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New inhomogeneous universes in scalar-tensor and f(R) gravity
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A new family of spherically symmetric inhomogeneous solutions of Brans-Dicke gravity is generated
using conformal transformation techniques and the Fonarev solution of general relativity as a seed. The
latter is mapped from the Einstein to the Jordan conformal frame and this Jordan frame version constitutes a
new solution of Brans-Dicke theory. The Brans-Dicke scalar field self-interacts with a power-law or inverse
power-law potential in the Jordan frame. The new 4-parameter family of geometries thus generated, which
is dynamical and asymptotically Friedmann-Lemaitre-Robertson-Walker, contains as special cases two
previously known classes of solutions and solves also the field equations of f(R) = R" gravity, which can
also be seen as an w = 0 Brans-Dicke theory with a potential.
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I. INTRODUCTION

General relativity (GR) has been tested with good
precision and its prediction of gravitational waves has
received a spectacular experimental confirmation with the
recent LIGO detections [1-4]. However, the theory is not
tested at most spatial and temporal scales and curvature
regimes [5,6]. What is more, GR does not agree with
quantum mechanics and all attempts to quantize it produce,
in their low-energy limit, theories which deviate from GR.
The most compelling motivation to go beyond Einstein
theory, however, comes from cosmology: within the con-
text of GR the present acceleration of the Universe
discovered with type Ia supernovae can only be explained
with an enormously fine-tuned cosmological constant or
with a completely ad hoc dark energy fluid as a matter
source in the Einstein equations. A viable alternative
consists of modifying gravity at cosmological scales while
leaving untouched the predictions of GR at small scales.
The most popular class of theories achieving this goal is
f(R) gravity (where R is the Ricci scalar of the metric
connection) [7], see [8] for reviews.

The prototype of alternative gravity is Brans-Dicke
theory [9], which has been generalized to the wider class
of scalar-tensor theories [10] and contains as a fundamental
variable a gravitational scalar field ¢ in addition to the
metric tensor g,,. The wide class of f(R) theories is a
subclass of scalar-tensor gravity. When attempting to
understand these theories, spherically symmetric analytic
solutions play an important role. Alternative theories of
gravity which attempt to explain the current acceleration of
the cosmic expansion without dark energy have a
built-in time-dependent cosmological “constant” and
spherical objects in these theories are not isolated, but
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are asymptotically Friedmann-Lemaitre-Robertson-Walker
(FLRW) and are dynamical [11]. Even in GR, exact
solutions of the field equations representing dynamical
inhomogeneous universes are rare and their physical
interpretation is often puzzling ([12,13] and references
therein). Here we take one such solution of GR, the Fonarev
inhomogeneous universe sourced by a matter scalar field
with an exponential potential [14,15], and we use it as a
seed to generate a family of new solutions of Brans-Dicke
gravity with a power-law (or inverse power-law) potential.
By “seed” we mean that the solution of GR is regarded
as the FEinstein conformal frame version of a Jordan
frame solution of Brans-Dicke theory. By reversing the
conformal transformation from Jordan to Einstein frame, a
new solution of Jordan frame Brans-Dicke theory is
generated.

We then show that this family of geometries is also a
solution of a class of f(R) theories. Extra motivation for
this work comes from the old idea that the gravitational
constants of nature may not be constant after all [16,17],
and scalar-tensor gravity provides an arena in which the
gravitational coupling strength is dynamical. In several
scalar-tensor or f(R) theories, a chameleon mechanism
makes the effective range of a massive scalar degree of
freedom of the theory dependent on the environment. At
higher environmental densities this scalar field is short
ranged, evading Solar System constraints on deviations
from GR, while at cosmological densities the field becomes
long ranged. In this context, inhomogeneous universes are
useful to probe spatial variations of the gravitational
“constant,” which was the motivation behind Ref. [18]
containing a geometry which corresponds to a special case
of the new family of solutions that we introduce here.

Following the notation of Ref. [19] and using units in
which Newton’s constant G and the speed of light are unity,
the action of vacuum Brans-Dicke theory in the Jordan
frame is [9]
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where ¢ is the Brans-Dicke scalar field (approximately
equivalent to the inverse of the gravitational coupling G¢)
with potential V(¢),  is the constant Brans-Dicke param-
eter, and ¢ is the determinant of the spacetime metric g,,.
Inspection of the Brans-Dicke action (1.1) suggest that the
effective gravitational coupling present in the theory and
obtained by writing the field equations as effective Einstein
equations, is G = ¢~!. A more careful analysis for Solar
System experiments [20] or cosmological perturbation
theory [21] yields

DVNp-vig)). (1)

C2w+2)1
efft — 20 +3 ¢ (12)

However, in the following it will suffice to consider
Geip = 1/¢.

The variation of the action (1.1) generates the Brans-
Dicke field equations in vacuo [9]

R
R — > Yab = e (V AN __gabv V., ¢>

Vv
~ 7 Y9ab> (13)

(V Vi — g 0) — 29

"o

1
N = Za)+3<¢_¢_ )

(The original Brans-Dicke theory [9] did not include a
potential V for the Brans-Dicke field ¢.) The more general
class of scalar-tensor theories [10] promotes the Brans-
Dicke parameter @, which is constant in the original Brans-
Dicke theory, to a function of the scalar ¢.

Another representation of scalar-tensor gravity, the
Einstein frame [22], is widely used. By performing the
conformal transformation of the metric

(1.4)

Yab — Z]ab = ¢gab’ (15)
and the scalar field redefinition
~ 2 3
b—d= 1/|w+ |ln<$> (1.6)

where ¢, is a constant and @ # —3/2, the Brans-Dicke
action (1.1) assumes its Einstein frame form

Sp = / d*x\/=7 [——— GV PV — V(¢>], (1.7)

where
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In the presence of matter, obtained by adding a Lagrangian
density \/=gL ) (W (m)» 9ap) [Where ) collectively
denotes the matter ﬁelds] to the Jordan frame action, there
will be a difference. The Einstein frame action will then
exhibit an anomalous coupling of the scalar field to matter,

described by the term /=g.L ) (W (m). 9ap) /¢ (¢) in the
action. Since in this work we consider only vacuum
solutions, we will not be concerned with this anomalous
coupling of the scalar to matter.

In the following, Einstein frame quantities will be
denoted by a tilde. The action (1.7) is formally the
Einstein-Hilbert action coupled to a matter scalar field
which has canonical kinetic energy density. The Einstein
frame field equations in vacuo are

-1 - v g Le sy v g
Rab - zgabR = 87T <va¢vb¢ - EgabngvC¢vd¢>
- V(&ﬁ)guh’ (19)
ahv vb¢_d;:0‘ (1.10)

If we know a solution of the Einstein equations with a
minimally coupled scalar field as the matter source, it is
possible to regard it as the Einstein frame representation of
a scalar-tensor solution and to map it back to the Jordan
frame representation. In general, the scalar field potential
thus obtained in the Jordan frame is not motivated by a
physical theory and the corresponding spacetime does not
carry much physical meaning. This is the reason why this
solution-generating technique has seen only limited appli-
cations in cases where the scalar field potential is absent
[18,23]. However, in the particular application to the
Fonarev spacetime [14,15] studied here, the Jordan frame
potential V(¢) turns out to be physically well motivated.

f(R) theories of gravity [8] are a subclass of scalar-
tensor theories described by the action

S = /d4\/_(>

1.11
167 ( )

in vacuo, where f(R) is a nonlinear function of the Ricci
scalar R. By setting ¢ = f'(R) and

V(#) = dR() = F(R()).

it can be shown that the action (1.11) is equivalent to the
vacuum Brans-Dicke action [8]

Ve
S—/d XEWR—V(@L

(1.12)

(1.13)
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which has Brans-Dicke parameter @ = 0 and the potential
(1.12) for the Brans-Dicke scalar ¢.

The plan of this article is as follows. In Sec. II we review
the Fonarev solution of GR. In Sec. III we obtain a new
family of scalar-tensor solutions using the Fonarev space-
time as a seed. This family includes, as a special case, a
solution previously reported in [18] which is conformal to
the Husain-Martinez-Nufez geometry of GR [24]. Another
special case reproduces the Campanelli-Lousto solution
[25], which describes a wormhole [26]. In Sec. IV we
comment on the physical interpretation of the new family of
solutions. Section V explains how this new family is also a
solution of a subclass of f(R) theories and Sec. VI contains
a discussion and the conclusions.

II. THE FONAREYV SOLUTION
OF GENERAL RELATIVITY

The Fonarev solution of the Einstein equations of GR
[14] is a spherically symmetric, dynamical, inhomo-
geneous, and asymptotically FLRW geometry sourced
by a minimally coupled scalar field ¢ self-interacting with
an exponential potential. The line element is

2 S
52 = —eSrar <1 - —m> dr

r

dr? 2m\ 1-¢
+ e [7(1 St (1 _T> MQM (2.1)

r

and the matter scalar field is

Pe.r) = \/%_” {Zaat + ﬁln (1 B 27m>] - @2

with the scalar field potential

V(§) = VoemsViab (2.3)

and where dQ%z) = dB? + sin? Odg? is the line element on

the unit 2-sphere. This is a 3-parameter (m, a, a) family of
solutions of the Einstein equations, where

20
S=—-—--<1, 2.4
V1 +4a? 24)
" 2 —4 2
VO:M_ (2.5)
8

In order to guarantee a non-negative energy density for the
scalar field it must be V, >0, which implies that
la| < V/3/2.

This solution was introduced in [14] and studied in [15]
and [27]. Five-dimensional Fonarev solutions were given in
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[28] and it was shown recently that Fonarev solutions can
be generated via dimensional reduction from Fisher-like
brane solutions in 4 + n dimensions [27].

The Fonarev line element is conformal to the Fisher-
Buchdahl-Janis-Newman-Winicour-Wyman scalar field
solution of the Einstein equations [29] (hereafter referred
to simply as “Fisher solution”)

ds> = —A(r)Ydt* + A(r)™dr* + A(r)l_’“rzdﬁz2 (2.6)

@y

$(r) = doInA(), (2.7)
where v and ¢, are constants and A(r) = 1-2m/r. An
interesting feature of the Fisher solution (pointed out in
[27]) is that the redshift factor for light traveling radially
outward from a radius approaching the singularity diverges
and these solutions have the properties of “frozen stars” like
the Schwarzschild spacetime. The Fisher solution is the
limit of charged dilaton black holes [30] when the electric
charge vanishes and, therefore, the Fonarev solutions can
be seen as limits of a family of dilaton black holes
embedded in FLRW space [27].

For the special parameter values @ = 4-1/3/2 the poten-
tial V(¢) vanishes identically and the Fonarev solution
reduces to the Husain-Martinez-Nufiez solution of the
Einstein equations [24], which is already known to be
conformal to the Fisher solution [24]. For a # +v/3 /2 and
aa # 0, consider the new time coordinate z defined by

2
e4a at

T= (2.8)

4a*a’

which turns the Fonarev line element and scalar field (2.1)
and (2.2) into

ds? = —A(r)%de* + (4aPat)/2)[A(r) 0 dr?

+A(r)1_5r2d£2%2)], (2.9)
ble.r) = 41%1“ (4ear) eA(r\Viod]. (2.10)

The further time redefinition
n= (m)l_ﬁ (2.11)

(4a?)w (4a? - 1)a

for a®> # 0,1/4 and a # 0 turns the geometry and scalar
field into

d5% = (an)i[=A(r)dn? + A(r) 0 dr?

+A(r)'=0r2dQ2, ],

a (2.12)
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p(n.r) =

= Vln {[(4(12 - l)an]fké_[ilA(V)‘/ﬁ}-

The line element (2.12) is explicitly conformal to the
Fisher one.

For o> =1/4 the coordinate transformation (2.11)
ceases to be valid but the line element reduces to

(2.13)

d5* = 4[=A(r)’di> + A(r)7dr> + A(r)'=r2dQ2

ol
(2.14)

which also is conformal to the Fisher line element (2.6).
Special cases of the Fonarev solution include the
following.

A. Vanishing mass parameter

When the mass parameter m vanishes, the Fonarev
solution reduces to the spatially flat FLRW metric

d5? = =8 atdr 4 2 (dr? + r2dQ2,)) (2.15)
and the scalar field is linear,
~ aat
) =—. 2.16
¢(1) NG (2.16)

The redefinition of the time coordinate dr = e**4'dt then
recasts the line element as

d5* = —d7 + (Alaz)ee (dr + PdQly))  (217)

(2

with scale factor S(7) = (4a? ar);2 and matter scalar field

d(7) = %m S(2).

This Universe is accelerated if 0 < |a| < 1.

(2.18)

B. Vanishing a parameter
When the parameter a, which has the dimensions of an
inverse time, vanishes the line element and scalar field
reduce to

d5? = —A(r)°di® + A(r)7dr? + A(r)!°r2dQ2,,  (2.19)

~ 1

o(t,r) :mlnA(r),

(2.20)

and the scalar field potential vanishes, V =0. This is a
static Fisher solution (2.6) with v = § and with areal radius

" 2m\ 5
= A(r)?'r = (1 __m) Ty
r

R(r) (2.21)
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As is well known [29], it exhibits a central singularity at
R = 0 which, as is clear from Eq. (2.21), corresponds
to r =2m.

C. Parameter o> =3/4
The parameter « is related to the slope of the scalar field
potential (2.3). In the special cases a = ++/3/2, the

potential V() vanishes identically and the line element
and scalar field reduce to

d3* = —eSA(r)=V32de 4 4 [A(r) TV dr?
+A(r)1¢\/5/2r2dgfz)], (2.22)
bt r) = +v3ar ++ InA(r)|. (2.23)

2[ 4

This is recognized as the Husain-Martinez-Nuiiez solution
of GR [24]. It is not obtained as the time development of
regular Cauchy data because it contains a naked singularity
part of the time and it exhibits an interesting phenomenol-
ogy of apparent horizons which appear and disappear in
pairs [24], and it constitutes one of two paradigmatic
situations identified with time-evolving apparent horizons
(the other situation is exemplified by McVittie-type sol-
utions) [13]. The special subcase a = 0 eliminates the time
dependence and reduces the Husain-Martinez-Nufiez sol-
ution to the Fisher spacetime. Assuming a # 0, the use of
the time coordinate

t) = 2.24
(=" (224)
reduces the line element and scalar field to
ds? = —A(r)°dz* + (3ar)?3[A(r)~0dr?
+A(r)1_5r2dQ%2)], (2.25)
~ 1
plr.r) =4 ﬁln [A(r)(3ar)**/V3].  (2.26)

The geometry is asymptotically FLRW as r — +oc0. The
scale factor S(z) ~ z!/3 corresponds to the stiff equation of
state P = p for the cosmic fluid equivalent of the free [in
the sense that V(¢) = 0] scalar field.

D. Parameter a=0
This special case implies 6 =0 and the scalar field
potential V =V, reduces to an effective cosmological
constant A = 87V, = 3a? with

ds* = —di? + e [dr* + A(r)rde%Z)], (2.27)
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P(1, 1) InA(r), (2.28)

1
=ive
which can be seen as a time-dependent generalization of a
Fonarev solution with v = 0 (to which it reduces if a = 0),
which is asymptotically de Sitter. Because of formal
similarities, the Husain-Martinez-Nufiez solution and its
Fonarev generalization could be superficially seen as time-
dependent generalizations of the Fisher solution but they
are qualitatively different in the parameter range in which
apparent horizons exist (the Fisher solution, by contrast,
has no apparent/trapping horizons to cover the central
naked singularity).

III. GENERATING NEW BRANS-DICKE
SOLUTIONS

Following the method outlined in Sec. I, assume now
that the Fonarev solution g,;, of GR with matter scalar field
dis formally the Einstein frame representation of a solution
of Brans-Dicke theory in the Jordan frame (g, ¢), where
the scalar field is now the gravitational Brans-Dicke field,
which is related to the Fonarev geometry by

Gab = DYGab> (3.1)
- 2w + 3| ¢

where ¢, is a constant and ® # —3/2. By inverting
Eq. (3.2) and substituting Eq. (2.2) in it, one obtains

Pt 1) =

¢Oe\/%”17( 2m> [20+3|(1+4a%) (3.3)
r

and the corresponding scalar field potential V(¢) is

obtained from Eq. (1.8) as

Vod*

V($) = (34)

with

p=1—-a\/|2w +3|,

As already remarked, in general the potential (1.8) gen-
erated by using the conformal transformation to the Jordan
frame and a known GR solution as the seed is not of a form
motivated by scalar field theories in particle physics or in
cosmology. However, the power-law potential obtained in
the Jordan frame from the Fonarev solution has been the
subject of intensive studies in both cosmology and particle
physics [31,32]. It includes as special cases the mass

~ 2a+/2w0+3
Vo=Vody VL (35
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potential mj¢?/2, the quartic potential i¢*, and many
quintessence potentials [31,32].

The relation g,, = ¢~'§,, gives the Jordan frame line
element

20—

ds 2 _ _A ( r)i\/ljrw (2(1—7\/‘2;_%‘) e4aat ( \/m) d[2

n eZat(l—\/éZ_ﬁ‘) |:A<r)_—\/ljrw <2a+\/m> dr

— L (2«
+A(r) m( *W) rdQ}, )} (3.6)

(neglecting an irrelevant overall multiplicative constant
#3"). We have a family of solutions of the vacuum
Brans-Dicke field equations (1.3), (1.4) parametrized by
the four parameters (w, m, a, ), of which w is a parameter
of the theory and the others are parameters of this specific
family of solutions. By introducing the quantities

1 1
= 200 + ) , 3.7
4 \/1+4a2< V2w + 3| (3.7)
! (2 ! ) (3.8)
€= a— , .
V1+4a? V20 + 3|
the new time coordinate
eQaat (Za_——p:uﬁ\)
(1) = (3.9)

2aa (Za - \/\zlw—+3\>

(defined for a #0 and a # 0, ) and the FLRW

24/ |2(u+3

scale factor

\/ [20+3|-2a
2a(2av/|2w+3|-1)

S() = {maf (2(1 - \/ﬁ)} ,

one can write the new family of solutions as

(3.10)

ds? = —A(r)¢da® + S*(7)[A(r)7dr?* + A(r)l‘yrzdgfz)],

(3.11)

4o L

P(z.1) = o[ S()]VEreA(r) Vsl (3.12)
When the mass parameter m vanishes, the line element
reduces to the spatially flat FLRW one

ds* = —di® + S2(z)(dr? + rde%Z)), (3.13)
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while the Brans-Dicke scalar field is

da

b (7) = po[S(2)] Ve,

(3.14)

Therefore (when it is defined) the coordinate z has the
meaning of comoving time of the FLRW space in which the
inhomogeneity is embedded.

By contracting the Brans-Dicke field equations (1.3) and
substituting [l¢ from Eq. (1.4) one obtains the Jordan
frame Ricci scalar

R = oVengV,Ing+— (3dv+4a’—v)

20+3\"dp ¢
. 3(6-1 :
- %v ¢vc¢+2v0[2(w+3) + 1}¢2ﬁ ! (3.15)

and, using Eq. (3.5),

ien(2
R =wVngV,Ing + 2V, [1 _w] 261

V20 + 3|

(3.16)
Since
daa
V,Ing = 1
uln® 2w +3] "
2m
+ Ot
(1 =2m/r)\/]20 + 3|(1 + 4a?) "
(3.17)
one obtains
R = —A(I”)\/TL?(V ‘21“’+3‘_2a)
1602 azwe4aat (\/ﬁ—Za)
' 2w + 3|
+ 4o A(r>m(—¢ul—+u*z“) -
20 + 3|(1 + 4a?)
. ezm(\/ézm—l)
3a . 261
+2Vy |l = —F———=sign(2w + 3
0|: |2a)+ 3‘ g ( ):| 0
—4aat (2(1—#) —L_ (+—2a>
e VEosl) A(r)Vind Vol ) (3.18)

The three terms which add up to compose the Ricci scalar
can vanish in special cases. The first term is absent if @ = 0
or a =0 or w = 0. The second term is absent if m = 0 or
@ = 0. The third term drops out if V; = 0 (which happens

PHYSICAL REVIEW D 96, 044040 (2017)

ifa = 0 ora®> = 3/4) orif ¢py = 0 (which is forbidden) or if
a = +/|2w + 3|sign(2w + 3)/3 = a,. Unless these three
terms disappear simultaneously, there is a spacetime
singularity at r = 2m for the parameter values for which
the exponent of A(r) in these terms is negative.

Regardless of the possible presence of a spacetime
singularity at r = 2m, the scalar field (3.3) always van-
ishes, and the effective gravitational coupling G diverges,
as r — 2m™, which is another physical pathology to be
avoided (e.g., [33,34]).

Assume that y # 1: then the vanishing of the areal radius
[given in Eq. (4.3) below] R = 0 corresponds to r = 2m
and to a central singularity if the Ricci scalar R diverges
there. When present, the singularity at R = 0 is timelike. In
fact, consider the surface of equation ¥(r) = r — 2m. The
direction of its normal is N, = V,¥ = §,, and

NCNC — gabNuNb =g

a 2a
_ ol I)A(r)y (3.19)

is positive for any r > 2m, hence it is non-negative in the
limit r — 2m™, making N° spacelike or null and the
surfaces W(r) = const. timelike or null (further, if y =0
then NN, is strictly positive and the singularity is time-
like). The singularity of the conformally related Fonarev
solution is timelike [15] and the conformal map respects
causality, hence the singularity obtained as the limit
r — 2m" is timelike. Therefore, when there is a naked
singularity, the geometry cannot be obtained as the devel-
opment of regular data on an initial Cauchy surface.

IV. INTERPRETATION OF THE SOLUTIONS

Let us interpret now the new solutions of Brans-Dicke
theory found by mapping back the Fonarev solution of GR
to the Jordan frame. We maintain the condition |a| < v/3/2
which now guarantees non-negativity of the Jordan frame
potential V(¢). We look for possible apparent horizons
and, if found, we attempt to identify them as black hole
horizons or wormhole throats." In general, dynamical
spacetimes do not admit event horizons and the best
substitute for the notion of horizon is the apparent or
trapping horizon (see Refs. [13,36,37] for definitions and
reviews of the related literature). A naked singularity is one
that is not covered by apparent black hole horizons.

The areal radius which is read off the geometry (3.11) is

1—

R(z,r) = S(x)A(r) = r. (4.1)

'We identify a wormhole throat with an apparent horizon with
radius corresponding to a double root of Eq. (4.2). Other authors
(such as [35]) have more stringent definitions of wormhole
throats.
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Apart from the special parameter value y = 1, the coor-
dinate radius » = 2m always corresponds to zero areal
radius R. Therefore, for y # 1 and assuming non-negative
mass parameter m, the physical range of the radial
coordinate is r > 2m (or R > 0). The apparent horizons,
when they exist, are located by the roots of the
equation [38]

VCRV,R = 0. (4.2)

In coordinates (z, r) the areal radius is

2a 1

vﬁifi)/4(r)%‘27izf(“*3;ﬁifi) ro(43)

R@A:J(

and, in order for it to be well defined and positive, it must be
r > 2m [except for the special case y = 1 in which the
exponent of A(r) vanishes]. Equation (4.2) takes the form

2 R __da__49
eZat(1—4a“)r2A(r) N

a2<1 _L
V2w + 3|

(4.4)

in coordinates (7, r). This form of Eq. (4.2) is useful when
the time coordinate ¢ cannot be used. For the parameter
values for which 7 is well defined, Eq. (4.2) can be written
in the form

2a

Am4xﬁﬁﬁ£:P—@+nﬂ? (4.5)

Equations (4.4) or (4.5) should be solved for r (or R) in
order to locate the radii of the apparent horizons (if these
exist). It is not possible to solve these equations analytically
except for special points in parameter space. Likewise, their
numerical solution requires the complete specification of

the values of the parameters (w, m, a, @). Let us examine
the solutions of Egs. (4.4) and (4.5) in special cases.

A. Special case 1 (x=0)

Let us consider the parameter value @ = 0 which trivially

satisfies the constraint |a| < 1/3/2 and makes the coor-
dinate transformation ¢ — 7 invalid. In this case the scalar
field potential V = V™ reduces to a mass term mg¢*/2
with

~ 3a®
m¢ = v/ 2V0 = 2V0 = E’

while y = |2w + 3|72, The Brans-Dicke spacetime is
given by

(4.6)

PHYSICAL REVIEW D 96, 044040 (2017)

ds? = —A(r) VErde? 4 2 [A(r) VEorldr?

+A(r)]_\/‘2+—+3lr2d9%2)}’ (4.7)
B(r) = doA(r) V5. (4.8)

Equation (4.4) becomes

1
a*e®r?A(r)? = [l 2 <1 +

" W)T (49)

which cannot be solved analytically for general values of
the parameters (a,m,w). For illustration, we consider
a #0 in conjunction with the special values of the
Brans-Dicke  parameter o = -2,-1 for  which
|2w + 3| = 1. Then Eq. (4.9) admits the single positive root

e—at

FAH = (4.10)
(where the subscript “AH” denotes apparent horizons) or,
since the areal radius is R(z,r) = re®,

Rpag = - (4.11)
The “background” cosmology is obtained by letting m go
to zero and it is a de Sitter space with Hubble parameter a,
constant scalar field ¢, and cosmological constant
A = 8xVypy = 3a’¢,. Therefore, this apparent horizon
always coincides with the de Sitter (cosmological) horizon
of the background, which is a null surface.

The minimal physical requirement that the Brans-Dicke
field

(4.12)

be positive imposes that r > 2m. Then the apparent
horizons exists only at comoving times

1
t<a'ln(—)=t,.
“ n<2ma> :

The effective coupling G neither diverges nor vanishes on
this apparent horizon because r = 2m [where A(r) van-
ishes] is distinct from rp, except at the time 7,. At =1, it
is rag = 2m and ¢ vanishes while G diverges.

(4.13)

B. Special case 2 (a=0)

The time scale of variation of the new Brans-Dicke
solution is, roughly speaking, a~!, therefore the limita — 0
makes this time scale infinite, yielding a family of static
solutions. In this case the coordinate transformation (3.9)
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degenerates and, using Egs. (3.6) and (3.3), one obtains the
geometry and Brans-Dicke field in coordinates (z, r)

ds* = _A(r)V‘L‘“2 (2(1 \/‘2:”_”‘) dr
—L(20+—~—
—|—A(r) \/1+4a2( \/m) er

———| 20+——
+A(r) 7=l *m)rzdggz), (4.14)

1

¢(},) — ¢0A(r) \2(»+3\(1+4(12)’

which are static, while V(¢) = 0. Equation (4.4) for the
apparent horizons degenerates and admits the double root

(4.15)

FaAH — m

[ o )

=(1+7)m, (4.16)

which corresponds to a wormhole apparent horizon pro-
vided that 7,y > 2m. This condition translates into

w+1
S 2T ites -3 417
s Ter (*17)
(w42
©W+2) <3 (418)

>2\/|2a)+3|

We further impose the condition |a| < v/3/2. Consider first
the situation in which @ > —3/2: then in order to satisfy
both (4.17) and |a| < /3/2 it must be

1
_o+. < é’ (4.19)
2V2w+3 2

which is equivalent to @ + 1 < /32w +3). If ® < -1
this inequality is always satisfied while, if @ > —1 both
sides of (4.19) are non-negative and we can square it,
obtaining y,(w) = @* —4w —8 < 0. The parabola of
equation | (w) has concavity facing upward, crosses the
o axis at w, =2(14++/3), and is negative if
w_ < w < ... Therefore, the restriction |a| < v/3/2 limits
the range of the Brans-Dicke parameter to

—%<a)<2(1+\/§)- (4.20)

Let us consider now the other situation w < —3/2: the
restriction |a| < v/3/2 is compatible with (4.18) only if

(w+2) V3
N (4.21)
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equivalentto —(w + 2) < /320 4+ 3|.If -2 < w < =3/2
the left-hand side of (4.21) is negative and its right-hand side
is non-negative, hence (4.21) is always satisfied. If instead
@ < -2, then both sides of (4.21) are non-negative
and we can square this inequality, obtaining w,(w)=
@? + 10w + 13 < 0. The parabola w,(w) has concavity
facing upward, crosses the w axis at wy = =5 +24/3,
and is negative if —5 —2v3 < @ < 2. Therefore the
condition |a| < v/3/2 imposes the restriction on the range
of the Brans-Dicke parameter

-5-2V3 <w < -3/2. (4.22)

The wormhole apparent horizon has areal radius

1—y
y—1\7
Ran =m(l +7) (—) .

o (4.23)

Let us discuss the causal nature of this apparent horizon,
which is the surface of equation f(r) =0, where

f(r)y=r—(y+1)m. The normal to the surfaces
J = const. has components
N, =V, f =6,. (4.24)
its norm squared is
NN = gV, fV,f = g7 = A(ry.  (4.25)
and on the apparent horizon it is
—1\7
NN, = () (4.26)
AH y + 1

If y> 1 the normal N“ is spacelike and the apparent
horizon is a timelike surface, while it is null if y = 1. The
fact that this static apparent horizon is timelike for y > 1 is
in apparent contradiction with the well-known statement of
GR [39] that in stationary situations apparent horizons and
event horizons (which are null) coincide. However there is
no real contradiction here because the proof of this state-
ment requires the dominant energy condition [39], which
cannot be imposed on the Brans-Dicke scalar field.” The
Brans-Dicke field ¢ does not diverge nor vanish on the
apparent horizon (4.16).

The new family of static Brans-Dicke solutions obtained
for a =0 contains, as a special case, another class of
known solutions, the Campanelli-Lousto class [25], which
is obtained when

*The effective stress-energy tensor of ¢ in the right-hand side
of Eq. (1.3) contains second order derivatives which have
indefinite sign, contrary to the canonical products of first order
derivatives. In addition to the fact that the sign of the coefficient @
can be negative, this fact makes the sign of the effective energy
density indefinite.
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3 1
w>——=, X = 4.27
2 22w + 3 ( )

The Campanelli-Lousto family is given by

ds* = —A(r)»tde? + A(r)=%~1dr? —I—A(r)_“f’rzd!lfz),
(4.28)

ap—bo

b= doA(r) =, (4.29)

where ag, by, and ¢ are constants, with the first two related
to the Brans-Dicke parameter by

—2(a3 + b3 — agby + ag + by)
(ag — by)?

and V(¢) =0 [25]. The metric and Brans-Dicke field
satisfy the field equations

(ag, by) = (4.30)

VvV V
LR N R

Rab ¢2 ¢ P

(4.31)

O¢ = 0. (4.32)

The correspondence with our a = 0 line element (4.14)
gives

ag=—1+ (4.33)

1 1
s (20 ———),
\/1+4a2< V20 + 3|

1 1
by=-1——— (20— — |, 4.34
0 \/1+4a2< \/|2a)+3|) (4.34)

while the correspondence with our @ = 0 Brans-Dicke field
(4.15) yields

apg — b() 2
= . 4.35
2 V1 +4a? ( )

Setting, for consistency, this value equal to the value of
(ag — by)/2 obtained from Egs. (4.33) and (4.34), which

is 1/+/]2w + 3|(1 + 4a?), gives the special value of the
a-parameter

- (4.36)

2w +3]

Then it must be

PHYSICAL REVIEW D 96, 044040 (2017)
2

P I S— 437
0 VI+ 2w+ 3 (4.37)
by = —1. (4.38)

Finally, the relation (4.30) must also be reproduced. Using
the values (4.37) and (4.38) of aq and b, one has

—2(ag + b§ — agbg +ap +by) _ |20 +3| -3
(ao = bo)? 2

(4.39)

If w > —3/2 this expression reduces’ to w. Therefore, the
Campanelli-Lousto family of static, spherically symmetric,
asymptotically flat solutions of Brans-Dicke gravity is
reproduced by our new solutions when a = 0, @ > =3/2,

and a =5 lewﬁ It is now established that the Campanelli-

Lousto spacetimes describe wormhole geometries [26].

C. Special case 3 (a*=3/4)
In the special case a® = 3/4 it is a = 6 = +/3/2 and

ds? = —A(r) Wz
gt
+ S(2)[A(r) (+r:7) dr’

AR (*ﬁ) rdQl, |, (4.40)

4a 1

$(z.1) = do[S(@)VErrA(r)VEEL (4.41)

For a = +v3 /2 the Fonarev solution reduces to the
Husain-Martinez-Nufiez geometry [24], as already noted.
The Jordan frame counterpart of the Husain-Martinez-
Nufiez solution of GR, which is a solution of Brans-
Dicke theory without potential, was derived in Ref. [18] as

a 1—+>
ds* = —A(r) < Vies)/ dr?

2<mfﬁ) (1 1 )
4+ 7 Vw5 [A(r)_a + 32wi3) er
1_(’<1+¢nT—+s>) 2 1002
+A(r) ) A, ], (4.42)
2 1
p(z.r) = T\/3(2a)+3)*1A(r)i2\/m' (4.43)

It is straightforward to check that, if w > —3/2 and
a=+/3/2, Egs. (4.42) and (4.43) coincide with our

3Since there is no potential, the restriction |a| < V3 /2 does not
apply.

044040-9



VALERIO FARAONI and SHAWN D. BELKNAP-KEET

Egs. (4.40) and (4.41), respectively (our solution is slightly
more general as it allows for @ < —3/2 and a = —/3/2).
Therefore, for these parameter values, the Brans-Dicke
solution which is the Jordan frame counterpart of the
Fonarev solution of GR reduces to the Einstein frame
sibling of the Husain-Martinez-Nufiez geometry found in
[18] and discussed in Refs. [13,40], in which it is found that
only wormholes or naked singularities appear, as the
remaining parameters @ and a vary.

D. The w — oo limit

Let us analyze now the limit @ — oo, in which Brans-
Dicke theory is usually believed to converge to GR [41]. A
complete and rigorous analysis of the limit of a family of
solutions of a theory of gravity as a parameter of the
family diverges would require coordinate-independent
methods [42], but a more standard approach suffices here.
Let us discuss the situation in which the parameters a
and w are independent of each other. Then, in the limit
@ — oo the scalar field (3.3) becomes constant, ¢ — ¢,
and the potential reduces to a constant, V(¢) — ‘70¢<2)~ This
introduces the cosmological constant A = 8ﬂ\70¢(2) =
a*(3 —4a*)p3. The line element (3.6) reduces to the
Fonarev line element (2.1) as @w — oo. Therefore, one
obtains the Fonarev geometry and a cosmological constant
as the only effective matter source. This is not a solution of
the vacuum Einstein equations (we know well that the
Fonarev solution corresponds to a minimally coupled scalar
field with an exponential potential and no cosmological
constant as the matter source). The fact that vacuum or
electrovacuum solutions of the Brans-Dicke field equations
fail to reproduce the corresponding solution of GR is well
known [43] and the reason for this behavior has been
discussed in the literature [44].

The failure of a Brans-Dicke solution to reproduce the
corresponding GR solution as @ — oo has been linked to
the fact that, in this limit, one expects the Brans-Dicke
scalar field to have the asymptotics ¢ = ¢y + O(1/w) +
-+ while the solutions giving the “incorrect” limit exhibit
instead the asymptotics ¢ = ¢y + O(1//|w]) + - -
Therefore, while one would normally expect ¢ to become
constant as @ — oo and all its gradients to disappear from
the Brans-Dicke field equations (1.3), when ¢ has the
“anomalous” behavior the term

1
Aab = % (va¢vb¢ - Egabchﬁchﬁ)
= w(Va IngV,Ing — %gabvc Ing$V,In g{)) (4.44)

on the right-hand side of these equations does not disappear
but remains of order O(1). This is exactly what happens
with the conformal cousin of the Fonarev solution. In fact,
Eq. (3.3) yields

PHYSICAL REVIEW D 96, 044040 (2017)
_ 16a2a2w6ﬂ05y0
i 2w + 3|
4 8maaw(5ﬂl5y0 + 51405’/1)
20 + 3|V1 + 4a*r*(1 = 2m/r)
n 4m2a)5ﬂ15y1
120 + 3|(1 + 4a®)r*(1 = 2m/r)*

(4.45)

As @ — oo the tensor A, tends to

A, ~ 8ata?sign(w)8,06,0
N 4maasign(w)
V1 +4a?r*(1 =2m/r)
2m?
1+4a®)r*(1 =2m/r)

(5/4151/0 + 5;405v1 )

+ ( 5 6,10,1» (4.46)
which is of order unity.

In the special case 1 (corresponding to Sec. I[IVA) with
@ = —2,—1 and in the special case 2 (corresponding to
Sec. IV B) previously examined, the parameter @ can only
assume values in a finite range and the limit @ — oo cannot
be taken.

V. GENERATING NEW SOLUTIONS
OF f(R) GRAVITY

As is well known, f(R) gravity is equivalent to an w = 0
Brans-Dicke theory with Brans-Dicke scalar ¢ = f'(R)
subject to the potential (1.12), where R = R(¢) is a
function of ¢ = f'(R) usually defined implicitly [8].
One wonders whether the Jordan frame counterpart of
the Fonarev solution can also be an analytic solution of
f(R) gravity.* For this to be true, one must set @ = 0 and
[cf. Eq. (3.5)]

Vol (R)]¥ = Rf(R) = f(R).f=1-aV3. (5.1)
It is easy to see that the functional form f(R) = uR"

(where u and n are constants) satisfies Eq. (5.1) provided
that

n

p= m (5.2)
-1

Vo =" n . (5:3)

which require n # 1 (for n = 1 the theory reduces to GR).
By comparing Eq. (5.2) with # = 1 — a/3 it follows that
the parameter a of the family of solutions is

“In some respect similar, a correspondence between solutions
of f(R) = R" gravity and Einstein-conformally invariant Max-
well theory (in D dimensions) was pointed out in Ref. [45].
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TABLE I. A summary of the special cases studied.

Case ® a Apparent horizons

Special case 1 (Sec. I[VA) examples; 0 -2,-1 #0 Rpy = 1/a de Sitter horizon
v — m5,¢2/2 exists for 7 < t,

Special case 2 (Sec. IV B) static solutions, any 5-23<w<-3 /2 0 wormbhole throat at

V = 0; contains Campanelli-Lousto wormholes
as the subcase w > —3/2, a = (2y/2w + 3)7'/2

(y=1)0-n/2
(y+1)~00/2
timelike if y > 1, null if y = 1

RAH:m

Special case 3 (Sec. IV C) contains solutions +/3 /2 #-3/2 # (0 wormhole throat or
of [18,40] as the subcase w > —3/2, a = v/3/2 naked singularity
. n-=2 (5.4) where in the last equality we used Eq. (5.5) and we note that
S 2V3n-1) ' 46% — 26 + 1 > 0 for any value of ¢. By imposing that this

In particular, the conformal cousin of the Husain-Martinez-
Nufiez solution obtained for a = ++/3 /2 is a solution of
f(R) = uR" gravity for n = 1/2,5/4. For these values of
the parameter n, R" gravity is ruled out by Solar System
experiments [46], but it is anyway interesting to add one
more formal solution to the very scarce catalogue of
analytic inhomogeneous solutions of f(R) gravity.

The potential (1.12) is no longer required to satisfy
la| </3/2, but one has V, > 0 if n > 1. Solar System
constraints require n =146 with ¢ = (1.1 £1.2) x
107> [46,47], while any f(R) theory is required to satisfy
f' > 0 in order for the graviton to carry positive energy and
f" > 0 for local stability [8,48]. In the cosmological setting
these requirements are satisfied if n = 1 + ¢ with ¢ > 0.
Then

1=
a = — ( 0-) . ﬁ =
2\/§6
(with @ < O for realistic theories), which gives the line
element in the form

- (5.5)

1L 2(-0)ar
ds? = —A(r) Vil e Ve df?

(1--20)at 1-20

+ e S A () ViR dr?

1-20

FA(Ve i P2 ). (5.6)
For consistency it must then be
¢=f(R)=mR"" =(1+0uR?.  (57)

This equation can be checked using the expression (3.3) of
the Jordan frame Brans-Dicke field obtained by setting
w=0,

1

P(1.7) = ocFA(r) V0 (5:8)
_ o T (5.9)

scalar field be equal to f'(R) = (1 + o)uR’ one obtains
the expression of the Ricci scalar

1/0' =2(1-0)at L
R = [&} G%A(r)\ﬂlnz—ﬂﬂrl’ (510)

(I+o)u

which can be compared with the expression (3.18) of the
Ricci scalar already computed. For @ = 0 the latter reduces
exactly to Eq. (5.10) upon use of Egs. (5.3) and (5.5).

VI. CONCLUSIONS

The Fonarev solution of the Einstein equations which
has a scalar field with exponential potential as the matter
source has been mapped to the Jordan frame of Brans-
Dicke theory, generating a new 4-parameter family of
solutions of the vacuum Brans-Dicke field equations [
is a parameter of the theory and (m, a, &) are parameters of
the specific solution of this family]. Notably, the potential
for the Brans-Dicke field in the Jordan frame is a power-law
or inverse power-law potential, which is physically well
motivated and is used extensively in cosmology and
particle physics [31]. The solutions are spherically sym-
metric, inhomogeneous, time-dependent, and asymptoti-
cally FLRW. Special cases include the conformal version of
the Husain-Martinez-Nufiez solution of GR with free scalar
field [24] found in Ref. [18] using the same technique
employed here, and the Campanelli-Lousto solution [25],
which is now known to describe a wormhole [26], in
agreement with our more general discussion of the case
a = 0. Table I summarizes the cases and subcases studied
in the previous sections.

It turns out that the conformal relative of the Fonarev
geometry thus obtained is also a solution of f(R) = uR"
gravity. To the best of our knowledge only one other
analytic solution of this theory with the same properties
(i.e., spherical, inhomogenous, dynamical, and asymptoti-
cally FLRW) is known [49].

In order to interpret physically the conformal relative of
the Fonarev solution, it is necessary to solve the equation
V¢RV_.R = 0 locating the apparent horizons and assess
when solutions exist. Unfortunately, this is a transcendental
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equation which would require the complete specification of
the values of the four parameters and, even then, it cannot
be solved analytically. We have, nevertheless, considered
special cases for illustration, in which the geometry
describes a wormhole throat or a naked singularity.
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