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The Ostrogradski ghost problem that appears in a higher-derivative system is considered for theories with
constraints. A new prescription for removal of the ghost-creating momenta that come along the constrained
systems is described based on the Dirac’s constraint analysis. It is shown how one can make the canonical
Hamiltonian bounded from below by systematically removing the constraints appearing in the system,
thereby reducing the effective dimension of the phase space. To show the effect of higher-derivative terms,
we consider the singularity-free Gauss-Bonnet theory coupled via a matter field to the Einstein-Hilbert
action. Finally, we construct the canonical Hamiltonian for the theory that is bounded from below.
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I. INTRODUCTION

Higher-derivative (HD) theories have persuaded the
physics community for their usefulness in the field theoretic
context. By higher derivative, we mean that the fields
appearing in the action have a time derivative more than 1.
Historically, these HD terms were added to the Lagrangian
for renormalization [1–3], perturbative corrections [4]. Also,
they frequently appear in diverse fields like relativistic
particle [5], string theory [6] and general relativity [7–10].
Right from the inception of the higher-derivative theo-

ries, they were diagnosed with a problem called the
Ostrogradski ghost problem [11,12]. The ghost fields are
nothing but some unphysical field arising in the theory that
gives rise to the negative norm states while quantizing the
theory. More precisely, in the canonical Hamiltonian,
there may appear terms linear in momenta of the higher-
derivative fields. Because of this, the Hamiltonian is not
bounded from below, which exactly creates the problem
as the negative energy states propagate the whole phase
space and give rise to instabilities. Although Ostrogradski
pointed out that only nondegenerate theories will have
the ghost problem, here we show that, at the classical
level, degenerate theories will also consist of terms in the
canonical Hamiltonian that cause the instabilities. So, in
the case of both degenerate and nondegenerate theories, the
Ostrogradski ghost problem can appear at the classical
level. These instabilities sometimes are of tachyonic nature
depending upon the wave function, if it is oscillatory.
Over many decades, there were numerous attempts to

solve the problem of these negative norm states by different
authors. For example, one possible way to remove the ghost
fields by applying some boundary conditions was sug-
gested; e.g., in Ref. [13], the ghost free version was
obtained by applying the Neumann boundary condition
in the wave function. Also, Bender and Manheim showed
in Ref. [14] that for a specific class of theories with PTs

symmetry the ghost fields behave as usual fields and give
positive PT norms. For the theories with no constraints, it
was suggested in Ref. [15] to consider some external
relations between the phase space variables, thereby
decreasing the number of degrees of freedom. Recently,
the authors in Ref. [16] showed that for massive and
bimetric gravity theories there appear two second-class
constraints which in turn help to eliminate the ghost field
and its corresponding momenta. There has been much work
done very recently to find ghost-free massive gravity
theories [17]. The ghost fields are not always “bad;” in
some cases, despite that they are present in the theory, they
do not pollute it. As in Ref. [18], the massive gravity theory
was having a negative energy state, but it was from a
disjoint branch and hence cannot communicate to the
positive energy states, thus leading to no instability.
There are also attempts to remove the ghosts by considering
an infinite set of higher-derivative terms, in particular, in
the form of an exponential [19]. In Ref. [20], the ghost-free
states were found for the linearized gravity with the Gauss-
Bonnet couplings in the Randal-Sundurum picture. For
degenerate gravity theories, Ostrogradski ghost removal
was discussed in Ref. [21].
The Einstein-Hilbert action by definition contains

higher-derivative terms of the field gμν, but it is easy to
point out that these higher-derivative terms actually are
surface terms that can be neglected while considering the
integrations. On the other hand, usual gravity theories are
not renormalizable unless higher-derivative terms are added
[1]. For that reason, the higher-derivative terms are inevi-
table in gravity theories. There are two ways by which HD
terms enter into the gravitational action. One is directly as a
function of higher curvatures like fðRÞ or via the matter
fields. This type of models of adding matter fields is a direct
implication that one can get from the compactification of
Kaluza-Klein theories. In this paper, we will restrict
ourselves only in the higher curvatures. For that, as a
viable HD term, we consider the Gauss-Bonnet gravity.
The Gauss-Bonnet term is a special combination of the*biswajit.thep@gmail.com
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curvature squared terms (R2, RμνRμν; RμνρσRμνρσ), which is
actually a surface term added to the action. But it is very
important for explaining dark energy [22], the inflationary
scenario [23], the bouncing universe [24], implications of
massive gravity [25], brane world gravity [26], etc. [27].
Very recently, the coupling parameters for the Gauss-
Bonnet terms were proposed based on the results of
BICEP2 and Planck [28]. Discussions on the stability
conditions of the vacua in Gauss-Bonnet gravity can be
found in Ref. [29].
In this paper, we first describe, in detail, how the ghosts

appear via the canonical Hamiltonian and thereafter
describe a procedure for removing these ghosts. To apply
this method in models, we first consider the Einstein-
Hilbert action and then add a Gauss-Bonnet term that is
coupled via a field-dependent coupling parameter [30,31].
It is worth mentioning that, although these two models are
independent of the ghosts, at first glance, the ghost-creating
momenta appear in the canonical Hamiltonian and make
the theory appear as if it is ghost dependent. The method
described in this paper is quite capable of removing these
ghosts from the system. The Gauss-Bonnet model has a
singularity-free solution with conditions on the coupling
parameter. With the Friedmann-Robertson-Lamitre-Walker
(FRLW) background, we found the metric in the preferred
minisuperspace version after Arnowitt-Deser-Misner
(ADM) decomposition [32–34]. Since it is a higher-
derivative system, we adopt the first-order formalism
[35,36] and rename all the field variables to apply the
Hamiltonian formalism. We found out that the system has
constraints and therefore followed the Dirac constraint
analysis to find out all the constraints in the system
[37,38]. We construct the canonical Hamiltonian and find
that there are terms linear in momenta of the fields. The
momenta that correspond to the higher-derivative fields can
give rise to negative norm states. To get rid of them, we
eliminate these momenta from the canonical Hamiltonian.
Accordingly, we remove the momenta appearing in the
constraints by solving the second-class constraints. It is to
be noted that the ghost-creating momenta will be appearing
in some of the constraints, which may be first class or
second class in nature. If they are second class, we can
solve the constraints for the momenta and replace it in the
canonical Hamiltonian. On the other hand, if the momenta
appear in the first-class constraints, we need to introduce
gauge conditions. For this model, all the constraints
obtained are found to be second class in nature.
Essentially, after solving the constraints, all the Poisson
brackets in the system have to be replaced by Dirac
brackets, which, during quantization, will play the role
of commutators. Based on this concept, for theories with
constraints, we showed how to systematically construct the
ghost-free Hamiltonian that is independent of the linear
dependence of the momenta corresponding to the higher-
derivative field(s). The prescription presented here may be
useful in models from different fields, although a general
proof is warranted to value the method more.

The paper is organized as described. In Sec. II, we
describe the general procedure for how the momenta appear
by default in the canonical Hamiltonian for a higher-
derivative theory. We also describe, for a constraint theory,
how to remove these fields by considering the second-class
constraints in the reduced phase space. In Sec. III, we
consider the Einstein-Hilbert action with the FRLW back-
ground spacetime. Adopting the first-order formalism, we
perform the Hamiltonian formulation and finally find out
the ghost-free version of the canonical Hamiltonian. In
Sec. IV, we add the Gauss-Bonnet term via a matter field to
the Einstein-Hilbert action and construct the canonical
Hamiltonian in the first-order formalism. We solve the
second-class constraints appearing in the system to find out
the final form of the ghost-free canonical Hamiltonian.
Also, we compute the corresponding Dirac brackets
between the canonical variables in the reduced phase space.

II. OPEN-ENDED HIGHER-DERIVATIVE
THEORIES: GENERAL PRESCRIPTION

The Lagrangian of a HD theory of an nth-order deriva-
tive in time is generally written as

L ¼ fðq; _q; q̈;…:qðnÞÞ: ð1Þ

The Lagrangian is a function in the configuration space,
which consists of the field (q) and its time derivative(s). We
convert the Lagrangian into first-order theory by incorpo-
rating the variables

q1 ¼ q; q2 ¼ _q…: qn ¼ qðn−1Þ: ð2Þ

So, the Lagrangian in the first order is written as

L0 ¼ Fðq1; q2; q3…:: _qnÞ þ
Xn
i¼1

λiðqiþ1 − _qiÞ: ð3Þ

Here, these λi are the Lagrange multipliers multiplied to
the constraints that appeared due to the redefinition.
Consequently, the dimension of the configuration space
is increased. The momenta in this formalism can be
written as

pi ¼
∂L0

∂ _qi ¼
∂F
∂ _qi − λi; i ¼ 1; 2…ðn − 1Þ ð4Þ

pλi ¼
∂L0

∂ _λi
¼ 0: ð5Þ

The constraint pλi is obvious and will be generated every
time while defining the new fields. However, we should not
bother about this as these fields are nondynamical and can
eventually be set up to zero at the end. The character of pi ’s
is important. The function ∂F

∂ _qi is zero other than for i ¼ n
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depending on the nature of Fðq1; q2::: _qnÞ. The Poisson
brackets between the canonical variables Qi ≡ fqi; qλig
and their corresponding momenta Pi ≡ fPi; Pλig are

fqi; pjg ¼ δij: ð6Þ

Surely, Eqs. (4) and (5) lead to primary constraints, and
hence the momenta will not be a function of the derivative
of the corresponding field. Thus, the primary constraints
are written generally as

Φi1∶pλi ≈ 0; Φi2∶pi −
∂F
∂ _qi þ λi ≈ 0: ð7Þ

The canonical Hamiltonian is

Hc ¼ p1 _q1 þ p2 _q2 þ pλ _qλ − L0

¼
Xn−1
i¼1

piqiþ1 þ hðq1; q2…qnÞ: ð8Þ

In the canonical Hamiltonian (8), the first term consists of
(p,q), but the rest of the terms will also be simplified to
make the Hamiltonian a function of the phase space
variable once we consider the explicit form of the functions
hðq1; q2…qnÞ. What is important to look for in the
Hamiltonian is that there are terms proportional to pi.
These terms can span in the whole phase-space region and
consequently make the canonical Hamiltonian negative.
This states that the Hamiltonian is not bounded from below
and can range between both the positive or negative axis,
i.e., with an open-ended solution. Therefore, in the quan-
tum picture of the theory, there appear negative norm states
that are known as ghost states. This is essentially a
manifestation of the Ostrogradski theorem. It is interesting
to see that renaming the variable to look at it as if a first-
order theory and also by defining the momenta in the usual
way does not help us to get rid of the negative Hamiltonian.
This general discussion reveals that the appearance of the
HD momenta making the canonical Hamiltonian negative
is an inherent character for any HD theory.

A. Removing ghost degrees of freedom
using constraints

What have we understood until now is that in the HD
theory the Ostrogradski ghosts will eventually appear, and
that is evident from the canonical Hamiltonian. As men-
tioned in the Introduction, for their removal, there are
several methods available in the literature for the non-
degenerate theories. But for degenerate theories, a less
introspected way may be followed when the ghost-creating
momenta are involved in the constraints. In Eq. (7), we get
the set of primary constraints in which the set of momenta
pi appear. Also, we notice that this set of momenta pi
appearing in the canonical Hamiltonian are responsible for

creating the negative norm states. Away out can be removal
of these momenta by solving the constraints as at the end in
the physical phase space the constraints will eventually be
removed. For that, it is essential that we should get the full
constraint structure. Let us write down a general form for
the total Hamiltonian, which is given as

HT ¼ Hc þ
Xn
i¼1

uiΦi1 þ
Xn−1
i¼1

uiΦi2: ð9Þ

The evolution of the primary constraints may give rise to
secondary constraints, and in a similar way, we get tertiary
constraints and so on. Once we have all the constraints, we
can further categorize them as first class or second class.
This division is essential, as we can know about the gauge
symmetries of the system also [35,37]. Solving the con-
straints, let us reduce the dimension of the phase space, a
way out mentioned in Ref. [15] for nondegenerate HD
theories. The same can be done at the expense of the second-
class constraints. Now, there may arise two conditions:

(i) The canonical Hamiltonian is a first-class constraint.
This means there will be no more generation of the
constraint. Since the theory has first-class constraints
at the primary level, there is a gauge degree of
freedom. The dimension of the phase space can be
reduced by incorporating external condition on an
ad hoc basis. These are called gauge conditions.
These gauge conditions make the first-class con-
straints second class. Next, we solve all these second-
class constraints and incorporate Dirac brackets. The
canonical Hamiltonian becomes free from the mo-
menta that were the source of instabilities.

(ii) The canonical Hamiltonian is a second-class con-
straint. In this case, there will be more constraint
arising in the theory. The reduced dimensionality of
the phase space can be obtained by setting these
second-class constraints to zero. Then all the Pois-
sion brackets (PB) of the theory is replaced by the
Dirac brackets.

So, reduction of the degrees of freedom is a must. In the
squeezed phase space, the proper choice of the canonical
variables can be made by inspecting the corresponding
brackets. Thereafter, it will be a ghost-free theory. Between
any two functions f and g of the canonical variables, Dirac
brackets are defined as

ff; ggD ¼ ff; gg − ff;ΨigΔ−1
ij fΨj; gg; ð10Þ

where Δij is the Poisson bracket matrix of the second-class
constraints.

III. EINSTEIN-HILBERT ACTION IN
MINISUPERSPACE

We consider the metric of the FRLW kind as

ds2 ¼ −dt2 þ da2 þ a2dΩ2
3; ð11Þ
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where dΩ2
3 is the metric for the unit 3-sphere. We para-

metrize the brane using the parameter τ as

xμ ¼ XμðξaÞ ¼ ðtðτÞ; aðτÞ; χ; θ;ϕÞ; ð12Þ

and aðτÞ is known as the scale factor.
After ADM decomposition with spacelike unit normals

[NðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − _a2

p
is the lapse function],

nμ ¼
1

N
ð− _a; _t; 0; 0; 0Þ; ð13Þ

the induced metric on the world volume is given by

ds2 ¼ −N2dτ2 þ a2dΩ2
3: ð14Þ

Computation of the Ricci scalar is straightforward and is
given by

R ¼ 6_t
a2N4

ðaä _t−a _a ̈tþN2_tÞ: ð15Þ

The Lagrangian corresponding to the standard Einstein-
Hilbert action with the nonzero cosmological constant is

L ¼ ffiffiffiffiffiffi
−g

p �
α

2
R − Λ

�
: ð16Þ

The Lagrangian in terms of the fields with arbitrary
parameter τ can be written as [33,34]

LðN;N0; a; a0; a00Þ
¼ a

NðτÞ2 ð−3aa
0N0ðτÞ þ 3NðτÞðaa00 þ a02Þ

þ NðτÞ3ðΛa2 þ 3ÞÞ: ð17Þ

Here, “prime” refers to differentiation with respect to
parameter τ. Note that the Lagrangian (17) contains higher-
derivative terms of the field a. However, we can write it
as [33]

L ¼ −
aa02

N
þ aNð1 − a2H2Þ þ d

dτ

�
a2a0

N

�
: ð18Þ

The above Lagrangian (18) has total derivative term
that actually vanishes while performing the integrations,
but we will keep this term, as it carries information
about the entropy of the system. With the redefinition of
the fields

a0ðτÞ ¼ AðτÞ; ð19Þ

we obtain the first-order Lagrangian, which is given by

L ¼ a
NðτÞ2 ð3NðτÞðaA0 þ A2Þ − 3aAN0ðτÞ

þ NðτÞ3ðΛa2 þ 3ÞÞ þ λaðA − a0Þ: ð20Þ

Here, we incorporated the constraint due to field redefini-
tion via the Lagrange multiplier λaðτÞ. The Euler-Lagrange
equations of motion are

aðτÞ∶ 6aA0

NðτÞ−
6aAN0ðτÞ
NðτÞ2 þλ0aþ3NðτÞðΛa2þ1Þþ 3A2

NðτÞ¼ 0

ð21Þ

AðτÞ∶ 6aðA − a0Þ þ NðτÞλa
NðτÞ ¼ 0 ð22Þ

NðτÞ∶ að6Aa0 þ NðτÞ2ðΛa2 þ 3Þ − 3A2Þ
NðτÞ2 ¼ 0 ð23Þ

λaðτÞ∶ A − a0 ¼ 0: ð24Þ

We construct the phase space in the next subsection for
Hamiltonian formulation.

A. Constructing ghost-free Hamiltonian

The phase space is constructed out of the variables
fNðτÞ; aðτÞ; AðτÞ; λaðτÞg, and their correspondingmomenta
are fΠNðτÞ;ΠaðτÞ;ΠAðτÞ;ΠλaðτÞg. Since the Lagrangian is
in first-order form, themomenta defined in the usual way are

ΠN ¼ −
3a2A
NðτÞ2 ; Πa ¼ −λa;

ΠA ¼ 3a2

NðτÞ ; Πλa ¼ 0:

None of the momenta here is invertible with respect to the
corresponding velocity; hence, we can construct the pri-
mary constraints as

Φ1 ¼ ΠN þ 3a2A
NðτÞ2 ≈ 0; Φ2 ¼ Πa þ λa ≈ 0;

Φ3 ¼ ΠA −
3a2

NðτÞ ≈ 0; Φ4 ¼ Πλa ≈ 0:

The nonzero Poisson brackets between the primary con-
straints are

fΦ1;Φ2g¼
6aA
NðτÞ2 ; fΦ2;Φ3g¼

6a
NðτÞ ; fΦ2;Φ4g¼ 1:

It seems that all the primary constraints are second class
in nature. If we replace Φ1 by the combination ξ1 ¼
Φ1 þ 6aA

NðτÞ2 Φ4, we get ξ1 as first class at this level. But
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we are not interested in exploring the gauge symmetries, so
let us make use of these second-class constraints. Next, we
construct the canonical Hamiltonian, which is given by

Hcan ¼ −
3aA2

NðτÞ þ AΠa − aNðτÞðΛa2 þ 3Þ: ð25Þ

Surely, this Hamiltonian is not bounded from below due to
the existence of the momenta Πa. Now, the total
Hamiltonian is given by

HT ¼ Hcan þ Λ1ξ1 þ Λ2Φ2 þ Λ3Φ3 þ Λ4Φ4: ð26Þ

To see the time evolution of the primary constraints, we
compute the Poisson brackets between the primary con-
straints and total Hamiltonian, which give

fξ1; HTg ¼ a

�
Λa2 þ 3A2

N2
þ 3

�
; ð27Þ

fΦ2; HTg ¼ 3

NðτÞ ð2Λ3aþ NðτÞ2ðΛa2 þ 1Þ þ A2Þ

× NðτÞ þ Λ4 ð28Þ

fΦ3; HTg ¼ −
6aðΛ2 − AÞ

NðτÞ þ λa ð29Þ

fΦ4; HTg ¼ −Λ2 þ A2: ð30Þ

Equating (30) them to zero, we get Λ2 ¼ A2. Now,
demanding equating (29) and (27) to zero and using
Λ2 ¼ A2, we get two secondary constraints:

Ψ1 ¼ a

�
Λa2 þ 3A2

NðτÞ2 þ 3

�
≈ 0; ð31Þ

Ψ2 ¼ λa ≈ 0: ð32Þ

Nonzero Poisson brackets between the primary and sec-
ondary constraints are

fΦ1;Ψ1g ¼ −
6aA2

NðτÞ3 ;

fΦ1;Ψ2g ¼ −
6aA
NðτÞ2

fΦ2;Ψ1g ¼ 3Λa2 þ 3A2

NðτÞ2 þ 3;

fΦ3;Ψ1g ¼ 6aA
NðτÞ2 ;

fΦ4;Ψ1g ¼ −1:

Time conservation of the secondary constraints (31) and
(32) gives

fΨ1;HTg¼
6Λ1aA2

NðτÞ3 −
6Λ3aA
NðτÞ2 þΛ2

�
−3Λa2−

3A2

NðτÞ2−3

�
;

fΨ2;HTg¼
6Λ1aA
NðτÞ2 þΛ4: ð33Þ

Using the equations in (33) and (28), one can in principle
solve Λ1, Λ3, and Λ4. But it turns out that they are not
independent, and so Λ1 remains undetermined. The sol-
ution is

Λ3 ¼
Λ1A
NðτÞ −

Λa2NðτÞ2 þ A2 þ NðτÞ2
2a

;

Λ4 ¼ −
6Λ1aA
NðτÞ2 :

Thus, the constraint chain stops here. The existence of the
undetermined multiplier Λ1 signals that there is gauge
symmetry present in the system, which we know as the
diffeomorphism. The primary first-class constraint can
emerge if we take the field redefinition (N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − _a2

p
)

as worked out in Ref. [34]. But here we only need the
second-class constraint to go through the process, as first-
class constraints also can be made second class by
incorporating the gauge conditions. Now, we solve the
constraints Φ2 and Φ4 to remove the unphysical variables
λa and its corresponding momenta Πλa . We solve the
second-class constraint Φ2 using Ψ2 form (32) and get

Πa ¼ 0: ð34Þ

As the second-class constraints are directly related to the
degrees of freedom count, we should always remove them
in pairs. So, we also choose Ψ1 for removal. The canonical
Hamiltonian after solving Ψ2 is

Hghost-free ¼ −
3aA2

NðτÞ − aNðτÞðΛa2 þ 3Þ: ð35Þ

From the above equation (35), we can clearly see that the
Hamiltonian is free from the unwanted momenta and hence
does not have any negative norm states.
The expression for the Hamiltonian is interesting, as it

matches with Ψ1 (31). This is expected, as it is the very
well-known Hamiltonian constraint. One should remember
that at this stage we have to consider the Dirac brackets to
replace all calculations involving Poisson brackets. Since
all the constraints have become second class, they are just
identities, and hence one can be replaced with respect to the
others, to have a viable representation of the theory. To
compute the Dirac brackets between the variables, we list
below all the second-class constraints [after removing the
Lagrange multiplier fields ðλa;ΠλaÞ]:
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S1 ¼
3a2A
NðτÞ2 þ ΠN S2− ¼ ΠA −

3a2

NðτÞ

S3 ¼ −ΛaðτÞ2 − 3AðτÞ2
NðτÞ2 − 3 S4 ¼ ΠaðτÞ:

A degrees-of-freedom count is necessary for the fact to
validate the theory. In this theory, the degrees of freedom in
the reduced phase space are 2× (total number of phase
space variables)—(2× number of first-class constraints þ
number of second-class constraints)¼ 2×4−ð2×0þ6Þ¼2.

This degrees-of-freedom count agrees with the standard
gravitational results. The matrix Δij ¼ fSi; Sjg is given by

2
666664

0 0 0 6aA
NðτÞ2

0 0 −Πa − 6a
NðτÞ

0 Πa 0 −2Λa2NðτÞ
− 6aA

NðτÞ2
6a
NðτÞ 2Λa2NðτÞ 0

3
777775
:

Below, we list all the nonzero Dirac brackets (10) between
the fields:

fNðτÞ;ΠNgD ¼ 1

fa;ΠNgD ¼ −
1

NðτÞ5 ð3a
2ð2að2A2ðΛNðτÞ4 þ 3Þ þ 3NðτÞ2Þ þ ANðτÞ3ΠaÞÞ

fa;ΠagD ¼ 1

NðτÞ4 ð6aANðτÞ3Πa þ 36a2ðA2 þ NðτÞ2Þ þ 4Λ2a4NðτÞ6 þ NðτÞ4Þ

fa;ΠAgD ¼ 2a2
�
3aA

�
2Λþ 3

NðτÞ4
�
− ΛNðτÞΠa

�

fA;ΠNgD ¼ 6aA2Πa

NðτÞ2
fA;ΠagD ¼ −2Λa2NðτÞΠa

fA;ΠAgD ¼ −
6aAΠa

NðτÞ þ Π2
a þ 1

fNðτÞ; agD ¼ 6aA
NðτÞ2

fa; AgD ¼ AΠa þ
6a
NðτÞ

fΠN;ΠagD ¼ 6ΠaðΛa4NðτÞ2 − 6a2A2Þ
NðτÞ3

fΠN;ΠAgD ¼ 3a2Πað6aA − NðτÞΠaÞ
NðτÞ3

fΠA;ΠagD ¼ 6aΠað6aA − NðτÞΠaÞ
NðτÞ2 :

The Dirac brackets obtained thus can be used for quantization of the system in the reduced phase space.

IV. SINGULARITY-FREE GAUSS-BONNET GRAVITY

In this section, we consider the matter field added to the Einstein action along with a Gauss-Bonnet term. The
action is

S ¼
Z ffiffiffiffiffiffi

−g
p �

R
2
þ 1

2
∂μϕ∂μϕ − αξðϕÞðRμνρσRμνρσ − 4RμνRμν þ R2Þ

�
d4x:
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In the language of the metric components for the minis-
uperspace universe (14), the required Lagrangian is

L ¼ r2 sin θ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
NðτÞ4

ð6aðKNðτÞ5 − NðτÞ3a02Þ

þ a3NðτÞ5ϕ02 þ 48αξðϕÞðKNðτÞ2 − a02Þ
× ðNðτÞa00 − a0N0ðτÞÞ
þ 6a2NðτÞ2ða0N0ðτÞ − NðτÞa00ÞÞ: ð36Þ

To get a singularity-free model of (36), we take ξðϕÞ ¼
ϕ2 and α ¼ 1=32 as in Ref. [31] for a negatively curved
universe (K ¼ −1). Immediately, we can write down the
first-order Lagrangian with the redefinition (19)

L ¼ 1

NðτÞ4 ð−12a
2NðτÞ2ðNðτÞA0 − AN0ðτÞÞ

− 12aNðτÞ3ðA2 þ NðτÞ2Þ þ 2a3NðτÞ5ϕ02

− 3ϕ2ðA2 þ NðτÞ2ÞðNðτÞA0 − AN0ðτÞÞÞ
þ λaðA − a0Þ: ð37Þ

Here, this λa is the Lagrange multiplier corresponding to
compensating the redefinition of the variables in (19).
While deriving the form of the Lagrangian (37), we did not
consider terms proportional to ðr; θÞ, as they can be
integrated out, which eventually will not be effective in
the equation of motion. The Euler-Lagrange equations for
this Lagrangian are given by

aðτÞ∶ 1

NðτÞ2 ðNðτÞð−24aA0 þ Lλ0a þ 6NðτÞ2ða2ϕ02 − 2ÞÞ

þ 24aAN0ðτÞ − 12A2NðτÞÞ ¼ 0;

AðτÞ∶ 1

NðτÞ3 ð−24aNðτÞ2ðA − a0Þ þ NðτÞ3λa þ 6A2ϕϕ0

þ 6NðτÞ2ϕϕ0Þ ¼ 0;

NðτÞ∶ 1

NðτÞ4 ð2ð−6aNðτÞ2ð2Aa0 − A2 þ NðτÞ2Þ

þ a3NðτÞ4ϕ02 − 3AϕðA2 þ NðτÞ2Þϕ0ÞÞ ¼ 0;

ϕ∶
1

NðτÞ4 ð6ϕðA
2 þ NðτÞ2ÞðAN0ðτÞ − NðτÞA0ÞÞ

− 12a2NðτÞa0ϕ0 − 4a3N0ðτÞϕ0 − 4a3NðτÞϕ00 ¼ 0;

λaðτÞ∶ A − a0 ¼ 0:

A. Hamiltonian formulation
and ghost-free Hamiltonian

In the phase space, momenta defined by Eqs. (4) and (5)
are given by

ΠL ¼ 1

NðτÞ4 ð12a
2ANðτÞ2 þ 3Aϕ2ðA2 þ NðτÞ2ÞÞ;

Πa ¼ −λa;

ΠA ¼ 1

NðτÞ4 ð−12a
2NðτÞ3 − 3NðτÞϕ2ðA2 þ NðτÞ2ÞÞ;

Πϕ ¼ 4a3NðτÞϕ0;

Πλa ¼ 0:

These momenta give the following primary constraints:

Φ1¼ΠNðτÞ−
1

NðτÞ4 ð12a
2ANðτÞ2þ3Aϕ2ðA2þNðτÞ2Þ≈0;

ð38Þ

Φ2 ¼ λa þ Πa ≈ 0; ð39Þ

Φ3 ¼ΠAþ
1

NðτÞ4 ð12a
2NðτÞ3þ 3NðτÞϕ2ðA2þNðτÞ2Þ≈ 0:

ð40Þ

Φ4 ¼ Πλa ≈ 0: ð41Þ

We list here the nonzero PBs between the primary
constraints:

fΦ1;Φ2g ¼ −
24aA
NðτÞ2 ;

fΦ2;Φ3g ¼ −
24a
NðτÞ ;

fΦ2;Φ4g ¼ 1:

A careful redefinition of Φ1 → Φ0
1 ¼ Φ1 − 24aA

NðτÞ2 Φ4 gives
more compact PBs, which are (only nonzero components
are shown)

fΦ2;Φ3g ¼ −
24a
NðτÞ ;

fΦ2;Φ4g ¼ 1:

We can immediately write down the canonical
Hamiltonian as

Hcan ¼
12aðAðτÞ2 þ NðτÞ2Þ

NðτÞ þ AΠa þ
Π2

ϕ

8a3NðτÞ : ð42Þ

The canonical Hamiltonian (42) contains a term linear in
momenta Πa. This signals the presence of the Ostrgradski
ghost. This is in conformity with the general equation (8),
which says that corresponding to each higher-derivative
field there will be at least one term linear in momenta.
The total Hamiltonian is
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Htot ¼ Hcan þ Λ1Φ0
1 þ Λ2Φ2 þ Λ3Φ3 þ Λ4Φ4: ð43Þ

Equating the PBs of the total Hamiltonian with the Φ4 to
zero, we get Λ2 ¼ 0. Also, the PBs of the total
Hamiltonian with Φ0

1 and Φ3 identical give secondary
constraints, respectively, as

Ψ1 ¼ 96a4NðτÞ3ðA2 þ NðτÞ2Þ
þ Πϕð12AϕðA2 þ NðτÞ2Þ − NðτÞ3ΠϕÞ; ð44Þ

Ψ2 ¼ 2a3NðτÞ4Πa − 3ϕΠϕðA2 þ NðτÞ2Þ: ð45Þ

On the other hand, PBs of the total Hamiltonian with Φ2

in (39) give the following equation:

3

8NðτÞ
�
32ð2Λ3aþ A2 þ NðτÞ2Þ − Πϕ

2

a4

�
− Λ4 ¼ 0: ð46Þ

To get the tertiary constraints, it is necessary to see the
PBs of the total Hamiltonian with the secondary con-
straints. Poisson bracket of Ψ1 and Ψ2 with the total
Hamilonian give the following equations:

− 384a6NðτÞ7ðAþ Λ2ÞðA2 þ NðτÞ2Þ − 96a7NðτÞ6ðΛ1ð3A2 þ 5NðτÞ2Þ þ 2Λ3ANðτÞÞ
− 3ANðτÞ3ðA2 þ NðτÞ2ÞΠ2

ϕ þ 3a3ð−24Aϕ2ðA2 þ NðτÞ2Þ2ðΛ1A − Λ3NðτÞÞ
− 4NðτÞ3ϕΠϕðΛ1AðNðτÞ2 − A2Þ þ 2Λ3NðτÞð2A2 þ NðτÞ2ÞÞ þ Λ1NðτÞ6Π2

ϕÞ ¼ 0

96a6NðτÞ6ð−2Λ1aAþ 2Λ3aNðτÞ þ A2NðτÞ þ NðτÞ3Þ þ 72a3ϕ2ðA2 þ NðτÞ2Þ2ðΛ1A − Λ3NðτÞÞ
þ 8a5NðτÞ7λað4Λ1aþ 3NðτÞðAþ Λ2ÞÞ þ 24a3NðτÞ4ϕΠϕðΛ3Aþ Λ1NðτÞÞ
þ 3NðτÞ3Π2

ϕð−a2NðτÞ4 þ A2 þ NðτÞ2Þ ¼ 0: ð47Þ

From these two equations of (47) along with (46), we
can easily solve Λ1, Λ2, and Λ3. So, the constraint chain
ends here.
As we got the full constraint structure, we notice that

the ghost-creating momenta appear in (45). Following the
prescription described in the earlier section, we solve the
secondary constraints Ψ1 and Ψ2 to remove the variables ϕ
and Πa, respectively. Thus, the ghost-free canonical
Hamiltonian for (36) is given by the simple form as

Hghost-free¼
12aðAðτÞ2þNðτÞ2Þ

NðτÞ þAΠaþ
Π2

ϕ

8a3NðτÞ: ð48Þ

The momenta Πϕ appearing here are of quadratic power
and hence are bounded from below. The above result is
very interesting and gives back the ghost-free canonical
Hamiltonian that does not contain any term linear in any of

the momenta. As we have solved the second-class con-
straints (46), we need to give up the Poisson brackets.
Notice that to obtain the ghost-free version, which was our
sole aim, is achieved just by solving Ψ1 and Ψ2.
The Dirac bracket structure can be obtained by solving

the constraintsΦ1,Φ2,Ψ1, andΨ2. Reduction ofΦ1 andΦ2

is trivial, as they do not modify the Poisson brackets. Also,
by solving these two constraints, we get rid of the unphysical
degrees of freedoms λa and Πλa . To reduce the phase space
further, we obtain the Poisson brackets betweenΨ1 andΨ2,
which is given by

fΨ1;Ψ2g¼6NðτÞ3ðA2þNðτÞ2Þð128a6NðτÞ4−Π2
ϕÞ: ð49Þ

To compute the Dirac brackets (10) between two canonical
functions, we shall use (49). Below, we give all the nonzero
Dirac brackets between the variables in the phase space:

fN;ΠNgD ¼ 1

fa;ΠNgD ¼ −
a3NðτÞ2ð32a4ð3A2NðτÞ þ 5NðτÞ3Þ þ Πϕð8Aϕ − NðτÞΠϕÞÞ

ðA2 þ NðτÞ2Þð128a6NðτÞ4 − Π2
ϕÞ

fa;ΠagD ¼ Π2
ϕ

Π2
ϕ − 128a6NðτÞ4

fa;ΠAgD ¼ −
4a3NðτÞð16a4ANðτÞ3 þ ϕð3A2 þ NðτÞ2ÞΠϕÞ

ðA2 þ NðτÞ2Þð128a6NðτÞ4 − Π2
ϕÞ

fa;ΠϕgD ¼ −
4a3ANðτÞΠϕ

128a6NðτÞ4 − Π2
ϕ
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fϕ;ΠNðτÞgD ¼ 1

6NðτÞðA2 þ NðτÞ2Þð128a6NðτÞ4 − Π2
ϕÞ

ð288a4ϕð8A2NðτÞ2 þ 3A4 þ 5NðτÞ4Þ

þ 16a3NðτÞΠað6ANðτÞ2ϕþ 6A3ϕ − NðτÞ3ΠϕÞ þ 3ϕðNðτÞ2 − 3A2ÞΠ2
ϕÞ

fϕ;ΠagD ¼ 2a2ðNðτÞΠað6ANðτÞ2ϕþ 6A3ϕ − NðτÞ3ΠϕÞ þ 96aϕðA2 þ NðτÞ2Þ2Þ
ðA2 þ NðτÞ2Þð128a6NðτÞ4 − Π2

ϕÞ

fϕ;ΠAgD ¼ 2ϕð48a4ANðτÞ3ðA2 þ NðτÞ2Þ þ ΠϕðANðτÞ3Πϕ þ 6A2NðτÞ2ϕþ 3A4ϕþ 3NðτÞ4ϕÞÞ
NðτÞ3ðA2 þ NðτÞ2Þð128a6NðτÞ4 − Π2

ϕÞ

fϕ;ΠϕgD ¼ 128a6NðτÞ4
128a6NðτÞ4 − Π2

ϕ

:

One should keep in mind that now we are working in the
reduced phase space and, due to the two second-class
constraint reductions, the dimensionality of the phase space
has also reduced by 2.

V. CONCLUSION

Quantization of the gravitational fields is one of the most
important challenges for this era of theoretical physicists.
The problem is that the gravity theories are not renorma-
lizable. Although, adding higher-derivative fields can make
them renormalizable [1], but not all combinations of
higher-derivative terms are allowed [2]. With these restric-
tions, higher-derivative gravity theories are still considered
strong candidates for developing quantum gravity. The
problem that comes along frequently while quantizing the
higher-derivative theories is that there appear negative
norm states that we refer to as ghost states [12]. The origin
of these ghost fields can be traced back in the canonical
Hamiltonian in which the momenta corresponding to ghost
field appear linearly [19]. For the higher-derivative theories
only, the Ostrogradsky theorem itself tells us that the
degenerate theories contains ghosts while the nondegen-
erate theories are secretly stable. This issue of removing the
ghosts that appear the canonical momenta was considered
here, and we showed how one can remove the ghost-
creating momenta one by one tactfully by considering the
constraints only.
In this paper, we took two models simultaneously: one

consists of only the gravity theory, i.e., the Einstein-Hilbert
action, whereas in the other model, we considered the
Gauss-Bonnet gravity along with a matter field coupled to
the Einstein-Hilbert action [30,31]. The reason for the
inclusion of the matter field is to confirm that the algorithm
provided here does not break down even in the presence of

matter fields. Following the Hamiltonian formulation, we
found out all the constraints in the theory. The canonical
Hamiltonian, as usual, contains the linear momenta that
source the instability. We notice that these momenta also
appear in the second-class constraints. So, to remove them
from the canonical Hamiltonian, we solved the second-
class constraints and found out the canonical Hamiltonian
that became independent of the any ghost-creating
momenta. Thus, following the very effective method of
Dirac’s constraint analysis, we constructed the ghost-free
canonical Hamiltonian [37]. Further, we computed the
Dirac brackets between the canonical fields by solving
the second-class constraints that contain the ghost-creating
momenta. It should be mentioned that one always need to
solve an even number of second-class constraints to
compute Dirac brackets. The degrees of freedom count
was done from the number of constraints, and this agreed
with the expected results.
Because of this, one might inquire about the system with

first-class constraints. The first-class constraints can be
made second class by incorporating gauge conditions. In
fact, in Ref. [34], we, with other coauthors, discussed the
Einstein-Hilbert action in which there exists a primary first-
class constraint and a gauge condition was proposed to
remove it. The Hamiltonian obtained thereby was free from
the linear momenta. For future projects, the method
followed in this paper can be utilized while quantizing
theories with more complicated actions. In this regard, one
should first check if the canonical Hamiltonian contains
ghost-creating momentum or not, and if it does, the
constraints can be removed as described in this paper.
This is so because by construction the momenta corre-
sponding to the higher-derivative fields will appear in some
of the primary constraints and thus appear in the canonical
Hamiltonian.
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