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We present a novel cosmological solution in the framework of extended quasidilaton theory which
underwent scrutiny recently. We only consider terms that do not generate the Boulware-Deser degree of
freedom, hence the ghost-free quasidilaton theory, and show three new branches of cosmological evolution
therein. One of the solutions passes the perturbative stability tests. This new solution exhibits a late time
self-acceleration and all graviton polarizations acquire masses that converge to a constant in the asymptotic
future. Moreover, all modes propagate at the speed of light. We propose that this solution can be used as a
benchmark model for future phenomenological studies.

DOI: 10.1103/PhysRevD.96.044041

I. INTRODUCTION

The question of a Lorentz invariant finite range gravi-
tational theory has been a long lasting problem of field
theory. The first linear proposal of Pauli and Fierz [1] has
no continuous limit to general relativity (GR) [2] unless
self-interactions of the graviton are included [3]. The
nonlinear completion of Pauli-Fierz theory was only
recently introduced by de Rham, Gabadadze and Tolley
(dRGT) [4] such that the dangerous sixth graviton degree
of freedom, dubbed the Boulware-Deser (BD) ghost [5], is
removed at all orders [6].
The dRGT model forms the basis of contemporary study

of Lorentz invariant massive gravity. In addition to the
physical metric gμν which couples directly to matter fields,
the construction also needs a nondynamical fiducial metric,

fμν ¼ ηab∂μϕ
a∂νϕ

b; ð1Þ

which is invariant under the Poincaré transformations in
the internal space of the four Stückelberg fields ϕa. The
graviton mass is then introduced by tracing various powers
of the building block tensor ð

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þμν, consisting of four

independent combinations obtained by requiring that the
BD mode becomes an auxiliary field at all orders.
In addition to being a consistent and continuous massive

extension of general relativity, an attractive feature of
the theory is the prospect of a self-accelerating late time
cosmology that obviates the need for a cosmological
constant. However, despite the extensive activity in the
field, sensible cosmological models within theoreti-
cally consistent massive gravity theories pose various

challenges for phenomenological studies, due to their
complexity. Although the original dRGT theory admits open
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology
[7], it has an infinite strong coupling at linear order [8]
and exhibits a ghost instability nonlinearly [9]. The cosmo-
logical backgrounds that have been shown to be perturba-
tively stable in dRGT theory and its extensions can be
classified as follows: (i) either homogeneity [10] or isotropy
[11] in the fiducial and/or physical metrics is broken;
(ii) severe fine-tunings are necessary [12]; (iii) an evolution
practically indistinguishable from standard cosmology [13].1

The quasidilaton theory was introduced as a simple
extension which exploits the stability of Minkowski space-
time in dRGT theory by coupling an additional scalar σ to
the fiducial metric through a conformal transformation,
thus sourcing a cosmological expansion [17]. The new
scalar field, the quasidilaton, has a restricted action that is
invariant under the global transformations

σ → σ þ σ0; ϕa → e−σ0=Mplϕa; ð2Þ

which keep the combination e2σ=Mplfμν invariant. The
graviton mass term has the same structure as in dRGT
with a modified building block eσ=Mplð

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þμν, while the

quasidilaton field acquires its dynamics from the finite
number of terms allowed by the symmetry (2). Although
the cosmological solution in this theory suffers from a

1Yet another possibility is to break Lorentz invariance at
cosmological scales to realize a nonlinear completion of self-
accelerating dRGT cosmology [14–16]. However, we shall not
consider this possibility in the present paper.
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ghost instability [18,19], the coupling between the
Stückelberg fields and the quasidilaton can extend beyond
a conformal factor [20], via an extended fiducial metric,

~fμν ≡ ηab∂μϕ
a∂νϕ

b −
ασ
m2

∂μðe−σ=MplÞ∂νðe−σ=MplÞ; ð3Þ

which under (2) transforms as

~fμν → e−2σ0=Mpl ~fμν: ð4Þ

The graviton mass term in the extended quasidilaton theory
can then be constructed using the new building block tensor

eσ=Mplð
ffiffiffiffiffiffiffiffiffiffi
g−1 ~f

q
Þμν, with additional interactions that are

allowed by (2) and that lead to second order equations
of motion [21].
However, recent work demonstrated that the absence

of the BD ghost is not guaranteed away from the self-
accelerating attractor [22,23]. This result is compatible with
the findings of Ref. [24] and was recently confirmed as a
no-go result [25]. Both analyses indicate that the primary
constraint that removes the BD ghost at all orders can be
obtained either if ασ ¼ 0 or if the canonical kinetic term for
the quasidilaton field vanishes. Since the former case is
simply the original quasidilaton proposal that does not
allow for a stable self-accelerating FLRW solution, we will
focus on the unexplored latter option. In fact, the absence of
explicit kinetic terms for the quasidilaton field does not
change its dynamical nature. Instead, the extended fiducial
metric readily introduces the dynamical terms for the scalar
field. The goal of the present study is to focus only on the
healthy subset of extended quasidilaton theory in a vacuum
configuration. We shall present a new branch of perturba-
tively stable cosmological evolution, which exhibits a late
time self-acceleration with perturbations propagating at the
speed of light.
The paper is organized as follows. In Sec. II, we review

the healthy subset of the theory and describe different
branches of background evolution. We then follow with
Sec. III where we perform a detailed analysis of cosmo-
logical perturbations around each of these background
solutions, and present stability conditions imposed on
the parameters. We conclude with Sec. IV where we
discuss our results.

II. GHOST-FREE QUASIDILATON THEORY
AND BACKGROUND DYNAMICS

We now consider the action without the canonical kinetic
term of quasidilaton, which was shown to be ghost free in
Refs. [24,25]. The ghost-free quasidilaton action is thus

S ¼ Mpl
2

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ 2m2ðα2L2 þ α3L3 þ α4L4Þ�:

ð5Þ

The mass terms are given by2

L2 ¼
1

2!
ð½K�2 − ½K2�Þ;

L3 ¼
1

3!
ð½K�3 − 3½K�½K2� þ 2½K3�Þ;

L4 ¼
1

4!
ð½K�4 − 6½K�2½K2� þ 3½K2�2 þ 8½K�½K3� − 6½K4�Þ;

ð6Þ

where

Kμ
ν ≡ δμν − eσ=Mpl

� ffiffiffiffiffiffiffiffiffiffi
g−1 ~f

q �
μ

ν

; ð7Þ

and ~fμν is defined in Eq. (3). In the present work, our goal
is to show the vacuum stability of cosmological solutions
with self-acceleration, thus we leave the effect of matter
fields for a future work.
We now study the cosmological background in this

theory. The Stückelberg field background is chosen in order
to keep time reparametrization freedom as

ϕa ¼ a0δai x
i þ δa0fðtÞ; ð8Þ

and we also have

σ ¼ σðtÞ: ð9Þ

These condensates lead to the extended fiducial metric

ds2~f ¼ −nðtÞ2dt2 þ a20δijdx
idxj; ð10Þ

with an effective lapse function given by

nðtÞ2 ≡ _f2 þ ασ
Mpl

2m2
e−2σ=Mpl _σ2: ð11Þ

Here, an overdot represents derivative with respect to the
proper time t. Finally, we consider a physical metric in flat
FLRW form

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2δijdxidxj: ð12Þ

The resulting minisuperspace action is thus

S
V
¼ Mpl

2

Z
dta3N½ð−3H2Þ þm2Mpl

2ðrXQ − ρmÞ�; ð13Þ

2One can also add a cosmological constant term for the metric
e2σ=Mpl ~fμν which preserves the primary constraint that removes
the BD ghost [25]. As we show in Appendix A, this corresponds
to simply shifting the parameters of the theory and does not
change our results qualitatively.
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where we defined

H ≡ _a
aN

; X ≡ a0eσ=Mpl

a
; r≡ n=a0

N=a
: ð14Þ

In the above,H is the Hubble rate for the physical metric, X
is the ratio of scale factors of the metrics e2σ=Mpl ~fμν and gμν,
while r corresponds to the ratio of the speeds of light
on these two metrics. For later convenience, we also
defined the following useful combinations to replace α2,
α3 and α4:

ρm≡ ðX−1Þ½3ð2−XÞα2þðX−1ÞðX−4Þα3þðX−1Þ2α4�;
J≡ ð3−2XÞα2þðX−3ÞðX−1Þα3þðX−1Þ2α4;
Q≡ ðX−1Þ½3α2−3ðX−1Þα3þðX−1Þ2α4�: ð15Þ

By varying the minisuperspace action (13) with respect
to N, a, f and σ, we obtain the following set of background
equations of motion3:

3H2 ¼ m2ρm; ð16Þ

2 _H
N

¼ m2ðr − 1ÞJX; ð17Þ

d
dt

�
m2Mpl

2a4QX _f

n

�
¼ 0; ð18Þ

ασ
NXa4

d
dt

�
a4Q _σ

rNMpl

�
¼ m2X½3Jðr − 1Þ þ 4Qr�; ð19Þ

where one of the last three equations is redundant thanks to
the contracted Bianchi identities. Although the form of the
Stückelberg equation of motion (18) is similar to the well
studied ones in e.g. Refs. [21–23,26], the above system of
equations reveals a very useful constraint arising from the
absence of a canonical kinetic term for σ. Combining the
time derivative of (16) with (17), we obtain the simple
relation

m2JX

�
Hr −

_σ

MplN

�
¼ 0; ð20Þ

where we used that _ρm ¼ 3J _X and _X=ðNXÞ ¼
_σ=ðNMplÞ −H.
Equation (20) is the key difference with respect to the

evolution studied in Ref. [21], and allows us to determine

two branches of evolution without resorting to the integral
of Eq. (18). These branches are

_σ

NMpl
¼ Hr; branch I;

J ¼ 0; branch II: ð21Þ

We now consider each branch separately.

A. Branch I

In this branch, the derivative of the quasidilaton back-
ground is solved by

_σ

NMpl
¼ Hr: ð22Þ

Using this equation to replace _σ and σ̈ in Eq. (19), then
eliminating _H using Eq. (17), we find

2ðασH2 −m2X2Þ½4Qþ 3ðr − 1ÞðJ þQÞ�
þm2QXðr − 1ÞðασJ − 2XÞ ¼ 0; ð23Þ

which can be used to express r in terms of X.4 Thus with
the help of Eq. (16), all cosmological quantities can now
be written in terms of X. By further manipulating the
equations, one can also determine the evolution equation
for X,

_a
a
¼ −

3

8

�
2ðJ þQÞ

QX
þ ασJ − 2X
ασρm − 3X2

�
_X: ð24Þ

This equation can be integrated to give the following
relation:

Q2ðασρm − 3X2Þ ¼ λ

a8
; ð25Þ

where λ is an integration constant.
We now discuss the late time asymptotics a → ∞. In this

regime, we expect the left-hand side of Eq. (25) to approach
zero. The two possibilities are

H →
mXffiffiffiffiffi
ασ

p ; branch IA;

Q → 0; branch IB: ð26Þ

By comparing with (19) and using the definitions in (11)
and (14), we see that for branch IA, one has _f → 0, while

3We remark that Eqs. (16)–(19) coincide with the ones in [26]
after the replacement U0ðXÞ → −4Q and Ω → 0.

4More precisely, we assume here that the coefficient of r is
nonzero. However, the special cases where r cannot be deter-
mined from Eq. (23) all lead to a constant X, therefore to r ¼ 1.
As a result, all of these cases belong to one of the late time
evolutions given in Eq. (26).
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branch IB is theQ → 0 branch discussed in [21].5 In branch
IB, we also find an important condition on background
variables in the late asymptotics, namely,

_f2

N2
→ e−2σ=Mpl

�
X2 −

ασH2

m2

�
> 0; branch IB; ð27Þ

since the background values of the Stückelberg fields are
real by definition. We will see that this condition plays a
very crucial role in the stability of scalar perturbations in
this branch.
To collect, the various limits in the two sub-branches are

X →
ffiffiffiffiffi
ασ

p
H

m
; _H → 0; _X → 0; r → 1;

_σ → MplNH; branch IA

Q → 0; _H → 0; _X → 0; r → 1;

_σ → MplNH; branch IB: ð28Þ

The main difference between the two sub-branches is
that the fixed point value of X is determined by the equation
ðασρm − 3X2Þ ¼ 0 for IA, whereas for IB it is simply
Q ¼ 0 (three solutions in both cases).
Branch IA corresponds to the _f → 0 attractor first

introduced in Ref. [26], and later studied in detail in
Ref. [22] in the context of extended quasidilaton. Due to
the absence of a canonical kinetic term for the quasidilaton,
the _f → 0 case actually corresponds to two distinct
branches of the evolution in the present study, the other
being branch II which we consider next.

B. Branch II

Since the quasidilaton kinetic term does not contribute
to the metric equations, using J ¼ 0 in Eq. (17) reveals
that this branch of evolution is purely de Sitter. The
constancy of X results in _σ ¼ MplHN, while the quasidi-
laton equation of motion yields a first order equation for r,
which for Q ≠ 0 reads

_r
N
− 4Hrþ 4m2r3X2

ασH
¼ 0: ð29Þ

The solution to this equation yields the evolution of r:

r ¼ a4H
ffiffiffiffiffi
ασ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ a8m2X2

p : ð30Þ

We thus see that in the late time asymptotics,
r → H

ffiffiffiffiffi
ασ

p
=ðmXÞ. To recap, the late time behavior for

this branch is given by

J → 0; _H → 0; _X → 0; r →
ffiffiffiffiffi
ασ

p
H

mX
;

_σ → MplNH; branch II: ð31Þ

This branch, along with branch IA, corresponds to the
_f → 0 branch introduced in Ref. [26]. However, as we will
show when we discuss cosmological perturbations, the
kinetic terms of three graviton polarizations are propor-
tional to J and thus the absence of the quasidilaton kinetic
term has a dramatic impact on the validity of the perturba-
tive expansion. Notice that in the vacuum case, J ¼ 0 is not
an asymptotic behavior, but enforced by the equations of
motion at all times.

III. COSMOLOGICAL PERTURBATIONS

We now introduce perturbations to the metric and the
five scalar fields. We decompose the metric perturbations as

δg00 ¼ −2N2Φ;

δg0i ¼ Nað∂iBþ BiÞ;

δgij ¼ a2
�
2δijψ þ

�
∂i∂j −

δij
3
∂2

�
Eþ ∂ðiEjÞ þ γij

�
;

ð32Þ

while the perturbations to the quasidilaton field are intro-
duced asMplδσ, and the Stückelberg field perturbations are

δϕ0 ¼ Π0; δϕi ¼ Πi þ ∂iΠL: ð33Þ

In these decompositions, all 3-vectors are divergence-free
and the 3-tensor γij is both divergence and trace-free with
respect to δij. We choose a gauge that is relevant for our
background evolution, namely, Ei ¼ E ¼ δσ ¼ 0, which
fixes the freedom completely even in the case _f → 0 as
shown in Appendix B.
In the following, we consider each sector independently.

A. Tensor sector

After expanding the fields in terms of plane waves,
adding appropriate boundary terms and using background
equations of motion, we obtain the following action for
tensor perturbations:

5It should be noted that the general study in Ref. [21] cannot be
directly used to obtain the results of branch IB of the present
paper by simply sending the coefficient of the quasidilaton kinetic
term to zero. First, these studies use the background equations
by assuming that the kinetic term is nonzero. Also due to our
late time behavior of r → 1, the perturbative stability conditions
occasionally depend on factors of 0=0, thus we repeat the analysis
for branch IB without referring to previous work in more general
backgrounds.
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Sð2ÞT ¼ Mpl
2

8

Z
d3kdta3N

�
_γ⋆ij
N

_γij

N
− ω2

Tγ
⋆
ijγ

ij

�
; ð34Þ

where the kinetic term is manifestly positive and the
dispersion relation is given by

ω2
T ¼ k2

a2
þM2

T; ð35Þ

with an effective mass

M2
T ¼ m2X

X − 1

�
J½r − 2þ ð2r − 1ÞX� þ ðr − 1Þ½Q − X2ρm�

ðX − 1Þ2
�
:

ð36Þ

Up to this point, we have not yet specified any branch
of evolution. For the three branches discussed in Sec. II,
the tensor mass converges to the following constant values
asymptotically:

M2
T;IA → m2JX; ð37Þ

M2
T;IB → m2JX; ð38Þ

M2
T;II →

mð ffiffiffiffiffi
ασ

p
H −mXÞ

ðX − 1Þ3 ½Q − ρmX2�: ð39Þ

In order to avoid tachyonic instability, we need to have
M2

T > 0. This is the condition for the IR stability and thus
can in principle be violated without fatal consequences as
far as the tensor sector is concerned. However, we shall see
below that this condition is required by the UV stability of
the vector sector for branches IA and IB. We shall also see
that branch II is strongly coupled in the vector and scalar
sectors. Therefore, the tensor sector is free from instabilities
both in the UVand in the IR whenever the vector and scalar
sectors are weakly coupled and stable in the UV.

B. Vector sector

The action quadratic in vector modes does not contain
any dynamical term for the Bi mode, whose equation of
motion can be solved by

Bi ¼
2m2a2Jeσ=Mpl

N½k2ðrþ 1Þ þ 2m2a2JX�
_Πi: ð40Þ

Integrating it out and adding boundary terms, the quadratic
action for vector perturbations reduces to

Sð2ÞV ¼ Mpl
2

4

Z
d3kdta3N

k2

a20

�
KV

_Π⋆
i

N

_Πi

N
−M2

TΠ⋆
i Πi

�
;

ð41Þ

where the kinetic term is

KV ≡
�
k2ðrþ 1Þ
2m2a2JX

þ 1

�−1
: ð42Þ

For the three branches of evolution discussed in Sec. II,
it reduces to

K2
V;IA ¼ K2

V;IB ¼
�
1þ k2

m2a2JX

�−1
; ð43Þ

K2
V;II ¼ 0: ð44Þ

We immediately see that in branch II, the vacuum evolution
strictly requires J ¼ 0, thus the vector modes become
infinitely strongly coupled.
However, for both branch I evolutions, the UV behavior

of the kinetic term imposes the stability condition,

J > 0; branch I; ð45Þ

which also coincides with the condition obtained from
the IR stability of tensor modes in the previous subsection.
By rescaling the field to acquire canonical normalization,
we obtain the following action for branch I, in the late time
limit:

Sð2ÞV;I ¼
Mpl

2

2

Z
d3kdta3N

�
_Π⋆
c;i

N

_Πi
c

N
− ω2

V;IΠ⋆
c;iΠi

c

�
; ð46Þ

where Πi
c is the rescaled field and the corresponding

dispersion relation is

ω2
V;I ¼

k2

a2
þm2JX −

k2H2ð4k2 þm2a2JXÞ
ðk2 þm2a2JXÞ2 ;

branches IA=B; late time: ð47Þ

The first term dominates in the UV, while the second term
dominates in the IR. Thus we see that the sound-speed is 1
and the mass is m2JX.

C. Scalar sector

Finally, we consider the scalar sector. The two non-
dynamical fields are solved as
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Φ ¼ 1

N
∂t

�
ψ

H

�
þ k2m2J
HN½2k2ðrþ 1Þ þ 3m2a2JX�

�
Xð2k2MplNr2 þ 3m2a2JX _σÞ

2MplH2k2
ψ þ aeσ=Mpl _ΠL −

e2σ=Mpl _f
X

Π0

−
m2eσ=MplaJXðMplHNðr − 1Þ − _σÞ

2MplH2
ΠL

�
;

B ¼ −
ψ

aH
þ m2J
HN½2k2ðrþ 1Þ þ 3m2a2JX�

�
3aX½MplHNr2 − ðrþ 1Þ _σ�

MplH
ψ þ 3a2Heσ=Mpl _ΠL −

3aHe2σ=Mpl _f
X

Π0

− Neσ=Mplk2ðrþ 1ÞΠL

�
: ð48Þ

After using these solutions, the action quadratic in scalar
perturbations consists of three modes, ψ , Π0 and ΠL.
Without any field redefinition, the perturbation ψ has no
kinetic term, thus this is identified as the Boulware-Deser
degree. After integrating it out, the two-field action can be
brought to the form

Sð2ÞS ¼ Mpl
2

2

Z
d3kdta3N

�
_Ψ†

N
K

_Ψ
N
þ

_Ψ†

N
MΨ

−Ψ†M
_Ψ
N
− Ψ†Ω2Ψ

�
; ð49Þ

where Ψ≡ ðΠ0;ΠLÞ and the 2 × 2 matrices obey K ¼ KT,
M ¼ −MT , Ω2 ¼ ðΩ2ÞT .
The conditions for having positive kinetic terms for

the eigenmodes can be obtained by studying κ1 ≡ K22 and
κ2 ≡ detK=K22 in the UV limit.
In the following, instead of presenting the rather bulky

expressions for the exact matrix components, we will only
present them when they are informative.

1. Branch IA

Let us first consider branch I before taking the late time
limit, so that we can use it in branch IB. The two kinetic
eigenvalues in the subhorizon limit are

κ1;I ¼
3e2σ=Mplm2a2Jðm2JX − 2H2Þ

2X

×

�
1þ 8QðασH2 −m2X2Þ

2ασH2ð3J −QÞ þm2JXðασQ − 6XÞ
�

þOðk−2Þ;

κ2;I ¼
e2σ=MplH2

X3

�
ασQ −

2ð3J þ 4QÞðασH2 −m2X2Þ
ð2H2 −m2JXÞ

�
:

ð50Þ

However, once the late time limits (28) for branch IA
are used, the two scalar modes decouple and the (now
diagonal) matrices in the action (49) reduce to

K11 ¼
a2m2QX

a20
; K22 ¼

6m4a4JX3

a20ασD

�
ασJ
X

− 2

�
;

Ω2
11 ¼

k2m2QX
a20

;

Ω2
22 ¼

2Xm2Jk4

3a20

�
1 −

1

D

�
4þ 3a2H2

k2

�
ασJ
X

− 2

�

×

�
1 −

48a2H2

k2D

���
; ð51Þ

where

D≡
�
4þ 3a4H4

k4

�
ασJ
X

− 2

��
4k2

a2H2
þ 3ασJ

X

��
: ð52Þ

The positivity of the kinetic terms imposes the following
conditions:

J

�
J −

2X
ασ

�
> 0; Q > 0; branch IA: ð53Þ

Assuming that these conditions are satisfied, we can rescale
the fields and rewrite the action as

Sð2ÞS;IA ¼ Mpl
2

2

Z
d3kdta3N

�
_Ψ†
c

N

_Ψc

N
− Ψ†

cω2
SΨc

�
; ð54Þ

where Ψc are the fields in this normalization and
the dispersion relation ω2

S is a diagonal matrix with
components

ω2
S;1 ¼

k2

a2
− 4H2;

ω2
S;2 ¼

k2

a2
þm2JX −

12H2

D

�
2þ a2H2

k2

�
ασJ
X

− 2

�

×

�
1 −

72a2H2

k2D2

��
; branch IA: ð55Þ

We see that the first mode propagates at the speed of light
and has a negative squared mass. Although this may
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indicate some tachyonic instability, contributions which are
factors of H2 depend on the normalization of the field.
However, regardless of what the right normalization is, the
time scale of the corresponding tachyonic instability is of
the same order as the age of the universe. Therefore, even if
it is present, it is a mild instability.
For the second mode, the last term is subdominant both

on subhorizon and superhorizon scales, so we see that the
mode propagates with the sound speed c2s ¼ 1 and has a
mass m2JX, just like the vector and tensor perturbations.

2. Branch IB

For this branch, the subhorizon limit expressions for
the kinetic terms in (50) are still valid and applying the
asymptotic Q → 0 limit, we find

κ1;IB →
3e2σ=Mplm2a2Jðm2JX − 2H2Þ

2X
;

κ2;IB → −
6e2σ=Mplm2H2J

X3ðm2JX − 2H2Þ
�
X2 −

H2ασ
m2

�
: ð56Þ

Using (27), we see that the product of these two eigenvalues
is a negative total square, hence we conclude that this
branch always contains a scalar ghost.

3. Branch II

In this branch, J ¼ 0 is enforced by the (vacuum)
equations of motion, and for this value, κ2 vanishes.
Since the vanishing of J in this branch is not an asymptotic
behavior but rather a dynamical requirement throughout the
evolution, the mode is infinitely strongly coupled. Since
the vector modes in this branch are also strongly coupled,
this is reminiscent of the self-accelerating branch in dRGT
massive gravity.

IV. DISCUSSION

We have presented a new cosmological vacuum solution
in the context of ghost-free quasidilaton theory. This is a
restricted version of the extended quasidilaton theory where
all terms that generate a Boulware-Deser ghost are turned
off. We have shown that there exists a branch of the
cosmological evolution (branch IA), which has a self-
accelerating solution where all 5 degrees of freedom have
equal masses ∝ m and propagate at the speed of light. The
additional degree of freedom, identified as the quasidilaton
perturbation, has a mass ∝ H, which may or may not lead
to a mild tachyonic instability in the IR, depending on the
normalization imposed by observables.
This solution is, to our knowledge, the simplest model in

Lorentz invariant massive gravity that passes the perturba-
tive stability tests while exhibiting self-acceleration. It is
thus a promising candidate to be used as a benchmark for
phenomenological studies, after its interactions with matter

fields is understood in detail. This point will be addressed
in a future publication.
Fixing the value of α2m2 by using the present day

Hubble rate, our model can be reduced to contain three
independent parameters α3, α4 and ασ . The parameter ασ
should be strictly positive in order to realize the stable
branch of evolution. This is also the parameter that allows
the theory to depart from the standard quasidilaton
of Ref. [17].
In our cosmological solution, the background value of

the temporal Stückelberg field flows to a constant at late
times. The background evolution does not actually require
the time derivative to be strictly zero; instead the VEVof _ϕ0

smoothly approaches to zero as a−5 without becoming zero
in finite time. In other words, the whole cosmological
history in our solution covers only a half of the moduli
space. This is similar to the self-accelerating open FLRW
solution in dRGT theory, where only a quarter of the
moduli space (a Milne wedge of the Minkowski moduli
space) is covered by the whole cosmological history [7]. In
both cases, the fiducial metric is locally Minkowski and the
theory respects the Poincaré symmetry in the moduli space.
One might still worry that the transformation that takes
Minkowski to the fiducial metric in our solution would be
singular and one would no longer have a fixed reference
metric [23]. Actually, we find that this is not a problem. As
is clear from the fact that the part (either a half or a quarter)
of the moduli space covers the whole cosmological history,
one never reaches the boundary at finite time and therefore
the transformation to the explicitly Minkowski form of the
fiducial metric remains regular.
As a result of the behavior _ϕ0 → 0, the unitary gauge

δϕ0 ¼ 0 cannot be fixed in the asymptotic future, and we
resort to another gauge choice. Taking the theory in the
covariant formulation, _ϕ0 → 0 is an allowed background
which prefers a certain gauge over the unitary one. Despite

the smallness of _ϕ0, the perturbative expansion is not
affected by potentially vanishing coefficients. In the late
time limit of branch IA, the tensor g−1 ~f can be expanded as

gμα ~fαν ¼
a20
a2

δμν þ a0ðδμj∂νδϕ
j þ δiνηaigμα∂αδϕ

aÞ
þ gμαηab∂αδϕ

a∂νδϕ
b; ð57Þ

where we only kept the Stückelberg perturbations δϕa,
(a ¼ 0, 1, 2, 3) for the present discussion. Thus, even for
_ϕ0 ¼ _f ¼ 0, all the four eigenvalues of g−1 ~f have nonzero
VEV’s and the time derivatives of the Stückelberg pertur-
bations have finite coefficients. This allows the square root
of the tensor to be Taylor expanded up to any order in
perturbations without any ambiguity and we do not observe
any signs of a strong coupling in this limit.
In addition to the healthy branch, we found two more late

time solutions which do not pass the stability tests: branch
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IB contains a scalar ghost, while in branch II two vector and
one scalar degree of freedom is infinitely strongly coupled
throughout the evolution.
Although thewell being of the theory relies on the absence

of canonical kinetic terms for the quasidilaton, there may be
other terms that do not excite the Boulware-Deser mode.
The setup we considered is reminiscent of Dirac-Born-Infeld
scalars coupled tomassive gravity [27–29]. For the ghost-free
quasidilaton, the 3-branewithmetric ~fμν can be interpreted as
probing a bulk with two time directions. This interpretation
indicates the existence of further ghost-free terms involving
the quasidilaton, corresponding to curvature invariants and
Gibbons-Hawking-York boundary terms from 5D Lovelock
terms [30] (see e.g. [31] for the cosmology of such a model
with a different bulk metric signature).
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APPENDIX A: THE EFFECT OF
COSMOLOGICAL CONSTANT FOR THE

EXTENDED FIDUCIAL METRIC

The quasidilaton symmetries (2) allow a cosmological
constant term for the extended fiducial metric, in the form

ΔS ¼ Mpl
2m2ξ

Z
d4xe4σ=Mpl

ffiffiffiffiffiffi
− ~f

q
: ðA1Þ

We can express this action purely in terms of dRGT mass
terms. We first add a term,

L1 ≡ ½K�; ðA2Þ

to the dRGT mass terms given in (6). Including the identity,
L1, L2, L3 and L4 form the characteristic polynomials for
the matrix K. We can thus perform the expansion

detðI4 −KÞ ¼ 1 − L1 þ L2 − L3 þ L4; ðA3Þ

where I4 is the four dimensional identity matrix. As the
left-hand side is simply detðeσ=Mpl

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þ, we obtain

ΔS¼Mpl
2m2ξ

Z
d4x

ffiffiffiffiffiffi
−g

p ½1−L1þL2−L3þL4�: ðA4Þ

In other words, the additional term (A1) can be written as a
combination of the dRGT mass terms, and corresponds to a
shift in the coupling constants. On the other hand, adding the
ξ term would correspond to including the tadpole term L1

and a bare cosmological constant, which were not consid-
ered in the main text. The effect of ξ can be accommodated
by changing the definition of Q in Eq. (15) to

Q≡ ðX − 1Þ½3α2 − 3ðX − 1Þα3 þ ðX − 1Þ2α4� þ ξX3;

ðA5Þ

then shifting Q → Q − ξX3 in Eqs. (36) and (39). All other
occurrences of Q in the text should then be understood to
correspond to the definition in Eq. (A5).

APPENDIX B: THE GAUGE CHOICE

As we described in the main text, two out of the three
branches of late time evolution require f0ðtÞ → 0, namely
the background value of the temporal Stückelberg field
approaches a constant. As a result, its perturbations become
effectively gauge invariant, hence the gauge freedom that
allows us to set it to zero (i.e. the unitary gauge) is no longer
allowed. In order to find a suitable gauge that is valid for
all three branches of the evolution considered in the main
text, we study the behavior of the perturbations under linear
gauge transformations.
For a coordinate transformation xμ → xμ þ ξμ, with the

decomposition ξμ ¼ ðξ0; ξi þ ∂iξLÞ, the perturbations (32)
and (33) transform via

Φ → Φ −
1

N
∂tðNξ0Þ;

B → Bþ N
a
ξ0 −

a
N
_ξL;

Bi → Bi −
a
N
_ξi;

ψ → ψ −
_a
a
ξ0 −

1

3
∂i∂iξL;

E → E − 2ξL;

Ei → Ei − 2ξi;

δσ → δσ −
_σ

Mpl
ξ0

Π0 → Π0 − _fξ0;

ΠL → ΠL − a0ξL;

Πi → Πi − a0ξi; ðB1Þ
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and the tensor modes γij are invariant at linear order. Out of
the total of 7 scalar degrees of freedom, one can construct 5
independent gauge-invariant scalar degrees, while the 3
transverse vectors can be reduced to 2 gauge invariant
divergence-free vector fields. This choice however is not
unique and the specific choice of gauge invariant variables
may be equivalent to a a particular gauge choice. For
instance, the choice of the gauge invariant variable
δσ − _σΠ0=ð _fMplÞ implicitly implies the gauge Π0 ¼ 0.

On the other hand, if _f ¼ 0 is allowed by the evolution
(which is the case for the model studied in the main text), this
choice is no longer well defined, nor gauge invariant, andΠ0

itself becomes gauge invariant on its own. Therefore, we
need to construct the set of variables carefully.
For the transverse vectors, we define the following

combinations:

Bi
GI ≡ Bi −

a
2N

_Ei;

Πi
GI ≡ Πi −

a0
2
Ei; ðB2Þ

and for the scalars, we choose

ΦGI ¼ Φ −
1

N
∂t

�
1

H

�
ψ þ k2

6
E

��
;

BGI ¼ Bþ 1

aH

�
ψ þ k2

6
E

�
−

a
2N

_E;

ψGI ¼ ψ þ k2

6
E −

HNMpl

_σ
δσ;

Π0
GI ¼ Π0 −

Mpl
_f

_σ
δσ;

ΠL
GI ¼ ΠL −

a0
2
E: ðB3Þ

We see that these definitions are not affected by the
evolution, provided that _σ ≠ 0. Upon integration of the
nondynamical modes Φ and B (or equivalently, ΦGI and
BGI) this choice of variables actually corresponds to the
gauge choice Ei ¼ E ¼ δσ ¼ 0, which completely fixes
the freedom if _σ ≠ 0.
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