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Entanglement-induced quantum radiation
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Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges
generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this
paper, we show that there is another consequence of this entanglement, namely entanglement-induced
quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement
with our intuition that incoming and outgoing energy fluxes should cancel each other out in a

thermalized state.

DOI: 10.1103/PhysRevD.96.045001

I. INTRODUCTION

A major outstanding question in quantum field theory is
whether an Unruh-de Witt detector (which is a uniformly
accelerated object coupled to a radiation field) would emit
radiation. A detection of such radiation, if it exists, would
have a huge impact upon fundamental physics, and various
experimental proposals toward detecting the radiation have
been made [1-7]. After an infinitely long time, the Unruh-
de Witt detector would become thermalized to the Unruh
temperature [8], and, in analogy with an ordinary equilib-
rium system in a thermal bath, one may intuitively expect
that the incoming and outgoing energy fluxes from the
accelerated object should cancel out, resulting in a net flux
of zero.

Thisissue hasbeendebated foralong time. InRefs. [9—-11],
radiation processes from a two level detector in a uniformly
accelerated motion was discussed, in which an importance
of the nonlocal pair correlation was pointed out. In this
work, the authors investigated the model in the d =1 41
dimensional spacetime adopting a perturbative method.
However, the story was not so simple. An importance of
the interference effect was pointed out. The authors of
Ref. [12] showed that there is no net flux, in a model
adopting an harmonic oscillator as the detector linearly
coupled to the vacuum fluctuations, which is exactly
solvable, in d =14 1 dimensional spacetime. This is
consistent with an intuition of no net radiation from an
thermally equilibrium system. For a charged particle model
in d = 3 + 1 dimensions, Refs. [6,13,14] have shown that,
although most of the terms cancel out when interference
effects are carefully considered, there remains some radi-
ation. However, these calculations could be performed only
approximately, leaving it unclear whether this radiation
exists. The authors of [5,15] showed that, in a toy model in
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d =3 + 1 dimensions where we can solve the equation of
motion exactly, the cancellation is not exact and quantum
radiation emanates; thus, there must be an error in our
intuition.

In our previous paper [15], we presented some circum-
stantial evidence that this radiation is responsible for a
nonlocal correlation of the quantum field in the Minkowski
vacuum state, which originates in the entanglement
between the left (L) and right (R) Rindler wedges. In this
paper, we explicitly show that this is indeed the case and
explain why it does not contradict to our intuition that net
radiation should cancel out in a thermalized system. More
specifically, the origin of the radiation is entanglement
between the wave functions (Rindler modes) in the R-region
and the right-moving waves (Kasner modes) in the F-region
in Fig 1.

x0

F-region

FIG. 1. 7_is the proper time on the trajectory x = z(7), whereas
7, is that on the imaginary trajectory in the L-region.
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II. RADIATION FROM AN UNRUH-DE
WITT DETECTOR

We consider a toy model in d =3 + 1 dimensions, a
coupled system of a harmonic oscillator, Q, accelerating
uniformly and a massless scalar field, ¢(x). The action is
given by

510412 = [ ar(@*(e) - 230*(0)
—l—%/d‘lxa”(j)(x)aﬂ(ﬁ(x)
ny / dxdrQ(D)p(x)85) (x - 2(1)), (1)

with the world-line trajectory z/(z) in the R-region (see
Fig. 1) at a uniform acceleration a,

7#(7) = a”!(sinh az, cosh az, 0, 0). (2)

The equations of motion can be solved exactly [5,6], and
after an infinitely long time, the system relaxes to an
equilibrium state.

In the presence of the harmonic oscillator (which is
our Unruh-de Witt detector) Q(z), the field ¢(x) in the
Heisenberg picture is given by a sum of homogeneous
¢n(x) and inhomogeneous ¢, (x) terms,

$(x) = Pn(x) + Pian (). (3)

The homogeneous term ¢, (x) is nothing but the vacuum
fluctuation of the field at the position x, while ¢;,,(x) can
be solved in terms of the Q operator as

Pun(x) = 2 / dO()Gr(x—2(r)).  (4)

where Ggr(x —y) is the retarded Green’s function of
the d’Alembertian operator. Equation of motion for Q(z)
is (02 + Q3)0(z) = (A/m)p(z(r)). Following the regulari-
zation scheme developed in Ref. [5], we can write
binn(2(7)) = (1/4m){ALQ(2) = 0,0(z) + O(AT")}, with
¢ =2741(5/4)/\/7 and a cutoff parameter A. Then the
equation of motion for Q(z) reduces to

(07 +2¢0: + Q) 0(1) = (A/m)py(2(2)).  (5)

Here y = 4*/8zm and Q is the renormalized frequency.
This equation is solved using the Fourier transformation
(see Ref. [5,6]). Then, ¢, (x) can be further written in
terms of the field ¢, (z(7)) on the trajectory x = z(z) in the
R-region.

Thus, when we calculate the energy flux of radiation in
the F-region, namely the two-point correlation function of
fields (¢(x)¢(y)) at x,y € F-region; it is necessary to
calculate the two-point correlation functions of the field
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¢n(x) in the F-region and the field ¢, (y) on the trajectory
y = z(7) in the R-region (or both in the R-region).

Let us look at this more explicitly. The quantity we are
interested in is the two-point correlation function
(p(x)p(y)) in the F-region (x,y € F), since the future
light-cone of the detector is almost in the F-region in the
large distance limit and non-vanishing radiation flux is
expected to appear there. By subtracting the vacuum
correlation function (¢, (x)¢n(y)), it is given by the sum
of three terms,

(p(xX)p(y)) = (Pn(x)pn(y))
= (Dinn (X)Dinn () + (@1 (X)Dirn (V) + (Binn (¥) 0 (¥))-
(6)

We call the first term on the right-hand side a naive radiation
term; its detection was the target of the original experimental
proposals. The second and the third terms relate to the
interference. The existence or nonexistence of the Unruh
radiation is determined by how much of the naive radiation is
canceled by the interference terms (Refs. [6,15]).

As we noted, ¢;(x) is determined by the vacuum
fluctuation ¢y (z(7)) on the trajectory in the R-region.
Thus, the naive radiation term is calculated in terms of the
correlation function of ¢y, (z(7)) and ¢, (z(7') ), both of which
are in the R-region. On the other hand, the interference terms
are calculated in terms of (¢, (x)¢py(z(7))), where x € F
and z(7) is the trajectory of the detector in the R-region. Thus,
the interference terms reflect the correlations between the
vacuum fluctuations in the F- and R-regions. Fourier trans-
formation of (¢ (x)¢n(2(z))) =—1/(4n)[(1=2"(z) —ie)*~
(x—z'(7))?>—x2] with respect to 7 leads to (see [6,15] for
details)

(n(X) b (2(2))) = _W / :° dwe-io

Tw/a
X ¢ eiwrj _ 1 eiwrﬁ
e27m)/a -1 e27m)/a -1 ’

(7)

where 7 are defined by

for x* € R and F regions, and

= log L(ﬁx) ($ v L4+%U2_x2]>]’ Y

for R region (upper sign) and F region (lower sign),
respectively, which are the proper times depicted in Fig. 1,
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and po(x) is the distance between the position x and the
detector, po(x) = (a/2)\/L* +4(> —x?)/a®> and L?> =
—xtx, + 1/a* = - + x> + x5 +1/d>.

The second term in parentheses in Eq. (7), which
depends on 7X on the real trajectory, is shown to completely
cancel the naive radiation term [15]. Thus, our intuition
concerning the absence of naive radiation in a thermalized
system seems to be correct so far. However, the interference
terms have an additional contribution, namely the first
term in parentheses in Eq. (7). We showed that this term
generates a new type of quantum radiation from the
accelerated object in the R-region. This term differs from
the second one in two ways. First, it is a function of 7%,
which is a proper time on the imaginary trajectory in the
L-region. Second, the first term in parentheses in Eq. (7)
is multiplied by an additional factor, ¢™/¢. In [15], we
discussed how these two points indicate that a new type of
radiation is induced by entanglement of the vacuum state.
We call it entanglement-induced quantum radiation. In the
rest of this paper, we make this radiation more transparent
by scrutinizing the Hilbert space structure in the F-region.

III. MINKOWSKI VACUUM AS AN
ENTANGLED STATE

The Minkowski vacuum state of ¢(x) can be written as
an entangled state in terms of the L and R Rindler states, as
shown by [16]

[N,Ze””f“’/“m ® )| (10)

n;=0

with j = (w.k;) and N; = V1 — e~>**/4_ The quantized
field in the R-region is expanded [17] as

¢h(x)=/ dw/dzki Ay,

where x € R-region and

[sinh 7w/ a Ke“E\ Lo
UEJJQ()C) — 471-4aKlw/a< a )elkj‘xj‘ . (12)

Here, x = |k |, and the Rindler coordinates (r,&) are
defined by t = a~'e® sinh az, x = a~'e cosh az. The line
element of a flat Minkowski spacetime is given by ds®> =
€€ (dr*> — d€%) — dx? in Rindler coordinates. The coor-
dinates cover the R-region, a quarter of the Minkowski
spacetime in Fig. 1 and Fig. 2. The state |n;)g is an n;th

&, (X) +He.),  (11)

excited state created by the operator a . The state |n; )L is

similarly defined in the L-region w1th the sign of its
momentum reversed for convenience. Then, as in (10),
the Minkowski vacuum state is written as the entangled
state of the excited states in the L and R regions.
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FIG. 2. Coordinates of the right Rindler wedge (R-region,
x > |#|) and the expanding degenerate Kasner universe (F-region,
t > |x|). Here, o5, v; 5, and o i ¢ indicate the Rindler mode, the
left-moving-wave Kasner mode, and the right-moving-wave
Kasner mode, respectively. The Rindler mode is a standing-wave

mode in the R-region.

The Minkowski vacuum can be similarly written in the
F-region. The F-region (¢ > |x|) is described by the
expanding degenerate Kasner universe with coordinates
(n,¢). x and t are respectively given by t = a~'e® cosh al
and x = a”'e“sinhal, and the line element is ds*> =
eX(dp? — d{?) — dx?% . In the F-region, the quantized field
¢n(x) can be expanded [17] as

+o0
X) :/_ da)/dzkj_(&zhvg’h(x) +H.c.), (13)

where x € F and

_ieia)(

ke .
. J—i\w\/a <_> ezkl‘xL'
2r+/4asinh(z|w|/a) a

(14)

Uf;,kl (x) =

It is important to note that @ corresponds to the momentum
in the ¢ direction and takes either a positive or a negative
value. A positive  represents a right-moving Kasner mode
near the horizon 1 — —oco, whereas a negative @ represents
a left-moving Kasner mode. We then separate the field
¢y (x) in the F-region into ¢ (x) with @ > 0 (right-moving)
modes and ¢5.(x) with @ < 0 (left-moving) modes as

Pn(x) = (%) + Pp(x), (15)
where x € F. Here, the indices “d” and “s” indicate dexter
(right) and sinister (left) in Latin, respectively. The field ¢%
is defined by ¢y (x), whose w is restricted to @ > 0:
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/ dw/aﬂkL (@
~F

F.d
where v,5 (x) = Ug,_k (x) and & auk = Yok,

(x) +H.c.),

. The trans-

verse momenta are reversed for later convenience. Another
field, ¢f.(x), is defined as

/ da)/dszAF“ vk, (x) + He),

~F
—wk, "

The vacuum state with respect to these annihilation
,S)p ,d)p, and their n;th
excited states are represented by |n;,s)r and |n;,d)g. In
terms of these Kasner modes, the Minkowski vacuum can
be written as

=M

jz 6‘””f“’/"ln,-, S)E ® |nj, d)g|, (16)
J n;=0

where vf;’sh (x) = oF, 4 (x) and @ as p, = a

which expresses the cosmological quantum entanglement
in the F-region [18]. Notice that in this expression, @ in
Jj = (w,k) is restricted to positive values.

In order to understand the physical origin of entangle-
ment-induced quantum radiation given by the first term in
parentheses in Eq. (7), we need to know how the quantum
fields ¢, (x) of the F and R regions are correlated. Namely,
we need to relate two expressions of the Minkowski
vacuum: Eq. (10) in the R-region and Eq. (16) in the
F-region. For this purpose, we use the following properties
that relate the wave functions of the Rindler and Kasner
modes. As discussed in Ref. [17], the Rindler-mode
function in the R-region, v}fhkl (x), can be identified with
the left-moving mode vs)'ju (x) in the F-region by a
continuation through the Minkowski-mode functions,
which properly describe the evolution across the horizons.
Similarly, the Rindler-mode function in the L-region,
v} ¢, (x), is continued to the right-moving mode ”Sﬁq (x)
in the F-region. The observation of continuations of the
wave functions suggest that a state created by the operator
(?szhkl)T in the R-region propagates into the F-region and
becomes identified with a state created by the operator

(ank )" in the F-region. Intuitively, this is quite natural.

Further detailed analysis is under investigations.

IV. ENTANGLEMENT-INDUCED
QUANTUM RADIATION

We now calculate the two-point correlation function (7)
of fields in the R and F regions using the operator
formalism based on the Hilbert-space structure discussed
above. Since x € F, we decompose (¢ (x)¢n(z(z))) into

the terms (¢3:(x)br (2(7))) and (¢ (x) ¢ (2(7))) using (15).
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First, we evaluate (¢f(x)pr(z(7))). The field ¢f(x)
contains the left-moving modes in the F-region, which
are identified with the modes in the R-region as discussed
above. Thus, we can obtain the relations

(o — )3 (k, —K,)
> eZmu/a -1 ’

~F, A
<0’ M|aw§: R’ K

and

(o — )3 (k, —K,)
1= e—2mu/a

)=

)

AFs R
<0,M|aw§(

o' K|

which reflect the fact that the left-moving modes in the
F-region are in thermal equilibrium at temperature 7 =
a/2x. Then, (¢pE(x)pr(z(7))) can be evaluated as

(0. Mg (x) g (2(7)) 0. M

)
/ do / pe kJ.( lejgm/a;h (1( 7))
n Ve, () 0k (2 (7))) |

1— e—27m)/a

(17)

The integrations can be performed using the relation
J&" dpe™ 159 = 2x]y(kx,) and the mathematical for-
mulae in [19,20]

/oo dKK”“K,, (ax)1,(pr)J,(yK)

0

(aﬂ) S 1 —(v+1/2)mi 12

\/ﬂ(@2 — 1)V/2+1/4 u—1/2(®)7 (18)

where DH; Z( ) is the Legendre function, and © is defined
by 2ap0 = o + > + 1%,

D$/2(®) = i\/§(®2 —1)V4 [@ n \/ﬁ}—u—uz’ (19)

and I,(z) = e /2], (e"/?7), we have

o K K ae'iTiog
diccd o (Sem VK (S0 _ae
e < ) v () o) =

iot| —iwd _

In the F-region, we note that the relation e
eiom=Fiol s obtained straightforwardly using the
definition of 7, Egs. (8) and (9). Then we can show that
(¢y:(x)pr(z(7))) is reduced to the second term in paren-
theses in Eq. (7), canceling out the naive radiation produced
by the correlation function (i (x)@iun(y)). This result is
consistent with our intuition that the net radiation should
cancel out in an equilibrium state in a thermal bath.
The naive radiation is completely canceled out by the
interference term of the left-moving modes in the F-region.
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The modes come from the R-region, and the cancellation
shows that if we restrict the mode functions of the field
¢(x) in the F-region to those coming from the R-region, no
net radiation will emanate from an accelerating object.

Note, however, that there is an additional contribution.
We next evaluate (¢d(x)¢r(z(7))); this provides an
additional contribution to the correlation function in the
F-region. The calculations can be similarly performed.
In this case, we use the relations

(0.Mlags afy o 10.M)
= (0.Mlag g ay, [0.M)

emu/a

= a1 S(w— )8 (ky —K). (20)

These relations reflect the identification of the left-moving
modes vf}‘;L (x) in the F-region and the modes v}y, (x) in
the R-region, and can be understood either as the entangled
correlation between the L and R Rindler modes in Eq. (10)
or as the same kind of the correlation between left-moving
and right-moving modes in the F-region in Eq. (16). Using
Eq. (20), we have

(0. M| (x) g (2(2))[0. M)

:/ dw/éﬂkl((ﬂk

X R (2(0)) + oS <x>vf§,z<z<r>>)

eﬂw/a

eZ;m)/a -1 :
(21)

Then we can show that (¢ (x)¢r(z(7))) is reduced to the
first term in parentheses in Eq. (7).

Remembering that the field ¢¢(x) comprises the right-
moving modes in the F-region coming from the L-region,
we can definitely say that the entanglement-induced quan-
tum radiation is responsible for the entanglement between
the modes in the L-region and those in the R-region or the
entanglement between the left-moving and right-moving
modes in the F-region.
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V. SUMMARY

Now it is clear why the existence of a net radiation flux
from an Unruh-de Witt detector is in agreement with our
intuition that flux should be canceled out in an equilibrium
state in a thermal bath. The Unruh-de Witt detector is
described as a thermal system only when we can integrate
out the modes in the L Rindler wedge; a typical example
is the Unruh effect, the thermal behavior observed by
a uniformly accelerated object in the R-region. In the
F-region, however, this is not the case. The quantum field
¢(x) in the F-region contains both the modes coming from
the L and R regions. If we neglect ¢d(x), the rest of the
modes come from the R-region, and we can safely integrate
these modes in the L-region. But in order to calculate a
two-point correlation function in the F-region, we cannot
neglect such right-moving modes, ¢¢(x), in the F-region;
indeed, entanglement-induced quantum radiation is gen-
erated owing to the entanglement of ¢d(x) and the field
¢r(z(7)) on the trajectory in the R-region. The quantum
radiation produced by a charged particle undergoing uni-
formly accelerated motion [13,14] also has the same
origin, which will be explained by the entanglement of
the quantum field. In the case of a uniformly accelerated
charged particle in which the classical Larmor radiation is
dominant, the difference in the spectrum and the angular
distribution [14,15] may make it possible to separate the
quantum contribution from the classical one. A detection
of such radiation might clarify the nonlocal nature of the
quantum vacuum.
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