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The relative geodesic motion on (1þ 3)-dimensional anti–de Sitter spacetimes is studied in terms of
conserved quantities by adapting the Nachtmann boosting method created initially for de Sitter spacetimes. In
this approach the Lorentzian isometry is derived, relating the coordinates of the local chart of a fixed observer
with the coordinates of a mobile chart considered as the rest frame of a massive mobile object moving
on a timelike anti–de Sitter geodesic. The transformation of the conserved quantities is also investigated,
constructing thus a complete theory of the relative geodesic motion on anti–de Sitter spacetimes. Some
applications are discussed, among which the problems of twin paradox and Lorentz contraction are solved.
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I. INTRODUCTION

In general relativity the relativistic covariance guarantees
the consistency of the theory under any arbitrary coordinate
transformations defined as diffeomorphisms. In this man-
ner one creates the illusion of a universal symmetry but
which is sterile in the sense that this is not able to produce
conserved quantities. Another sterile general covariance
is the gauge one, which assures the independence of the
physical meaning of the theory on the arbitrary gauge
transformations of the local orthogonal nonholonomic
frames. Thus, the only symmetry which may produce
conserved quantities remains the covariance under isome-
tries. For this reason, it is worth studying how the
conserved quantities are generated via the Noether theorem
and, especially, the physical meaning and role of these
quantities in describing the geodesic motion.
The simplest four-dimensional spacetimes of special or

general relativity are vacuum solutions of the Einstein
equations whose geometry is determined only by the value
of the cosmological constant Λ. These are the Minkowski
flat spacetime (with Λ ¼ 0) and the hyperbolic spacetimes,
de Sitter (dS) with Λ > 0 and anti–de Sitter (AdS) having
Λ < 0. All these spacetimes have the highest possible
isometries [1], thus representing a good framework for
studying the role of the conserved quantities seen as the
principal observables of the classical or quantum theory.
The AdS spacetime is the only maximally symmetric

spacetime which does not have space translations [1] since
its Λ < 0 produces an attraction of the elastic type such that
the geodesic motion is oscillatory around the origins of the
central charts (i.e., static and spherically symmetric) with
ellipsoidal closed trajectories. This particular behavior was
studied by many authors [2–8] for a long time and is still
of actual interest [9,10], such that today we are able to
understand the principal features of these spacetimes. On
the other hand, the higher dimensional AdS manifolds were
intensively studied in the framework of the AdS=CFT
correspondence of the string theory [11,12]. However, there

are still unsolved problems as, for example, the relative
geodesic motion in (1þ 3)-dimensional AdS spacetimes
and the transformation of the conserved quantities along
geodesics observed in different local charts related through
isometries.
For the (1þ 3)-dimensional dS spacetime we solved this

problem starting with the analysis of the physical meaning
of the conserved quantities and invariants [13,14] that
allowed us to find the Lorentzian isometries involved in the
relative motion of the dS relativity [15]. However, for the
AdS spacetime we do not have a similar theory, since we
have succeeded so far in discussing only the physical
meaning of the conserved quantities on the timelike geo-
desics, pointing out the existence of two conserved vectors
that may play a similar role as the Runge-Lenz vector of the
Keplerian motion [16]. With this starting point, we would
like to continue here the construction of the AdS relativity,
focusing on the relative motion for determining the iso-
metries between different local charts considered as fixed
or mobile inertial natural frames.
As in the dS case [15], we use here a method which was

proposed initially by Nachtmann for constructing covariant
representations of the de Sitter isometry group [17]. The
idea is to introduce the coordinates of the local charts
with the help of point-dependent isometry transformations,
which are usually called “boosts”. In the dS spacetimes we
needed to complete the original Nachtmann boosts with
suitable gauge transformations in order to give rise simul-
taneously to local coordinates and desired conserved
quantities [15]. Fortunately, for the AdS spacetimes we
may apply a similar method but without resorting to
additional gauge transformations. By using such boosts
we define the natural rest frames of the massive pointlike
particles that will be seen as mobile frames when the
attached particles are moving on timelike geodesics. In this
manner we can identify any mobile frame with the help
of the conserved quantities on the geodesic of the particle
carrying this frame. Under such circumstances, we may
derive the isometry transformation between the coordinates
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of a mobile frame and those of a fixed one. Thus we are
able to study the relative geodesic motion in terms of
conserved quantities, applying on the AdS spacetime the
methods of special relativity or of our dS relativity [15].
The principal new result presented here is the form of the

Lorentzian isometries relating the coordinates of the moving
and fixed natural frames on AdS backgrounds. It is remark-
able that these have the same form as in the case of the usual
Lorentz transformations of special relativity or of the
Lorentzian isometries of the dS relativity [15], depending
in the same manner on a conserved momentum. This may
appear paradoxical as long as on the AdS spacetimes there
are no space translations and, consequently, no conserved
momentum. Nevertheless, on timelike AdS geodesics, one of
the conserved vectors studied in Ref. [16] may take over the
role of momentum being interpreted as the momentum of
the particle carrying the mobile frame when this is passing
through the origin of the fixed frame. However, the
mechanisms that lead to this common form of the
Lorentzian isometries are quite different since the motion
on the AdS geodesics is oscillatory while on Minkowski or
dS spacetimes the timelike geodesics are open.
For marking out the advantages of our approach, we give

examples of simple relativistic effects that can be solved in
terms of conserved quantities on AdS spacetime, focusing
on the time dilation of the twin paradox and Lorentz
contraction affecting the measurements performed in the
origin of the mobile frame. The general method of inves-
tigating the relative motion based on our approach is also
discussed, and the general transformations of coordinates
and conserved quantities under Lorentzian isometries are
written down.
We start in the second section with a short review of the

properties of the AdS manifolds as hyperboloids in an
embedding five-dimensional pseudo-Euclidean spacetime,
introducing the principal local charts we need and studying
the AdS isometries. The next section is devoted to the
conserved quantities on the AdS geodesics, focusing on the
timelike ones for which we discuss the physical meaning of
these observables. Section IV is devoted to the AdS relativity
based on the method of boosting coordinates that allows us
to derive the Lorentzian isometries with different para-
metrizations. In the next section, we solve the twin paradox
and Lorentz contraction and discuss the general method of
relativity applied to the geodesic motion, giving the general
rule of transforming coordinates and conserved quantities.
The last section presents some concluding remarks.

II. ANTI–DE SITTER ISOMETRIES

Let us consider the CAdS spacetime ðM; gÞ, defined as
the universal covering space of the (1þ 3)-dimensional
AdS spacetime which is a vacuum solution of the Einstein
equations with Λ < 0 and negative constant curvature.
Thus, the AdS manifold is a hyperboloid of radius

R ¼ 1
ω ¼

ffiffiffiffiffiffiffi
− 3

Λ

q
embedded in the (2þ 3)-dimensional

pseudo-Euclidean spacetime ðM5; η5Þ of Cartesian coor-
dinates zA (labeled by the indices A; B;… ¼ −1, 0, 1, 2, 3)
and metric η5 ¼ diagð1; 1;−1;−1;−1Þ. These coordinates
are global, corresponding to the pseudo-orthonormal
basis fνAg of the frame into consideration, whose unit
vectors satisfy νA · νB ¼ η5AB. Any point z ∈ M5 is repre-
sented by the five-dimensional vector z ¼ νAzA ¼
ðz−1; z0; z1; z2; z3ÞT , which transforms linearly under the
gauge group Gðη5Þ ¼ SOð2; 3Þ, which leaves the metric η5

invariant.

A. Coordinates on CAdS spacetimes

The local charts fxg of coordinates xμ (α;…μ; ν… ¼ 0,
1, 2, 3) can be introduced on ðM; gÞ giving the set of
functions zAðxÞ which solve the hyperboloid equation,

η5ABz
AðxÞzBðxÞ ¼ 1

ω2
: ð2:1Þ

The usual chart ft; x⃗g with Cartesian spaces coordinates xi

(i; j; k;… ¼ 1, 2, 3) is defined by

z−1 ¼ ω−1χðrÞ cosðωtÞ;
z0 ¼ ω−1χðrÞ sinðωtÞ;

ziðxÞ ¼ xi; ð2:2Þ

where we denote r ¼ jx⃗j and χðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ωx⃗2

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω2r2
p

. Hereby one obtains the line element

ds2 ¼ η5ABdz
AðxÞdzBðxÞ

¼ χðrÞ2dt2 −
�
δij − ω2

xixj

χðrÞ2
�
dxidxj: ð2:3Þ

The associated central chart ft; r; θ;ϕg with spherical
coordinates, canonically related to the Cartesian ones,
x⃗ → ðr; θ;ϕÞ, has the line element

ds2 ¼ χðrÞ2dt2 − dr2

χðrÞ2 − r2ðdθ2 þ sin2 θdϕ2Þ: ð2:4Þ

The AdS spacetime is covered once by the time t ∈ ½0; 2πÞ
because of the periodicity of the coordinates z−1 and z0,
but if we consider that t ∈ Rþ then we are in its universal
covering space, CAdS. Here any motion is returning
periodically in the same state at times tþ n 2π

ω for all
n ∈ N. In what follows this fact is a matter of course,
restricting ourselves to studying the motion during only a
period.
Apart from the above usual charts, it is useful to consider

the central chart f~xg ¼ ft; ρ; θ;ϕg resulting after the
substitution [5,6]
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r ¼ ρ

~χðρÞ ; ~χðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ρ2

q
; ð2:5Þ

where 0 ≤ ρ < 1
ω. Then the embedding equations become

z−1ð~xÞ ¼ 1

ω~χðρÞ cosðωtÞ;

z0ð~xÞ ¼ 1

ω~χðρÞ sinðωtÞ;

z1ð~xÞ ¼ ρ

~χðρÞ sin θ cosϕ;

z2ð~xÞ ¼ ρ

~χðρÞ sin θ sinϕ;

z3ð~xÞ ¼ ρ

~χðρÞ cos θ; ð2:6Þ

while the line element reads

ds2 ¼ 1

~χðρÞ2
�
dt2 −

dρ2

~χðρÞ2 − ρ2ðdθ2 þ sin2θdϕ2Þ
�
: ð2:7Þ

In this chart the components of the four-velocity are
denoted as ~uμ ¼ d~xμ

ds .

B. Isometries

The CAdS spacetimes are homogeneous spaces of the
gauge group Gðη5Þ ¼ SOð2; 3Þ whose transformations
leave invariant the metric η5 of the embedding manifold
ðM5; η5Þ and implicitly Eq. (2.1). For this group we adopt
the canonical parametrization

gðξÞ ¼ exp

�
−
i
2
ξABSAB

�
∈ SOð2; 3Þ ð2:8Þ

with skew-symmetric parameters, ξAB ¼ −ξBA, and the
covariant generators of the fundamental representation
of the soð2; 3Þ algebra carried by M5 having the matrix
elements

ðSABÞC··D ¼ iðδCAη5BD − δCBη
5
ADÞ: ð2:9Þ

In any local chart fxg, defined by the functions z ¼ zðxÞ,
each transformation g ∈ SOð2; 3Þ gives rise to the isometry
x → x0 ¼ ϕgðxÞ derived from the system of equations
z½ϕgðxÞ� ¼ gzðxÞ. The simplest isometries are the rotations
r ∈ SOð3Þ ⊂ SOð2; 3Þ generated by Ji ¼ 1

2
εijkSjk that

transform linearly the Cartesian coordinates, xi → ϕi
rðxÞ ¼

Rijxj, when these are proportional with zi as in Eq. (2.2).
Consequently, in this case the SOð3Þ symmetry becomes
global [13]. Other rotations in the plane fz−1; z0g form the
subgroup Tð1ÞH generated by H ¼ S−1;0 as

expð−iHαÞ∶
z−1 → z−1 cos α − z0 sin α

z0 → z−1 sin αþ z0 cos α

zi → zi;

ð2:10Þ

producing the time translations t → tþ α
ω. In addition, there

are three generators of Lorentz transformations, Ki ¼ Si0,
acting on M5. For example, those generated by K1,

expð−iK1αÞ∶

z−1 → z−1

z0 → z0 cosh αþ z1 sinh α

z1 → z1 cosh αþ z0 sinh α

z2 → z2

z3 → z3

; ð2:11Þ

give the isometries

t →
1

ω
arctan ðtanωt cosh αþ x1 secωt sinh αÞ;

x1 → x1 cosh αþ χðrÞ sinωt sinh α;
x2 → x2;

x3 → x3:

The last three generators, Ni ¼ Si;−1, are of the Lorentz
type but involving the coordinate z−1 instead of z0. The
transformations along the z1 axis,

expð−iN1αÞ∶

z−1 → z−1 cosh αþ z1 sinh α

z0 → z0

z1 → z1 cosh αþ z−1 sinh α

z2 → z2

z3 → z3

; ð2:12Þ

give rise to the isometries

t →
1

ω
arccotðcotωt cosh αþ x1 cscωt sinh αÞ;

x1 → x1 cosh αþ χðrÞ cosωt sinhα;
x2 → x2;

x3 → x3:

We specify that the generators fJi;Kig are of the soð1; 3Þ
subalgebra, while H and Ni are the specific ones of the
soð2; 3Þ algebra.
We presented the above isometries in Cartesian coor-

dinates but these can be rewritten at any time in spherical
coordinates by using the above indicated substitutions.
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III. CONSERVED QUANTITIES ON
TIMELIKE GEODESICS

In general, after integrating the geodesic equations,
one obtains the geodesic trajectories depending on some
integration constants that must get a physical interpretation.
This is possible only by expressing them in terms of
conserved quantities on geodesics.

A. Conserved quantities

The conserved quantities are given by the Killing vectors
associated to the SOð2; 3Þ isometries, which are defined
(up to a multiplicative constant) as [13]

kðABÞμ ¼ zA∂μzB − zB∂μzA; zA ¼ η5ACz
C: ð3:1Þ

In Ref. [16] we introduced ten independent conserved
quantities associated to the SOð2; 3Þ generators, for any
pointlike particle of mass m, freely falling on a CAdS
background. By using the four-velocity uμ ¼ dxμ

ds we
defined, in any chart, the energy

H → E ¼ mωkð−1;0Þμuμ; ð3:2Þ

and the angular momentum components

Ji → Li ¼ m
1

2
εijkkðj;kÞμuμ; ð3:3Þ

that have the traditional physical meaning. In addition,
there are two more conserved vectors having the compo-
nents

Ki → Ki ¼ mkði;0Þμuμ; ð3:4Þ

Ni → Ni ¼ mkði;−1Þμuμ: ð3:5Þ

These conserved quantities represent the components of a
skew-symmetric tensor KðABÞ ¼ mkðABÞμuμ that can be
written in matrix form as

K ¼

0
BBBBBB@

0 E
ω −N1 −N2 −N3

− E
ω 0 −K1 −K2 −K3

N1 K1 0 L3 −L2

N2 K2 −L3 0 L1

N3 K3 L2 −L1 0

1
CCCCCCA
: ð3:6Þ

The transformations g ∈ SOð2; 3Þ, generating the isome-
tries x → x0 ¼ ϕgðxÞ, transform the conserved quantities
according to the rule

K0
ðABÞ ¼ g·CA·g

·D
B·KðCDÞ; ð3:7Þ

where g·BA· ¼ η5ACg
C·
·Dη

5BD are the matrix elements of the
adjoint matrix ḡ ¼ η5gη5. Consequently, this transforma-
tion can be written simpler as K0 ¼ ḡKḡT . Thus any
transformation g ∈ SOð2; 3Þ generates an isometry
between two local charts and transforms, simultaneously,
all the conserved quantities that can be measured in these
charts.
Now we can verify that all the conserved quantities

carrying space indices (i; j;…) transform alike under
rotations as SOð3Þ vectors or tensors. Moreover, the con-
dition zi ∝ xi fixes the same (common) three-dimensional
basis fν⃗1; ν⃗2; ν⃗3g in both the Cartesian charts, of M5 and
respectively M. Then we say that the SOð3Þ symmetry is
global [13] and we use the vector notation for the conserved
quantities as well as for the local Cartesian coordinates
onM. However, this basis must not be confused with that of
the local orthogonal frames on M which will be defined
canonically later.
For studying these conserved quantities on the timelike

geodesics it is convenient to work in the chart ft; ρ; θ;ϕg,
taking the angular momentum along the third axis, L⃗ ¼
Lν⃗3 ¼ ð0; 0; LÞ, for restricting the motion in the equatorial
plane, with θ ¼ π

2
and ~uθ ¼ 0. Then the nonvanishing

conserved quantities can be written as

E ¼ m
~χ2

~ut; ð3:8Þ

L ¼ mρ2

~χ2
~uϕ; ð3:9Þ

K1 ¼
m
ω~χ2

ð−ωρ ~ut cosωt cosϕ

þ ~uρ sinωt cosϕ − ρ ~uϕ sinωt sinϕÞ; ð3:10Þ

K2 ¼
m
ω~χ2

ð−ωρ ~ut cosωt sinϕ

þ ~uρ sinωt sinϕþ ρ ~uϕ sinωt cosϕÞ; ð3:11Þ

N1 ¼
m
ω~χ2

ðωρ ~ut sinωt cosϕ

þ ~uρ cosωt cosϕ − ρ ~uϕ cosωt sinϕÞ; ð3:12Þ

N2 ¼
m
ω~χ2

ðωρ ~ut sinωt sinϕ

þ ~uρ cosωt sinϕþ ρ ~uϕ cosωt cosϕÞ; ð3:13Þ

while K3 ¼ N3 ¼ 0. Hereby we deduce the following
obvious properties,

K⃗ · L⃗ ¼ N⃗ · L⃗ ¼ 0; K⃗ ∧ N⃗ ¼ −
E
ω
L⃗; ð3:14Þ

and verify the identity
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E2 þ ω2ðL⃗2 − K⃗2 − N⃗2Þ ¼ m2 ~u2 ¼ m2; ð3:15Þ

defining the principal invariant corresponding to the first
Casimir operator of the soð2; 3Þ algebra. Notice that in
the classical theory the second invariant of this algebra
vanishes since there is no spin [14].
Finally, we must specify that a mobile of massm can stay

at rest in the origin, x⃗ ¼ 0, on a world line along the vector
field ∂t, only when E ¼ m and L⃗ ¼ K⃗ ¼ N⃗ ¼ 0. Then, the
matrix (3.6) takes the simplest form

Ko ¼

0
BBBBBB@

0 m
ω 0 0 0

− m
ω 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
; ð3:16Þ

depending only on the mobile mass. We observe that the
group SOð3Þ ⊗ Tð1ÞH ⊂ SOð1; 4Þ is the stable group of
this matrix since ḡKoḡT ¼ Ko for any transformation g of
this group.

B. Timelike geodesics

In the case of the timelike geodesics we may exploit the
identity ~u2 ¼ 1 and Eqs. (3.8) and (3.9) for obtaining the
radial component,

~uρ ¼ ~χðρÞ2
�
E2

m2
~χðρÞ2 þ ω2L2

m2
−

L2

m2ρ2
− 1

�1
2

; ð3:17Þ

that allows us to derive the following prime integrals [16],

�
dρ
dt

�
2

þ ω2ρ2 þ L2

E2ρ2
¼ 1þ ω2L2

E2
−
m2

E2
; ð3:18Þ

dϕ
dt

¼ L
Eρ2

; ð3:19Þ

that give the geodesic equations

ρðtÞ ¼ ½κ1 þ κ2 cos 2ωðt − t0Þ�12; ð3:20Þ

ϕðtÞ ¼ ϕ0 þ arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ1 − κ2
κ1 þ κ2

r
tanωðt − t0Þ

�
; ð3:21Þ

where

κ1 ¼
ω2L2 þ E2 −m2

2ω2E2
; ð3:22Þ

κ2 ¼
1

2ω2E2
½ðEþmÞ2 − ω2L2�12½ðE −mÞ2 − ω2L2�12

ð3:23Þ

satisfy the identity

κ21 − κ22 ¼
L2

ω2E2
: ð3:24Þ

Thus we solve the geodesic equation in terms of conserved
quantities which give a physical meaning to the principal
integration constants. The remaining ones, t0 and ϕ0, deter-
mine only the initial position of the mobile and implicitly its
trajectory.
In this manner, we recover the well-known behavior

of the timelike geodesic motion which is oscillatory, with
frequency ω, having a closed trajectory which has, in
general, an ellipsoidal form in the domain ρ ∈ ½ρmin; ρmax�,
where

ρmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ1 − κ2

p
; ρmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ1 þ κ2

p ð3:25Þ

satisfy ρmin ≤ ρmax < 1
ω for any values of E and L. The

trajectory is symmetric with respect the origin x⃗ ¼ 0
such that the mobile, moving in the trigonometric sense,
reaches two opposite aphelions and perihelions during a
period. From Eq. (3.20) we see that t0 is the time when
the mobile is passing through an aphelion while ϕ0 is the
angle between the axis ν⃗1 and the major semiaxis of the
ellipsoidal trajectory (as in Fig. 1).
We specify that the axes ν⃗1 and ν⃗2 can be rotated at

any time such that the major axis is along the direction
of ν⃗1, which means that we may set ϕ0 ¼ 0 without losing
generality. Then the geodesic equations can be written
easily even in Cartesian space coordinates,

x1ðtÞ ¼ ρmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ρðtÞ2

p cosωðt − t0Þ; ð3:26Þ

x2ðtÞ ¼ ρminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ρðtÞ2

p sinωðt − t0Þ; ð3:27Þ

x3ðtÞ ¼ 0; ð3:28Þ

as it results from Eqs. (2.5), (3.20), and (3.21) for ϕ0 ¼ 0.
Now it remains to analyze the role of the conserved

vectors K⃗ and N⃗ that depends on E and L, as well as on t0
and ϕ0. In the simpler case of ϕ0 ¼ 0 their nonvanishing
components read

K1 ¼ Eρmax cosωt0; ð3:29Þ

K2 ¼ −Eρmin sinωt0; ð3:30Þ

N1 ¼ −Eρmax sinωt0; ð3:31Þ

ANTI–DE SITTER RELATIVITY PHYSICAL REVIEW D 96, 044046 (2017)

044046-5



N2 ¼ −Eρmin cosωt0; ð3:32Þ

complying with the specific properties

jK⃗j ¼ E½κ1 þ κ2 cos 2ωt0�12; ð3:33Þ

jN⃗j ¼ E½κ1 − κ2 cos 2ωt0�12; ð3:34Þ

K⃗ · N⃗ ¼ −E2κ2 sin 2ωt0: ð3:35Þ

In the general case of ϕ0 ≠ 0 these components have the
form given in the Appendix, where we discuss the inverse
problem.

Hereby we understand that the vectors K⃗
E and N⃗

E are radial,
indicating the mobile positions at t ¼ 0 and, respectively,
t ¼ − 1

2
π
ω, as in Fig. 1. For t0 ¼ 0 and t0 ¼ 1

2
π
ω these vectors

become orthogonal, playing the role of Runge-Lenz vectors
[16] as in Figs. 2 and 3. More specifically, for t0 ¼ 0

the vector K⃗
E lays over the major semiaxis and N⃗

E gives the
minor one, but for t0 ¼ 1

2
π
ω these vectors change their roles

between themselves.
There are two important particular cases. (I) When

L ¼ 1
ω ðE −mÞ then κ2 ¼ 0 and the motion becomes uni-

form, ϕ ¼ ϕ0 þ ωðt − t0Þ, on a circle of radius ρc ¼ffiffiffiffiffiffiffi
2κ1

p ¼ 1
ω

ffiffiffiffiffiffiffiffi
E−m
E

q
. Then the radial vectors K⃗

E and N⃗
E, having

the same norm ρc, are orthogonal regardless the value of t0
which determines only their position. (II) For L ¼ 0 we

have κ2 ¼ κ1 such that the oscillation becomes rectilinear,
since ϕ ¼ ϕ0, and harmonic, with the amplitude a,

ρðtÞ¼asinωðt− t0Þ; a¼
ffiffiffiffiffiffiffi
2κ1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−m2

p

ωE
; ð3:36Þ

on the direction n⃗ ¼ ν⃗1 cosϕ0 þ ν⃗2 sinϕ0. In this case
the vectors K⃗ and N⃗ are relevant only for the following
particular choices of the initial conditions:

ðIIaÞ∶ t0 ¼ 0 →

�
K⃗ ¼ Eρmaxn⃗;

N⃗ ¼ 0;
ð3:37Þ

FIG. 2. The vectors K⃗
E and N⃗

E playing the role of Runge-Lenz
vectors for t0 ¼ 0 (ϕ0 ¼ 0).

FIG. 3. The vectors K⃗
E and N⃗

E playing the role of Runge-Lenz
vectors for t0 ¼ 1

2
π
ω (ϕ0 ¼ 0).

FIG. 1. Anti–de Sitter timelike geodesic with arbitrary initial
conditions, ϕ0 ¼ π

4
and t0 ¼ 1

3
π
ω. When t ¼ t0, the mobile reaches

the aphelion. The vector K⃗
E indicates the position of the mobile at

t ¼ 0, while N⃗
E gives its position at t ¼ − 1

2
π
ω.
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ðIIbÞ∶ t0 ¼
1

2

π

ω
→

�
K⃗ ¼ 0;

N⃗ ¼ Eρmaxn⃗:
ð3:38Þ

Thus the conserved vectors K⃗ and N⃗ are related with the
trajectory parameters and the initial condition such that
they could be useful in analyzing the CAdS kinematics.

IV. RELATIVITY

Recently we have studied the relativity on the dS
manifolds [15], applying the Nachtmann method [17] of
boosting coordinates which takes over the Wigner theory
[18] but in configurations instead of momentum represen-
tation. This method can be used for the CAdS spacetimes
too since these manifolds may be seen as spaces of left
cosets SOð2; 3Þ=L↑

þ, where L↑
þ is the Lorentz group that

plays the role of the gauge group of ðM; gÞ, leaving
invariant the metric η ¼ diagð1;−1;−1;−1Þ of the
Minkowskian pseudo-Euclidean model of this manifold.
In what follows we develop this formalism, denoting for
brevity G ¼ GðηÞ ¼ L↑

þ and G5 ¼ Gðη5Þ ¼ SOð2; 3Þ.

A. Boosting coordinates

Any AdS spacetime can be constructed as a space of
left cosets G5=G starting with the fixed point zo ¼
ðω−1; 0; 0; 0; 0ÞT ∈ M5 [of local coordinates (0,0,0,0)].
Then, the whole AdS manifold can be built as the orbit
M ¼ fgzojg ∈ G5=Gg ⊂ M5 since the subgroup G is
just the stable group of zo obeying gzo ¼ zo; ∀ g ∈ G.
Consequently, any point zðxÞ ∈ M can be reached by
performing the boost transformation bðxÞ∶ zo → zðxÞ ¼
bðxÞzo which defines the functions zAðxÞ of the local
coordinates fxg. In fact, these boosts are sections in the

principal fiber bundle on ðM; gÞ ∼G5=G whose fiber is just
the isometry group G5. Once the AdS spacetime is defined
we can take an open time axis for obtaining the CAdS one.
This formalism offers one, in addition, the advantage of

defining the canonical five-dimensional 1-forms

ω̂ðxÞ ¼ b−1ðxÞdbðxÞzo; ð4:1Þ

whose components,

ω̂α̂ðxÞ ¼ êα̂μðxÞdxμ; ω̂−1ðxÞ ¼ 0; ð4:2Þ

give the canonical gauge fields (or tetrads) êμ̂ of the local
coframes associated to the fields eμ̂ of the orthogonal local
frames [17]. These fields are labeled by the local indices
α̂; μ̂;…, having the same range as the natural ones. They
have the duality and orthogonality properties,

eμα̂ê
α̂
ν ¼ δνμ; eμα̂ê

β̂
μ ¼ δβ̂α̂; gμνe

μ
α̂e

ν
β̂
¼ ηα̂ β̂; ð4:3Þ

giving the line element of any chart fxg as

ds2 ¼ η̂ABω̂
Aω̂B ¼ ηα̂ β̂ê

α̂
μê

β̂
νdxμdxν ¼ gμνdxμdxν: ð4:4Þ

In general, the boosts are defined up to an arbitrary gauge,
bðxÞ → bðxÞλ−1ðxÞ, λðxÞ ∈ G, that does not affect the
functions zAðxÞ but changes the gauge fields, transforming
the 1-forms as ω̂ðxÞ → λðxÞω̂ðxÞ [17].
The boost may be chosen for determining the type of

coordinates we desire. For example, the coordinates of
the chart ft; x⃗g with Cartesian space coordinates can be
introduced by using the boost

bðt; x⃗Þ ¼ exp ð−iHωtÞ

× exp

�
−iNi

xi

r
arctanh

�
ωr
χ

��
¼

0
BBBBB@

χ cosωt − sinωt ωx1 cosωt ωx2 cosωt ωx3 cosωt

χ sinωt cosωt ωx1 sinωt ωx2 sinωt ωx3 sinωt

ωx1 0 1þ λx12 λx1x2 λx1x3

ωx2 0 λx1x2 1þ λx22 λx2x3

ωx3 0 λx1x3 λx2x3 1þ λx32

1
CCCCCA
; ð4:5Þ

where we denote λ ¼ χ−1
r2 . Indeed, calculating zðxÞ ¼ bðt; x⃗Þzo, we obtain just Eq. (2.2). Moreover, we may derive the

canonical tetrads defined by Eq. (4.1), obtaining the nonvanishing components

ê00 ¼ χ; êij ¼ δij −
xixj

r2

�
1 −

1

χ

�
; ð4:6Þ

e00 ¼
1

χ
; eij ¼ δij −

xixj

r2
ð1 − χÞ: ð4:7Þ

We recover thus the Cartesian gauge [13] which preserves the global SOð3Þ symmetry.
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Other charts can be introduced in the same manner by using suitable boosts. For defining the coordinates of the chart f~xg
we chose the boost

bðt; ρ; θ;ϕÞ ¼ exp ð−iJ3ϕÞ exp
�
−iJ2

�
θ −

π

2

��
exp ð−iHωtÞ exp ð−iN1βÞ exp

�
iπ
2
J1

�
; ð4:8Þ

β ¼ arctanhωρ; ð4:9Þ

where the last rotation is a gauge transformation determining convenient 1-forms. After a little calculation we obtain

bðt; ρ; θ;ϕÞ ¼

0
BBBBBBBB@

1
~χ cosωt − sinωt ωρ

~χ cosωt 0 0

1
~χ sinωt cosωt ωρ

~χ sinωt 0 0

ωρ
~χ sin θ cosϕ 0 1

~χ sin θ cosϕ cos θ cosϕ − sinϕ
ωρ
~χ sin θ sinϕ 0 1

~χ sin θ sinϕ cos θ sinϕ cosϕ
ωρ
~χ cos θ 0 1

~χ cos θ − sin θ 0

1
CCCCCCCCA
; ð4:10Þ

and we may convince ourselves that zð~xÞ ¼ bðt; ρ; θ;ϕÞzo
gives the embedding equations (2.6). In this case the
canonical 1-forms read

ω̂0 ¼ 1

~χðρÞ dt; ð4:11Þ

ω̂1 ¼ 1

~χðρÞ2 dρ; ð4:12Þ

ω̂2 ¼ ρ

~χðρÞ dθ; ð4:13Þ

ω̂3 ¼ ρ sin θ
~χðρÞ dϕ; ð4:14Þ

defining a familiar diagonal gauge.

B. Lorentzian isometries

Let us consider now the problem of the relative motion
that studies how a geodesic motion can be measured by two
different observers. The above introduced local charts play
the role of inertial frames related through isometries. Each
observer may have a proper frame in which he stays at rest
in the origin on the world line along the vector field ∂t. In
general, these frames move along geodesics such that we
need to introduce supplemental hypotheses in order to
describe their motion.
We assume that one observer, O, is fixed in his proper

frame fxg observing what happens in a mobile frame fx0g
which is the proper frame of the observer O0. The problem
is how this relative motion can be described using iso-
metries. We start with the hypothesis that the mobile frame
is the rest frame of a particle of mass m which stays at rest
in O0, having E0 ¼ m and L⃗0 ¼ K⃗0 ¼ N⃗0 ¼ 0. The fixed

observerO sees this particle moving on a timelike geodesic
with given parameters that mark the relative motion. Under
such circumstances, the previously presented boosting
method allows us to derive the isometry transformation
between these frames in terms of the geodesic parameters
related with the conserved quantities.
This relativity does make sense only if we can compare

the measurements of these observers, imposing the con-
dition of the synchronization of their clocks. This means
that, at a given common initial time, the origins of these
frames must coincide. However, this condition is restrictive
in the CAdS spacetimes since this forces the geodesic of the
carrier particle of the mobile frame to across the origin of
the fixed frame O. This means that its trajectory is recti-
linear (with L⃗ ¼ 0) in a given direction n⃗ on which this
oscillates with frequency ω.
With these preparations we can apply the boosting

method in order to relate the five-dimensional vectors of
M5 corresponding to the fixed and mobile frames. In the
mobile frame the observer O0 stays at rest in x⃗0 ¼ 0,
measuring the time t0. There are no restrictions to choose
an arbitrary time t00 of O0, giving the point

z0ðx00Þ ¼
�
1

ω
cosωt00;

1

ω
sinωt00; 0; 0; 0

�
T
∈ M5; ð4:15Þ

while in the fixed frame the corresponding point

zðx0Þ ¼
�
1

ω
cosωt0;

1

ω
sinωt0; x10; x

2
0; x

3
0

�
T
∈ M5 ð4:16Þ

depends on the position x⃗0 at time t0 of the particle of
mass m. The boosts (4.5) allow us to reach both of these
points starting from zo as zðxÞ ¼ bðt; x⃗Þzo and z0ðx0Þ ¼
bðt0; 0Þzo. This gives us the opportunity of defining
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g� ¼ bðt0; x⃗0Þbðt00; 0Þ−1 ∈ SOð2; 3Þ, which relates the
above defined points in M5 by the transformation
zðx0Þ ¼ g�z0ðx00Þ.
Furthermore, we assume that the isometry transforma-

tion between the frames fxg and fx0g is generated by g�.
However, the synchronization condition requires the ori-
gins to coincide for t ¼ t0 ¼ 0 when we must have
x⃗ ¼ x⃗ ¼ 0 such that O and O0 overlap in the same point
zð0Þ ¼ z0ð0Þ ¼ zo ∈ M5. This happens only if we chose
an initial condition of type (II.b), given by Eq. (3.38),
setting

t0 ¼ t00 ¼
1

2

π

ω
: ð4:17Þ

Thus we obtain the desired transformation,

g� ¼

0
BBBBBB@

1 0 0 0 0

0 χ0 ωn1r0 ωn2r0 ωn3r0
0 ωn1r0 1þ λ0n12 λ0n1n2 λ0n1n3

0 ωn2r0 λ0n1n2 1þ λ0n22 λ0n2n3

0 ωn3r0 λ0n1n3 λ0n2n3 1þ λ0n32

1
CCCCCCA
;

ð4:18Þ

that results after we substituted x⃗0 ¼ n⃗r0, laying out the
unit vector n⃗ fixing the direction of the linear trajectory
and the amplitude r0 in the chart ft; x⃗g that gives
χ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2r20

p
and λ0 ¼ χ0 − 1.

It is remarkable that g� is in fact a genuine Lorentz
transformation of the SOð2; 3Þ group, having the form
g� ¼ exp ð−iKiniσÞ, where

σ ¼ arctanh

�
ωr0
χ0

�
¼ arctanhðωρ0Þ: ð4:19Þ

Thus we obtained a Lorentz transformation even though
we started with boosts generated by Ni. The explanation
is that by imposing the condition (4.17) we perform the
transformation

exp

�
−
iπ
2
H

�
Ni exp

�
iπ
2
H

�
¼ Ki; ð4:20Þ

changing the generators of g�.
The transformation g� allows us to find the conserved

quantities on the geodesic of the particle of massm. Taking
into account that in its rest frame O0 the mobile has E0 ¼ m
and L⃗0 ¼ K⃗0 ¼ N⃗0 ¼ 0, corresponding to the matrix Ko,
we may apply the general rule for finding the conserved
quantities observed by O, encapsulated in the matrix K ¼
ḡ�KoḡT� . After a little calculation we obtain L⃗ ¼ K⃗ ¼ 0,
as expected, and the nonvanishing conserved quantities

E ¼ mχ0 and N⃗ ¼ mx⃗0, with whose help we can express
all the other constants as

χ0 ¼
E
m

→ r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p

ωm
→ ρ0 ¼ a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p

ωE
:

ð4:21Þ

These formulas suggest to us to define a momentum vector

P⃗ ¼ ωN⃗ ¼ mωx⃗0 ¼ n⃗P; P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
; ð4:22Þ

which satisfies formally the usual dispersion relation of
special relativity and whose meaning will be discussed
later. Now we use this vector for writing down the definitive
expression of the Lorentz transformation (4.18) as

g� ¼ gðP⃗Þ ¼ exp

�
−iP⃗ · K⃗

1

P
arcsinh

�
P
m

��
; ð4:23Þ

which can be obtained by substituting χ0 ¼ E
m and r0 ¼ P

m
into Eq. (4.18). We observe that this matrix has the same
form as the corresponding Lorentz boost of special rela-
tivity [19] or as the transformation giving the Lorentzian
isometry of the dS relativity [15].
The last step is to define the Lorentzian isometry

x ¼ ϕgðP⃗Þðx0Þ, between the coordinates of the mobile and

fixed frames, as the transformation resulting from the
system of equations zðxÞ ¼ g�z0ðx0Þ that can be derived
using the new parametrization (4.23). The direct trans-
formation reads

tðt0; x⃗0Þ ¼ 1

ω
arctan

�
E
m
tanωt0 þ ω

m
x⃗0 · P⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω2jx⃗0j2
p secωt0

�
;

ð4:24Þ

x⃗ðt0; x⃗0Þ ¼ x⃗0 þ P⃗
m

�
x⃗0 · P⃗
Eþm

þ 1

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2jx⃗0j2

q
sinωt0

�
;

ð4:25Þ

while the inverse one has to be obtained by changing
x ↔ x0 and P⃗ → −P⃗. We obtained thus the CAdS analo-
gous of the Lorentz isometries of special relativity.
Obviously, in the limit of ω → 0 we recover the usual
Lorentz transformations of special relativity.
The first application of this isometry is to recover the

geodesic trajectory of the carrier particle of mass m from
the parametric equations in t0 obtained by substituting
x⃗0 ¼ 0 into Eqs. (4.24) and (4.25). Then, according to
Eqs. (4.21) and (4.22), we obtain the trajectory of the origin
O0, denoted as
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x⃗�ðtÞ ¼ n⃗r�ðtÞ ¼ n⃗
a sinωðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ω2a2 sin2 ωðtÞ
p

¼ P⃗ sinðωtÞ
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − P2 sin2 ωt

p ; ð4:26Þ

which corresponds to our initial condition x⃗�ð0Þ ¼ 0. The
components of the four-velocity,

u0�ðtÞ ¼
dt
ds

¼ m2 þ P2cos2ωt
mE

; ð4:27Þ

u⃗�ðtÞ ¼
dx⃗�ðtÞ
ds

¼ EP⃗ cosðωtÞ
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2 cos2 ωt

p ; ð4:28Þ

show that the momentum we introduced above is just
the canonical momentum of the mobile m at t ¼ 0 since
E ¼ mu0�ð0Þ and P⃗ ¼ mu⃗�ð0Þ.
Now we may use as a principal parameter the velocity of

the carrier particle at t ¼ 0, defined usually as V⃗ ¼ P⃗
E ¼ n⃗V,

if we desire to bring the above formulas into forms closer to
those of special relativity, eliminating the mass m. This can
be done by changing the parametrization,

E
m

¼ γ;
P
m

¼ γV; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; ð4:29Þ

and substituting χ0 ¼ γ and r0 ¼ γV
ω into Eq. (4.18). Then

we can rewrite

gðP⃗Þ → gðV⃗Þ ¼ exp

�
−iV⃗ · K⃗

1

V
arctanhðVÞ

�
; ð4:30Þ

obtaining the new expression of the Lorentzian isometry

tðt0; x⃗0Þ ¼ 1

ω
arctan γ

�
tanωt0 þ ωx⃗0 · V⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω2jx⃗0j2
p secωt0

�
;

ð4:31Þ

x⃗ðt0; x⃗0Þ ¼ x⃗0 þ γV⃗

�
x⃗0 · V⃗

γ

1þ γ
þ 1

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2jx⃗0j2

q
sinωt0

�
;

ð4:32Þ

that may be used in applications.
The transformations gðV⃗Þ generating these isometries

transform simultaneously all the conserved quantities. If
those of the mobile frame are encapsulated in the matrix K0
as in Eq. (3.6), then the corresponding ones measured in the
fixed frame are the matrix elements of the matrix

K ¼ ḡðV⃗ÞK0ḡðV⃗ÞT: ð4:33Þ

Thus we obtain the principal tools in studying the relative
motion on CAdS spacetimes, or simply, CAdS relativity.

V. RELATIVISTIC EFFECTS

This approach gives us the opportunity of solving
various applications. In what follows we present some
interesting consequences that can be deduced from
Eqs. (4.31), (4.32), and (4.33) but avoiding the complicated
technical details.

A. Time dilation and Lorentz contraction

The simplest interesting effects are the time dilation
(observed in the so-called twin paradox) and the Lorentz
contraction, which in this case are quite complicated since
these effects are strongly dependent on the position where
the time and length are measured. For this reason, we
restrict ourselves to giving a mere simple example, assum-
ing that the measurements are performed in a small
neighborhood of x⃗0 ¼ 0. Here we consider the general
relations

δt ¼ ∂tðt0; x⃗0Þ
∂t0

����
x⃗0¼0

δt0 þ ∂tðt0; x⃗0Þ
∂x0i

����
x⃗0¼0

δx0i; ð5:1Þ

δxj ¼ ∂xjðt0; x⃗0Þ
∂t0

����
x⃗0¼0

δt0 þ ∂xjðt0; x⃗0Þ
∂x0i

����
x⃗0¼0

δx0i; ð5:2Þ

among the quantities δt; δxj and δt0; δx0j supposed to be
measured by the observers O and O0, respectively.
First we consider a clock in O0 indicating δt0 without

changing its position such that δx0i ¼ 0. Then, after a little
calculation, we obtain the time dilation observed by O,

δt ¼ δt0 ~γðtÞ; ~γðtÞ ¼ γ

γ2sin2ωtþ cos2ωt
: ð5:3Þ

Similarly, but with the supplemental simultaneity condition
δt ¼ 0, we derive the Lorentz contraction along the
direction of P⃗ that reads

δxjj ¼ δx0jj
1

~γðtÞ : ð5:4Þ

It is remarkable that here we have δtδxjj ¼ δt0δx0jj just as in
the flat case.
The difference is that now the function ~γðtÞ is oscillating

in the domain ½1γ ; γ�, producing a time dilation for ~γ > 1 and
a time contraction if ~γ < 1, during the same period (as in
Fig. 4). This example shows how interesting may be the
kinematics of the free motion on the CAdS spacetime.

B. Relative geodesic motion

However, the principal challenge of relativity is to find
how an arbitrary geodesic motion with respect to the
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mobile frame can be measured by the fixed observerO. Let
us consider the mobile frame fx0g as the local chart of
Cartesian space coordinates defined with respect to the
orthogonal basis fν⃗10; ν⃗02; ν⃗03g, assuming that its origin has
the velocity V⃗ when it is passing through the origin of a
fixed frame. In this mobile frame, a test particle of mass m
moves in the plane fν⃗01; ν⃗02g on an ellipsoidal geodesic
trajectory whose major axis is oriented along the unit vector
ν⃗01, obeying equations of the form (3.26)–(3.28) that now
read x01

x01ðt0Þ ¼ ρ0maxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ρ0ðt0Þ2

p cosωðt0 − t00Þ; ð5:5Þ

x02ðt0Þ ¼ ρ0minffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ρ0ðt0Þ2

p sinωðt0 − t00Þ; ð5:6Þ

x03ðt0Þ ¼ 0; ð5:7Þ

where, for simplicity, we choose the initial condition t00 ¼ 0

(when the test particle reaches the aphelion in the mobile
frame). The trajectory parameters in the mobile frames
are determined by the energy E0 and angular momentum
L⃗0 ¼ ð0; 0; L0Þ of the test particle. Thus, we may calculate
ρ0max and ρ0min according to Eqs. (3.25), (3.22), and (3.23),
while the other conserved quantities result from
Eqs. (3.29)–(3.32) as

K⃗0 ¼ ðE0ρ0max; 0; 0Þ; N⃗0 ¼ ð0;−E0ρ0min; 0Þ; ð5:8Þ

since t00 ¼ 0. Under such circumstances, the fixed observer
O measures the geodesic trajectory of the test particle

that results after applying the Lorentzian transformation,
substituting Eqs. (5.5)–(5.7) into Eqs. (4.31)–(4.32). In this
manner, we obtain the parametric equations of the geodesic
trajectory in the fixed frame,

tðt0Þ ¼ 1

ω
arctan γ½ωρ0maxV1 þ ð1þ ωρ0minV

2Þ tanωt0�;
ð5:9Þ

x1ðt0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ρ0ðt0Þ2

p
�
ð1þ

�
V1Þ2 γ2

1þ γ

�
ρ0max cosωt0

þ γ

ω
V1

�
1þ ωρ0minV

2
γ

1þ γ

�
sinωt0

�
; ð5:10Þ

x2ðt0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ρ0ðt0Þ2

p
�
V1V2

γ2

1þ γ
ρ0max cosωt0

þ
�
γ

ω
V2 þ

�
1þ ðV2Þ2 γ2

1þ γ

�
ρ0min

�
sinωt0

�
;

ð5:11Þ

x3ðt0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2ρ0ðt0Þ2

p
�
V1V3

γ2

1þ γ
ρ0max cosωt0

×
γ

ω
V3

�
1þ V2

γ

1þ γ
ωρ0min

�
sinωt0

�
; ð5:12Þ

depending on the parameter t0 that can be eliminated for
deriving the equations x⃗ðtÞ of the geodesic of the test
particle in this frame.
The basis fν⃗10; ν⃗02; ν⃗03g which is fixed rigidly in the

mobile frame, determining its Cartesian space coordinates,
is seen by the fixed observer as a moving basis
fν⃗1ðtÞ; ν⃗2ðtÞ; ν⃗3ðtÞg. The time dependence of this basis
can be found by using the Lorentzian isometry. We assume
that each unit vector ν⃗0i is observed at its own time t0i, such
that we may impose the simultaneity condition

t ¼ t½t01; ν⃗10� ¼ t½t02; ν⃗20� ¼ t½t03; ν⃗30�; ð5:13Þ

giving the functions t0iðtÞ that we need for writing down the
form of the unit vectors of the mobile basis as

ν⃗iðtÞ ¼ x⃗½t0iðtÞ; ν⃗0i�; i ¼ 1; 2; 3: ð5:14Þ

The last task is to find the conserved quantities measured
by the fixed observer as resulting from the transformation
(4.33). Let us consider the general case of an arbitrary
geodesic orbit of a test particle in the mobile frame whose
kinematics is determined by the conserved quantities. The
problem is how many such independent quantities we need
for determining the kinematic parameters. We observe that
six parameters, say the components of K⃗ and N⃗, are enough
for finding the energy and angular momentum components

FIG. 4. The function ~γðtÞ for different values, γ ¼ 1; γ ¼ 2;…
γ ¼ 5.
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from Eqs. (3.15) and (3.14b). Moreover, Eqs. (3.33)–(3.35)
give the trajectory parameters, including the time t0 when
the test particle is passing through the aphelion.
However, here we consider seven parameters, the above

mentioned vectors, and, in addition, the energy E0 instead
of the mass m, since thus we avoid the difficulties arising
when one uses explicitly Eq. (3.15). Therefore, starting
with E0, K⃗0, and N⃗0 in the mobile frame and applying the
transformation (4.33), we derive the general rules

E ¼ γðE0 þ ωV⃗ · N⃗0Þ; ð5:15Þ

K⃗ ¼ γK⃗0 þωγ

E0 ½K⃗0ðV⃗ · N⃗0Þ− N⃗0ðV⃗ · K⃗0ÞÞ�− γ2

1þ γ
V⃗ðV⃗ · K⃗0Þ;

ð5:16Þ

N⃗ ¼ N⃗0 þ γ

ω
E0V⃗ þ γ2

1þ γ
V⃗ðV⃗ · N⃗0Þ; ð5:17Þ

giving the conserved quantities measured in the fixed frame
where the angular momentum results from Eq. (3.14b) as

L⃗ ¼ −
ω

E
K⃗ ∧ N⃗: ð5:18Þ

One can verify that this transformation preserves the
invariant (3.15) which defines the mass of the test particle.
Thus the problem of CAdS relativity is completely solved
in terms of conserved quantities.

VI. CONCLUDING REMARKS

We presented here the principal methods of studying the
relative geodesic motion on CAdS spacetimes, based on the
SOð2; 3Þ transformation generating the Lorentzian isom-
etry that may be expressed in terms of conserved param-
eters. Starting with this transformation, we derived the
general rule of transforming the conserved quantities from
the mobile natural frame to the fixed one, obtaining thus
information about all the kinematic parameters we need
without resorting to the complicated algebraic calculations
of the geodesic equations in a particular local chart.
Technically speaking, the CAdS relativity is somewhat

similar to the dS one [15] since both of these spacetimes
are hyperboloidal and can be constructed as spaces of
left cosets on the gauge groups of their embedding flat
manifolds. However, the similarity stops here since their
embedding manifolds and isometry groups are different,
determining different types of geodesic trajectories or

quantum modes. Thus on dS spacetimes the geodesics
are open and the quantum modes correspond to continuous
energy spectra as it happens also in the Minkowski
spacetime. On the contrary, on the AdS spacetimes the
geodesic motion is oscillatory and the quantum modes are
square-integrable wave functions corresponding to equi-
distant discrete energy spectra with the same quanta ℏω (in
IS units) regardless of the spin [20,21].
Finally, we note that the embedding method may be used

for solving common dS-CAdS problems, in a (2þ 4)-
dimensional common embedding flat spacetime whose
gauge group is just the conformal one, SOð2; 4Þ. In this
geometry we may study new problems as, for example,
what happens in a CAdS sphere moving on the dS
spacetime. We hope that our methods presented in
Ref. [15] and here will be useful for solving such new
problems in an extended (special) relativity of hyperbolic
spacetimes, considering all 15 conserved quantities corre-
sponding to the SOð2; 4Þ symmetry.

APPENDIX: INVERSE PROBLEM

There are situations when we know the integration
constants κ1, κ2, ϕ0, and t0 and we need to find the
physical conserved quantities. Then from Eqs. (3.22) and
(3.24) we deduce

E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ1ω2 − 1Þ2 − κ22ω

4
p ; ðA1Þ

L ¼ mω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − κ22

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ1ω2 − 1Þ2 − κ22ω

4
p : ðA2Þ

Furthermore, from Eqs. (3.10)–(3.13), calculated in the
aphelion, at t ¼ t0, where ~uρ ¼ 0 and ~ut and ~uϕ result
from Eqs. (3.8) and (3.9), we derive the nonvanishing
components

K1 ¼ Eρmax cosϕ0 cosωt0 þ Eρmin sinϕ0 sinωt0; ðA3Þ

K2 ¼ Eρmax sinϕ0 cosωt0 − Eρmin cosϕ0 sinωt0; ðA4Þ

N1 ¼ −Eρmax cosϕ0 sinωt0 þ Eρmin sinϕ0 cosωt0; ðA5Þ

N2 ¼ −Eρmax sinϕ0 sinωt0 − Eρmin cosϕ0 cosωt0; ðA6Þ

while K3 ¼ N3 ¼ 0. These components satisfy the proper-
ties (3.33)–(3.35).
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