms
0ÞþB0=2Þ

Γð1þ ið−σ0 þ ~ms
0ÞþB0=2Þ ;

ðA33Þ

TABLE V. Matching the four vacua in Zð□;□Þ
S2ðRÞ∪S2ðLÞ with the four

channels of the Liouville correlator.

j, k 1, 1 1, 2 2, 1 2, 2

s1s2 −þ −− þþ þ−
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with Δ� ¼ b−1ðiσ � B
2
Þ − bðiσ0 � B0

2
Þ. Recall from Sec. III

the mass relations (with c ¼ 0)

bm0
j − b−1mj ¼ −

i
2
ðb − b−1Þ;

b ~ms
0 − b−1 ~ms ¼

i
2
ðb − b−1Þ: ðA34Þ

In (A33) we used ξFI ¼ ξ0FI ¼ ξ and similarly for ϑ. We
also define z ¼ e−2πξþiϑ. For positive FI parameter, ξ > 0,
the Jeffrey-Kirwan-like residue prescription selects poles
obtained by assigning to σ0 a pole position of the
fundamental one-loop determinants in the third line of
(A33). Taking into account cancellations with 0’s, we
thus have

iσ0 � B0

2
¼ im0

k þ q�k ; with q�k ≥ 0 for k ¼ 1; 2:

ðA35Þ

For σ there are various options

iσ ¼ imj þ lj −
B
2
; with lj ≥ 0 for j ¼ 1; 2;

iσ ¼ imk �
B
2
þ b2q∓k − 1;

iσ ¼ imk �
B
2
þ b2ðq∓k þ 1Þ: ðA36Þ

Here we used the relations among the fundamental mass
parameters on the two spheres. Note that in the pole
positions on the last two lines, the index k takes the same
value as in (A35). Also note that some of these poles
collide, and some cancel against the 0’s located at iσ ¼
imp þ B

2
− λp − 1 with λp ≥ 0 for p ¼ 1, 2. Among these

poles, four particular classes of simple poles can be
identified as follows, where j, k ¼ 1, 2:

I∶
�
iσ0 � B0

2
¼ im0

k þ q�k ; with q�k ≥ 0;

iσ � B
2
¼ imj þ p�

j ; with p�
j ≥ 0;

II∶
�
iσ0 � B0

2
¼ im0

k þ q�k ; with qþk ¼ 0; q−k ≥ 0;

iσ þ B
2
¼ imk − 1; with B < 0;

III∶
�
iσ0 � B0

2
¼ im0

k þ q�k ; with q−k ¼ 0; qþk ≥ 0;

iσ − B
2
¼ imk − 1; with B > 0;

IV∶
�
iσ0 ¼ im0

k; with q−k ¼ 0; qþk ¼ 0 ⇒ B0 ¼ 0;

iσ ¼ imk − 1; with B ¼ 0:

ðA37Þ
The sum of the residues of these poles reproduces the
Liouville correlator (A1), while one can verify that all
other series of poles cancel among themselves. These
poles can also be characterized as those for which iσ �
B=2 ∈ fim1; im2g þ Z and iσ0 � B0=2 ∈ fim0

1; im
0
2g þ Z.

Computing the residues of the four classes of poles is
straightforward. One finds

~Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼

X2
j;k¼1

�
e−4πiξðmjþm0

kÞ ~Z1-loopjðjÞðm; ~mÞ ~Z1-loopjðkÞðm0; ~m0Þ

×





δjkz−1 ~ZR2

vortexjðjÞð−1Þ
ðbþ b−1Þb−1 þ

X
p;q≥0

zp ~ZR2

vortexjðjÞðp;m; ~mÞzq ~ZR2

vortexjðkÞðq;m0; ~m0ÞQ
�ðb−1ðimj þ pÞ − bðim0

k þ qÞ � bþb−1
2

Þ





2
�

ðA38Þ

where j � � � j2 just involves z → z̄, in terms of

~Z1-loopjðjÞðm; ~mÞ ¼ γð−imj þ imk≠jÞ
Y2
s¼1

γðimj − i ~msÞ;

ðA39Þ

~ZR2

vortexjðjÞðm;m; ~mÞ ¼
Q

2
s¼1 ðimj − i ~msÞm

m!ð1þ imj − imk≠jÞm
; ðA40Þ

~ZR2

vortexjðjÞð−1Þ ¼
ð−imj þ imk≠jÞQ
2
s¼1ðimj − i ~ms − 1Þ ðA41Þ

for j ¼ 1, 2 and m ∈ Z≥0.
Next, we match this expression to the Liouville corre-

lator, including the contribution of the four free 4D
hypermultiplets,

~ZfreeHM
S4b

¼
Y2
j;s¼1

1

ϒbðb2 þ 1
2b − iMjsÞ

; ðA42Þ

with masses fixed by (3.19) and (3.20),

�
Mjsffiffiffiffiffiffi
l ~l

p þ i
2l

þ i

2 ~l

�
þ −mj þ ~ms

l
¼ i

l
;

�
Mjsffiffiffiffiffiffi
l ~l

p þ i
2l

þ i

2 ~l

�
þ −m0

j þ ~m0
s

~l
¼ i

~l
: ðA43Þ

5. Matching Liouville to gauge theory II

The precise match between the Liouville correlation
function (A1) and the gauge theory quantities (A38)–(A42)
is given as follows,
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~Zfree HM
S4b

~Zð□;□Þ
S2ðRÞ∪S2ðLÞ

¼ ~Ajzj2~βj1 − zj2~γhV̂−Q
2
ðz; z̄ÞV̂α1ð0ÞV̂α2ð1ÞV̂α3ð∞Þi;

ðA44Þ

with the parameters αi identified with 2D masses as

α1 −
Q
2
¼ i

2b
ðm1 −m2Þ ¼

ib
2
ðm0

1 −m0
2Þ;

α2 −
Q
2
¼ 1

b
þ i
2b

ð ~m1 þ ~m2 −m1 −m2Þ

¼ bþ ib
2
ð ~m0

1 þ ~m0
2 −m0

1 −m0
2Þ;

α3 −
Q
2
¼ i

2b
ð ~m2 − ~m1Þ ¼

ib
2
ð ~m0

2 − ~m0
1Þ; ðA45Þ

where the two expressions of each momentum are related
by (A34), and

~A ¼ 1

Q2
b−4ðb−b−1Þðα2−Q=2Þ; ðA46Þ

~γ ¼ Qα2 −Q2; ðA47Þ

~β ¼ −
Q
2

�
Qþ 1 − im1 − im2

b

�
: ðA48Þ

First of all, (A38) contains a sum over four terms specified
by the values of j, k. These choices of vacua j ¼ 1, 2 and
k ¼ 1, 2 correspond to the four channels of (A7) as in
Table VI. To simplify the details of the identification (A44),
let us introduce a concise notation for the double sum over
positive integers appearing in (A38),

~Zv⊗vðx; j; kÞ

¼
X
p;q≥0

xp ~ZR2

vortexjðjÞðp;m; ~mÞxq ~ZR2

vortexjðkÞðq;m0; ~m0ÞQ
�ðb−1ðimj þ pÞ − bðim0

k þ qÞ � bþb−1
2

Þ :

ðA49Þ

We then rewrite (A38) as

~Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼

X2
j;k¼1
j≠k

� ~Z1-loopjðjÞðm; ~mÞ ~Z1-loopjðkÞðm0; ~m0ÞQ
�ðib−1mj − ibm0

k � bþb−1
2

Þ2




ziðmjþm0

kÞ
Y
�

�
ib−1mj − ibm0

k �
bþ b−1

2

�
~Zv⊗vðz; j; kÞ





2
�

þ
X2
j;k¼1
j¼k

�
~Z1-loopjðjÞðm; ~mÞ ~Z1-loopjðkÞðm0; ~m0Þ

� ~ZR2

vortexjðjÞð−1Þ
ðbþ b−1Þb−1

�
2




ziðmjþm0

kÞ−1
�
1þ ðbþ b−1Þb−1

~ZR2;ðRÞ
vortexjðjÞð−1Þ

z ~Zv⊗vðz; j; kÞ
�



2

�
;

ðA50Þ

where j…j2 is again taken to mean just replacing z → z̄.
The identification (A44), using (A7), is now straightfor-
ward. Each of the four terms obtained by summing over j,
k, which as mentioned above are identified with the four
channels of the Liouville correlator as in Table VI, have
the structure ½…� × j…j2. These factors are identified
concretely for each vacuum as ~Zfree HM

S4b
× ½…� ¼ AĈ Ĉ,

and j…j2 ¼ jzj2~βj1 − zj2~γjGðzÞj2, where we used the
parameters in (A46)–(A48) and the arguments of the
brackets and moduli squared can be read off from
(A50). This identification is a consequence of the

identification in Appendix A 3 and the equality of partition
functions that we prove next.

6. Seiberg duality between quivers

We prove here that the two quivers studied in the
previous sections have equal partition functions: we
apply a 2D N ¼ ð2; 2Þ Seiberg-like duality to the left
node of the first quiver and show how the 0D Fermi
multiplet contribution transforms into a pair of 0D chiral
multiplets.
Enrich the partition function (A15) by allowing

independent left and right FI parameters, and write
the 0D Fermi multiplet contribution as a differential
operator,

Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼ jb−1zðRÞ∂zðRÞ − bzðLÞ∂zðLÞ j2ZðRÞ

SQEDZ
ðLÞ
SQEDjz

ðA51Þ

TABLE VI. Matching the four vacua in ~Zð□;□Þ
S2ðRÞ∪S2ðLÞ with the four

channels of the Liouville correlator.

j, k 1, 1 1, 2 2, 1 2, 2

s1s2 −− −þ þ− þþ
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where jz denotes taking zðRÞ; zðLÞ → z, and

ZðLÞ
SQED ¼

X
BðLÞ∈Z

Z
dσðLÞ

2π
ðzðLÞÞiσðLÞþBðLÞ=2ðz̄ðLÞÞiσðLÞ−BðLÞ=2

Y2
j¼1

Γð−iðσðLÞ −mðLÞ
j Þ − BðLÞ

2
Þ

Γð1þ iðσðLÞ −mðLÞ
j Þ − BðLÞ

2
Þ

×
Y2
s¼1

Γð−ið−σðLÞ þ ~mðLÞ
s Þ þ BðLÞ

2
Þ

Γð1þ ið−σðLÞ þ ~mðLÞ
s Þ þ BðLÞ

2
Þ

ðA52Þ

and similarly ZðRÞ
SQED in terms of ðmðRÞ; ~mðRÞ; zðRÞ; z̄ðRÞÞ.

As shown in [26,132], the SQED partition function is invariant under Seiberg duality up to some factors [133],

ZðLÞ
SQED ¼ CjzðLÞj2δ0 j1 − zðLÞj2δ1ZSQEDðm0; ~m0; z0; z̄0Þ; ðA53Þ

with exponents δ0 ¼ −1=2þ imðLÞ
1 þ imðLÞ

2 and δ1 ¼ 1þ i ~mðLÞ
1 þ i ~mðLÞ

2 − imðLÞ
1 − imðLÞ

2 , coefficient C ¼Q
2
j¼1

Q
2
s¼1 γðimðLÞ

s − i ~mðLÞ
j Þ, exponentiated FI parameter z0 ¼ 1=zðLÞ and shifted twisted masses m0

j ¼ ~mðLÞ
j − i

2
and

~m0
s ¼ mðLÞ

s þ i
2
. These parameters turn out to be those of the left theory in the second quiver, as given in (5.2) and (5.3) in the

main text (the relation can also be seen by identifying Liouville and gauge theory data). Parameters of the right theories are

related as z ¼ zðRÞ and mj ¼ mðRÞ
j − i

2
and ~ms ¼ ~mðRÞ

s þ i
2
.

Next we permute jzðLÞj2δ0 j1 − zðLÞj2δ1 and the differential operator of (A51),

ðb−1zðRÞ∂zðRÞ − bzðLÞ∂zðLÞ ÞðzðLÞÞδ0ð1 − zðLÞÞδ1 ¼ ðz0Þ12−δ0−δ1ðz0 − 1Þδ1−1
�
ðb−1z∂z þ bz0∂z0 − bimðLÞ

1 − bimðLÞ
2 Þðz0Þ12

− ðb−1z∂z þ bz0∂z0 − bi ~mðLÞ
1 − bi ~mðLÞ

2 Þðz0Þ−1
2

�
: ðA54Þ

When combined with its complex conjugate, this gives four terms,

Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼ Cjz0j2ð12−δ0−δ1Þjz0 − 1j2ðδ1−1Þ

X
sþ;s−¼�1

h
ðb−1z∂z þ bz0∂z0 − bimðLÞ;sþÞðb−1z̄∂ z̄ þ bz̄0∂ z̄0 − bimðLÞ;s−Þ

× sþs−ðz0Þsþ=2ðz̄0Þs−=2ZSQEDðm0; ~m0; z0; z̄0ÞZðRÞ
SQED

i
z¼z0

ðA55Þ

where imðLÞ;− ¼ i ~mðLÞ
1 þ i ~mðLÞ

2 and imðLÞ;þ ¼ imðLÞ
1 þ imðLÞ

2 . The factors ðz0Þsþ=2 and ðz̄0Þs−=2 can be absorbed into the
Coulomb branch expression of Z0

SQED by shifting σ0 → σ0 þ iðsþ þ s−Þ=4 and B0 → B0 þ ðs− − sþÞ=2. Pulling the
differential into the integral as well we get

Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼ Cjz0j2ð12−δ0−δ1Þjz0 − 1j2ðδ1−1Þ

X
B0∈Z

Z
dσ0

2π

�
ðz0Þiσ0þðz̄0Þiσ0−

X
sþ¼�1

X
s−¼�1

�Y2
j¼1

Γðsþ
2
− iσ0þ þ im0

jÞ
Γð− s−

2
þ 1þ iσ0− − im0

jÞ

×
Y2
s¼1

Γð− sþ
2
þ iσ0þ − i ~ms

0Þ
Γðs−

2
þ 1 − iσ0− þ i ~ms

0Þ bsþðiσ
0þ − imðLÞ;sþ þ b−2z∂zÞbs−ðiσ0− − imðLÞ;s− þ b−2z̄∂ z̄ÞZðRÞ

SQED

��
z¼z0

ðA56Þ

where we used the shorthand iσ0� ¼ iσ0 � B0=2. Using Γðxþ 1=2Þ ¼ ðx − 1=2ÞΓðx − 1=2Þ and im0
j − 1

2
¼ i ~mðLÞ

j and

i ~m0
s þ 1

2
¼ imðLÞ

s , the sþ-dependent factors can be massaged into
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X
sþ¼�

�
bsþðiσ0þ − imðLÞ;sþ þ b−2z∂zÞ

Y2
j¼1

Γ
�
im0

j − iσ0þ þ sþ
2

�Y2
s¼1

Γ
�
iσ0þ − i ~ms

0 −
sþ
2

��

¼ bðiσ0þ − b−2z∂zÞ−1
�Y2
j¼1

Γ
�
im0

j − iσ0þ −
1

2

�Y2
s¼1

Γ
�
iσ0þ − i ~ms

0 þ 1

2

�Y2
j¼1

�
b−2z∂z − im0

j þ
1

2

�

−
Y2
j¼1

Γ
�
im0

j − iσ0þ þ 1

2

�Y2
s¼1

Γ
�
iσ0þ − i ~ms

0 −
1

2

�Y2
s¼1

�
b−2z∂z − i ~m0

s −
1

2

��
: ðA57Þ

The gamma functions which appear are the same as in (A56). The factors linear in z∂z, when acting on the Coulomb

branch representation of ZðRÞ
SQED, become

b−2z∂z − im0
j þ

1

2
→ b−2ðiσþ − imðRÞ

j Þ; ðA58Þ

b−2z∂z − i ~m0
s −

1

2
→ b−2ðiσþ − i ~mðRÞ

s Þ; ðA59Þ

where iσ� ¼ iσ � B=2. These factors simply shift arguments of gamma functions. An analogous expression holds for
s−-dependent factors and involves z̄∂ z̄.
Altogether we get

Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼ Cb−4jzj2ð12−δ0−δ1Þjz − 1j2ðδ1−1Þ

X
B;B0∈Z

Z
dσdσ0

ð2πÞ2
�

ziσ
þþiσ0þ z̄iσ

−þiσ0−Q
�ðbiσ0� − iσ�=bÞ

X
sþ;s−¼�1

sþs−

×
Y2
j¼1

Γðimj − iσþ þ sþ
2
Þ

Γð1 − imj þ iσ− − s−
2
Þ

Γðim0
j − iσ0þ − sþ

2
Þ

Γð1 − im0
j þ iσ0− þ s−

2
Þ
Y2
s¼1

Γðiσþ − i ~ms −
sþ
2
Þ

Γð1 − iσ− þ i ~ms þ s−
2
Þ

Γðiσ0þ − i ~m0
s þ sþ

2
Þ

Γð1 − iσ0− þ i ~ms
0 − s−

2
Þ
�
:

ðA60Þ

For all four choices of ðsþ; s−Þ the shifts by � sþ
2
and � s−

2
in gamma function arguments can be canceled by shifting

iσ� → iσ� þ s�=2 and iσ0� → iσ0� − s�=2. The fluxes B ¼ iσþ − iσ− and B0 ¼ iσ0þ − iσ0− remain integers. The
exponents σ� þ σ0� of z and z̄ stay constant, but biσ0� − iσ�=b are shifted by −s�ðbþ b−1Þ=2. After these manipulations,
s� only appear in

X
sþ¼�1

sþ
ðbiσ0þ − b−1iσþ − sþðbþ b−1Þ=2Þ ¼

bþ b−1Q
�ðbiσ0þ − b−1iσþ � ðbþ b−1Þ=2Þ ðA61Þ

and a similar factor with ðsþ; σþ; σ0þÞ → ðs−; σ−; σ0−Þ. Lo and behold, we have obtained the contribution of a pair of 0D
chiral multiplets [134]. All in all,

Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼ b−4ðbþ b−1Þ2

Y2
j¼1

Y2
s¼1

γðimðLÞ
s − i ~mðLÞ

j Þ × jzj2ð12−δ0−δ1Þjz − 1j2ðδ1−1Þ ~Zð□;□Þ
S2ðRÞ∪S2ðLÞ : ðA62Þ

The 4D hypermultiplets to which the two 2D/0D quivers couple have slightly shifted masses (A23) and (A42). Using
ϒðxþ 1=bÞ=ϒðxÞ ¼ γðx=bÞb−1þ2x=b,

ZfreeHM
S4b
~ZfreeHM
S4b

¼ b4−4ð
P

2

s¼1
imðLÞ

s Þþ4ð
P

2

j¼1
i ~mðLÞ

j ÞQ
2
j;s¼1 γðimðLÞ

s − i ~mðLÞ
j Þ

: ðA63Þ

These factors cancel most factors in (A62) and give
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ZfreeHM
S4b

Zð□;□Þ
S2ðRÞ∪S2ðLÞ ¼

~ZfreeHM
S4b

~Zð□;□Þ
S2ðRÞ∪S2ðLÞ

×
ðbþb−1Þ2jz−1j2ði ~mðLÞ

1
þi ~mðLÞ

2
−imðLÞ

1
−imðLÞ

2
Þ

b4ð
P

2

s¼1
imðLÞ

s Þ−4ð
P

2

j¼1
i ~mðLÞ

j Þjzj2ði ~mðLÞ
1

þi ~mðLÞ
2

Þ
:

ðA64Þ

The prefactors are consistent with the matchings of
Appendixes A 3 and A 5.
Throughout this section the contour integrals surround

poles such that iσ � B=2 (and its analogues for other gauge
groups) is a twisted mass (times i) plus an integer, or half-
integer in (A60). This reproduces the set of poles (A37)
selected by the Jeffrey-Kirwan-like residue prescription for
the quiver with chiral multiplets.

APPENDIX B: QUIVER WITH 0D FERMI
MULTIPLETS

In the main text we propose the equality (5.12) between a
4D/2D/0D partition function and a Toda CFT correlator.
We focus here on the case ν ¼ ν0 ¼ 1, namely each 2D
theory has a single gauge group factor and the Toda CFT
side involves a pair of antisymmetric degenerate operators
(with coefficients b and 1=b). The relation reads

Z½T Fermi;ν¼1� ¼ A1ðx; x0; x̄; x̄0ÞhV̂α∞ð∞ÞV̂λω1
ð1ÞV̂α0ð0Þ

× V̂−bωn
ðx; x̄ÞV̂−b−1ωnf−n

0 ðx0; x̄0Þi: ðB1Þ

Complexified FI parameters of the two nodes are related to
positions of punctures by

x ¼ ẑðRÞ ¼ ð−1Þnfþn−1e−2πξ
ðRÞþiϑðRÞ ; ðB2Þ

x0−1 ¼ ẑðLÞ ¼ ð−1Þnfþn0−1e−2πξ
ðLÞþiϑðLÞ : ðB3Þ

Twisted masses obey b−1mðRÞ
j ¼ b ~mðLÞ

j and b−1 ~mðRÞ
s ¼

bmðLÞ
s and these SUðnfÞ × SUðnfÞ ×Uð1Þmass parameters

are encoded in momenta as (5.15),

α0 −Q ¼
Xnf
j¼1

b−1imðRÞ
j hj; ðB4Þ

α∞ −Q ¼ −
Xnf
s¼1

b−1i ~mðRÞ
s hs; ðB5Þ

λ ¼ nνbþ ðnf − n0ν0 Þb−1 þ
Xnf
s¼1

b−1i ~mðRÞ
s −

Xnf
j¼1

b−1imðRÞ
j :

ðB6Þ

The prefactor is

A1 ¼ Ajxj2β0 jx0j2β00 j1 − xj2β1 j1 − x0j2β01 jx − x0j2γ0 ; ðB7Þ

with

A ¼ bnð2
P

imðRÞ−2
P

i ~mðRÞ−nfþðnf−nÞb2Þ

bn
0ð2
P

imðLÞ−2
P

i ~mðLÞ−nfþðnf−n0Þb−2Þ
; ðB8Þ

β1 ¼ −nbðbþ b−1 − λ=nfÞ; ðB9Þ

β01 ¼ −n0b−1λ=nf ; ðB10Þ

β0 ¼ −hQ; bωni þ
n
nf

Xnf
j¼1

imðRÞ
j ; ðB11Þ

β00 ¼ −hQ; b−1ωn0 i −
n0

nf

Xnf
j¼1

i ~mðLÞ
j ; ðB12Þ

γ0 ¼ n0n=nf : ðB13Þ

We normalize generic, semidegenerate, and degenerate
vertex operators as follows:

V̂α ¼
μ̂hα−Q;ρiQnf

s<t ϒðhQ − α; hs − htiÞ
Vα; ðB14Þ

V̂λh1 ¼
μ̂hλh1;ρi

ðϒðbÞÞnf−1ϒðλÞVλh1 ; ðB15Þ

V̂−bω−ω0=b ¼ μ̂h−bω−ω0=b;ρiV−bω−ω0=b ðB16Þ

where μ̂¼½πμγðb2Þb2−2b2 �1=b is such that ðμ̂; bÞ → ðμ̂; 1=bÞ
is a symmetry of Toda CFT. This normalization makes
vertex operators invariant under Weyl symmetries (permu-
tations of the hα −Q; hji) [135].
The Toda correlator is not known explicitly. In

Appendix B 1 we match the leading terms as x → 0: on
the gauge theory side this limit selects a solution of the Higgs
branch equations for the UðnÞ gauge group while on the
Toda CFT side it selects one primary operator in the fusion
of V̂α0 with V̂−bωn

. The limits x → ∞, x0 → 0 or x0 → ∞ are
similar. In Appendix B 2 we show that braiding matrices
match [136]. In Appendix B 3 we match leading exponents
in the limits x → 1 (similarly, x0 → 1) and x0 → x.

1. Reduction to four-point function

In this section we explain how to expand the partition
function (B1) in powers of x and x̄, assuming that
jxj < 1; jx0j. Other orderings of x, 1 and x0 are related
by exchanging ẑðR;LÞ or mapping them to their inverse by
charge conjugation.
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In full, the partition function is

Z ¼ Z4D

X
BðRÞ

Z
dσðRÞ

ð2πÞn
X
BðLÞ

Z
dσðLÞ

ð2πÞn0 Z
ðRÞ
2D Z

ðLÞ
2D

×
Yn
a¼1

Yn0
c¼1

�
−
Y
�

�
b−1

�
iσðRÞa � BðRÞ

a

2

�
− b

�
iσðLÞc � BðLÞ

c

2

���
; ðB17Þ

where Z4D ¼ Qnf
j¼1

Qnf
s¼1ϒðð1þ i ~mðRÞ

s − imðRÞ
j Þ=bÞ−1 is the 4D contribution, the last factor is the 0D contribution, and

ZðR=LÞ
2D are given by

Z2D ¼ 1

n!
ẑTrðiσþB=2Þ ¯̂zTrðiσ−B=2Þ

Y
1≤a<c≤n

ðσþacσ−acÞ
Yn
a¼1

Ynf
j¼1

Γðimj − iσa − Ba=2Þ
Γð1 − imj þ iσa − Ba=2Þ

Yn
a¼1

Ynf
s¼1

Γð−i ~ms þ iσa − Ba=2Þ
Γð1þ i ~ms − iσa − Ba=2Þ

:

ðB18Þ

with iσ�ac ¼ iσa � Ba
2
− iσc ∓ Bc

2
. Since jẑðRÞj < 1 we close the dσðRÞ contours towards −i∞ and sum residues at poles

labeled by a choice of n flavors J⊆f1;…; nfg and of 2n vorticities p�
j ≥ 0 for j ∈ J, at

�
iσðRÞa � BðRÞ

a

2

�
1≤a≤n

¼
�
imðRÞ

j þ p�
j

�
j∈J

ðB19Þ

up to permutations which cancel a 1=n! factor. The Toda CFT correlator is not known so we focus on leading terms only,
namely all p�

j ¼ 0. The residue for a given J is then

Z4D

Y
j∈J

jẑðRÞj2imðRÞ
j
Qnf

k∈J
γðimðRÞ

k − imðRÞ
j ÞQnf

s¼1 γð1þ i ~mðRÞ
s − imðRÞ

j Þ
X
BðLÞ

Z
dσðLÞ

ð2πÞn0

ZðLÞ
2D

Y
j∈J

Yn0
c¼1

Y
�

∓
�
b−1imðRÞ

j − b

�
iσðLÞc � BðLÞ

c

2

��
: ðB20Þ

The 0D contribution combines with the one-loop determinant of antifundamental chiral multiplets of the left theory [using

imðRÞ
j =b ¼ bi ~mðLÞ

j ]

b2nn
0Y
j∈J

Yn0
c¼1

Y
�

�
∓ i ~mðLÞ

j � iσðLÞc −
BðLÞ
c

2

�Yn0
c¼1

Ynf
j¼1

Γð−i ~mðLÞ
j þ iσðLÞc − BðLÞ

c =2Þ
Γð1þ i ~mðLÞ

j − iσðLÞc − BðLÞ
c =2Þ

¼ b2nn
0 Yn0
c¼1

Ynf
j¼1

Γð−i ~mðLÞ
j þ δj∈J þ iσðLÞc − BðLÞ

c =2Þ
Γð1þ i ~mðLÞ

j − δj∈J − iσðLÞc − BðLÞ
c =2Þ

: ðB21Þ

Namely we get the S2 partition function ZðLÞ
S2

P
BðLÞ

R
dσðLÞZðLÞ

2D =ð2πÞn
0
with shifted masses i ~mðLÞ

j → i ~mðLÞ
j − δj∈J or

equivalently imðRÞ
j → imðRÞ

j − δj∈Jb2.

The denominator γ functions combine with the 4D contribution thanks to ϒðxÞγðbxÞ ¼ ϒðxþ bÞb−1þ2bx, and the
numerator γ functions coincide with a Toda CFT three-point function of a degenerate operator. Altogether, the residue
(B20) is

jẑðRÞj2
P

j∈J
imðRÞ

j ðb���Ĉα0−bhJ
−bωn;α0

Þ½ZðLÞ
S2

Z4D�imðRÞ
j →imðRÞ

j −δj∈Jb2
ðB22Þ

INTERSECTING SURFACE DEFECTS AND TWO- … PHYSICAL REVIEW D 96, 045003 (2017)

045003-29



where hJ ¼
P

j∈Jhj. The factor in square brackets is the
partition function of the 4D/2D system obtained by only
keeping the left 2D theory, known to match a Toda CFT
four-point function: this is the special case n ¼ 0 in our
matching (B1). Including the mass shifts, the residue is

b���jx0j2ðβ00þγ0Þj1 − x0j2β01hV̂α∞ð∞ÞV̂λω1
ð1ÞV̂α0−bhJð0Þ

× V̂−b−1ωnf−n
0 ðx0; x̄0Þi: ðB23Þ

We note in particular that only the momentum α0 is shifted:
the momentum λω1 is unchanged because mass shifts
cancel the change in nb. The exponent of jx0j2 is also
shifted by an amount which turns out to coincide with γ0,
the exponent of jx0 − xj2 in the full matching, as expected in
the x → 0 limit.
The structure we find is consistent with the Toda CFT

x → 0 OPE namely a sum over weights hJ of the nth
antisymmetric representation,

V̂−bωn
ðx; x̄ÞV̂α0ð0Þ ∼

X
J

jxj2½Δðα0−bhJÞ−Δðα0Þ−Δð−bωnÞ�

× Ĉα0−bhJ
−bωn;α0

V̂α0−bhJð0Þ þ � � � ðB24Þ

Powers of jxj2 ¼ jẑj2 work out, namely Δðα0 − bhJÞ−
Δðα0Þ − Δð−bωnÞ þ β0 ¼

P
j∈Jim

ðRÞ
j , and constant fac-

tors too. More precisely, we compared the contribution
of primary operators to the zero-vorticity terms in the gauge
theory expansion. The gauge theory results provide a
prediction for conformal blocks of this Toda CFT five-
point function.

2. Partition function and braiding matrices

In this section we explain how to expand the partition
function (B1) for jẑðRÞj≶1 and jẑðLÞj≶1 and how these
expansions are related by analytic continuation.
The S2 partition function ZS2¼

P
B

R
dσZ2D=ð2πÞn of

UðnÞ SQCD can be written as a differential operator acting
on that of n copies of supersymmetric quantum electro-
dynamics (SQED) (defined as SQCD with n ¼ 1). This
involves additional Kähler parameters ẑa all set equal to ẑ
eventually [137],

ZS2 ¼
1

n!

Yn
a<c

−jϑa − ϑcj2
Yn
a¼1

ZSQED
S2

ðẑa; ¯̂za; m; ~mÞ





ẑa¼ẑ
¯̂za¼ ¯̂z

ðB25Þ

where ϑa ¼ za∂=∂za and so on, and jϑa − ϑc
2j ¼

ðϑa − ϑcÞðϑ̄a − ϑ̄cÞ. We introduce in this way ẑðRÞa for 1 ≤
a ≤ n and ẑðLÞc for 1 ≤ c ≤ n0. The 0D contribution can then

be written as a differential operator −jb−1ϑðRÞa − bϑðLÞc j2 for
each 1 ≤ a ≤ n and 1 ≤ c ≤ n0 acting on the product of
nþ n0 SQED partition functions. All in all,

Z¼
Zhyper
S4b

n!n0!

Yn
a¼1

Yn0
c¼1

−jb−1ϑðRÞa −bϑðLÞc j2

×
Yn
a<c

−jϑðRÞa −ϑðRÞc j2
Yn0
a<c

−jϑðLÞa −ϑðLÞc j2

×
Yn
a¼1

ZSQED
S2 ðẑðRÞa ; ¯̂zðRÞa ;mðRÞ; ~mðRÞÞ

×
Yn0
c¼1

ZSQED
S2

ðẑðLÞc ; ¯̂zðLÞc ;mðLÞ; ~mðLÞÞ:





equal ẑ

ðB26Þ

where “equal ẑ” means setting all ẑðRÞa ¼ ẑðRÞ, ¯̂zðRÞa ¼ ¯̂zðRÞ,
ẑðLÞc ¼ ẑðLÞ, and ¯̂zðLÞc ¼ ¯̂zðLÞ.
The SQED partition function admits factorized

expansions

ZSQED
S2 ðẑ; ¯̂zÞ ¼

Xnf
j¼1

½cðsÞj FðsÞ
j ðẑÞFðsÞ

j ð ¯̂zÞ�

¼
Xnf
s¼1

½cðuÞs FðuÞ
s ðẑÞFðuÞ

s ð ¯̂zÞ� ðB27Þ

in terms of holomorphic functions FðsÞ
j ðẑÞ¼ð−ẑÞimjð1þ���Þ

and FðuÞ
s ðẑÞ ¼ ð−ẑÞi ~msð1þ � � �Þ, with (hypergeometric)

series in powers of ẑ and of ẑ−1 respectively converging

for jẑj≶1. Both the series and the constants cðsÞj and cðuÞs are
known explicitly and coincide (up to powers of ẑ and 1 − ẑ)
with s-channel and u-channel conformal blocks and three-
point functions of a Toda CFT four-point function with a
fundamental degenerate insertion V̂−bω1

. We suppress the
dependence on masses to keep notations short. The choice of
sign ensures that the functions have the same branch cut,
namely the positive real axis.
In the sphere partition function (B26) we can expand both

sets of S2 partition functions using (B27). Each set can be
expanded in the s channel or the u channel according to
whether jẑðRÞj≶1 or whether jẑðLÞj≶1. We denote the four
cases by the (s,s) channel for jẑðRÞj; jẑðLÞj < 1, (u,s) channel
for jẑðLÞj < 1 < jẑðRÞj, (s,u) channel for jẑðRÞj < 1 < jẑðLÞj,
and (u,u) channel for 1 < jẑðRÞj; jẑðLÞj. In each case, anti-

symmetry in permuting the ẑðRÞa or ẑðLÞc (and not their complex
conjugates) reduces the sum to a sum over choices of n-
element and n0-element subsets of f1;…; nfg. For example,
the (s, s) channel is as follows, omitting the 4D contribution
and a sign ð−1Þðnþn0Þðnþn0−1Þ=2 as they are constant:

Z≃ Xnf
j1<���<jn

Xnf
s1<���<sn0

��Yn
a¼1

cðsÞja

��Yn0
c¼1

c0ðsÞsc

�

×Fðs;sÞ
fjg;fsgðẑðRÞ; ẑðLÞÞFðs;sÞ

fjg;fsgð ¯̂zðRÞ; ¯̂zðLÞÞ
�

ðB28Þ
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Fðs;sÞ
fjg;fsgðẑðRÞ; ẑðLÞÞ¼

Yn
a¼1

Yn0
c¼1

ðb−1ϑðRÞa −bϑðLÞc Þ

×
Yn
a<c

ðϑðRÞa −ϑðRÞc Þ
Yn0
a<c

ðϑðLÞa −ϑðLÞc Þ

×
Yn
a¼1

FðsÞðRÞ
ja

ðẑðRÞa Þ
Yn0
c¼1

FðsÞðLÞ
sc ðẑðLÞc Þ






equal ẑ

;

ðB29Þ

where FðsÞðRÞ and FðsÞðLÞ differ in which twisted masses they
involve.

The holomorphic blocks FðsÞ
j ðẑÞ and FðuÞ

j ðẑÞ of the SQED
partition function are related by analytic continuation

FðsÞ
j ðẑÞ ¼braid

Xnf
s¼1

BjsF
ðuÞ
s ðẑÞ: ðB30Þ

The braiding matrix is explicitly Bjs ¼ DjB̌js
~Ds in terms of

B̌js ¼
π

sin πðimj − i ~msÞ

Dj ¼
Qnf

k≠j Γð1 − imk þ imjÞQnf
t¼1 Γð−i ~mt þ imjÞ

~Ds ¼
Qnf

t≠s Γð−i ~mt þ i ~msÞQnf
k¼1 Γð1 − imk þ i ~msÞ

: ðB31Þ

We deduce braiding matrices relating the various
expansions of the 4D/2D/0D partition function. For
definiteness we analytically continue from the
(s, s) channel jẑðRÞj; jẑðLÞj<1 to the (u, s) channel
jẑðRÞj < 1 < jẑðLÞj. For this, apply the SQED braiding

FðsÞðRÞ
ja

ðẑðRÞÞ ¼braidPnf
ta¼1 B

ðRÞ
jata

FðuÞðRÞ
ta ðẑðRÞÞ to (B29) and note

that antisymmetry in the ja forces all ta to be distinct,

Fðs;sÞ
fjg;fsgðẑðRÞ; ẑðLÞÞ ¼

braid Xnf
t1≠���≠tn

��Yn
a¼1

BðRÞ
jata

�

× ð−1ÞsignðtÞFðu;sÞ
ftg;fsgðẑðRÞ; ẑðLÞÞ

�
;

ðB32Þ
where the signature of t (as a permutation of ftg) is
due to the antisymmetry of the differential operatorQ

n
a<cðϑðRÞa − ϑðRÞc Þ appearing in the construction of Fðu;sÞ.

The braiding matrix is thus an antisymmetrized product of
SQED braiding matrices. However, to compare with the
relevant Toda CFT braiding matrix we need to normalize

the series Fðs;sÞ and Fðu;sÞ by their leading coefficients Fðs;sÞ
lead

and Fðu;sÞ
lead : the braiding matrix is then

Bfjgfsg;ftgfsg ¼
X
σ∈Sn

�
ð−1ÞsignðσÞ

Yn
a¼1

BðRÞ
jatσðaÞ

�
Fðu;sÞ
lead

Fðs;sÞ
lead

: ðB33Þ

The leading term of Fðs;sÞ is simply obtained by applying
the differential operator to leading terms of each series FðsÞ

and F0ðsÞ: it is ð−ẑðRÞÞ
P

n
a¼1

imðRÞ
ja ð−ẑðLÞÞ

P
n0
c¼1

imðLÞ
sc times a

leading coefficient

Fðs;sÞ
lead ¼

Yn
a¼1

Yn0
c¼1

�
b−1imðRÞ

ja
− bimðLÞ

sc

�

×
Yn
a<c

�
imðRÞ

ja
− imðRÞ

jc

�Yn0
a<c

�
imðLÞ

sa − imðLÞ
sc

�
: ðB34Þ

However, the same procedure yields 0 for Fðu;sÞ if

any ta ¼ sc because b−1ϑðRÞa − bϑðLÞc then annihilates

ð−ẑðRÞa Þi ~mðRÞ
ta ð−ẑðLÞc ÞimðLÞ

sc . To get a nonzero result one must

consider higher order terms ð−ẑðRÞa Þi ~mðRÞ
ta

−kðRÞa ð−ẑðLÞc ÞimðLÞ
sc þkðLÞc

with kðRÞa ; kðLÞc ≥ 0 not both 0. Depending on whether 1 <
jẑðRÞj < jẑðLÞj−1 or 1 < jẑðLÞj−1 < jẑðRÞj a different term

dominates: ðkðRÞa ; kðLÞc Þ ¼ ð1; 0Þ or (0, 1) respectively. Thus
the holomorphic blocks in these two channels have differ-
ent normalizations to ensure that their leading coefficient is
1. We are interested in the first of these channels; denoting

i ~mðRÞfsg
t ¼ i ~mðRÞ

t − δt∈fsg the leading term of Fðu;sÞ is then

ð−ẑðRÞÞ
P

n
a¼1

i ~mðRÞfsg
ta ð−ẑðLÞÞ

P
n0
c¼1

imðLÞ
sc times

Fðu;sÞ
lead ¼

Yn
a¼1

Yn0
c¼1

�
b−1i ~mðRÞfsg

ta − bimðLÞ
sc

�

×
Yn
a<c

�
i ~mðRÞfsg

ta − i ~mðRÞfsg
tc

�Yn0
a<c

�
imðLÞ

sa − imðLÞ
sc

�

×
Y

u∈fsg∩ftg

−
Qnf

j¼1

�
imðRÞ

j − i ~mðRÞ
u

�
Qnf

v¼1

�
1þ i ~mðRÞ

v − i ~mðRÞ
u

� ðB35Þ

where the sign ð−1Þ#ðfsg∩ftgÞ is due to the choice of branch
cut. We decompose B ¼ DB̌ ~D in (B33) according to (B31)
and massage the normalization as

Fðu;sÞ
lead

Fðs;sÞ
lead

Y
j∈fjg

DðRÞ
j

Y
t∈ftg

~DðRÞ
t

¼
"Q

n
a<cði ~mðRÞ

ta − i ~mðRÞ
tc ÞQ

n
a<cðimðRÞ

ja
− imðRÞ

jc
Þ
Y
j∈fjg

DðRÞ
j

Y
t∈ftg

~DðRÞ
t

#
i ~mðRÞ→i ~mðRÞfsg

× ð−1Þ#ðfsg∩ftgÞ: ðB36Þ
Since B̌ is antiperiodic under integer shifts of i ~mðRÞ we
conclude that the braiding matrix of our 4D/2D/0D sphere
partition function is
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Bfjgfsg;ftgfsg ¼
�Qn

a<cði ~mðRÞ
ta − i ~mðRÞ

tc ÞQ
n
a<cðimðRÞ

ja
− imðRÞ

jc
Þ

×
X
σ∈Sn

�
ð−1ÞsignðσÞ

Yn
a¼1

BðRÞ
jatσðaÞ

��
i ~mðRÞ→i ~mðRÞfsg

:

ðB37Þ

Strikingly, the dependence on n0 and on the choice of n0
antifundamental flavors fsg is restricted to a shift of mass
parameters. Therefore the braiding matrix is equal to that of
a similar 4D/2D/0D setup with the left 2D theory removed
and twisted masses shifted. It was shown in [26]
(Appendix A 3) that this gauge theory (SQCD) braiding
matrix is equal to the Toda CFT braiding matrix we expect,
with momenta α0, the degenerate −bωn, the semidegener-
ate λω1 including an n0b−1 shift, and α∞ þ b−1

P
n0
c¼1 hsc .

To recapitulate, the differential operator introducing 0D
fields only affects braiding matrices through a change in
normalization; braiding matrices thus essentially coincide
with those of a pure 2D theory, known to match with Toda
CFT braiding matrices; the normalization change is repro-
duced by a momentum shift α∞ → α∞ þ b−1h0 on the Toda
CFT side, itself due to the additional−b−1ωnf−n0 degenerate
insertion.

3. Channels ẑðRÞ → 1 and ẑðRÞẑðLÞ → 1

So far we have focused on expansions corresponding to
taking the OPE of degenerate and generic punctures. We
now consider the x ¼ ẑðRÞ → 1 limit, corresponding to the
fusion rule

V̂−bωn
V̂λω1

¼ V̂ðλþbÞω1−bωnþ1
þ V̂λω1−bωn

ðB38Þ

derived in [26]. Since three-point functions of two generic
vertex operators and V̂λω1−bωn

or V̂ðλþbÞω1−bωnþ1
are

unwieldy we only compare powers of j1 − xj2. On the
Toda CFT side these are

Δððλþ bÞω1 − bωnþ1Þ − Δðλω1Þ − Δð−bωnÞ þ β1

¼ nðb2 þ 1Þ þ β1 ¼ 0; ðB39Þ

Δðλω1 − bωnÞ − Δðλω1Þ − Δð−bωnÞ þ β1

¼ bλþ β1 ¼ ζ − n0 − n; ðB40Þ

where we introduced ζ ¼ nf þ
Pnf

s¼1 i ~m
ðRÞ
s −

Pnf
j¼1 im

ðRÞ
j

for convenience.
On the gauge theory side we expand each

ZSQED
S2

ðẑðRÞa ; ¯̂zðRÞa Þ in the representation (B26) near ẑðRÞ ¼ 1,

ZSQED
S2

ðẑðRÞ; ¯̂zðRÞÞ ¼ Gð1 − ẑðRÞ; 1 − ¯̂zðRÞÞ
þ j1 − ẑðRÞj2ðζ−1ÞHð1 − ẑðRÞ; 1 − ¯̂zðRÞÞ ðB41Þ

where G and H are series in non-negative powers of
ð1−ẑðRÞÞ and ð1− ¯̂zðRÞÞ and it turns out that H factorizes
into a holomorphic times an antiholomorphic series. When
combining such decompositions of n SQED partition func-
tions one would expect 2n terms; however antisymmetry of

the holomorphic differential operator
Q

n
a¼1

Q
n0
c¼1ðb−1ϑðRÞa −

bϑðLÞc ÞQn
a<cðϑðRÞa − ϑðRÞc ÞQn0

a<cðϑðLÞa − ϑðLÞc Þ under per-

muting the ẑðRÞa eliminates all terms involving more than
one H.
Acting with a derivative ϑðRÞ ¼ ẑðRÞ∂=∂ẑðRÞ and ϑ̄ðRÞ on

(B41) turns the series in ð1 − ẑðRÞÞ and ð1 − ¯̂zðRÞÞ into other
such series and subtracts one from the exponent ζ − 1.
Since the holomorphic differential operator involves at

most n0 þ n − 1 derivatives ϑðRÞa for any given ẑðRÞa , we
obtain a decomposition

Z ¼ KðẑðLÞ; ¯̂zðLÞ; 1 − ẑðRÞ; 1 − ¯̂zðRÞÞ
þ j1 − ẑðRÞj2½ζ−1−ðn0þn−1Þ�LðẑðLÞ; ¯̂zðLÞ; 1 − ẑðRÞ; 1 − ¯̂zðRÞÞ

ðB42Þ

for some series K and L in non-negative powers of
ð1 − ẑðRÞÞ and ð1 − ¯̂zðRÞÞ whose coefficients are functions
of ẑðLÞ and ¯̂zðLÞ. This precisely reproduces the Toda CFT
exponents.
When n ¼ 1 we can analyze the leading term in the

series L more precisely. It must come from acting on
j1 − ẑðRÞj2ðζ−1ÞHð0; 0Þ with nþ n0 − 1 ¼ n0 derivatives
ϑðRÞ and n0 derivatives ϑ̄ðRÞ. In particular for each factor

ðb−1ϑðRÞ − bϑðLÞc Þ the derivative bϑðLÞc does not contribute
to this leading term. We obtain

LðẑðLÞ; ¯̂zðLÞ; 0; 0Þ

¼
�
Hð0; 0Þ

Yn0
k¼1

ð−b−2ðk − ζÞ2Þ
�
Zhyper
S4b

ZUðn0ÞSQCD
S2

:

ðB43Þ

The first factor is (A times) Ĉðλ−bÞω1

−bω1;λω1
and the other two

factors are the Toda CFT correlator hV̂α∞ð∞ÞV̂ðλ−bÞω1
ð1Þ

V̂α0ð0ÞV̂−b−1ωnf−n
0 ðx0; x̄0Þi as expected for this term of the

fusion (B38).
Let us return to the case of general n and n0 and consider

the limit ẑðRÞẑðLÞ → 1 namely xðLÞ → xðRÞ. On the Toda
CFT side the OPE involves a single conformal family
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V̂−b−1ωnf−n
0 ðx0ÞV̂−bωn

ðxÞ
∼ jx0 − xj−2hωnf−n

0 ;ωniðV̂−bωn−b−1ωnf−n
0 ðxÞ þ � � �Þ: ðB44Þ

Taking the factor jx0 − xj2γ0 into account we find the
exponent

γ0 − hωnf−n0 ;ωni ¼ maxð0; nþ n0 − nfÞ; ðB45Þ

a non-negative integer. On the gauge theory side the limit
ẑðLÞ → 1=ẑðRÞ is smooth, as can be seen for example from
the (u, s)-channel [respectively (s,u)-channel] expansion of
the partition function in non-negative (respectively non-
positive) powers of ẑðLÞ and 1=ẑðRÞ explained above (B28).
This is consistent with the Toda CFT result, but does not
explain the positive exponent when nþ n0 > nf . For this,
recall first that the partition function is written in the (u, s)
channel as a sum, over subsets ftg and fsg of f1;…; nfg
with n and n0 elements, of series whose first nonzero term is
at degree d ¼ #ðftg∩fsgÞ. The holomorphic series are

ðcd;0ðẑðRÞÞ−d þ � � � þ c0;dðẑðLÞÞdÞ ðB46Þ

plus terms of higher homogeneous degree in 1=ẑðRÞ and
ẑðLÞ. Notice now that the Toda CFT exponent maxð0; nþ
n0 − nfÞ is the minimal possible value of d over all subsets
ftg and fsg. It is plausible that the leading polynomial
(B46) and all higher order terms are divisible by
ðẑðLÞ − 1=ẑðRÞÞmaxð0;nþn0−nfÞ. Presumably there exists a
Seiberg dual of the UðnÞ ×Uðn0Þ quiver, with n → nf −
n and n0 → nf − n0, whose partition function differs from
the original quiver’s by a power of jẑðLÞ − 1=ẑðRÞj2 in such a
way as to make manifest the factor ðẑðLÞ − 1=ẑðRÞÞnþn0−nf

when nþ n0 > nf .

APPENDIX C: PREFACTORS

This appendix lists prefactors A1 and A2 appearing in the
equalities that we propose in the main text, relating 4D/2D/
0D partition functions and Toda CFT degenerate correla-
tors. These factors can be absorbed as ambiguities of the
partition function [138], but can be useful for extracting
Toda CFT results (such as new conformal blocks) from the
partition functions obtained by localization. For the match-
ing (5.12) between a quiver with 0D Fermi multiplets and a
Toda CFT correlator with antisymmetric degenerate oper-
ators, the coefficient A1ðx; x0; x̄; x̄0Þ ¼ Aaðx; x0Þaðx̄; x̄0Þ is
given by (we recall Kι ¼ nι − nι−1 and K0

ι ¼ n0ι − n0ι−1)

A ¼ bnνð2
P

imðRÞ−2
P

i ~mðRÞ−nfþðnf−nνÞb2Þ−2hQ;b
P

κ
ωKκ i

× bn
0
ν0 ð2

P
imðLÞ−2

P
i ~mðLÞ−nfþðnf−n0ν0 Þb

−2Þ−2hQ;b−1
P

κ
ωK0κ i

ðC1Þ

aðx; x0Þ ¼
Yν
ι¼1

½ðxιÞβ0ιð1 − xιÞβ1ι �
Yν0
ι¼1

½ðx0ιÞβ00ιð1 − x0ιÞβ01ι �

×
Yν
ι<κ

ðxι − xκÞγικ
Yν0
ι¼1

Yν
κ¼1

ðx0ι − xκÞγ0ικ
Yν0
ι<κ

ðx0ι − x0κÞγ00ικ

ðC2Þ
where

β0κ ¼ −hQ; bωKκ
i þ Kκ

nf

�Xnf
j¼1

imðRÞ
j

�

− ðnκ−1 þ Kκðν − κÞÞ b
2

2
; ðC3Þ

β00κ ¼ −hQ; b−1ωK0
κ
i − K0

κ

nf

�Xnf
j¼1

i ~mðLÞ
j

�

− ðn0κ−1 þ K0
κðν0 − κÞÞ b

−2

2
; ðC4Þ

β1κ ¼ −Kκbðbþ b−1 − λ=nfÞ; ðC5Þ
β01κ ¼ −K0

κb−1λ=nf ; ðC6Þ
γικ ¼ b2ðnf − Kmaxðι;κÞÞKminðι;κÞ=nf ; ðC7Þ

γ0ικ ¼ K0
ιKκ=nf ; ðC8Þ

γ00ικ ¼ b−2K0
minðι;κÞðnf − K0

maxðι;κÞÞ=nf : ðC9Þ

For the quiver with 0D chiral multiplets, we recall that
the two FI parameters must be equal. The prefactor is then

A2ðx; x̄Þ ¼ ~Ajxj2~βj1 − xj2~γ given by (neglecting powers of b
in ~A)

~A ¼ b���
ϒ0ð0Þ

ϒ0ð−nb − n0b−1Þ

¼ b���
Q

n
k¼1 γð−kb2Þ

Q
n0
k0¼1

γð−k0b−2ÞQ
n
k¼1

Q
n0
k0¼1

ð−kb − k0b−1Þ ; ðC10Þ

~β ¼ ðnbþ n0b−1Þ
�
−
1

2
ðnf − 2Þðbþ b−1Þ − 1

2
ðnbþ n0b−1Þ

þ 1

nf

Xnf
j¼1

b−1
�
imj −

1

2

��
; ðC11Þ

~γ ¼ −ðnbþ n0b−1Þðbþ b−1 − λ=nfÞ ðC12Þ

¼ ðnbþ n0b−1Þ
�
n − nf
nf

bþ n0 − nf
nf

b−1

þ 1

nf

Xnf
s¼1

b−1
�
i ~ms þ

1

2

�
−

1

nf

Xnf
j¼1

b−1
�
imj −

1

2

��
:

ðC13Þ
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of two polynomials in ẑðRÞ and ẑðLÞ with equal leading
term, constant term and value at 1.

[137] We omit the labels (R) and (L) when expressions apply
equally to both 2D theories: masses ðm; ~mÞ stand for
ðmðRÞ; ~mðRÞÞ or ðmðLÞ; ~mðLÞÞ.

[138] Factors independent of mass parameters are a renormal-
ization scheme ambiguity; powers of jxκj2 and jx0κj2 are
absorbed in a shift of vector multiplet scalars, and the
remaining factors can be canceled by turning on FI
parameters for Uð1Þ flavor symmetries.
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