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We consider higher derivative supergravities that are dual to ghost-free N ¼ 1 supergravity theories in the
Einstein frame. The duality is implemented by deforming the Kähler function, and/or the superpotential, to
include nonlinear dependences on chiral fields that, in other approaches, play the role of the Lagrange
multipliers employed to establish this duality. Thesemodels are of the no-scale type, and in the minimal case,
they require the presence of four chiral multiplets, with a Kähler potential having the structure of the
SUð4; 1Þ=SUð4Þ × Uð1Þ coset manifold. In the standard N ¼ 1 supergravity formulation, these models are
described by a multifield scalar potential, featuring Starobinsky-like behavior in particular directions.
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I. INTRODUCTION

The study of generalizations of Einstein gravity, con-
sidering higher order curvature terms, has a long standing
history, for various reasons, related to either cosmology or
towards the effort for understanding the ultraviolet behavior
of gravity at the quantum level. The recent activity on this
field is mainly motivated by Starobinsky’s model of
inflation [1] and, in particular, by the fact that the inflaton
may have a “dual” description as the extra scalar mode
propagating in a Rþ R2 theory [2,3]. Strictly speaking it is
proven that this theory is equivalent to Einstein gravity
specifically coupled to a scalar field. Going beyond the
∼R2, general FðRÞ-theories have been studied, see for
instance [4,5] and references therein, which are known to
be equivalent to the Einstein-Hilbert action, if one intro-
duces additional auxiliary fields which couple to curvature
in the Jordan frame. By appropriate Weyl rescalings, the
Jordan theory is brought to the Einstein-Hilbert Lagrangian
with the auxiliary fields becoming dynamical. Also, some
classes of gravity theories, whose Lagrangians are not only
functions of the curvature but may include □nR terms, had
been considered in the past. These higher derivative gravity
theories have been proven to be equivalent to the Einstein-
Hilbert action with additional scalar fields [6]. In another
context, higher derivative gravities have been invoked
against improving the UV (Ultraviolet) behavior of gravity
theories, but they suffer, in general, by the presence of
negative norm states. This issue has been analyzed in
literature, where general gravity actions were considered,
involving terms at most quadratic in the Riemmann tensor,

in an effort to obtain better UV-behavior and avoid having
negative norm states [7–9]. Further attempts towards
constructing finite and ghost-free, nonlocal [10] and local
[11], gravity theories have been also considered.
Minimal N ¼ 1 supergravity theories, [12,13], being the

supersymmetric completion of the Einstein theory, have also
been extensively studied in the last forty years or so, in an
effort to encompass all of the known forces of Nature,
including gravity, into a unified framework. On the other
hand the supersymmetric completion of Rþ R2 gravity,
pertinent to cosmological inflation, is a notable paradigm of
how a dual description of the supersymmetric Einstein-
Hilbert action can be accomplished. Driven by these, there is
a strong motivation towards studying supersymmetric com-
pletion of general FðRÞ-theories, going beyond the simple
Rþ R2 model. The supersymmetrization of Lagrangians
involving higher powers and derivatives of the scalar
curvature has been addressed in the past. The minimal Rþ
R2 theories were considered in [14,15], whichwere shown to
be equivalent to standard supergravity coupled to two chiral
supermultiplets. Besides, in [15] a general methodology was
developed in order to include arbitrary powers of the scalar
curvature as well, which is accomplished using a set of chiral
fields that play the role of Lagrange multipliers. In these
approaches, the dual supersymmetric FðRÞ-theories are
equivalent to standard supergravity theories with Kähler
potentials of the no-scale type [16,17]. The main problem in
adopting the full equivalence between the two descriptions,
that is the higher-R and the standard supergravity, in the case
the former departs from the minimal R2 theory, is that while
in the higher-R description, there are no propagating ghost
states at the linearized level. This is not the case in the dual
description due to the specific form of the Kähler function
employed to implement the duality.
Recently, there has been an intense activity towards

building models that encompass cosmological inflation,
especially after the precise data on the cosmological
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parameters delivered by Planck and other collaborations
[18–21]. The physics of inflation will be placed under
further scrutiny in the next round of measurements, and this
led many authors to consider various models, with or
without supersymmetry [22–47]. In this context, super-
gravity and higher derivative supergravities may play a
central role.
In this work, we consider chiral higher derivative

supergravities that are dual to ghost-free N ¼ 1 super-
gravities. This is done by deforming the Lagrangian to
include nonlinear dependences, on some of the would be
Lagrange multipliers used in the approach described in
[15], which in this way become dynamical. Interestingly
enough, even in the simple cases considered, this approach
leads, in turn, to scalar potentials, which in particular
directions have a Starobinsky-like form.
This paper is organized as follows. In the following

section we review the general set-up for the formulation of
supergravity chiral actions, which is an essential tool
towards building FðRÞ-supergravity theories, and establish
their duality to the standard N ¼ 1 supergravity descrip-
tion. This approach uses a set of chiral fields, that appear
linearly in the action, and play the role of Lagrange
multipliers. In Sec. III we apply this formalism, focusing
on theories that involve at most two derivatives of the
curvature R, and discuss the problem associated with the
ghost issue. In Sec. IV we proceed to a particular
deformation of the model by promoting one of the
Lagrange multipliers to a dynamical field, which therefore
is not eliminated any longer from the action. This is
necessary in order to avoid ghosts in the ordinary descrip-
tion of theN ¼ 1 supergravity. Deforming the theory in this
way adds extra difficulty, in expressing the theory in
chiral form, and the way this is implemented is discussed
in detail. Particular models are presented in Sec. V, whose
Kähler potential is reminiscent of the no-scale type. In
Sec. VI we analyze the mass spectrum of these models, and
in Sec. VII we consider their corresponding N ¼ 1 super-
gravity description, in the Einstein frame, and show that
the scalars, in a suitable superfield basis, parametrize a
SUð4; 1Þ=SUð4Þ ×Uð1Þ coset space. Their mass spectrum
has no ghosts and exactly matches that of the dual theory
derived in the previous section. Moreover, we show that
the scalar potential of the standard N ¼ 1 supergravity
Lagrangian is positive definite with a Minkowski vacuum
with unbroken supersymmetry. This potential is described
by four complex scalar fields and, in particular directions,
is reminiscent of the well-known Starobinsky model. It
is for this reason that we have dubbed the class of models
considered in this work as deformed Starobinsky models,
although we are aware that the virtues of the single-field
Starobinsky model, as far as cosmological inflation is
concerned, are hard to obtain. Models of this type can
only lead to multifield inflation, and the presence of addi-
tional scalars may destabilize the Starobinsky inflationary

trajectory. Recently [48], extensions of the Rþ R2 theory,
in the framework of the N ¼ 1 old-minimal supergravity,
were considered which are ghost-free, with one scalar field
present and a stable potential. A detailed analysis on the
cosmological consequences of the class of models dis-
cussed in this work is not pursued here, and it will be
presented in a forthcoming publication.

II. CHIRAL LAGRANGIANS

In the absence of gauge fields and using superfield
formalism, theN ¼ 1 Supergravity Lagrangian is written as

L ¼
Z

d4ΘE−1ΩðS; S̄Þ þ
�Z

d2Θ2EWðSÞ þ ðH:c:Þ
�
:

ð1Þ
In this, S denotes collectively all of the chiral multiplets
involved, which are coupled to gravity, and S̄ their
corresponding anti-chiral multiplets. The kinetic function
Ω is real and the superpotential W is a holomorphic
function. This Lagrangian, expressed in terms of compo-
nents, is a function of a Kähler function, given below, and
its derivatives,

G ¼ Kþ ln jWj2: ð2Þ
In this, the Kähler function K is related to Ω by

K≡ −3 ln
�
−
Ω
3

�
: ð3Þ

The above Lagrangian can be cast in the so called chiral
form

L ¼
Z

d2Θ2E
�
−
1

8
ðD̄2 − 8RÞΩðS; S̄Þ þWðSÞ

�
þ ðH:c:Þ

ð4Þ
This is particularly useful since any N ¼ 1 supergravity
action can be written as a chiral action, which includes
chiral multiplets and their corresponding kinetic multiplets!
We shall make extensive use of this form when dealing with
higher R supergravities.
In a previous paper [49], we considered FðRÞ-super-

gravities whose construction is implemented using chiral
multiplets coupled to gravity. The gravity sector itself is
well-known to be described by the chiral superspace
density E, the supervierbein determinant E, and the chiral
superspace curvature R. Ignoring their fermionic compo-
nents, E and R are given by

E ¼ e
2
ð1 − Θ2M̄Þ

R ¼ −
M
6
þ Θ2

�
R
12

−
MM̄
9

−
b2μ
18

þ i
6
Dμbμ

�
; ð5Þ
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where M and bμ are the auxiliary fields of the gravity
multiplet.1 In superfield formalism, omitting fermions, a
Poincaré chiral multiplet is written as

Φ ¼ Aþ Θ2F: ð6Þ

Given a chiral multiplet Φ, another chiral multiplet can be
constructed whose scalar component includes F̄, that is the
complex conjugate of F. This is called kinetic multiplet and
is given by2

TðΦÞ ¼
�
F̄ −

M
3
Ā

�

þ Θ2

�
□Āþ i

3
DμbμĀþ 2i

3
bμ∂μĀ −

b2μ
9
Ā

þ R
6
Āþ 2M̄

3

�
F̄ −

M
3
Ā

��
: ð7Þ

In this□ is the ordinary gravity d’Alembertian operator, i.e
□ ¼ 1

e ∂μðegμν∂νÞ. This multiplet can be expressed as the
chiral projection of the anti-chiral field Φ̄,

−
1

4
ðD̄2 − 8RÞΦ̄ ¼ TðΦÞ: ð8Þ

With this definition, the kinetic multiplet of the unit chiral
multiplet Σ0 ¼ 1 is twice the curvature multiplet, i.e.

TðΣ0Þ¼
�
−
M
3

�
þΘ2

�
R
6
þ i
3
Dμbμ−

b2μ
9
−
2jMj2
9

�
¼ 2R;

ð9Þ

while the kinetic multiplet of the curvature chiral multiplet
is given by

TðRÞ ¼
�
R
12

−
b2μ
18

−
i
6
Dμbμ −

jMj2
18

�

þ Θ2

�
M̄
36

R −
□M̄
6

−
jMj2
27

M̄

−
M̄
54

b2μ −
iM̄
6

Dμbμ −
i
9
bμ∂μM̄

�
: ð10Þ

Later, we shall use the kinetic multiplet of TðRÞwhich, in a
straightforward manner, is found to be

TðTðRÞÞ¼
�
−
□M
6

−
MjMj2
54

þ i
9
MDμbμþ

i
9
bμ∂μM

�

þΘ2

�
1

72

�
R−

2

3
b2μ

�
2

þ 1

12
□

�
R−

2

3
b2μ

�

þ 1

18

�
−
jMj2
6

þ iDμbμ
��

R−
2

3
b2μ

�

þbμ

18
∂μ

�
R−

2

3
b2μ

�
−
□jMj2
18

−
M̄□M

9
−
jMj4
81

þ i
18

jMj2Dμbμþ
i
27

bμð2M̄∂μM−∂μjMj2Þ

þ i
6
□Dμbμ−

1

9
bν∂νDμbμ−

1

18
ðDμbμÞ2

�
ð11Þ

Note that this includes R2 and□R within its F-term. These
forms are the important building blocks towards building
FðRÞ-supergravity theories, as we shall see.
One can build actions involving the chiral multiplets R,

TðRÞ, TðTðRÞÞ, and so on, as well as other chiral
multiplets, which we denote collectively by X. Thus one
may consider Lagrangians having the general form,

L0 ¼
Z

d4ΘE−1Ω0ðX; X̄;R; R̄; TðRÞ; TðRÞ; � � �Þ

þ
�Z

d2Θ2EW0ðX;R; TðRÞ; TðTðRÞÞ;…Þ

þ ðH:c:Þ
�
: ð12Þ

Such Lagrangians describe higher R theories, by construc-
tion, and these are equivalent to standard N ¼ 1 super-
gravities, in which only the Einstein term appears [15]. In
fact by introducing Lagrange multipliers, Λ;Λ1;Λ2 � � �, one
can show that (12) is equivalent to a standard N ¼ 1
supergravity described by the following functions,

Ω ¼ Ω0ðX; X̄; J1; J̄1; J2; J̄2; � � �Þ
− ðΛþ Λ̄Þ − 2ðΛ1J̄1 þ J1Λ̄1Þ � � � − 2ðΛnJ̄n þ JnΛ̄nÞ

W ¼ W0ðX; J1; J2;…Þ þ 2ΛJ1 þ 2Λ1J2 � � � þ 2ΛnJnþ1:

ð13Þ

In these, neither Ω0 nor W0 depend on Λ;Λ1;Λ2 � � �. The
theory described by Ω, W is then written as

L ¼ L0 þ LΛ; ð14Þ

where LΛ is the part of the Lagrangian dependent on the
Lagrange multipliers, appearing in the function Ω and the
superpotential W given before in Eq. (13),

1Throughout this paper, the metric signature is −þþþ and
the sign of the scalar curvature R coincides with that used in [12].

2This is −1=4 times the corresponding multiplet used in
reference [13].
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LΛ ¼ 2

Z
d2Θ2E½ΛðJ1 −RÞ þ Λ1ðJ2 − TðJ1ÞÞ

þ Λ2ðJ3 − TðJ2ÞÞ þ � � � þ ΛnðJnþ1 − TðJnÞÞ
þ � � �� þ ðH:c:Þ: ð15Þ

In deriving this, repeated use was made of the very
important relationZ

d4ΘE−1ðSH̄ þ S̄HÞ

¼ 1

2

Z
d2Θ2EðSTðHÞ þHTðSÞÞ þ ðH:c:Þ

¼
Z

d2Θ2EðSTðHÞÞ þ ðH:c:Þ; ð16Þ

which holds true, up to four divergences, for any chiral
multiplets S, H. Its derivation is almost straightforward,
using the equivalence of the Lagrangians (1) and (4) and
employing (8). Solving with respect the Lagrange multi-
pliers Λ;Λ1;Λ2 � � �Λn we get

J1 ¼ R; J2 ¼ TðJ1Þ ¼ TðRÞ;
J3 ¼ TðJ2Þ ¼ TðTðRÞÞ � � �

Jnþ1 ¼ TðJnÞ ¼ Tð…TðRÞ…Þ: ð17Þ

Plugging the solutions J1, J2… into (14) yields exactly
(12), due to the fact that LΛ vanishes. This proves the
equivalence of the two theories.
As an instructive well-known example, consider the no-

scale supergravity [15,24–27] model described by

Ω ¼ −3ðT þ T̄ −ΦΦ̄Þ; W ¼ 3μΦ
�
T −

1

2

�
: ð18Þ

One sees that in this case we have one Lagrange multiplier
Λ, which equals to 3T in this case, while J1 is identified
with μΦ=2. The functions Ω0, W0 are given by

Ω0 ¼ 3ΦΦ̄; W0 ¼ −
3μ

2
Φ: ð19Þ

The Lagrangian (15) is, in this case, given by

LΛ ¼
Z

d2Θ2E
�
W0ðΦÞþ6T

�
μ

2
Φ−R

��
þðH:c:Þ; ð20Þ

and the total Lagrangian, cast in chiral form, is

L ¼
Z

d2Θ2E
�
3

2
ΦTðΦÞ þW0ðΦÞ þ 6T

�
μ

2
Φ −R

��
þ ðH:c:Þ: ð21Þ

The equation of motion for T, δL=δT ¼ 0, is

Φ ¼ 2

μ
R; ð22Þ

which, when plugged into the Lagrangian (21), eliminates
the last term, which is proportional to T, leaving

L ¼
Z

d2Θ2E
�
6

μ2
RTðRÞ − 3R

�
þ ðH:c:Þ: ð23Þ

Using the explicit forms of E;R; TðRÞ, given previously,
this trivially leads to the following Lagrangian, also derived
in [49] using the component formalism,

e−1Ldual ¼−
R
2
þ R2

12μ2
−

1

9μ2

�jMj2
2

þb2μ

�
R−

1

3μ2
j∇μMj2

þ jMj4
27μ2

−
jMj2
3

−
i

9μ2
bμðM̄∇μM−c:cÞ

þ 1

3μ2
ðDμbμÞ2þ

b4μ
27μ2

þb2μ
3
þ b2μ
27μ2

jMj2: ð24Þ

Note that the scalar M is linearly related to the scalar
component ϕ of the superfieldΦ, on account of (22). In fact
M ¼ −3μϕ. The term ∼R2 arises from the first term of (23)
and the linear term −R=2 from the second term of the same
Lagrangian.3

This is the dual form of the ordinary N ¼ 1 supergravity
Lagrangian specified by Ω, W given in (18). The bosonic
part of the latter depends on T,Φ scalars and is linear in the
curvature R, describing therefore six degrees of freedom
(d.o.f.), the same as (24). Along the direction Φ ¼ 0 this
receives a simple form

e−1L ¼ −
R
2
−

3j∇μTj2
ðT þ T̄Þ2 − 3μ2

jT − 1=2j2
ðT þ T̄Þ2 : ð25Þ

If ImT is frozen to ImT ¼ 0, then by defining a canonically

normalized field φ, by ReT ≡ 1
2
e

ffiffi
2
3

p
φ, we get

e−1L ¼ −
R
2
−
1

2
ð∇μφÞ2 −

3μ2

4
ð1 − e−

ffiffiffiffiffiffi
2=3

p
φÞ2; ð26Þ

which is the celebrated Starobinsky’s model [1,3], with φ
being the inflaton field with the parameter μ setting the
scale of inflation.

III. HIGHER DERIVATIVE THEORIES

The strategy outlined in the previous section can be
employed to construct higher derivative supergravity

3Modulo stabilization terms, introduced to stabilize the infla-
tionary trajectory, Eq. (24) is the one obtained in [48] when M=6
is replaced by X, used in that work, and the constant f0 of that
paper is taken vanishing.
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theories. The supersymmetric Starobinsky model includes
terms at most quadratic in the curvature R. Using two
Lagrange multipliers we can build a higher derivative
FðRÞ-theory, as follows. Consider the theory described by

Ω ¼ T þ T̄ þ ðQΦ̄þΦQ̄Þ þ ωðX; X̄;Φ; Φ̄; C; C̄Þ
W ¼ TΦþQCþ hðX;Φ; CÞ: ð27Þ
The correspondence with the previous notation, if needed,
is given by

T¼−Λ; Φ¼−2J1; Q¼Λ1; C¼ 2J2: ð28Þ
The functions ω, h do not involve, at this stage, any of the
Lagrange multipliers T, Q. Treating the Lagrange multi-
pliers as described in the previous section, the Lagrangian
corresponding to this theory has the following form,

L ¼
Z

d4ΘE−1ωðX; X̄;Φ; Φ̄; C; C̄Þ

þ
�Z

d2Θ2EðhðX;Φ; CÞ þ TðΦþ 2RÞ

þQðCþ TðΦÞÞ
�
þ ðH:c:Þ

�
: ð29Þ

This is easily solved for the Lagrange multipliers T, Q,

Φ ¼ −2R; C ¼ −TðΦÞ ¼ 2TðRÞ: ð30Þ
With Φ, C plugged into (29) we get

L ¼
Z

d4ΘE−1ωðX; X̄;−2R;−2R̄; 2TðRÞ; 2TðRÞÞ

þ
�Z

d2Θ2EhðX;−2R; 2TðRÞÞ þ ðH:c:Þ
�
: ð31Þ

We remark that using only two Lagrange multipliers is
sufficient to build higher-R supergravities. This is the most
economic way and in the rest of this work we shall not
pursue more complicated cases involving a larger number
of them.
In order to implement this, consider, as an example, the

simple case of having a theory specified by

ω ¼ 2αCC̄; h ¼ 0: ð32Þ
According to (31) this theory is

L ¼ 8α

Z
d4ΘE−1TðRÞTðRÞ

¼ 4α

Z
d2Θ2ETðRÞTðTðRÞÞ þ ðH:c:Þ; ð33Þ

where in the last step we put the Lagrangian in chiral form
as prescribed in the previous section. This is a higher-R
theory. In order to show this, collect the terms that depend

only on the curvature, after integrating over Θ2. The
result is

e−1L ¼ α

18

�
R3

6
þ R□R

�
þ other terms; ð34Þ

which is indeed a higher R theory.
However it should be noted that in the ordinary N ¼ 1

supergravity form, the theory described by (27) is linear in
∼R, and ghosts exist that are not present in the dual
description (33). The appearance of ghost states becomes
manifest by the fact that some of the eigenvalues of the
complex scalar kinetic matrix are negative. On the other
hand, counting the d.o.f. of the two theories, there is a
mismatch. The dual theory appears with fewer d.o.f. as
compared to the ordinary N ¼ 1 supergravity and no ghosts
at all. Obviously the ghost states of N ¼ 1 supergravity
should decouple, in some manner, since the number of
physical d.o.f. in both descriptions should be equal. Away to
implement the ghost decoupling, in some particular cases,
was given in [49]. Herewe shall pursue an alternativeway by
constructing theories that have no ghosts in their N ¼ 1
formulation. This ismerely done by sacrificing the role of the
fieldQ as being a Lagrangemultiplier. In doing that, the field
Q becomes dynamical and is no longer eliminated, and then
the d.o.f. in the two descriptions match. In the following
section, we shall give the details of how this is implemented
and chiral actions of this kind can be constructed.

IV. Q-DEFORMATIONS

A way to circumvent the ghost problem, outlined in the
closing remarks of the previous section, is to deform the
theory so that the functions ω and or h in Eq. (27) depend
on the Lagrange multiplierQ. As we already remarked, this
may rectify the situation, and no ghost states appear in the
standard formulation of the N ¼ 1 supergravity.
In order to tackle the problem in the most general

manner, let us consider theories in which the functions
Ω, W are given by

Ω ¼ T þ T̄ þ ðQΦ̄þΦQ̄Þ þ ωðX; X̄;Φ; Φ̄; C; C̄; Q; Q̄Þ
W ¼ TΦþQCþ hðX;Φ; C;QÞ: ð35Þ
These are like (27), however, the functions ω, h are now
allowed to have Q dependencies. Evidently, the depend-
ence on the superfieldQ is not linear any longer, and hence,
Q is not eliminated from the action.
We shall assume the most general form for the function

ω, which when expanded in powers of the chiral superfields
X, Φ, C, Q, and their associated anti-chiral fields
X̄; Φ̄; C̄; Q̄, it receives the form

ω¼
X

animj
ðXn1Φn2Cn3Qn4ÞðX̄m1Φ̄m2C̄m3Q̄m4ÞþðH:c:Þ:

ð36Þ
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Using (16) this can be written asZ
d4ΘE−1ω¼

Z
d2Θ2E

X
fðX;Φ;C;QÞ

×TðgðX;Φ;C;QÞÞþðH:c:Þ; ð37Þ

where the sum extends over the monomials

f ≡ animj
Xn1Φn2Cn3Qn4 ; g≡ X̄m1Φ̄m2C̄m3Q̄m4 : ð38Þ

With that done, the Lagrangian can be put in chiral form

L ¼
Z

d2Θ2EPðX;Φ; C;QÞ þ ðH:c:Þ; ð39Þ

with the superpotential function P given by

P ¼ hðX;Φ; C;QÞ þ TðΦþ 2RÞ þQðCþ TðΦÞÞ
þ
X

fðX;Φ; C;QÞTðgðX;Φ; C;QÞÞ: ð40Þ

Denoting for convenience

H ≡ hðX;Φ; C;QÞ þ TðΦþ 2RÞ þQðCþ TðΦÞÞ;
ð41Þ

any superfield variation δA of the action, where A is any of
X, Φ, C, Q, T, yields

δ

Z
d2Θ2EP ¼

Z
d2Θ2E

�∂H
∂A δAþ

X
½fðAþ δA;…ÞTðgðAþ δA;…ÞÞ − fðA;…ÞTðgðA:::ÞÞ�

�

¼
Z

d2Θ2E
�∂H
∂A δAþ

X ∂f
∂ATðgÞδAþ

X
fT

�∂g
∂A δA

��

¼
Z

d2Θ2E
�∂H
∂A þ

X�∂f
∂ATðgÞ þ ∂g

∂ATðfÞ
��

δA: ð42Þ

In the last step, we used the fact that

Z
d2Θ2EATðBÞ ¼

Z
d2Θ2EBTðAÞ; ð43Þ

which holds true up to four divergences. Therefore
the equations of motion for A, in superfield form, are
given by

∂H
∂A þ

X�∂f
∂ATðgÞ þ ∂g

∂ATðfÞ
�

¼ 0: ð44Þ

In order to proceed further, let us consider a specific
function ω given by

ω ¼ 2αCC̄þ 2λQQ̄þ 2βΦΦ̄; ð45Þ

where the constants α, β, λ are assumed positive.
The function ω in Eq. (45) ensures that the standard
supergravity N ¼ 1 theory has a positive kinetic function
in the sector C, Φ,Q, under the condition 4βλ − 1 > 0, and
therefore no ghosts appear! For the case at hand, the
following terms are encountered in the sum

P
fTðgÞ of

Eq. (37) with the f, g terms given, respectively, by

f ¼ αC; g ¼ C

f ¼ λQ; g ¼ Q

f ¼ βΦ; g ¼ Φ: ð46Þ

In the following we assume, for simplicity, that there is no
Q dependence of the superpotential function h. Also, we
assume that no additional multiplets X are present. These
can be added in a trivial manner later, if desired. Then the
equations of motion for the superfields T, Q, using
equation (44) and the form of H given by Eq. (41), yield

∂
∂T∶ Φþ 2R ¼ 0

∂
∂Q∶ Cþ TðΦÞ þ 2λTðQÞ ¼ 0: ð47Þ

Solving for Φ, C and plugging into the function P, given in
Eq. (40), one arrives at

P ¼ hðΦ; CÞ þ αCTðCÞ − λQTðQÞ þ βΦTðΦÞ: ð48Þ

In this Φ, C are solved by (47), that is they are given by

Φ ¼ −2R; C ¼ 2ðTðRÞ − λTðQÞÞ: ð49Þ

We see that the field Q, unlike T, is no longer eliminated
and was not expected to. The independent chiral multiplets
areR,Q and the Lagrangian is expressed in terms of these,
and kinetic multiplets that follow from these chiral super-
fields. Actually, from Eqs. (39) and (40) we find that the
resulting chiral Lagrangian has the form,
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L ¼
Z

d2Θ2EPðΦ; C;QÞ þ ðH:c:Þ

¼
Z

d2Θ2E½hðΦ; CÞ þ 4αTðRÞTðTðRÞÞ þ 4βRTðRÞ

− 8αλTðRÞTðTðQÞÞ þ 4αλ2TðQÞTðTðQÞÞ
− λQTðQÞ� þ ðH:c:Þ; ð50Þ

where it is meant that the arguments within hðΦ; CÞ are
replaced by the solutions given in (49). This is certainly a
higher FðRÞ-supergravity. In fact we have seen from (33)
and (34), that the term ∼TðRÞTðTðRÞÞ leads to

e−1L ¼ α

18

�
R3

6
þ R□R

�
þ � � � ; ð51Þ

where the ellipsis denote additional terms that either mix R
with other fields or they do not depend on the curvature at
all. Note the appearance of the term R□R which is
unavoidable due to the appearance of the CC̄ term in
the definition of the function ω, see Eq. (45). Note also the
appearance of the term ∼RTðRÞ, encountered also in the
Starobinsky action (23), which yields, see (24),

e−1L ¼ β

18
R2 þ � � � ð52Þ

However this does not exhaust all possibilities and the
presence of the superpotential function h in Eq. (50) is
source of additional R-dependent terms yielding higher-R
supergravities. In the following section, we shall consider
particular choices for the function hðΦ; CÞ, some of which
are generalizations of the Starobinsky model.

V. BUILDING FðRÞ-SUPERGRAVITIES

In this section, we shall consider specific models, whose
the pertinent functions Ω, W are as given in (35), with the
function ω defined by (45). The function h assumed to
depend only onΦ,C, that is the superpotential part h has no
Q-dependence. As we shall see the deviation from the
Q-linearity, existing in the function ω, induces deforma-
tions of the Starobinsky model for properly chosen func-
tions hðΦ; CÞ.
FromEqs. (49)we have for the scalar componentsϕ; c and

the corresponding F-terms, Fϕ; Fc of the chiral fields Φ, C

c ¼ R
6
−
b2μ
9
−
i
3
Dμbμ −

jMj2
9

− 2λ

�
F̄q −

M
3
q̄

�
ð53Þ

Fc¼
�
M̄
18

R−
□M̄
3

−
2M̄jMj2

27
−
M̄
27

b2μ−i
M̄
3
Dμbμ−

2i
9
bμ∂μM̄

�

−2λ

��
□þR

6

�
q̄þ i

3
Dμbμq̄−

b2μ
9
q̄þ2i

3
bμ∂μq̄

þ2M̄
3

�
F̄q−

M
3
q̄

��
: ð54Þ

In these q; Fq stand for the scalar component and the F-term
of the chiralmultipletQ. The solutions for the components of
the multipletΦ is much easier to handle sinceΦ is just−2R,
yielding

ϕ ¼ M
3
; Fϕ ¼ −

R
6
þ b2μ

9
−
i
3
Dμbμ þ

2jMj2
9

: ð55Þ

The Lagrangian (50) involves terms that are products of two
multiplets and thus we can make use of the general result

L ¼
Z

d2Θ2EABþ ðH:c:Þ

¼ eð−M̄abþ ðaFb þ bFaÞÞ þ ðH:c:Þ: ð56Þ

This is easily derived, ignoring the fermionic contributions.
A, B are any two chiral multiplets, whose scalar components
are denoted by the lower case letters a, b, while theirF-terms
are denoted by Fa, Fb respectively.

A. Models with h= f ðCÞ
Let us first consider a simple model in which the

superpotential part involves a general function of the
multiplet C, that is

h ¼ fðCÞ: ð57Þ

In this case, writing the multiplet C as C ¼ cþ Θ2Fc, the
function h receives the form

hðCÞ ¼ fðcÞ þ Θ2f0ðcÞFc: ð58Þ

Then using (56), taking one of the multiplets to be the unit
multiplet, we easily get for the h-dependent part of the
Lagrangian,

Lh ≡
Z

d2Θ2EhðCÞ þ ðH:c:Þ

¼ eð−M̄fðcÞ þ f0ðcÞFcÞ þ ðH:c:Þ: ð59Þ

Using (53) and (54), and collecting the terms in fðcÞ; f0ðcÞ
and Fc that depend only on the curvature R, we get,

e−1Lh ¼ M̄

�
−fðR=6Þ þ R

18
f0ðR=6Þ

�

− λ
R
3
f0ðR=6Þq̄þ ðH:c:Þ: ð60Þ

In this q is the scalar component of Q. Evidently, this does
not contain pure curvature dependent terms. It involves
terms in which the curvature mixes with other fields,
namelyM, q in this case. The same holds for the remaining
terms of e−1Lh that we have not shown. As we shall see, in
the Lagrangian (50) all fields are dynamical, even Fq.
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ThereforeM, q cannot be expressed in terms of other fields
and (60) cannot lead to a Lagrangian depending exclusively
on the curvature R. Therefore, this choice for the super-
potential h leads to a dual supergravity description whose
pure R-terms are only those presented in (51), (52).
Obviously, one needs to depart from this type of super-
potential h in order to build dual supergravities involving
higher powers of the curvature, other than those given in
(51), (52).

B. Models with h=Φf ðCÞ
From the previous discussion, we have seen that the

function h should involve, besides the dependence on C,
dependence on the superfield Φ as well, in order to
construct a general FðRÞ-supergravity. An interesting case
arises when h is linear in the superfield Φ having the form

hðΦ; CÞ ¼ ΦfðCÞ: ð61Þ

Interestingly enough, this choice leads to generalizations of
the supersymmetric Starobinsky model. We shall term these
as “deformed" Starobinsky models. In order to see this, and
to make contact with the usual notation found in literature,
we rescale the fields Φ and T fields by

T → −3T; Φ → −μΦ; where μ≡
ffiffiffiffiffiffiffiffi
3

2β
:

s
ð62Þ

Then the functions Ω, W given in (35), with ω defined by
(45) and the function h given by (61), take the following
forms

Ω ¼ −3ðT þ T̄ − Φ̄ΦÞ − μðQΦ̄þΦQ̄Þ þ 2λQ̄Qþ 2αC̄C

W ¼ 3μΦ
�
T −

1

2

�
þQC − μΦΣðCÞ; ð63Þ

where ΣðCÞ≡ fðCÞ − 3=2. The function Ω gives rise to a
Kähler potential having the structure of the no-scale
models. The symmetries of the associated Kählerian
manifold will be discussed later. The first terms of Ω, W
above, depending on Φ, T, are the ones encountered in
(18), the supersymmetric Starobinsky model. As we shall
see later, the standard N ¼ 1 supergravity description of
this model has a Starobinsky-like potential along a par-
ticular direction. However the scale of the scalar potential
of the inflaton field is not μ2, although it is related to it. We
shall come to this point later.
The class of models just discussed are higher R-super-

gravities in their dual description. The presence ofQ and C
kinetic terms in ω, which are necessary in order to ensure
absence of ghost states in the standard N ¼ 1 supergravity
description, induces terms higher than ∼Rþ R2 encoun-
tered in the simple Starobinsky model. Actually, we have
already seen that ∼R3 þ R□R terms are induced, see

Eq. (51), due to the appearance of the C̄C term in ω.
However, the presence of a nontrivial superpotential part h,
as given above, gives rise to additional curvature dependent
terms leading to more general FðRÞ-supergravities.
In order to find the curvature dependent terms, stemming

from h, we shall consider fðCÞ in (61) to be an arbitrary
function of the chiral field C. In this case the chiral form of
the superpotential h is

hðΦ; CÞ ¼ ϕfðcÞ þ Θ2ðfðcÞFϕ þ ϕf0ðcÞFcÞ; ð64Þ

so that, in this case, we get from the h-dependent part of the
Lagrangian given in (50)

Lh ¼
Z

d2Θ2EΦhðCÞþðH:c:Þ

¼ eð−M̄ϕfðcÞþFϕfðcÞþϕf0ðcÞFcÞþðH:c:Þ: ð65Þ

Replacing in this the solutions (53) to (55) we get, in a
straightforward manner, the h-dependent part of the
Lagrangian which is given by,

e−1Lh ¼
�
−
R
6
þb2μ

9
−
i
3
Dμbμ−

jMj2
9

�
fðcÞ

þf0ðcÞ
��jMj2

54
R−

M□M̄
9

−
2jMj4
81

−
jMj2
81

b2μ

− i
jMj2
9

Dμbμ−
2i
27

bμM∂μM̄

�

−λ
2M
3

��
□þR

6

�
q̄þ i

3
Dμbμq̄−

b2μ
9
q̄

þ2i
3
bμ∂μq̄þ

2M̄
3

�
F̄q−

M
3
q̄
���

þðH:c:Þ: ð66Þ

In this it is meant, without saying, that the scalar field c,
appearing within both fðcÞ; f0ðcÞ, is expressed in terms
of other fields using the solution (53). Putting λ ¼ 0 we get
the result derived in [49], see Eq. (45) in this reference.
However λ ≠ 0 is mandatory in order to have an Einstein
supergravity without ghosts, as we have already remarked.
If we keep the terms that depend only on the curvature R,
in the above Lagrangian, and adding the corresponding
curvature dependent contributions from (51), (52) we
arrive at

e−1L¼−
R
3
f

�
R
6

�
þ α

18

�
R3

6
þR□R

�
þ β

18
R2þ��� ð67Þ

In this, for convenience, we have taken fðcÞ to be real
function when its argument c is real. The ellipsis denotes
additional terms, among them curvature dependent terms,
which however mix with other fields. The Lagrangian (67)
is indeed a FðRÞ-supergravity whose precise form is
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specified by the choice of the function fðcÞ. For the simple
choice fðCÞ ¼ 3=2, which eliminates the last term in the
superpotential given in Eq. (63), the deformed Starobinsky
model leads to

e−1L ¼ −
R
2
þ R2

12μ2
þ α

18

�
R3

6
þ R□R

�
þ � � �

with μ ¼
ffiffiffiffiffi
3

2β

s
: ð68Þ

For the complete form of the Lagrangian one should also
add to (67) the terms from Eq. (50) that depend on the chiral
multiplet Q. These do not contribute to terms that depend
solely on the curvature R. However they are essential for
studying the mass spectrum of the dual theory. This task
will be undertaken in the following section.

VI. THE MASS SPECTRUM OF
THE DUAL FðRÞ-THEORY

The mass spectrum of the dual theory can be read by
isolating the bilinear terms in the Lagrangian (50). To that
purpose, we shall pick the quadratic in the fields terms,
separately for each term appearing within (50), keeping
however the complete expressions for those terms that
depend exclusively on the curvature R.
Using previous results, see Eqs. (23) and (24), from the

term ∼RTðRÞ we get

L1 ≡
Z

d2Θ2ERTðRÞ þ ðH:c:Þ

¼ e

�
R2

72
−

1

54

�jMj2
2

þ b2μ

�
R −

1

18
j∇μMj2 þ jMj4

162

−
i
54

bμðM̄∇μM − c:cÞ þ 1

18
ðDμbμÞ2

þ b4μ
162

þ b2μ
162

jMj2
�
: ð69Þ

This is the complete expression. Collecting the quadratic
terms, with the exception of the terms that are only
R-dependent, as we have already remarked, we get

e−1LðquadÞ
1 ¼ R2

72
−

1

18
j∇μMj2 þ 1

18
ðDμbμÞ2: ð70Þ

For the term in the Lagrangian (50) having the structure

L2 ≡
Z

d2Θ2ETðRÞTðTðRÞÞ þ ðH:c:Þ; ð71Þ

the quadratic pieces are given by

e−1LðquadÞ
2 ¼ 1

72

�
R3

6
þ R□R

�
þ 1

18
ðDμbμÞ□ðDμbμÞ

þ 1

18
□M□M̄: ð72Þ

For the term which mixes TðRÞ with TðTðQÞÞ, namely

L3 ≡
Z

d2Θ2ETðRÞTðTðQÞÞ þ ðH:c:Þ; ð73Þ

the quadratic terms are given by

e−1LðquadÞ
3 ¼ R

12
□ðFq þ F̄qÞ −

i
6
Dμbμ□ðFq − F̄qÞ

−
1

6
ð□q̄□M þ H:c:Þ: ð74Þ

As for the terms that depend on the multiplet Q, the term

L4 ≡
Z

d2Θ2EQTðQÞ þ ðH:c:Þ ð75Þ

yields a quadratic piece given by

e−1LðquadÞ
4 ¼ q□q̄þ q̄□qþ 2F̄qFq; ð76Þ

while the term

L5 ≡
Z

d2Θ2ETðQÞTðTðQÞÞ þ ðH:c:Þ ð77Þ

gives rise to quadratic terms given by

e−1LðquadÞ
5 ¼ F̄q□Fq þ Fq□F̄q þ 2□q̄□q: ð78Þ

Note that the fields Fq in the dual description, unlike the
Einstein frame supergravity, are no longer auxiliary and
hence, cannot be eliminated! This is intimately related to
the fact that nonlinear QQ̄ terms were introduced.
Therefore, the deformed theory has additional dynamical
d.o.f., as compared to a theory in which Q appears linearly,
and thus it comes closer to having the same number of d.o.f.
with the ordinary N ¼ 1 supergravity in the Einstein frame.
In fact, there is no mismatch in the number of d.o.f., as we
shall see, which is a welcome feature signaling the absence
of ghosts in the standard N ¼ 1 supergravity description.
It only remains to read the quadratic part of the

Lagrangian (66), which can be implemented by expanding
the function fðcÞ. By a straightforward calculation one
finds, recalling that the function fðcÞ has been taken real
for real values of c,
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e−1LðquadÞ
h ¼ −

R
3
f

�
R
6

�
þ 2

9
ðb2μ − jMj2Þfð0Þ�

−
2

9
ðDμbμÞ2 −

1

9
ðM□M̄ þ M̄□MÞ

þ λ
R
3
ðFq þ F̄qÞ −

2iλ
3

DμbμðFq − F̄qÞ

−
2λ

3
ðM□q̄þ M̄□qÞ

�
f0ð0Þ: ð79Þ

In the last step we should collect all quadratic terms,
given so far, in order to read the mass spectrum of this dual

theory. This may not be as easy due to field mixings
occurring in the Lagrangian. In doing so, it proves easier to
use the real and imaginary components of the fields
involved as follows

Fq ¼ Sþ iG; M=3 ¼ Aþ iB;

q ¼ ρþ iσ and also Dμbμ ¼ Ψ: ð80Þ

The longitudinal component of the field bμ we have
denoted by Ψ. With these definitions the quadratic part
of the total Lagrangian is given by

e−1LðquadÞ ¼ FðRÞ þ α

18
R□R −

4αλ

3
R□Sþ 2λf00

3
RSþ 2α

9
Ψ□Ψþ 2ðβ − f00Þ

9
Ψ2 −

8αλ

3
Ψ□Gþ 4λf00

3
ΨGþ 2f0

9
b2μ

þ 8αλ2ðS□Sþ G□GÞ − 2λðS2 þG2Þ þ 2ðβ − f00ÞðA□Aþ B□BÞ − 2f0ðA2 þ B2Þ − 2λðρ□ρþ σ□σÞ
− 4λf00ðA□ρþ B□σÞ þ 2αðð□AÞ2 þ ð□BÞ2Þ þ 8αλ2ðð□ρÞ2 þ ð□σÞ2Þ þ 8αλð□A□ρþ□B□σÞ: ð81Þ

The function FðRÞ includes all terms, even nonquadratic,
that depend exclusively on the curvature, but not on its
derivatives. Its specific form is given by,

FðRÞ ¼ −
R
3
f

�
R
6

�
þ α

108
R3 þ β

18
R2: ð82Þ

The constants f0, f00 appearing in (81) stand for fð0Þ and
f0ð0Þ respectively. Since the real function fðcÞ is arbitrary so
is the function FðRÞ and hence the constants f0, f00.
Expanding the function fðR=6Þ, the linear in the curvature
term is

−
f0
3
R: ð83Þ

This dominates in theweak field limit but is not a canonically
normalised Einstein term −R=2. However this can be
remedied by an appropriate constant rescaling of the metric,
gμν → σgμν, with σ ¼ 3=2f0, which brings the curvature
term in (83) to its well-known Einstein form −R=2.
The fields get mixed in the bilinear terms therefore the

mass spectrum is rather difficult to read directly at this
stage. Note, especially, the mixing of the curvature with the
real part of the field Fq, denoted by S. As has been already
discussed, Fq is dynamical in this formulation since the
Lagrangian includes derivatives of it. Isolating the bilinear
terms involving the curvature R and the field S, and
rescaling the field S, by S ¼ ð16αλ2Þ−1=2Ŝ, so that its
kinetic term is canonical, we get

e−1LðquadÞ
RS ¼ FðRÞ þ α

18
R□R −

ffiffiffi
α

p
3

R□Ŝþ f00
6

ffiffiffi
α

p RŜ

þ 1

2
Ŝ□Ŝ −

1

8αλ
Ŝ2: ð84Þ

The simplest way to derive the tree-level mass spectrum is
to find the equations of motion of all fields involved. For
the Lagrangian (84) the equations of motion that follow by
varying the metric gμν and Ŝ are given below. The variations
of each term in Eq. (84), with respect to the metric, are
presented in Appendix A. It is essential to note that only the
linear terms will be kept in the equations of motion, since
we want to find the tree-level mass spectrum, which makes
the task much easier. Then for the variations δgμν, given in
Eqs. (A1)–(A4), we pick only the linear terms. Then
employing the fact that Fð0Þ ¼ 0, which follows from
Eq. (82), we arrive at

−
�
Rμν−

gμν
2
R

�
F0ð0Þ

þðgμν□−∇μ∇νÞ
�
F00ð0ÞRþα

9
□R−

ffiffiffi
α

p
3
□Ŝþ f00

6
ffiffiffi
α

p Ŝ

�
¼0:

ð85Þ

Then we expand gμν in the usual manner around the flat
metricnμν ¼ diagð−1;þ1;þ1;þ1Þ, that is gμν ¼ nμν þ hμν.
Then, by defining the field χμν, see (B2), and employing the
harmonic gauge, (B3), the equation of motion receives the
following form

−
F0ð0Þ
2

□χμν þ ðnμν□ − ∂μ∂νÞ
�
−
F00ð0Þ
2

□χ −
α

18
□

2χ

−
ffiffiffi
α

p
3

□Ŝþ f00
6

ffiffiffi
α

p Ŝ

�
¼ 0: ð86Þ

The parameters F0ð0Þ; F00ð0Þ appearing in this equation
depend on f0 ≡ fð0Þ; f00 ≡ f0ð0Þ and β as can be seen from
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Eq. (82). The precise relations are given in (C4). As for the
equation of motion that follows by varying the field Ŝ, this is
much easier to be derived leading to

□Ŝ −
1

4αλ
Ŝ −

ffiffiffi
α

p
3

□Rþ f00
6

ffiffiffi
α

p R ¼ 0: ð87Þ

Keeping the linear terms inR, and in the harmonic gauge, this
receives the form

□Ŝ −
1

4αλ
Ŝþ

ffiffiffi
α

p
6

□
2χ −

f00
12

ffiffiffi
α

p □χ ¼ 0; ð88Þ

where χ ¼ nμνχμν. Eqs. (86) and (88) can be written as

□χμν þ ðnμν□ − ∂μ∂νÞðα1ð□Ŝþ□Σ̂Þ þ β1Ŝþ β2Σ̂Þ ¼ 0

ð89Þ

□Ŝþ□Σ̂þ λ1Ŝþ λ2Σ̂ ¼ 0; ð90Þ

where for convenience we have denoted Σ̂≡ ffiffiffi
α

p
□χ=6. The

constants α1, β1;2, as well as λ1;2, can be read from (86) and
(88). Eq. (90) can be plugged into (89) yielding

□χμν þ ðnμν□ − ∂μ∂νÞðγ1Ŝþ γ2Σ̂Þ ¼ 0;

where γj ¼ α1λj þ βj: ð91Þ

This contracted with the flat metric nμν yields

γ1□Ŝþ γ2□Σ̂þ 2ffiffiffi
α

p Σ̂ ¼ 0: ð92Þ

Solving (90), (92) we get a system of two coupled Klein-
Gordon equations,

□Ŝ ¼ ρ1Σ̂þ ρ2Ŝ; □Σ̂ ¼ σ2Ŝþ σ1Σ̂: ð93Þ

The constants appearing in this equations can be read from
the previous expressions. Note that the “off-diagonal”
coefficients ρ1, σ2 are not equal. This system can lead to
two uncoupled Klein-Gordon equations by linearly com-
bining Ŝ; Σ̂. In order to implement this we write the above
system as

□

�
Ŝ

Σ̂

�
¼ M2

�
Ŝ

Σ̂

�
where M2 ¼

�
ρ2 ρ1

σ2 σ1

�
: ð94Þ

The system (94) can be uncoupled by a real matrix A that
diagonalizes M2,

AM2A−1 ¼¼
�
m2

1 0

0 m2
2

�
; ð95Þ

where m2
1;2 are the eigenvalues of M2. Then the “rotated”

fields Φ1, Φ2 defined by

�Φ1

Φ2

�
¼ A

�
Ŝ

Σ̂

�
; ð96Þ

are two independent Klein-Gordon fields Φ1, Φ2 satisfying

□Φ1 −m2
1Φ1 ¼ 0; □Φ2 −m2

2Φ2 ¼ 0: ð97Þ

The masses squared m2
1; m

2
2 are the eigenvalues of the mass

matrix defined in (94). They are explicitly given in
Appendix C, see (C2), where we also discuss the conditions
for them to be real and nontachyonic.
The graviton field is given by

ξμν ¼ χμν þ ðnμν□ − ∂μ∂νÞðτ1Φ1 þ τ2Φ2Þ: ð98Þ

Since χμν is transverse so is ξμν that is, ∂μξ
μν ¼ 0, and it

satisfies the massless Klein-Gordon equation, as can be
seen by acting with the □ operator on ξμν,

□ξμν ¼ 0 ð99Þ

if the constants τ1;2 are given by

τj ¼
ðγ1ρ1 − γ2ρ2Þ þm2

jγ2
ρ1m2

j
; j ¼ 1; 2: ð100Þ

To arrive at (99), Eqs. (91) and (97), as well as (96), were
used. Therefore the physical d.o.f. of the R, S sector are a
massless graviton and two massive scalars with masses
given in (C2).
As for the remaining d.o.f., consider the field Ψ, which

mixes only with the imaginary part of Fq named G, in the
bilinear terms. The equations of motion are fairly easy to be
derived. In particular by varying with respect bμ one gets

−
4α

9
∂μ□Ψ −

4ðβ − f00Þ
9

∂μΨþ 8αλ

3
∂μ□G

−
4λf00
3

∂μGþ 4f0
9

bμ ¼ 0; ð101Þ

from which, acting upon it by ∂μ, we get

□

�
−
1

3
□Ψþ 2λ□G

�
−
λf00
α

□G

−
ðβ − f00Þ

3α
□Ψþ f0

3α
Ψ ¼ 0: ð102Þ

On the other hand the variation with respect G yields,

−
1

3
□Ψþ 2λ□G ¼ 1

2α
G −

f00
6α

Ψ: ð103Þ
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Plugging the left hand side of (103) into (102) and by
defining Ψ̂≡Ψ=3, for convenience, we get the system of
equations

□

�
Ψ̂
Ĝ

�
¼ m2

�
Ψ̂
Ĝ

�
where m2 ¼

�
δ11 δ12

δ21 δ22

�
: ð104Þ

The constants appearing in this equations can be read from
previous expressions. The “off-diagonal” coefficients of the
mass matrix m2 are not equal, in general. However, this
system also leads to two independent Klein-Gordon equa-
tions, if one diagonalizes the matrix m2 by a real matrix, as
we did in the previous case, see (95). The corresponding
masses squared are the eigenvalues of the mass matrix
appearing on the right of (104). They are analytically given
in (C12) where it is shown that they are identical to the
masses (C1). The reason behind this degeneracy will be
discussed later.
It remains to find the equations of motion for the system

of the fields A, ρ and B, σ. It is seen from Eq. (81) that A
and ρ are coupled, but do not mix with B, σ which are also
coupled. Note that the pertinent Lagrangian terms for the B,
σ system follow exactly from those of A, ρ by replacing
A → B and ρ → σ. Therefore it suffices to study one of
these systems. The equations of motion that follow from
(81), by varying A and ρ respectively, are given below

□
2ðAþ 2λρÞ ¼ ðf00 − βÞ

α
□Aþ λf00

α
□ρþ f0

α
A ð105Þ

□
2ðAþ 2λρÞ ¼ f00

2α
□Aþ 1

2α
□ρ: ð106Þ

By defining the combination

Y ≡ Aþ 2λρ; ð107Þ

and using this to replace in the equations above the field ρ
in terms of A, Y we get, combining the resulting equations,

□Y þ g□Aþ μA ¼ 0

□
2Y þ c1□Y þ c2□A ¼ 0: ð108Þ

The constants c1;2; g; μ can be read from Eqs. (105) and
(106) and are given in (C13). Acting in the first of (108) by
□ and replacing in the resulting equation □

2Y by the
second of (108), we get a system which in matrix notation
has the following form,

□
2

�
A

Y

�
¼ M2

□

�
A

Y

�

where M2 ¼
�
m11 m12

m21 m22

�
: ð109Þ

The mixing matrix M2 is not symmetric, in general. Its
elements are explicitly given in (C14).Diagonalizing this,we
get two Klein-Gordon equations for some linear combina-
tions of □A;□Y. The relevant masses squared are the
eigenvalues of the matrix M2 above. These are found to
be identical to (C8), and hence (C1). For a proof, see
discussion following (C13). The system of B, σ has exactly
the same mass spectrum as the A, ρ system, as we have
discussed.
Before closing this section, we should point out that the

masses derived in this section are in a frame in which the
linear in the curvature term is −f0R=3, see Eq. (83).
However masses are usually quoted in the Einstein frame in
which the curvature term is normalized to −R=2. As
already pointed out, this can be implemented in a trivial
manner with a constant rescaling of the metric [see
discussion following Eq. (83)]. The effect of this is that
the masses derived in this section should be multiplied by
the factor

ffiffiffiffiffiffiffiffiffiffiffiffi
3=2f0

p
to derive those in the Einstein frame,

which enter Newton’s law.
To conclude, the mass spectrum consists of a massless

graviton, four scalar d.o.f. of mass m1 and another four
scalars with masses m2, given analytically in (C2). The
reason for the resulting mass degeneracy, in this simple
model, will be discussed when dealing with the standard
N ¼ 1 supergravity in the Einstein frame, whose spectrum
should coincidewith this of the dual theory considered in this
section. This taskwill be undertaken in the following section.

VII. N = 1 SUPERGRAVITY

The previously defined models are dual descriptions of
standardN ¼ 1 supergravities where the curvature term has
its canonical Einstein form, − R

2
. In this frame the kinetic

and potential terms of the theory are given by

e−1Lkin ¼ −KJ̄I∂μϕ̄J̄∂μϕ
I ð110Þ

e−1Lpot ¼ −ðFIFI − 3eKjWj2Þ: ð111Þ

In these ϕI; ϕ̄J̄ denote respectively the scalar fields
involved, and their complex conjugates, and KJ̄I ¼
∂2K

∂ϕ̄J̄∂ϕI. The F-terms FI, FI are given by

FI ¼ eK=2DIW; FI ¼ KIJ̄DJ̄W̄

where DIW ¼ ∂IW þ KIW: ð112Þ

As usual, the subscripts I, Ī denote differentiation with
respect ϕI; ϕ̄Ī and KIJ̄ is the inverse of the kinetic
matrix KJ̄I .
For the class of models studied in the previous section,

the superpotential is

W ¼ TΦþQCþΦfðCÞ; ð113Þ
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with fðCÞ an arbitrary chiral function of C, and the Kähler
function K is related to the real function Ω as given in (3).
The latter is given by

Ω ¼ T þ T̄ þ ðQΦ̄þΦQ̄Þ þ 2αCC̄þ 2λQQ̄þ 2βΦΦ̄:

ð114Þ
The complete form of the scalar kinetic part is rather
lengthy and will not be presented. However, it takes a rather
simple form if we keep the bilinear parts in the fields, and
their conjugates, by expanding KJ̄I about Φ ¼ C ¼ Q ¼ 0

preserving the terms that depend on T, T̄. The reason
behind this expansion relies on the fact that the point
Φ ¼ C ¼ Q ¼ 0, as we shall see shortly, corresponds to a
global minimum of the scalar potential. In this expansion
the kinetic terms are,

e−1Lkin ¼ −
3

4

ð∂μReTÞ2 þ ð∂μImTÞ2
ReT2

þ 3

2ReT
ð2α∂μC∂μC̄þ 2β∂μΦ∂μΦ̄

þ 2λ∂μQ∂μQ̄þ ð∂μQ∂μΦ̄þ ∂μΦ∂μQ̄ÞÞ; ð115Þ
where the first two terms are the ones encountered in the
Starobinsky model. Instead of using ReT we can define a
real scalar field ψ by

ReT ¼ −f0e
ffiffi
2
3

p
ψ : ð116Þ

The choice of the pre-factor of the exponential in (116) is
not essential since by shifting the field ψ can be changed to
anything. However, this choice is convenient since, as we
shall discuss, the minimum of the potential lies at
ReT ¼ −f0, or same ψ ¼ 0. With this definition the kinetic
terms given in (115) receive the following form

e−1Lkin ¼ −
1

2
ð∂μψÞ2 −

3

4f20
e−2

ffiffi
2
3

p
ψ ð∂μImTÞ2

−
3

2f0
e−

ffiffi
2
3

p
ψ ð2α∂μC∂μC̄

þ 2β∂μΦ∂μΦ̄þ 2λ∂μQ∂μQ̄

þ ð∂μQ∂μΦ̄þ ∂μΦ∂μQ̄ÞÞ: ð117Þ
Expanding the exponentials about the point ψ ¼ 0, antici-
pating the fact that at the minimum ψ ¼ 0, we get

e−1Lkin ¼ −
1

2
ð∂μψÞ2 −

3

4f20
ð∂μImTÞ2 − 3

2f0
ð2α∂μC∂μC̄

þ 2β∂μΦ∂μΦ̄þ 2λ∂μQ∂μQ̄

þ ð∂μQ∂μΦ̄þ ∂μΦ∂μQ̄ÞÞ: ð118Þ
These kinetic terms are not canonically normalized.
Moreover they mix in the Q, Φ sector. The kinetic mixing
matrix associated with the Q, Φ sector has determinant

proportional to 4βλ − 1. Therefore, when either β or λ
vanish, that is when there are no diagonal quadratic kinetic
terms for either Q or Φ fields, one of its eigenvalues is
negative. This signals the appearance of ghost states!
Taking 4βλ > 1 all eigenvalues of the kinetic mass matrix
in (118) are positive definite and this is a necessary
condition in order to avoid ghosts. Note that this condition
lies in the range where the mass squared of the dual theory
are positive definite, see Eq. (C7).
Having discussed the kinetic part we now move on to

study the scalar potential. The complete potential has the
following form,

V ¼ 9

2λð4βλ − 1ÞΩ2
·

�
ðjC − 2λðT þ fðCÞÞj2 þ ð4βλ − 1Þ

×

�
jCj2 þ λ

α
jΦf0ðCÞ þQj2 þ 2λðCQΦ̄þ H:c:Þ

þ 2λðT þ 2fðCÞ − Cf0ðCÞ þ H:c:ÞjΦj2
��

: ð119Þ

The first three terms are manifestly positive definite. The
last two are not and the potential in not bounded from
below. Additional terms need be introduced to stabilize the
scalar potential, as the ones employed in [17,26]. Adding a
single stabilizing term [26]

−ζjΦj4 ð120Þ

to the functionΩ is adequate to stabilize the scalar potential
as we will discuss. That done, the scalar potential receives a
rather complicated form, which, however, we can handle
analytically. Its complete expression is given by (D1)
and (D2). In Appendix D we discuss in detail its minima
and its stability. In fact we find that the potential has a
minimum at the point

ReT ¼ −f0; ImT ¼ 0; C ¼ Φ ¼ Q ¼ 0: ð121Þ

As we show in Appendix D there are values of ζ for which
the potential is positive definite for any value of the fields
involved. Therefore, this minimum is actually the absolute
minimum of the potential. At the minimization point (121)
the scalar potential vanishes, see (D6), that is we have a
Minkowski vacuum. Moreover, at this vacuum, supersym-
metry remains unbroken, since hFIi ¼ 0 for any value of I.
Being the absolute minimum, the matrix of the second

derivatives, at this point, should be positive, i.e., all of its
eigenvalues should be positive definite. This statement is
equivalent to saying that there are no tachyonic masses in
the spectrum of scalars, which we shall prove in the
following. We point out that the mass spectrum is inde-
pendent of the stabilizer. Actually, expanding the potential
about the point (121) its quadratic terms do not depend on ζ
as can be seen from the form of the potential, given in (D1),
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using the fact that at the minimum (D6) holds. This differs
from other R2 supergravity models, in which the scalaron
has a ζ-dependent mass due to the fact that the lowest
minimum of the potential is ζ-dependent, as well [48].

In fact, by expressing the fields in terms of their real and
imaginary parts, and trading ReT for the field ψ , defined in
Eq. (116), we find that the quadratic terms arising from the
potential are given by

e−1LðquadÞ
pot ≡ −Vquad

¼ −k1ð3λðImTÞ2 þ 3ðβ þ ðf00Þ2λ − f00ÞðImCÞ2 þþ3ð2λf00 − 1ÞImTImCþ ð2λf20Þψ2

þ 3ðβ þ ðf00Þ2λ − f00ÞðReCÞ2 þ
ffiffiffi
6

p
f0ð1 − 2λf00ÞðReCÞψÞ − k2ððReQÞ2

þ ððf00Þ2 þ 4αf0ÞðReΦÞ2 þ 2f00ðReQÞðReΦÞ þ ðReQ → ImQ;ReΦ → ImΦÞÞ: ð122Þ

In it the constants k1;2 are given by

k1 ¼
3

2f20ð4βλ − 1Þ k2 ¼
9

8αf20
: ð123Þ

In (122) the fields are mixed pairwise. In fact ψ mixes with
ReC, ImT mixes with ImC,ReQmixes withReΦ and ImQ
mixes with ImΦ. Having the bilinear kinetic and potential
terms it is fairly easy to find the mass spectrum. This task is
facilitated a great deal by the fact that the mixings among the
fields are done in a pairwise manner and we only have to
diagonalize two by two matrices. Due care should be taken
by the fact that in the kinetic part the fields are not canonically
normalised and, besides, mixings occur in theQ,Φ sector, as
is evident from (118). That done we find that the masses are
exactly the samewith theones derived in the dual theory if the
latter are multiplied by a factor

ffiffiffiffiffiffiffiffiffiffiffiffi
3=2f0

p
. The origin of this

difference was adequately explained in the concluding
remarks of the previous section, and is due to the fact that
masses read in the Einstein frame differ by a constant from
those in other frames in which the curvature term appears
with a different normalization.
An alternative, and perhaps more elegant way, to deal

with the mass spectrum, and also shed light to the issue of
mass degeneracy, is to change the superfield basis.
Concerning the mass degeneracy, a double mass degen-
eracy is expected among the scalars due to supersymmetry
that is not broken at the minimum of the potential. Scalar
d.o.f. have same masses with their fermionic counterparts,
the latter occurring in two helicity states. Therefore, to each
Weyl fermion, there corresponds two real scalar fields
having the same mass. However a larger mass degeneracy
is observed, actually twice the one expected. In order to
treat the system in a more symmetric manner and find the
source of the degeneracy, we had better change the super-
field basis, working instead with shifted fields, defined by

T 0 ¼ T þ f0; Q0 ¼ Qþ f00Φ: ð124Þ
These shifts are dictated by the form of the superpotential
(113), when its last term ΦfðCÞ is expanded in powers of
C, which in this way receives the following form,

W ¼ ðT þ f0ÞΦþ ðQþ f00ΦÞCþOðΦC2Þ: ð125Þ

The last term in the expression above is at least cubic in the
superfields involved and will not actually concern us. The
kinetic functionΩ given in Eq. (114) can then be expressed
in terms of the new multiplets. To that purpose, it proves
easier to use a rescaled field, Φ0 ¼ 2

ffiffiffiffiffiffiffiffi
αf0

p
Φ. Within Ω

mixings of Φ0; Q0 occur, and by a suitable orthogonal
rotation R of the Φ0; Q0 superfields these can be uncoupled

�Φ0

Q0

�
¼R

�Ξ1

Ξ2

�
whereR¼

�
cosθ sinθ

−sinθ cosθ

�
; ð126Þ

leading to the following Ω, W functions,

Ω ¼ −2f0 þ
ffiffiffiffiffiffiffi
2f0

p
ðtþ t̄Þ þ Σ1Σ1 þ Σ2Σ2 þ Σ3Σ3

W ¼ ðt;Σ3ÞR
�
m2Σ2

m1Σ1

�
þ E: ð127Þ

To cast these functions as above, we have also implemented
the following trivial rescalings

T 0 ¼
ffiffiffiffiffiffiffi
2f0

p
t; Ξ1 ¼ ð

ffiffiffiffiffiffi
2α

p
m2ÞΣ2;

Ξ2 ¼ ð
ffiffiffiffiffiffi
2α

p
m1ÞΣ1; C ¼ 1ffiffiffiffiffiffi

2α
p Σ3; ð128Þ

where m1;2 are exactly the masses given in Eq. (C2). The
last term E in the superpotential W is a function of Σ1, Σ2,
Σ3 which is at least cubic in the superfields. This will not be
explicitly shown, since will not concern us for the dis-
cussion that follows. It suffices to say that it has the form
ðaΣ1 þ bΣ2ÞRðΣ3Þ with RðΣ3Þ a function at least quadratic
in the superfield Σ3. The advantage of working with the
basis of superfields t;Σi is twofold. The first is that the
function Ω is brought to a form corresponding to a Kähler
potential whose scalar fields parametrize the coset space
SUð4; 1Þ=SUð4Þ × Uð1Þ. Such a parametrization is a gen-
eral feature of the no-scale models. The scalar kinetic terms
are those of a nonlinear sigma model having as isometry
group the noncompact SUð4; 1Þ symmetry. The second
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reason is that, the scalar fields corresponding to the t;Σi
multiplets have vanishing values at the absolute minimum
of the potential, which, as we have already said, is a
Minkowski vacuum with unbroken supersymmetry. This,
in conjunction with the fact that the superpotential is at least
quadratic in the fields, has the effect that the only quadratic
terms of the potential, when it is expanded about its
Minkowski vacuum, are those stemming from the F-terms.
In particular, one needs only to calculate the derivatives of
the first terms in the superpotential given in Eq. (127), and
the last term E plays no role in the mass spectrum. This
facilitates the calculation a great deal, in both identifying
the scalar mass eigenstates, and find the mass spectrum,
and also tracing the source of the mass degeneracy. In
particular, in this basis the Kähler metric, and its inverse,
receive a simple diagonal form, at the minimum,

KJ̄I ¼
2f0
3

δJ̄I ; KIJ̄ ¼ 3

2f0
δIJ̄ ; ð129Þ

and thus the quadratic terms of the potential are given by

Vquad ¼ eK
�

3

2f0

�X
I

j∂IWj2

¼
�

3

2f0

�
2

ðm2
1ðjx1j2 þ jσ1j2Þ þm2

2ðjx2j2 þ jσ2j2ÞÞ:

ð130Þ

In this σ1 and σ2 are the scalars of the multiplets Σ1;2

respectively, while x1;2 are those of the rotated multiplets
defined by X1 ¼ cΣ3 þ st and X2 ¼ −sΣ3 þ ct. Note that
X1;2 are exactly the combinations of t;Σ3 multiplets
appearing in the first part of the superpotential W given
in Eq. (127). As for the kinetic terms, collecting the
quadratic terms, using the fact that the Kähler metric in
the t;Σi basis is diagonal having the simple form (129), we
get, after replacing the scalars t; σ3 by x1;2,

e−1Lkin¼−
�

3

2f0

�
ðj∂μx1j2þj∂μx2j2þj∂μσ1j2þj∂μσ2j2Þ:

ð131Þ

From Eqs. (130) and (131), we see that x1, σ1 have common
masses squared ð3=2f0Þm2

1 and x2, σ2 have ð3=2f0Þm2
2,

with m2
1;2 given in (C2). This we have already found

previously in an alternative manner.
Note that by working in the new basis not only the scalar

sector is treated more symmetrically, but also the flat limit,
MPlanck → ∞, is more easily obtained. In fact, modulo
normalization, the scalar kinetic, and the mass terms given
before are those encountered in a globally supersymmetric
model involving four chiral multiplets. In particular, in the
flat limit only renormalizable couplings survive, and the

model smoothly goes to that of a a rigid supersymmetry
with four (normalized) chiral fields, given by

X̂i ¼
ffiffiffiffiffiffiffi
3

2f0

s
Xi; Σ̂i ¼

ffiffiffiffiffiffiffi
3

2f0

s
Σi; i ¼ 1; 2; ð132Þ

and a superpotential

Ŵ ¼ m̂1X̂1Σ̂1 þ m̂2X̂2Σ̂2 þ “cubic terms:” ð133Þ

In this, m̂i are the rescaled masses m̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3=2f0

p
mi, and in

this limit only the renormalizable cubic terms have been
kept in the E-term appearing in Eq. (127), designated as
“cubic terms” in Eq (133). The scalar potential of the theory
is that of a global supersymmetry, having the well-known
form

V ¼
X2
i¼1

ðj∂Ŵ=∂X̂ij2 þ j∂Ŵ=∂Σ̂ij2Þ; ð134Þ

whose vacuum does not break supersymmetry. Then, from
this form it is evident that to each multiplet pair X̂i; Σ̂i their
corresponding complex scalars, i.e., four d.o.f., have
common masses m̂i appearing in the superpotential Ŵ.
This degeneracy is due to the specific choice for the
superpotential, given in (133), whose only mass terms
are those mixing X̂i; Σ̂i, with a mass parameter m̂i, in the
way shown above. Had we included the fermionic compo-
nents we would have found that the fermionic Weyl
components of X̂i; Σ̂i multiplets also mix in their mass
terms, exactly in the same manner, with a mass parameter
m̂i. Therefore they compose the left- and right-handed
components of a Dirac fermion having mass m̂i. Thus, we
have four fermionic d.o.f., of mass m̂i, which exactly match
the bosonic d.o.f., as expected in unbroken supersymmetry.
Having found the complete form of the potential, and in

order to have a better understanding of its behavior, we start
from its absolute minimum and move in the T, C direction,
keeping the remaining fields to their vacuum values,
Φ ¼ Q ¼ 0, see (121). We then see, from (D1) and
(D2), that it has the simple form,

VðT;CÞ¼ 9

2λð4βλ−1ÞðTþ T̄þ2αjCj2Þ2
· ðð4βλ−1ÞjCj2þjC−2λðTþfðCÞÞj2Þ: ð135Þ

Various profiles of the potential are presented in Fig. 1, for
some representative choices of the function fðCÞ. In this
figure we display the potential as function of ψ , defined in

(116) by ReT ¼ −f0e
ffiffi
2
3

p
ψ, for various values of c≡ ReC

and ImC ¼ 0. In each case shown, the potential has the
form of a Starobinsky-like potential whose minima lie
higher, for higher values of c, the lowest minimum being
attained for c ¼ 0. The potential as function of ψ and ReC,
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with the remaining fields set to zero, has a funnel-like
shape, as shown in Fig. 2, which narrows as ψ gets smaller.
On this curve we have also drawn the trajectory of the
minima in the ReC direction for fixed ψ values, i.e., the
points corresponding to ∂V

∂ReC ¼ 0. The role of this trajectory
will be discussed in later.
For vanishing values of C the potential (135) takes the

simple form,

VðT;C¼0Þ¼ 18λ

ð4βλ−1Þ
jTþfð0Þj2
ðTþ T̄Þ2

¼ 9λ

2ð4βλ−1Þ
ðReTþfð0ÞÞ2þðImTÞ2

ðReTÞ2 ; ð136Þ

which by replacing ReT by the field ψ , using (116), and in
the particular direction ImT ¼ 0, it receives the well-
known form of the one field Starobinsky potential,

VðψÞ¼ 9λ

2ð4βλ−1Þð1−e−
ffiffi
2
3

p
ψÞ2≡3μ2s

4
ð1−e−

ffiffi
2
3

p
ψÞ2: ð137Þ

Its scale μs is set by a combination of the parameters λ, β, as
is evident from (137).
Therefore, we have constructed a higher derivative super-

gravity of the formFðR;R□RÞ, whose dual Einstein-Hilbert
description has no ghosts and its potential is described by
four complex scalar d.o.f.. This is positive definite, having
one stable Minkowski vacuum, with unbroken supersym-
metry. Starting from this minimum, andmoving in particular
directions, the scalar potential has the shape of the well-
knownStarobinskymodel. It ismainly for this reason thatwe
dubbed the class of models described in this work as
deformed Starobinsky models. We are aware that the virtues
of the single-field Starobinsky model, which successfully
describes cosmological inflation in a simplemanner,may not
be shared by the class of models considered here. In fact, the
models considered here are unavoidablymultiscalar and only
in particular directions have profiles reminiscent of the
Starobinsky potential. However, this by itself is not adequate
to reach the conclusion that they are successful in describing
cosmological inflation.
A thorough study of the cosmological consequences of

these models are beyond the scope of the present paper.
However we may present reasons why this class of models
may be of relevance for cosmological inflation. Although it
is premature to reach definite conclusions, the qualitative
features of the potential are such that a two-field inflation
may be sustained, in principle. In particular, starting from
some initial values of the fields ψ ; ReC, freezing the
remaining d.o.f. to their vacuum values, the field ReC
rolls down to reach the minimum in the ReC-direction,
that is it starts tracking the trajectory drawn in Fig. 2. Then
the fields ReC, ψ are decreased continuously, in their
journey to the absolute minimum, which corresponds to
ψ ¼ 0; ReC ¼ 0. Although we have verified numerically
this behavior, evidently this scenario has to be taken with a
grain of salt, as far as its cosmological predictions are
concerned, and a thorough investigation will appear in a
forthcoming publication. In particular, the role of the other
fields, that we have frozen at their minimum values, may
upset the whole picture since during the evolution the
frozen scalar d.o.f. may depart from their minimum values
destabilizing in this way the inflationary trajectory.
Concluding this section, we have seen that the departure

from the linearity of the Q-field, that plays the role of a
Lagrange multiplier when it linearly appears in the theory,
besides leading to a standard N ¼ 1 old-minimal super-
gravity theory free of ghosts, it also yields supergravity
models having a no-scale structure, with Kähler potentials

FIG. 1. The potential (135) as function of ψ for representative
real values of the field C denoted by c in the Figure. The curves
displayed correspond to c ¼ 0.0, 0.1 and c ¼ 0.5 as labeled. The
couplings have been taken α ¼ 0.1, β ¼ 3.0, and λ ¼ 1.0, and the
function fðCÞ is f0 þ f1Cþ f2C2 with f0 ¼ 0.5, f1 ¼ 2 and
f2 ¼ 0.1. The remaining fields have been fixed to their minimum
values (see Eq. (121).

FIG. 2. The potential (135) as function of ψ and c ¼ ReC. The
couplings and the function fðCÞ are as in Fig. 1. The curve drawn
on the surface of the potential is the trajectory defined by
∂V

∂ReC ¼ 0. As in Fig. 1, the remaining fields have been fixed to
their minimum values.
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describing the coset SUð4; 1Þ=SUð4Þ ×Uð1Þ. These are
characterized by a stable scalar potential, described by four
complex fields, with a single Minkowski vacuum and
unbroken supersymmetry. In particular directions the scalar
potential has a Starobinsky-like form. A detailed study of
its cosmological consequences will be presented in a
forthcoming publication.

VIII. DISCUSSION—CONCLUSIONS

In this work we have addressed the question whether
higher derivative supergravitymodels can be dual to ordinary
ghost-freeN ¼ 1 supergravities. It has been long known that
such a duality, for FðRÞ-supergravities, can be established
with the aid of two pairs of chiral multiplets, one pair serving
as Lagrange multiplier and the other solving in terms of R
and TðRÞ, respectively. The higher derivative supergravities
constructed in this manner do not include derivatives of the
scalar curvature, while introducing additional multipliers
leads to more general theories involving, also, derivative
terms □R;□2R etc. [15]. It is also known, that this
description suffers from the appearance of ghost states
(poltergeists) in the Einstein frame N ¼ 1 supergravity,
which are in general as many as the Lagrange multipliers,
which should decouple from the spectrum.
The aforementioned construction can be generalized by

modifying the kinetic function Ω so as to include genuine
kinetic terms, for the chiral multiplets involved to imple-
ment the duality. In this approach, we managed to get
ghost-free supergravity models, in the Einstein frame,
which have dual formulation as higher derivative super-
gravities. Using the minimal construction, with the least
number of chiral fields present, the characteristics of these
theories is that in addition to curvature dependent terms,
□R-terms are also present. Besides, since in this formalism
one of the Lagrange multipliers is promoted to a dynamical
field, the higher derivative supergravity remains coupled to
this chiral field which, unlike previous constructions, is not
eliminated from the action. In this way the dual theories
have the same number of dynamical d.o.f.. Within this
framework we worked out specific examples showing
analytically the coincidence of the mass spectrum between
the two descriptions and the absence of ghost states.
The construction presented in this work, although it

shares features of existing descriptions found in the
literature, is different from them in many respects. For
instance, auxiliary fields are also present in the case of the
constrained superfield formalism [40,50–55] but obviously
in our work the fact that they survive in the on-shell
Lagrangian is not due to any constraint. It is also known
that other higher derivative models, including operators of
the form ∼DΦDΦD̄Φ†D̄Φ†, can lead to a ghost-free theory
in four dimensions [41,56–58]. The inclusion of these
terms leads to cubic equations for the auxiliary fields of the
chiral multiplets, without inducing kinetic terms for them.
The solution of these equations, for the elimination of the

auxiliary fields, gives three inequivalent on-shell theories.
Restrictions from the effective field theory rules out the two
of them, leaving only one consistent solution [59]. In our
approach the couplings of all chiral fields involved, in the
higher-R description, arise naturally, while in the Einstein
frame the model is quite conventional.
The simple higher derivative theories considered in this

work lead unforcefully to generalizations of the super-
symmetric Starobinsky model, in the N ¼ 1 supergravity
formulation, in the Einstein frame. These models are of the
no-scale type, with the associated Kähler function having the
structure of the SUð4; 1Þ=SUð4Þ ×Uð1Þ coset manifold.
We have presented a preliminary discussion concerning

the possibility that the resulting scalar potential of these
models can drive cosmological inflation. Recall that in the
description of FðRÞ-supergravity in the Einstein frame,
although ghosts may decouple from the theory [15] the
potentials arising are in general unstable or, in special
cases, not obviously leading to inflationary behavior [49].
In the model worked out in this work, the arising potential
features interesting properties. It exhibits Starobinsky
directions, as in the supersymmetric completion of Rþ
R2 theory, and besides, no extra instabilities are developed.
In particular, although in our case the scalar potential is
described by four complex scalar fields, nevertheless
introducing a stabilizing term [28] is adequate to render
the potential stable, exhibiting an absolute Minkowski
vacuum that does not break supersymmetry. The cosmo-
logical evolution may, in principle, lead to a multifield
inflation. We find this case interesting enough to be
considered, although additional stabilizing terms, if intro-
duced, may lead to the conventional single-field inflation.
A systematic study of the cosmological aspects of this kind
of models is under study and the results will appear in a
forthcoming publication.
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APPENDIX A: VARIATION WITH RESPECT
TO THE METRIC

The following variation formulae are useful towards
deriving results given in the main text. One finds that

δ

Z ffiffiffi
g

p
FðRÞ ¼

Z ffiffiffi
g

p �
gμν

2
FðRÞ − RμνF0ðRÞ

þ ðgμν□R −∇μ∇νRÞF00ðRÞ

þ ðgμνð∇RÞ2 −∇μR∇νRÞF000ðRÞ
�
δgμν

ðA1Þ
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and also

δ

Z ffiffiffi
g

p
R□R¼

Z ffiffiffi
g

p �
−
gμν

2
ð∇RÞ2þ∇μR∇νR−2Rμν

□R

þ2ðgμν□−∇μ∇νÞ□R

�
δgμν: ðA2Þ

Moreover,

δ

Z ffiffiffi
g

p
R□Ŝ¼

Z ffiffiffi
g

p �
−
gμν

2
∇λR∇λŜþ∇μR∇νŜ−Rμν

□Ŝ

þðgμν□−∇μ∇νÞ□Ŝ

�
δgμν ðA3Þ

and

δ

Z ffiffiffi
g

p
RŜ¼

Z ffiffiffi
g

p ��
Rμν−

gμν

2
R

�
Ŝþðgμν□−∇μ∇νÞŜ

�
δgμν:

ðA4Þ

APPENDIX B: EXPANSION ABOUT
THE FLAT METRIC

For the expansion about the flat space-time metric, the
pertinent formulae are given below.

gμν ¼ nμν þ hμν where nμν ¼ diagð−1;þ1;þ1;þ1Þ
ðB1Þ

and one defines, in the usual manner,

χμν ≡ hμν −
nμν
2

h where h≡ nμνhμν: ðB2Þ

In the harmonic (de Donder) gauge we have

χν ≡ ∂μχ
μ
ν ¼ 0: ðB3Þ

For the curvature, keeping the linear terms,

R ¼ □h − ∂μhμ ¼ −
1

2
□χ − ∂μχ

μ; where hμ ≡ ∂νhμν:

ðB4Þ
In this □ is the flat metric d’Alembertian operator. In the
harmonic gauge

Rμν −
gμν

2
R ¼ 1

2
□χμν; ðB5Þ

and also (in harmonic gauge)

ðgμν□ −∇μ∇νÞR ¼ −
1

2
ðnμν□ −∇μ∇νÞ□χ

ðgμν□ −∇μ∇νÞ□R ¼ −
1

2
ðnμν□ −∇μ∇νÞ□2χ: ðB6Þ

APPENDIX C: MASS SPECTRUM AND
ALLOWED RANGE OF THE PARAMETERS

The mass spectrum, arising from the mixing of the
graviton with the real part of Fq, includes two massless
states, the graviton in two helicity states, and two massive
Klein-Gordon fields. The masses squared m2

1; m
2
2 are the

eigenvalues of the mass matrix appearing in (94) and hence
they are given by

m2
1;2¼

ðρ2þσ1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2−σ1Þ2þ4ρ1σ2

p
2

with m2
1 >m2

2:

ðC1Þ

These should be real and nontachyonic, which restricts the
available range of the parameters involved. However, there
are ranges, as we shall discuss later, where these conditions
can be simultaneously satisfied. Their masses squared in
(C1) can be more conveniently expressed in the following
manner,

m2
1;2 ¼

B� ðB2 − 4αð4βλ − 1Þf0ÞÞ1=2
2αð4βλ − 1Þ with m2

1 > m2
2:

ðC2Þ

In this, B is given by

B ¼ λðf00Þ2 − f00 þ 4αλf0 þ β: ðC3Þ

To arrive at (C2) we have used the fact that the following
relations hold, due to the relation (82),

Fð0Þ¼ 0; F0ð0Þ¼−
fð0Þ
3

; F00ð0Þ¼−
f0ð0Þ
9

þβ

9
:

ðC4Þ

To avoid tachyonic solutions, the sum and the product of
the eigenvalues (C2) should be positive. These lead to the
conditions

ð4βλ − 1ÞB > 0; ð4βλ − 1Þf0 > 0: ðC5Þ

On the other hand, the reality of the masses imposes

B2 > 4αð4βλ − 1Þf0: ðC6Þ

These conditions have to be simultaneously satisfied. To
ensure that a range of the parameters exists where this
holds, consider the following range

f0 > 0; f00 >
1

λ
; 4βλ> 1; β sufficiently large:

ðC7Þ
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Certainly, one can find other ranges, as well, but it suffices
to consider this range of the parameters. Note that positivity
of f0 is also demanded in order to have, in the dual FðRÞ-
theory, a linear in the curvature term having the correct sign
and the condition 4βλ > 1 is necessary in order to avoid
ghosts in the standard N ¼ 1 supergravity, as we have
discussed in the main text.
As for the masses of the Ψ, G system, they are expressed

in terms of δ11, δ22 and δ12, δ21 appearing in the mass
matrix of Eq. (104), in the following manner

m2
� ¼ ðδ11 þ δ22Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδ11 þ δ22Þ2 − 4ðδ11δ22 − δ12δ21Þ

p
2

:

ðC8Þ

It is not difficult to see that, the pertinent combination
defining the masses in (C8) above, are given by

δ11 þ δ22 ¼
B
αD

ðC9Þ

δ11δ22 − δ12δ21 ¼
f0
αD

; ðC10Þ

where the parameters B is exactly (C3) and D is given by,

D ¼ 4βλ − 1: ðC11Þ

In terms of these, the masses squared are analytically
given by

m2
� ¼ B� ðB2 − 4αf0DÞ1=2

2αD
; ðC12Þ

which coincide with the masses given in (C2).
The masses that arise from the system of the fields A, ρ is

found by studying Eqs. (108), which is expressed in terms
of the parameters

c1 ¼ −
1

4αλ
; c2 ¼

1

4αλ
−
f00
2α

g ¼ 4λβ − 1

1 − 2λf00
; μ ¼ −

4λf0
1 − 2λf00

: ðC13Þ

The mass matrixM2 is determined by the matrix elements
given below

m11¼
c2−μ

g
; m12¼

c1
g
; m21¼−c2; m22¼−c1:

ðC14Þ

The secular equation determining the eigenvalues ofM2 is
given by

ξ2 − Sξþ P ¼ 0; ðC15Þ

with S, P, the sum and the product of the eigenvalues.
These are found to be

S ¼ B
αD

; P ¼ f0
αD

: ðC16Þ

These coincide with (C9) and (C10). That is the eigenvalues
in this case have the same sum and product as in the
previously considered system. Therefore the masses are
identical to (C12), and hence (C2).

APPENDIX D: THE SCALAR POTENTIAL

In the presence of the stabilizer (120) the complete form
of the scalar potential is given by

V ¼ 9

2λϵΩ2
P: ðD1Þ

Where the function P is field depended, given by,

P ¼ jC − 2λðT þ fðCÞÞj2

þ ϵ

�
jCj2 þ λ

α
jΦf0ðCÞ þQj2 þ 2λðCQΦ̄þ H:c:Þ

þ 2λðT þ 2fðCÞ − Cf0ðCÞ þ H:c:ÞjΦj2
�

þ 2λζjΦj4ð−4λT þ 2C − 4λfðCÞ þ H:c:Þ
þ 2λζð4βλ − 1ÞjΦj6: ðD2Þ

The expression ϵ, appearing in the equations above, is
given by

ϵ ¼ 4βλ − 1 − 8ζλjΦj2: ðD3Þ

In the limit ζ ¼ 0 the last two terms of P vanish while ϵ
becomes 4βλ − 1. Then we recover the potential given by
Eq. (119). Recall that in supergravity theories we need have
detKJ̄I > 0, as well as Ω < 0, and this leads to ϵ > 0.
Actually the latter is proportional to −Ω5 detKJ̄I=162α,
and thus positive due to the fact that Ω < 0.
The minima of the potential are found by solving

∂iV ¼ 0 which yields

−
1

ðϵΩ2Þ2 ð∂iϵΩ2ÞPþ 1

ϵΩ2
∂iP ¼ 0: ðD4Þ

It is easy to verify that at the field values

ReT ¼ −f0; ImT ¼ 0; C ¼ Φ ¼ Q ¼ 0 ðD5Þ

(D4) is satisfied. In particular, at this point both

P ¼ 0; ∂iP ¼ 0: ðD6Þ
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The point (D5) is indeed aminimum aswe have shown in the
main text. In fact, the masses squared of the associated scalar
fields are all positive, in some range of the parameters
involved [see Eq. (122) and the discussion following it].
In the following we shall prove the there are values of ζ

for which the potential is positive semidefinite for any
values of the fields involved. To that purpose, as is evident
from (D1), only positivity of the function P, given by (D2),
is required. With P ≥ 0 it is guaranteed that (D5) is the
absolute minimum.
The proving task is facilitated if one uses the following

field combinations

Q0 ¼ QþΦf0ðCÞ; U ¼ C − 2λðT þ fðCÞÞ: ðD7Þ
The advantage of using these combination is that the
function P receives the form

P ¼ jUj2 þ BðU þ ŪÞ þ Γ; ðD8Þ
which can be cast as

P ¼ ðReU þ BÞ2 þ ðImUÞ2 þ ðΓ − B2Þ: ðD9Þ
The functions B, Γ are explicitly given by

B ¼ −ð4βλ − 1 − 12λζjΦj2ÞjΦj2

Γ ¼ ϵ

�
jCj2 þ λ

α
jQ0j2 þ 2λðCQ0Φ̄þ H:c:Þ

þ ðFðCÞ þ H:c:ÞjΦj2
�
þ 2λζð4βλ − 1ÞjΦj6: ðD10Þ

In the definition of Γ the function FðCÞ is the analytic
function

FðCÞ ¼ Cþ 2λðfðCÞ − 2Cf0ðCÞÞ: ðD11Þ
In order to proceed further we express the magnitude

squared of the field Φ in terms of ϵ, ζ,

ρ≡ jΦj2 ¼ 4βλ − 1 − ϵ

8λζ
; ðD12Þ

and replace it into Eq. (D9). That done, P receives the form

P ¼ ðReU þ BÞ2 þ ðImUÞ2

þ ϵλ

α
ðjQ0j þ 2α cosðθ − ωÞjCj ffiffiffi

ρ
p Þ2

þ ϵðð1 − 4αλcos2ðθ − ωÞρÞjCj2
þ 2ReFðCÞρþ ρδ̄Þ: ðD13Þ

The angles θ, ω in Eq. (D13) are not actually needed, for
the discussion that follows, but for reasons of completeness
we state that they are the arguments of Φ and Q0C complex
fields respectively, i.e.,

Φ ¼ jΦjeiθ; Q0C ¼ jQ0Cjeiω: ðD14Þ

The δ̄ in the last term of (D13) is given by

δ̄ ¼ 9ϵ2 − 14ð4βλ − 1Þϵþ 5ð4βλ − 1Þ2
32λζ

; ðD15Þ

which has a minimum, as function of ϵ, given by

δ̄min ¼ −
ð4βλ − 1Þ2

72λζ
: ðD16Þ

In Eq. (D13), the first three terms are positive, hence a
lower bound can be established given by

P ≥ ϵðð1 − 4αλcos2ðθ − ωÞρÞjCj2 þ 2ReFðCÞρþ ρδ̄Þ
≡ ϵbP: ðD17Þ

The important thing is that, if we manage to make the
function bP, appearing on the right-hand side of the equation
above, positive, for any values of the fields involved, then the
potential will be positive too. When ρ ¼ 0, corresponding to
Φ ¼ 0, the potential is positive semidefinite since the bound
above becomes P ≥ ϵjCj2 ≥ 0. When ρ ≠ 0, we shall show
that this is indeed the case for sufficiently large values of the
parameter ζ, provided FðCÞ is at most quadratic in the field
C. Hence in either case we would have P ≥ 0 and thus the
potential would be positive semidefinite. The proof goes as
follows.
For any analytic function FðCÞ, and hence fðCÞ, which

is at most quadratic in C, we write

FðCÞ ¼ a0 þ a1Cþ a2C2

≡ 2λf0 þ ja1jjCjeiθ1 þ ja2jjCj2eiθ2 : ðD18Þ

In this we have used the fact that the constant term a0 is
2λfð0Þ ¼ 2λf0, using Eq. (D11), and the fact that f0 has
been taken real. Using this the function bP, on the right of
Eq. (D17), can be written as

bP ¼ ð1 − 4αλcos2ðθ − ωÞρþ 2ja2j cos θ2ρÞjCj2
þ 2ja1j cos θ1ρjCj þ ρð4λf0 þ δ̄Þ; ðD19Þ

which is bounded from below as follows,

bP ≥ ð1 − ð4αλþ 2ja2jÞρÞjCj2 − 2ja1jρjCj
þ ρð4λf0 þ δ̄minÞ≡ bmin

P : ðD20Þ

The bound bmin
P is a polynomial of second degree in jCj. For

sufficiently small values of ρ, corresponding to large values
of ζ, the coefficient of jCj2 can become positive. On the
other hand, its discriminant is given by
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D ¼ 4ðja1j2 þ ð4αλþ 2ja2jÞð4λf0 þ δ̄minÞÞρ2
− 4ð4λf0 þ δ̄minÞρ: ðD21Þ

The first term of it is proportional to ρ2 and the second
proportional to ρ. Hence the latter dominates for suffi-
ciently small ρ, or same, for sufficiently large values of ζ.
Therefore for such values of ζ the sign of D is dictated by
the sign of the last term of (D21). This is negative when
4λf0 þ δ̄min > 0 resulting to,

ζ >
ð4βλ − 1Þ2
288f0λ2

: ðD22Þ

Therefore, there are always adequately large values of ζ, for
which D is negative and the coefficient of jCj2 is positive.
In this regime, bmin

P in Eq. (D20), and hence bP, is always
positive and the scalar potential is positive semidefinite.
In order to better quantify the bounds imposed on ζ, one

can see that both conditions, that is positivity of the
coefficients of the jCj2 term, and D < 0 yields,

1

ρ
≥ 4αλþ 2ja2j þ

ja1j2
4λf0 þ δ̄min

; ðD23Þ

when 4λf0 þ δ̄min > 0. Inequality (D23) is always satisfied
when ζ lies in the range

8λζ

4βλ − 1
≥ 4αλþ 2ja2j þ

ja1j2
4λf0 þ δ̄min

: ðD24Þ

This leads to the condition that a quadratic polynomial, in
the parameter ζ, is positive. In it, the coefficient of the ζ2 is
positive and we have verified that it has two real roots, the
largest of these being rþ. This involves the constants a1, a2
which define the function FðCÞ in (D18). Therefore, (D24)
holds for ζ > rþ.
Combining the two bounds, (D22) and (D24), we get

ζ ≥ max

�
rþ;

ð4βλ − 1Þ2
288f0λ2

�
: ðD25Þ

We conclude by saying that, for any function fðCÞ, and
hence FðCÞ, at most quadratic in C, the stabilization
constant ζ can be taken sufficiently large so that the scalar
potential is positive semidefinite. In this case the minimum
given in (D5), for which the potential vanishes, is the
absolute minimum.
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