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Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges
generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this
paper, we show that there is another consequence of this entanglement, namely entanglement-induced
quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement
with our intuition that incoming and outgoing energy fluxes should cancel each other out in a
thermalized state.
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I. INTRODUCTION

A major outstanding question in quantum field theory is
whether an Unruh-de Witt detector (which is a uniformly
accelerated object coupled to a radiation field) would emit
radiation. A detection of such radiation, if it exists, would
have a huge impact upon fundamental physics, and various
experimental proposals toward detecting the radiation have
been made [1–7]. After an infinitely long time, the Unruh-
de Witt detector would become thermalized to the Unruh
temperature [8], and, in analogy with an ordinary equilib-
rium system in a thermal bath, one may intuitively expect
that the incoming and outgoing energy fluxes from the
accelerated object should cancel out, resulting in a net flux
of zero.
This issuehasbeendebatedfora longtime. InRefs. [9–11],

radiation processes from a two level detector in a uniformly
accelerated motion was discussed, in which an importance
of the nonlocal pair correlation was pointed out. In this
work, the authors investigated the model in the d ¼ 1þ 1

dimensional spacetime adopting a perturbative method.
However, the story was not so simple. An importance of
the interference effect was pointed out. The authors of
Ref. [12] showed that there is no net flux, in a model
adopting an harmonic oscillator as the detector linearly
coupled to the vacuum fluctuations, which is exactly
solvable, in d ¼ 1þ 1 dimensional spacetime. This is
consistent with an intuition of no net radiation from an
thermally equilibrium system. For a charged particle model
in d ¼ 3þ 1 dimensions, Refs. [6,13,14] have shown that,
although most of the terms cancel out when interference
effects are carefully considered, there remains some radi-
ation. However, these calculations could be performed only
approximately, leaving it unclear whether this radiation
exists. The authors of [5,15] showed that, in a toy model in

d ¼ 3þ 1 dimensions where we can solve the equation of
motion exactly, the cancellation is not exact and quantum
radiation emanates; thus, there must be an error in our
intuition.
In our previous paper [15], we presented some circum-

stantial evidence that this radiation is responsible for a
nonlocal correlation of the quantum field in the Minkowski
vacuum state, which originates in the entanglement
between the left (L) and right (R) Rindler wedges. In this
paper, we explicitly show that this is indeed the case and
explain why it does not contradict to our intuition that net
radiation should cancel out in a thermalized system. More
specifically, the origin of the radiation is entanglement
between the wave functions (Rindler modes) in the R-region
and the right-moving waves (Kasner modes) in the F-region
in Fig 1.

FIG. 1. τ− is the proper time on the trajectory x ¼ zðτÞ, whereas
τþ is that on the imaginary trajectory in the L-region.
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II. RADIATION FROM AN UNRUH-DE
WITT DETECTOR

We consider a toy model in d ¼ 3þ 1 dimensions, a
coupled system of a harmonic oscillator, Q, accelerating
uniformly and a massless scalar field, ϕðxÞ. The action is
given by

S½Q;ϕ; z� ¼ m
2

Z
dτð _Q2ðτÞ −Ω2

0Q
2ðτÞÞ

þ 1

2

Z
d4x∂μϕðxÞ∂μϕðxÞ

þ λ

Z
d4xdτQðτÞϕðxÞδð4ÞD ðx − zðτÞÞ; ð1Þ

with the world-line trajectory zμðτÞ in the R-region (see
Fig. 1) at a uniform acceleration a,

zμðτÞ ¼ a−1ðsinh aτ; coshaτ; 0; 0Þ: ð2Þ

The equations of motion can be solved exactly [5,6], and
after an infinitely long time, the system relaxes to an
equilibrium state.
In the presence of the harmonic oscillator (which is

our Unruh-de Witt detector) QðτÞ, the field ϕðxÞ in the
Heisenberg picture is given by a sum of homogeneous
ϕhðxÞ and inhomogeneous ϕinhðxÞ terms,

ϕðxÞ ¼ ϕhðxÞ þ ϕinhðxÞ: ð3Þ

The homogeneous term ϕhðxÞ is nothing but the vacuum
fluctuation of the field at the position x, while ϕinhðxÞ can
be solved in terms of the Q operator as

ϕinhðxÞ ¼ λ

Z
dτ0Qðτ0ÞGRðx − zðτ0ÞÞ; ð4Þ

where GRðx − yÞ is the retarded Green’s function of
the d’Alembertian operator. Equation of motion for QðτÞ
is ð∂2

τ þΩ2
0ÞQðτÞ ¼ ðλ=mÞϕðzðτÞÞ. Following the regulari-

zation scheme developed in Ref. [5], we can write
ϕinhðzðτÞÞ ¼ ðλ=4πÞfΛζQðτÞ − ∂τQðτÞ þOðΛ−1Þg, with
ζ ¼ 27=4Γð5=4Þ= ffiffiffi

π
p

and a cutoff parameter Λ. Then the
equation of motion for QðτÞ reduces to

ð∂2
τ þ 2γ∂τ þ Ω2ÞQðτÞ ¼ ðλ=mÞϕhðzðτÞÞ: ð5Þ

Here γ ¼ λ2=8πm and Ω is the renormalized frequency.
This equation is solved using the Fourier transformation
(see Ref. [5,6]). Then, ϕinhðxÞ can be further written in
terms of the field ϕhðzðτÞÞ on the trajectory x ¼ zðτÞ in the
R-region.
Thus, when we calculate the energy flux of radiation in

the F-region, namely the two-point correlation function of
fields hϕðxÞϕðyÞi at x; y ∈ F-region; it is necessary to
calculate the two-point correlation functions of the field

ϕhðxÞ in the F-region and the field ϕhðyÞ on the trajectory
y ¼ zðτÞ in the R-region (or both in the R-region).
Let us look at this more explicitly. The quantity we are

interested in is the two-point correlation function
hϕðxÞϕðyÞi in the F-region (x; y ∈ F), since the future
light-cone of the detector is almost in the F-region in the
large distance limit and non-vanishing radiation flux is
expected to appear there. By subtracting the vacuum
correlation function hϕhðxÞϕhðyÞi, it is given by the sum
of three terms,

hϕðxÞϕðyÞi − hϕhðxÞϕhðyÞi
¼ hϕinhðxÞϕinhðyÞi þ hϕhðxÞϕinhðyÞi þ hϕinhðxÞϕhðyÞi:

ð6Þ

We call the first term on the right-hand side a naive radiation
term; its detection was the target of the original experimental
proposals. The second and the third terms relate to the
interference. The existence or nonexistence of the Unruh
radiation is determined by howmuch of the naive radiation is
canceled by the interference terms (Refs. [6,15]).
As we noted, ϕinhðxÞ is determined by the vacuum

fluctuation ϕhðzðτÞÞ on the trajectory in the R-region.
Thus, the naive radiation term is calculated in terms of the
correlation function ofϕhðzðτÞÞ andϕhðzðτ0ÞÞ, both ofwhich
are in the R-region. On the other hand, the interference terms
are calculated in terms of hϕhðxÞϕhðzðτÞÞi, where x ∈ F
and zðτÞ is the trajectory of the detector in theR-region. Thus,
the interference terms reflect the correlations between the
vacuum fluctuations in the F- and R-regions. Fourier trans-
formation of hϕhðxÞϕhðzðτÞÞi¼−1=ð4π2Þ½ðt−z0ðτÞ−iεÞ2−
ðx−z1ðτÞÞ2−x2⊥� with respect to τ leads to (see [6,15] for
details)

hϕhðxÞϕhðzðτÞÞi¼−
i

8π2ρ0ðxÞ
Z þ∞

−∞
dωe−iωτ

×

�
eπω=a

e2πω=a−1
eiωτ

x
þ −

1

e2πω=a−1
eiωτ

x
−

�
;

ð7Þ

where τx� are defined by

τ− ¼ 1

a
log

"
a

2ðt − xÞ

 
−L2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þ 4

a2
½t2 − x2�

r !#
; ð8Þ

for xμ ∈ R and F regions, and

τþ¼ 1

a
log

"
a

2ðt−xÞ

 
∓L2∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4þ 4

a2
½t2−x2�

r !#
; ð9Þ

for R region (upper sign) and F region (lower sign),
respectively, which are the proper times depicted in Fig. 1,
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and ρ0ðxÞ is the distance between the position x and the
detector, ρ0ðxÞ ¼ ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þ 4ðt2 − x2Þ=a2

p
and L2 ¼

−xμxμ þ 1=a2 ¼ −t2 þ x2 þ x2⊥ þ 1=a2.
The second term in parentheses in Eq. (7), which

depends on τx− on the real trajectory, is shown to completely
cancel the naive radiation term [15]. Thus, our intuition
concerning the absence of naive radiation in a thermalized
system seems to be correct so far. However, the interference
terms have an additional contribution, namely the first
term in parentheses in Eq. (7). We showed that this term
generates a new type of quantum radiation from the
accelerated object in the R-region. This term differs from
the second one in two ways. First, it is a function of τxþ,
which is a proper time on the imaginary trajectory in the
L-region. Second, the first term in parentheses in Eq. (7)
is multiplied by an additional factor, eπω=a. In [15], we
discussed how these two points indicate that a new type of
radiation is induced by entanglement of the vacuum state.
We call it entanglement-induced quantum radiation. In the
rest of this paper, we make this radiation more transparent
by scrutinizing the Hilbert space structure in the F-region.

III. MINKOWSKI VACUUM AS AN
ENTANGLED STATE

The Minkowski vacuum state of ϕðxÞ can be written as
an entangled state in terms of the L and R Rindler states, as
shown by [16]

j0;Mi ¼
Y
j

�
Nj

X∞
nj¼0

e−πnjω=ajnjiR ⊗ jnjiL
�
; ð10Þ

with j ¼ ðω; k⊥Þ and Nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p
. The quantized

field in the R-region is expanded [17] as

ϕhðxÞ ¼
Z

∞

0

dω
Z

d2k⊥ðâRω;k⊥vRω;k⊥ðxÞ þ H:c:Þ; ð11Þ

where x ∈ R-region and

vRω;k⊥ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πω=a

4π4a

r
Kiω=a

�
κeaξ

a

�
eik⊥·x⊥−iωτ: ð12Þ

Here, κ ¼ jk⊥j, and the Rindler coordinates ðτ; ξÞ are
defined by t ¼ a−1eaξ sinh aτ, x ¼ a−1eaξ coshaτ. The line
element of a flat Minkowski spacetime is given by ds2 ¼
e2aξðdτ2 − dξ2Þ − dx2⊥ in Rindler coordinates. The coor-
dinates cover the R-region, a quarter of the Minkowski
spacetime in Fig. 1 and Fig. 2. The state jnjiR is an njth
excited state created by the operator âR†ω;k⊥. The state jnjiL is
similarly defined in the L-region with the sign of its
momentum reversed for convenience. Then, as in (10),
the Minkowski vacuum state is written as the entangled
state of the excited states in the L and R regions.

The Minkowski vacuum can be similarly written in the
F-region. The F-region (t > jxj) is described by the
expanding degenerate Kasner universe with coordinates
ðη; ζÞ. x and t are respectively given by t ¼ a−1eaη cosh aζ
and x ¼ a−1eaη sinh aζ, and the line element is ds2 ¼
e2aηðdη2 − dζ2Þ − dx2⊥. In the F-region, the quantized field
ϕhðxÞ can be expanded [17] as

ϕhðxÞ ¼
Z þ∞

−∞
dω
Z

d2k⊥ðâFω;k⊥vFω;k⊥ðxÞ þ H:c:Þ; ð13Þ

where x ∈ F and

vFω;k⊥ðxÞ ¼
−ieiωζ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a sinhðπjωj=aÞp J−ijωj=a

�
κeaη

a

�
eik⊥·x⊥ :

ð14Þ

It is important to note that ω corresponds to the momentum
in the ζ direction and takes either a positive or a negative
value. A positive ω represents a right-moving Kasner mode
near the horizon η → −∞, whereas a negative ω represents
a left-moving Kasner mode. We then separate the field
ϕhðxÞ in the F-region into ϕd

FðxÞwith ω > 0 (right-moving)
modes and ϕs

FðxÞ with ω < 0 (left-moving) modes as

ϕhðxÞ ¼ ϕd
FðxÞ þ ϕs

FðxÞ; ð15Þ

where x ∈ F. Here, the indices “d” and “s” indicate dexter
(right) and sinister (left) in Latin, respectively. The field ϕd

F
is defined by ϕhðxÞ, whose ω is restricted to ω > 0:

FIG. 2. Coordinates of the right Rindler wedge (R-region,
x > jtj) and the expanding degenerate Kasner universe (F-region,
t > jxj). Here, vRj ; vF;sj , and vF;dj indicate the Rindler mode, the
left-moving-wave Kasner mode, and the right-moving-wave
Kasner mode, respectively. The Rindler mode is a standing-wave
mode in the R-region.
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ϕd
FðxÞ ¼

Z þ∞

0

dω
Z

d2k⊥ðâF;dω;k⊥v
F;d
ω;k⊥ðxÞ þ H:c:Þ;

where vF;dω;k⊥ðxÞ ¼ vFω;−k⊥ðxÞ and âF;dω;k⊥ ¼ âFω;−k⊥ . The trans-
verse momenta are reversed for later convenience. Another
field, ϕs

FðxÞ, is defined as

ϕs
FðxÞ ¼

Z þ∞

0

dω
Z

d2k⊥ðâF;sω;k⊥v
F;s
ω;k⊥ðxÞ þ H:c:Þ;

where vF;sω;k⊥ðxÞ ¼ vF−ω;k⊥ðxÞ and âF;sω;k⊥ ¼ âF−ω;k⊥ .
The vacuum state with respect to these annihilation

operators is defined by j0; siF ⊗ j0; diF, and their njth
excited states are represented by jnj; siF and jnj; diF. In
terms of these Kasner modes, the Minkowski vacuum can
be written as

j0;Mi ¼
Y
j

�
Nj

X∞
nj¼0

e−πnjω=ajnj; siF ⊗ jnj; diF
�
; ð16Þ

which expresses the cosmological quantum entanglement
in the F-region [18]. Notice that in this expression, ω in
j ¼ ðω; k⊥Þ is restricted to positive values.
In order to understand the physical origin of entangle-

ment-induced quantum radiation given by the first term in
parentheses in Eq. (7), we need to know how the quantum
fields ϕhðxÞ of the F and R regions are correlated. Namely,
we need to relate two expressions of the Minkowski
vacuum: Eq. (10) in the R-region and Eq. (16) in the
F-region. For this purpose, we use the following properties
that relate the wave functions of the Rindler and Kasner
modes. As discussed in Ref. [17], the Rindler-mode
function in the R-region, vRω;k⊥ðxÞ, can be identified with

the left-moving mode vF;sω;k⊥ðxÞ in the F-region by a
continuation through the Minkowski-mode functions,
which properly describe the evolution across the horizons.
Similarly, the Rindler-mode function in the L-region,
vLω;k⊥ðxÞ, is continued to the right-moving mode vF;dω;k⊥ðxÞ
in the F-region. The observation of continuations of the
wave functions suggest that a state created by the operator
ðâRω;k⊥Þ† in the R-region propagates into the F-region and
becomes identified with a state created by the operator
ðâF;sω;k⊥Þ† in the F-region. Intuitively, this is quite natural.
Further detailed analysis is under investigations.

IV. ENTANGLEMENT-INDUCED
QUANTUM RADIATION

We now calculate the two-point correlation function (7)
of fields in the R and F regions using the operator
formalism based on the Hilbert-space structure discussed
above. Since x ∈ F, we decompose hϕhðxÞϕhðzðτÞÞi into
the terms hϕs

FðxÞϕRðzðτÞÞi and hϕd
FðxÞϕRðzðτÞÞi using (15).

First, we evaluate hϕs
FðxÞϕRðzðτÞÞi. The field ϕs

FðxÞ
contains the left-moving modes in the F-region, which
are identified with the modes in the R-region as discussed
above. Thus, we can obtain the relations

h0;MjâF;s†ω;k⊥ â
R
ω0;k0⊥

j0;Mi ¼ δðω − ω0Þδ2ðk⊥ − k0⊥Þ
e2πω=a − 1

;

and

h0;MjâF;sω;k⊥ â
R†
ω0;k0⊥

j0;Mi ¼ δðω − ω0Þδ2ðk⊥ − k0⊥Þ
1 − e−2πω=a

;

which reflect the fact that the left-moving modes in the
F-region are in thermal equilibrium at temperature T ¼
a=2π. Then, hϕs

FðxÞϕRðzðτÞÞi can be evaluated as

h0;Mjϕs
FðxÞϕRðzðτÞÞj0;Mi

¼
Z

∞

0

dω
Z

d2k⊥
�
vF;s�ωk⊥ðxÞvRωk⊥ðzðτÞÞ

e2πω=a−1

þvF;sωk⊥ðxÞvR�ωk⊥ðzðτÞÞ
1−e−2πω=a

�
: ð17Þ

The integrations can be performed using the relationR
2π
0 dφeiκx⊥ cosφ ¼ 2πJ0ðκx⊥Þ and the mathematical for-
mulae in [19,20]

Z
∞

0

dκκνþ1KμðακÞIμðβκÞJνðγκÞ

¼ ðαβÞ−ν−1γνe−ðνþ1=2Þπiffiffiffiffiffiffi
2π

p ðΘ2 − 1Þν=2þ1=4
Dνþ1=2

μ−1=2ðΘÞ; ð18Þ

whereDνþ1=2
μ−1=2ðΘÞ is the Legendre function, andΘ is defined

by 2αβΘ ¼ α2 þ β2 þ γ2,

D1=2
ν ðΘÞ ¼ i

ffiffiffi
π

2

r
ðΘ2 − 1Þ−1=4

h
Θþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ2 − 1

p i
−ν−1=2

; ð19Þ

and IνðzÞ ¼ e−νπi=2Jνðeπi=2zÞ, we have

Z
∞

0

dκκJ−iω=a

�
κ

a
eaη
�
K−iω=a

�
κ

a

�
J0ðκx⊥Þ ¼

aeiωτ
x
þ−iωζ

2ρ0ðxÞ
:

In the F-region, we note that the relation eiωτ
x
þ−iωζ ¼

e−iωτ
x
−þiωζ is obtained straightforwardly using the

definition of τ�, Eqs. (8) and (9). Then we can show that
hϕs

FðxÞϕRðzðτÞÞi is reduced to the second term in paren-
theses in Eq. (7), canceling out the naive radiation produced
by the correlation function hϕinhðxÞϕinhðyÞi. This result is
consistent with our intuition that the net radiation should
cancel out in an equilibrium state in a thermal bath.
The naive radiation is completely canceled out by the
interference term of the left-moving modes in the F-region.
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The modes come from the R-region, and the cancellation
shows that if we restrict the mode functions of the field
ϕðxÞ in the F-region to those coming from the R-region, no
net radiation will emanate from an accelerating object.
Note, however, that there is an additional contribution.

We next evaluate hϕd
FðxÞϕRðzðτÞÞi; this provides an

additional contribution to the correlation function in the
F-region. The calculations can be similarly performed.
In this case, we use the relations

h0;MjâF;dω;k⊥ â
R
ω0;k0⊥

j0;Mi
¼ h0;MjâF;d†ω;k⊥ â

R†
ω0;k0⊥

j0;Mi

¼ eπω=a

e2πω=a − 1
δðω − ω0Þδ2ðk⊥ − k0⊥Þ: ð20Þ

These relations reflect the identification of the left-moving
modes vF;sω;k⊥ðxÞ in the F-region and the modes vRω;k⊥ðxÞ in
the R-region, and can be understood either as the entangled
correlation between the L and R Rindler modes in Eq. (10)
or as the same kind of the correlation between left-moving
and right-moving modes in the F-region in Eq. (16). Using
Eq. (20), we have

h0;Mjϕd
FðxÞϕRðzðτÞÞj0;Mi

¼
Z

∞

0

dω
Z

d2k⊥
�
vF;dωk⊥ðxÞ

× vRωk⊥ðzðτÞÞ þ vF;d�ωk⊥ðxÞvR�ωk⊥ðzðτÞÞ
�

eπω=a

e2πω=a − 1
:

ð21Þ
Then we can show that hϕd

FðxÞϕRðzðτÞÞi is reduced to the
first term in parentheses in Eq. (7).
Remembering that the field ϕd

FðxÞ comprises the right-
moving modes in the F-region coming from the L-region,
we can definitely say that the entanglement-induced quan-
tum radiation is responsible for the entanglement between
the modes in the L-region and those in the R-region or the
entanglement between the left-moving and right-moving
modes in the F-region.

V. SUMMARY

Now it is clear why the existence of a net radiation flux
from an Unruh-de Witt detector is in agreement with our
intuition that flux should be canceled out in an equilibrium
state in a thermal bath. The Unruh-de Witt detector is
described as a thermal system only when we can integrate
out the modes in the L Rindler wedge; a typical example
is the Unruh effect, the thermal behavior observed by
a uniformly accelerated object in the R-region. In the
F-region, however, this is not the case. The quantum field
ϕðxÞ in the F-region contains both the modes coming from
the L and R regions. If we neglect ϕd

FðxÞ, the rest of the
modes come from the R-region, and we can safely integrate
these modes in the L-region. But in order to calculate a
two-point correlation function in the F-region, we cannot
neglect such right-moving modes, ϕd

FðxÞ, in the F-region;
indeed, entanglement-induced quantum radiation is gen-
erated owing to the entanglement of ϕd

FðxÞ and the field
ϕRðzðτÞÞ on the trajectory in the R-region. The quantum
radiation produced by a charged particle undergoing uni-
formly accelerated motion [13,14] also has the same
origin, which will be explained by the entanglement of
the quantum field. In the case of a uniformly accelerated
charged particle in which the classical Larmor radiation is
dominant, the difference in the spectrum and the angular
distribution [14,15] may make it possible to separate the
quantum contribution from the classical one. A detection
of such radiation might clarify the nonlocal nature of the
quantum vacuum.
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