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We study the Hamiltonian dynamics of the dust-Bianchi IX universe in dust time gauge. This model has
three physical metric degrees of freedom, with evolution determined by a time-independent physical
Hamiltonian. This approach gives a new physical picture where dust-Bianchi IX dynamics is described by
oscillations between dust-Kasner solutions, rather than between vacuum-Kasner solutions. We derive a
generalized transition law between these phases, which has a matter component. Sufficiently close to a
singularity, we show that this law reduces to the vacuum Belinski-Khalatnikov-Lifshitz map. We include an
analysis with dust and a scalar field. Lastly, we describe a path integral quantization using the dust-time
physical Hamiltonian and derive an effective action for the dust-Kasner model by integrating out the
anisotropy degrees of freedom.
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I. INTRODUCTION

In a seminal work Belinski, Khalatnikov and Lifshitz
(BKL) studied the approach to spacelike singularities in
Einstein gravity by studying the Bianchi IX cosmological
model [1–3]. Their analysis led to the so-called BKL
conjecture, that the approach to spacelike singularities is
universal, with evolution equations dominated only by time
derivatives, and characterized by anisotropy oscillations.
The conjecture states that the approach to a spacelike
singularity is homogeneous, and therefore it is sufficient to
study the most general such models to analyze near
singularity dynamics. The literature in this area has
since become vast [4–8]. Recent reviews are [9–11].
These works cover classical aspects of solutions with
and without matter, and minisuperspace quantization,which
began with Misner’s work on Hamiltonian quantum
cosmology in [12,13].
The vacuum Bianchi I model is considered the “free

theory” of anisotropic cosmology, where dynamics is
governed only by the gravitational kinetic term in the
Hamiltonian constraint. Its solution is the Kasner metric

ds2 ¼ −dt2 þ t2p1dx2 þ t2p2dy2 þ t2p3dz2; ð1Þ

where the (real) parameters p1, p2 and p3 are integration
constants satisfying the two sum rules

p1 þ p2 þ p3 ¼ 1; p2
1 þ p2

2 þ p2
3 ¼ 1: ð2Þ

The solution is thus characterized by one free parameter on
the so-called Kasner circle at the intersection of this plane
and unit sphere.
More complicated Bianchi models have interactions

between the three scale factors arising from the Ricci
curvature term in the Hamiltonian constraint. This is clear

in the Hamiltonian formulation of Bianchi IX (or
Mixmaster) universe first studied by Misner [12,13]. The
Bianchi IX potential is an equilateral triangular box in
configuration space with exponentially high sides. The
potential vanishes in the region near the origin, so the
solution there is the (vacuum) Kasner metric. Bianchi IX
dynamics is thus equivalent to a particle in this box that
undergoes collisions at the walls, and after each collision
enters a new Kasner phase,

ðp1; p2; p3Þ → ðp0
1; p

0
2; p

0
3Þ: ð3Þ

BKL derived a precise transition law for these exponents
in the vacuum case, which was subsequently rederived by
Misner in a Hamiltonian formulation cited above. In the
nonvacuum case it is clear that solutions are also labeled by
matter integration constants, and so it is natural to expect
that these additional constants should also participate in a
generalized transition law.
In this article we derive the following results:
(1) We formulate Bianchi IX dynamics in dust time

gauge using the matter and geometry integration
constants for the dust-Bianchi-I solution. We
then derive a generalized transition law, akin to
the BKL-Misner law.

(2) We demonstrate how this general transition law
reduces to the BKL-Misner law in the near singu-
larity limit, thus recovering the “matter does not
matter result”.

(3) We construct a path integral for a dust-Bianchi I
model and integrate out the anisotropies to yield an
effective action for the average scale factor. As far
as we are aware, this is the first use of matter
time gauge for studying the quantum gravity path
integral.
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To put our work in perspective, let us highlight the main
past works on classical and quantum dynamics of Bianchi
IX with matter, which is our main focus.
There are several analyses of homogenous cosmologies

from the covariant and canonical perspectives. The state of
work on the canonical side as of the mid-1970s is in the
book [14]. The book contains an exhaustive analysis of
both vacuum and matter coupled models, including canoni-
cal quantization. The main developments in this area since
then include work by Kuchar and Ryan [15], who question
the validity of minisuperspace quantization by studying one
vacuum model embedded in another, and Brown and
Kuchar [16], who analyzed the canonical theory by using
a four-component dust field to fix gauge. A simplification
of this to a one-component dust is what we use here.
The recent work [7] proposes a Hamiltonian formulation

of the BKL conjecture using new variables; this uses the
vacuum equations in the connection-triad variables. Also
related to our work is an analysis of proper time gauge for
the vacuum quantum gravity path integral [17]; the differ-
ence from our approach is that we use matter rather than a
geometric variable as a clock. This also leads to the proper-
time form of the metric, but with a significantly simpler
physical Hamiltonian. A later work [18] studies the path
integral for vacuum Bianchi I cosmology. However, like
many other works, the nonvacuum path integral with matter
remains largely unexplored.
On the covariant side, there are several analyses of the

homogeneous Einstein equations with focus on near-
singularity behavior with dust. Among the pre-BKL papers
is [19] where pressureless dust cosmologies are studied
using a special set of tetrad frames. A generalization of this
work to nonzero pressure appears in [20]. Post-BKL, a
prominent work is [21] which defines and develops the
structure of velocity dominated singularities. The lowest
order equations in that work in the decoupling limit, where
each space point propagates independently, is equivalent to
the dust-Kasner model we study. Its Wheeler-DeWitt
quantization was studied in [22].
In addition to these works, a more recent application of

the dynamical systems approach using volume time has
produced a large body of results, with a recent compendium
appearing in [23]. Using these methods, the approach to the
singularity is analyzed in detail in [24].
None of these works, or any others we are aware of,

study the generalization of the BKL transition laws using
Hamiltonian methods with matter and using a matter-time
gauge. As we will see below, this approach also offers a
new physical picture where the oscillatory dynamics may
be viewed as occurring between dust-Kasner phases in a
monotonic time variable. Our analysis demonstrates that
this picture is useful for both the classical analysis of
oscillations, and for the quantum theory, where the
Wheeler-DeWitt equation does not have to be solved;
instead it is replaced by a time-dependent Schrodinger

equation (in dust time), albeit with an unusual physical
Hamiltonian—a function of phase space variables which is
identical in form to the Hamiltonian constraint, but is not
constrained to vanish [25].
We present the results stated above from this perspective,

beginning in Sec. II where the dust time gauge in canonical
general relativity is reviewed following [25] and slightly
generalized. In Sec. III we give a new Hamiltonian
derivation of the dust-Bianchi I solution. This is the
Heckmann and Schücking [26] solution.1 In Secs. IV
and V we give an analysis of the approach to the
Bianchi IX singularity. We show that there are anisotropy
oscillations between the dust-Bianchi I solutions (which
may be viewed as the “new free theory”), and we derive the
corresponding transition rule. The new result here is a
general transition law that includes (dust) matter and
describes the dynamics of the model at all times. We show
that sufficiently close to a singularity, this law reduces to
the well-known vacuum BKL map. This recovers the
“matter does not matter” result as a limit of our more
general transition rule, which is in accord with analysis
using other approaches [24]; in this sense our results
complement these works. In Sec. VI we add an additional
scalar field and analyze the dust time dynamics using the
method of consistent potentials. In Sec. VII we develop a
path integral quantization in dust-time gauge and derive an
effective action for the average scale factor by integrating
out the anisotropy degrees of freedom. We close in
Sec. VIII with a brief summary of our main results and
an outlook using our dust-time Hamiltonian approach for
inhomogeneous models. An appendix contains a detailed
outline of related work, which we include for completeness
and for the purpose of comparing our results.

II. THE HAMILTONIAN THEORY WITH DUST

We consider GR coupled to dust and any other arbitrary
matter field,

S ¼ 1

2π

Z
d4x

ffiffiffiffiffiffi
−g

p
R −

1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p
mðgμν∂μϕ∂νϕþ 1Þ

þ
Z

d4xLMðχÞ: ð4Þ

The second term is the dust action, and the last is an
arbitrary matter Lagrangian. Variation with respect to m
gives the condition that the dust field ϕ has a timelike
gradient.
The ADM canonical theory obtained from this action is

S¼ 1

2π

Z
dtd3xð ~πab _qabþpϕ

_ϕþpχ _χ−NH−NaCaÞ; ð5Þ

1We became aware of it after this work was completed through
Ref. [27].
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where the pairs ðqab; ~πabÞ and ðϕ; pϕÞ are respectively the
phase space variables of gravity and dust. The matter fields
are symbolically denoted by ðχ; pχÞ, although the number
of fields and their tensorial structures will depend upon
the choice of the matter Lagrangian. The lapse and shift
functions, N and Na are the coefficients of the Hamiltonian
and diffeomorphism constraints

H ¼ HG þHD þHM; ð6Þ

Ca ¼ CGa þ CDa þ CMa

¼ −2Db ~π
b
a þ pϕ∂aϕþ CMa ; ð7Þ

where HG is the gravitational part of the Hamiltonian
constraint and

HD ¼ 1

2

�
p2
ϕ

m
ffiffiffi
q

p þm
ffiffiffi
q

p ðqab∂aϕ∂bϕþ 1Þ
�
: ð8Þ

The momentum conjugate to the field m is zero since it
appears as a Lagrange multiplier in the covariant action. At
this point one could enlarge the phase space to treat m and
its conjugate momentum as independent degrees of free-
dom, subsequently eliminating them by gauge fixing.
However, it is more straightforward to vary the term HD

in the canonical action with respect to m and use the
resulting equation of motion,

m ¼ � pϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðqab∂aϕ∂bϕþ 1Þ

p : ð9Þ

This can then be substituted back into HD to give

HD ¼ sgnðmÞpϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qab∂aϕ∂bϕþ 1

q
; ð10Þ

leaving a canonical action for ðqab; ~πabÞ, ðϕ; pϕÞ and the
(nondust) matter phase space variables. It is readily verified
that the constraints remain first class with this elimination
of m. We will see in the gauge fixing below how the sign is
selected.

A. Dust time gauge

We now partially reduce the theory by fixing only a time
gauge and solving the Hamiltonian constraint to obtain a
physical Hamiltonian. The spatial coordinates remain
unfixed. We use the dust time gauge [25,28] which equates
the physical time with the scalar field, i.e., the spatial
hypersurfaces are level surfaces of the dust field,

λ≡ ϕ − ϵt ≈ 0; ϵ ¼ �1: ð11Þ

This is a special case of the Brown-Kuchar matter reference
frame that fixes all four coordinate gauges. The condition

(11) has a nonzero Poisson bracket with the Hamiltonian
constraint, so this pair of constraints together is second
class. A gauge condition is deemed good if the matrix of
Poisson brackets of second class constraints is invertible,
and demanding that the gauge condition be preserved in
time does not lead to new constraints.
The first of these gives, using (10), the Dirac matrix of

second class constraints,

C ¼
�

0 fλ;Hg
fH; λg 0

�
¼ sgnðmÞ

�
0 1

−1 0

�
: ð12Þ

This matrix is invertible everywhere on the manifold. Thus,
the dust time gauge does not breakdown at any point and is
therefore a robust choice. The second condition, requiring
that the gauge condition be preserved in time, gives an
equation for the lapse function,

ϵ ¼ _ϕ ¼
�
ϕ;

Z
d3xðNHþ NaCaÞ

�				
ϕ¼t

¼ sgnðmÞN:

ð13Þ

The corresponding physical Hamiltonian density is

HP ¼ −ϵpϕ ¼ sgnðmÞϵðHG þHMÞ ¼ NðHG þHMÞ;
ð14Þ

where the second equality follows from solving the
Hamiltonian constraint and the third using (13). We also
note that the definition of pϕ from the dust action, in this
gauge, gives

pϕ ¼ m
N

ffiffiffi
q

p _ϕ ¼ sgnðmÞϵ jmj
N

ffiffiffi
q

p ¼ jmj ffiffiffi
q

p
> 0: ð15Þ

Thus positive physical Hamiltonian for positive dust energy
density requires N ¼ −1, implying ϵ ¼ −1. Substituting
into (5) gives the gauge fixed action

SGF ¼ 1

2π

Z
dtd3x½ ~πab _qab þ pχ _χ þ ðHG þHMÞ

− NaðCGa þ CMa Þ�; ð16Þ

up to surface terms, which do not concern us here. Thus we
see that in the dust time gauge the diffeomorphism
constraint reduces to that with only the gravity and matter
ðχ; pχÞ contributions, and the physical Hamiltonian is

Hp ¼ −
1

2π

Z
d3xðHG þHMÞ: ð17Þ

The corresponding spacetime metric is

ds2 ¼ −dt2 þ ðdxa þ NadtÞðdxb þ NbdtÞqab: ð18Þ
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B. The spatially homogeneous sector

In the dust time gauge we equate the surfaces of
homogeneity with level surfaces of the dust field. The
general four dimensional spatially homogeneous metric can
then be written as

ds2 ¼ −dt2 þ qijðtÞωiωj; ð19Þ
where ωi are invariant 1-forms corresponding to the three
dimensional isometry group of the manifold and Ni ¼ 0. In
the absence of matter fields besides the dust, the physical
Hamiltonian for a spatially homogeneous background is

Hp ¼ −
1

2π

Z
d3xHG: ð20Þ

When qijðtÞ is diagonal, a parametrization of the ADM
canonical variables is

qij ¼ diag½e2α1ðtÞ; e2α2ðtÞ; e2α3ðtÞ�;

πij ¼ 1

2
diag½π1ðtÞe−2α1ðtÞ;π2ðtÞe−2α2ðtÞ;π3ðtÞe−2α3ðtÞ�; ð21Þ

so the canonically conjugate pairs are ðαi; πiÞ, i ¼ 1, 2, 3.
The physical Hamiltonian then takes the form

Hp ¼ v0

�
−

1

4
ffiffiffi
q

p
�
1

2

X
i

π2i −
X
i<j

πiπj

�
þ VðαÞ

�

≡HK þ V; ð22Þ
where VðαÞ is derived from the scalar curvature of the
spatial slice,

ffiffiffi
q

p ¼ expðP3
i¼1 αiÞ, and v0 is a fiducial

volume we set to unity.
An alternative set of phase space variables, obtained

from the above by canonical transformation, are the Misner
variables ðΩ; βþ; β−Þ, and their conjugate momenta
(defined in Appendix A 2). The physical Hamiltonian in
these variables is

Hp ¼
�
−
e3Ω

24
ðp2þ þ p2

− − p2
ΩÞ þ VðΩ; βþ; β−Þ

�
: ð23Þ

We consider here the diagonal Bianchi I and IX space-
times, for which the potentials VðΩ; βþ; β−Þ are

VI ¼ 0 ð24Þ

VIX ¼ −6e−Ω
��

2

3
e4βþðcoshð4

ffiffiffi
3

p
β−Þ − 1Þ

−
4

3
e−2βþ coshð2

ffiffiffi
3

p
β−Þ þ

1

3
e−8βþ

��
;

≡ −6e−Ωvðβþ; β−Þ: ð25Þ

We make use of both sets of variables, the first to give a
derivation of the dust-Bianchi I solution and the second to

study Bianchi IX dynamics. In either parametrization, since
Hp is a constant of the motion, the energy density of
the dust m ¼ Hp=

ffiffiffi
q

p
diverges as the metric determinant

goes to zero. Thus,
ffiffiffi
q

p
→ 0 corresponds to a physical

singularity.

III. DUST-BIANCHI I SPACETIME

The isometry group of the Bianchi I model is the three
parameter group of translations in three dimensional
Euclidean space. In the synchronous basis the metric is

ds2 ¼ −dt2 þ e2α1ðtÞdx2 þ e2α2ðtÞdy2 þ e2α3ðtÞdz2: ð26Þ

The Kasner metric is the vacuum solution of this form. We
now derive a metric of the same form with dust, in the dust
time gauge. As we will see, this will turn out to be the
Heckmann and Schücking [26] solution.
The physical Hamiltonian for this model is given by (22)

with VðαÞ ¼ 0. The Hamilton equations of motion are

_α1 ¼ −
1ffiffiffi
q

p ðπ1 − π2 − π3Þ;

fwith cyclic perm: on πi for _α2 and _α3g
_πi ¼ HK: ð27Þ

The second equation gives

πiðtÞ ¼ HKtþ λi ð28Þ

with integration constants λi.

A. Kasner solution: HK = 0

In this case the above evolution equations imply

ð ffiffiffi
q

p Þ_¼ 1

4
ðπ1 þ π2 þ π3Þ ¼

Λ
4

ð29Þ

and

_αi ¼
Λ − 2λi
Λtþ 4δ

; Λ ¼
X
i

λi: ð30Þ

This gives the following solution for the scale factors
ai ¼ eαi :

ai ¼ ξi

�
tþ 4δ

Λ

�
1−2λi

Λ
; ð31Þ

where ξi are constants of integration. The scale factors are
not all independent, since they satisfy
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ffiffiffi
q

p ¼ a1a2a3 ¼
Λt
4
þ δ; ð32Þ

which is derived from (29), and δ ¼ ffiffiffi
q

p ð0Þ.
Defining the exponents

pi ≡ 1 −
2λi
Λ

; ð33Þ

we see that p1 þ p2 þ p3 ¼ 1, as for the Kasner solution.
Furthermore, substituting the solution (28) into the physical
Hamiltonian HK , and setting HK ¼ 0, yields

λ21 þ λ22 þ λ23 ¼ 2ðλ1λ2 þ λ1λ3 þ λ2λ3Þ;
⇒ p2

1 þ p2
2 þ p2

3 ¼ 1; ð34Þ

using the definition (33). Lastly, we can absorb the
integration constants ξi in the coordinates, and redefine t →
tþ 4δ=Λ to recover the Kasner solution. Therefore, the
dust time gauge, with initial data chosen such that HK ¼ 0,
gives the vacuum Kasner solution—an unsurprising result
since the dust energy density m vanishes for this case. We
now turn to the HK ¼ constant ≠ 0 cases.

B. Dust-Kasner solution: HK > 0

For HK ≠ 0 we can invert the expression for the
Hamiltonian to obtain an expression for

ffiffiffi
q

p
,

ffiffiffi
q

p ¼ 1

8
ð3HKt2 þ 2Λtþ 8δÞ: ð35Þ

This gives

_αi ¼
6HKðHKtþ Λ − 2λiÞ

ð3HKtþ ΛÞ2 þ 24HKδ − Λ2
: ð36Þ

HK > 0 requires

Λ2

2
> λ21 þ λ22 þ λ23; ð37Þ

while the term 24HKδ − Λ2 is proportional to

Λ2

3
− ðλ21 þ λ22 þ λ23Þ: ð38Þ

Therefore, for HK > 0, there are two classes of solutions,
with initial data satisfying either

Λ2

2
> λ21 þ λ22 þ λ23 >

Λ2

3
; ð39Þ

or

Λ2

3
> λ21 þ λ22 þ λ23: ð40Þ

At the end of this section we will show that the second class
of solutions is not physically viable. If (39) is satisfied, then
(36) can be integrated to give

ai ¼ ξiðy − ΓÞ13þβiðyþ ΓÞ13−βi ; ð41Þ

where y ¼ 3HKtþ Λ,

Γ2 ¼ −24HKδþ Λ2; βi ¼
2

3Γ
ðΛ − 3λiÞ; ð42Þ

and ξi are integration constants satisfying ξ1ξ2ξ3 ¼
−1=ð24HKÞ. This is the Heckmann-Schücking solution

ai ¼ ξiτ
piðτ þ 2ΓÞ23−pi ; ð43Þ

as can be seen by defining

pi ¼
1

3
þ βi; τ ¼ 3HKtþ Λ − Γ; ð44Þ

Interestingly, even for HK ≠ 0, the exponents pi again
satisfy

p1 þ p2 þ p3 ¼ 1; p2
1 þ p2

2 þ p2
3 ¼ 1: ð45Þ

Addressing now the second set of data (40), it is
convenient to define Γ2 ≡ 24HKδ − Λ2. Then the solution
of (36)

ai ¼ ξiðy2 þ Γ2Þ23 exp
�
4Bi arctan

�
y
Γ

��
; ð46Þ

where Bi ¼ ðΛ=3 − λiÞ=Γ. Now
P

iB
2
i < 0, implying that

at least one of the Bi is imaginary and the solutions are not
physical.

C. Dust-Kasner solution for HK < 0

For completeness, we also present solutions with
HK < 0. These solutions are not physically relevant since
they correspond to a negative energy density for the dust.
When HK < 0 we have

Λ2

3
<

Λ2

2
< λ21 þ λ2 þ λ23: ð47Þ

This implies that 24HKδ − Λ2 < 0. Up to this change, the
solution has the same form

ai ¼ ξiτ
piðτ þ 2ΓÞ23−pi ; ð48Þ

where τ and the exponents pi are defined as before.
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D. Dust-Bianchi I spacetime with scalar field

In the presence of a free scalar field χ the physical
Hamiltonian in the dust time gauge is

Hp ¼ HK −
p2
χ

2
ffiffiffi
q

p : ð49Þ

The equations of motion for the scale factor remain the
same as in (27). However equations for the momenta are
now

πi ¼ Hp; ð50Þ

and those for the scalar field are

_χ ¼ −e−
P

i
αipχ ; _pχ ¼ 0: ð51Þ

Consequently

πi ¼ Hptþ λi: ð52Þ

The solution for πi substituted into the expression for the
physical Hamiltonian Hp gives

ffiffiffi
q

p ¼ 1

8
ð3Hpt2 þ 2Λtþ 8δÞ; ð53Þ

where now

δ≡ ffiffiffiffiffiffiffiffiffi
qð0Þ

p
¼ −

1

4Hp

�
1

2

X
i

λ2i −
X
i<j

λiλj þ 2p2
χ

�
: ð54Þ

The solution for the scale factors is

ai ¼ ηiðτÞ13þβiðτ þ 2ΓÞ13−βi ; ð55Þ

where

τ≡ 3Hptþ λ − Γ;

Γ2 ¼ −24Hpδþ Λ2;

βi ¼
2

3Γ
ðΛ − 3λiÞ: ð56Þ

(The definition of Γ now uses Hp rather than HK for the
pure dust case.) Defining the exponents

pi ≡ 1

3
þ βi; ð57Þ

now gives

X3
i¼1

pi ¼ 1;
X3
i¼1

p2
i ¼ 1 −

8p2
χ

Γ2
: ð58Þ

The second sum rule depends on the value of the conserved
scalar field momentum and the integrations constants λi.
This has the correct limits for pχ ¼ 0 (dust only) and for
Hp ¼ 0 (vacuum).
Substituting for the scale factors in the equation of

motion for χ we have

_χ ¼ 8pχ

τðτ þ 2ΓÞ ; ð59Þ

Since pχ ¼ const, this can be integrated to give

χ ¼ 8pχ

2Γ
ln

�
τ

τ þ 2Γ

�
: ð60Þ

IV. DUST-BIANCHI IX SPACETIME

The Bianchi IX dynamics is most easily studied from the
Hamiltonian perspective using Misner variables. The
physical Hamiltonian is (23) with the nonzero potential
in (24). The metric is

ds2 ¼ −dt2 þ e−2Ωðe2βÞijωiωj; ð61Þ

where ωi are SO(3) covariant 1-forms and

βij ¼ diagðβþ þ
ffiffiffi
3

p
β−; βþ −

ffiffiffi
3

p
β−;−2βþÞ: ð62Þ

The canonical equations of motion are

_Ω ¼ expð3ΩÞ
12

pΩ;

_pΩ ¼ −3Hp − 24e−Ωvðβþ; β−Þ ð63Þ

_β� ¼ −
expð3ΩÞ

12
p�; _p� ¼ 6e−Ω

∂v
∂β� : ð64Þ

The difference between these equations and the vacuum
case studied by Misner is that with the dust there are three
physical configuration degrees of freedom. Since the dust is
used to fix the time gauge, all three degrees of freedom are
manifested in the spatial metric, and the potential is a
function of all three. Moreover, even thoughΩ appears only
in the overall factor, it still has nontrivial dynamics in
dust time.
The volume of the Universe scales as e−3Ω; therefore the

singularity is approached as Ω tends to infinity. Thus near
the singularity the potential VIX (24) only plays a role when
jvðβþ; β−Þj is sufficiently large. When the potential term is
not dominant, the Universe behaves like the dust-Bianchi I
system studied in the last section. Therefore, Misner’s
picture of a particle in a time dependent triangular box can
be interchanged with the particle inside a pyramidal well in
configuration space depicted in Fig. 1.
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Projected on the (βþ, β−) plane, the contours of
vðβþ; β−Þ scale linearly with Ω. As Ω increases, the
contours move outwards. This can be seen by considering
one section of the potential, say V ¼ −2e−Ω−8βþ for
βþ < 0: setting −2e−Ω−8βþ ¼ −C corresponds to contour
section given by −8βþ ¼ lnðC

2
Þ þ Ω. The particle velocity

in the ðβþ; β−Þ plane, v⃗ ¼ ð _βþ; _β−Þ, scales as e3Ω (from the
above equations), while the contours have a linear depend-
ence on Ω. It is therefore reasonable to assume that the
particle bounces off the exponential walls of the pyramidal
potential, and that these bounces are interspersed by
durations in which the dynamics is kinetic term dominated

and described by the dust-Bianchi I solution. A key
difference between the dust time dynamics in the present
case and Ω time in the standard (no dust) case is that the
singularity is reached in finite dust time. Indeed forHp > 0

i.e., the energy density of the dust is positive and the dust
filled Bianchi IX universe has two physical singularities as
shown in Fig. 2; this is an example of a more general result
[29]. Figure 2 also demonstrates that Bianchi IX dynamics
in dust time gives oscillatory dynamics, just as for the
volume time in the vacuum case.
We note that as the Universe expands, Ω and jv⃗j ¼

jð_βþ; _β−Þj ≈ e3Ω decrease, and the potential walls move
apart. Therefore the dust-Bianchi I phases last for longer
periods of dust-time. However, since Ω is bounded below
(the point of maximum expansion), when the Universe
begins to recontract, the potential walls start to move
inwards, and the frequency of collisions increases. This
observation, which holds for all dust-time, will be impor-
tant in interpreting the generalized transition law we
drive below.

A. Method of consistent potentials

Oneway to establish that the Universe particle undergoes
bounces at the moving walls of the potential (as the
singularity is approached) is a self-consistent analysis
called the method of consistent potentials (MCP) [30].
The basic idea is to obtain a solution by neglecting the
potential terms in the Hamiltonian, i.e. a Bianchi I solution,
and substitute this solution into the full Hamiltonian, i.e.
with the potential terms included. If the dynamics is
asymptotically velocity dominated, the neglected potential
terms remain exponentially suppressed, i.e. the Bianchi I
phase dominates. On the other hand, if one or more of the
potential terms grow as the singularity is approached, the
Universe may undergo a bounce to a new Bianchi I phase.
To apply MCP in our case we observe that the physical

Hamiltonian for a dust-Bianchi IX spacetime is the sum of
two terms HK and HV where

FIG. 1. Numerical integration of the equations of motion for different values of Hp show that oscillatory behavior of the scale factors
aðtÞ (solid red line), bðtÞ (dashed green line) and cðtÞ (dotted blue line).

FIG. 2. Contours of vðβþ; β−Þ for the potential
VIX ¼ e−Ωvðβþ; β−Þ. v is bounded above by þ1, the bold line
is the v ¼ 0 contour, the innermost contour is v ¼ 0.75 and the
outermost contour is v ¼ −100.
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HK ¼ −
e3Ω

24
ðp2þ þ p2

− − p2
ΩÞ ð65Þ

HV ¼ −6e−Ω
�
2

3
e4βþðcoshð4

ffiffiffi
3

p
β−Þ − 1Þ

−
4

3
e−2βþ coshð2

ffiffiffi
3

p
β−Þ þ

1

3
e−8βþ

�
: ð66Þ

Near the singularity, Ω → ∞, so we use the dust-Kasner
equations to find β�ðΩÞ and substitute these into the
potential. For large Ω the Hamilton equations give

∂β�
∂Ω ¼∓ p0

�
jΓj

�
1 −

24He−3Ω

Γ2

�−1=2

≈ ∓ p0
�

jΓj
�
1þ 12He−3Ω

Γ2

�
; ð67Þ

whereH is the value of the dust-Kasner Hamiltonian and Γ,
p0
� are integration constants related by p0þ ¼ Γ cos θ,

p0
− ¼ Γ sin θ, a result which follows from the pΩ equation.

Thus to linear order we have

β� ¼ − ∓ p0
�
Γ

Ωþ β0�: ð68Þ

Near the singularity the dominant terms in HV are

HV ≈ 2e−Ωðe−8βþ þ e4βþþ4
ffiffi
3

p
β− þ e4βþ−4

ffiffi
3

p
β−Þ; ð69Þ

which for later convenience we label V1, V2 and V3

respectively. Substituting the asymptotic form of β� gives

HV ≈ 2ðeΩð�4 sin θ�4
ffiffi
3

p
cos θ−1Þ

þ eΩð�4 sin θ∓4
ffiffi
3

p
cos θ−1Þ þ eΩð∓8 sin θ−1ÞÞ: ð70Þ

If all the terms above are to be negligible, we require the
following equations to be satisfied simultaneously:

4 sin θ þ 4
ffiffiffi
3

p
cos θ − 1 < 0

4 sin θ − 4
ffiffiffi
3

p
cos θ − 1 < 0

−8 sin θ − 1 < 0: ð71Þ

It is clear from Fig. 3 that these three conditions cannot
be satisfied simultaneously, and at least one of the terms is
growing at any given time. Thus the particle is approaching
one section of the walls of the pyramidal box at any given
time. Therefore the dynamics of the dust-Bianchi IX near
the singularity is characterized by periods in which HV is
negligible compared to HK , and the dynamics resembles
that of the dust-Bianchi I model (dust-Kasner phase). These
periods are punctuated by periods in which one of the terms
in (70) is large enough that HV is cannot be neglected

causing a “bounce” from one dust-Bianchi I solution to
another.
Thus, unlike vacuum Bianchi IX, the dust-Bianchi IX

universe bounces between Bianchi I solutions that are
not vacuum Kasner. In BKL’s language, the dynamics of
dust-Bianchi IX is characterized by oscillations between
dust-Bianchi I regimes. This gives a new physical picture of
the approach to the singularity in dust time gauge.

V. TRANSITIONS BETWEEN
DUST-BIANCHI I EPOCHS

We have established that dust does not change the
oscillatory nature of the Bianchi IX dynamics near the
singularity. The dynamics can still be viewed as that of a
particle bouncing in a steep triangular potential well, with
dust-Kasner regimes between bounces. We would now like
to quantify this oscillatory behavior.
The cornerstone of BKL’s analysis of Bianchi IX

dynamics is the transition rule governing transitions
between various Kasner epochs. In the same spirit we
derive a rule that relates the pre- and postbounce dust-
Bianchi I solutions, when these bounces occur away from
the corners of the potential. The method of consistent
potentials shows that the three dominant terms in the
potential peak at different times. Let us consider first the
potential term

V1 ¼ −2e−Ω−8βþ ; ð72Þ

FIG. 3. This is a plot of the expressions on the left-hand side of
(71) with respect to θ. The solid line indicates the first condition,
the dashed line indicates the second condition, and the dotted line
indicates the last condition. It is clear from the plot above that the
inequalities in (71) cannot be simultaneously satisfied. Moreover,
for any value of θ only one of the terms in the potential is
dominant.
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which is (a section of) one of the walls of the triangular
potential. The truncated Hamiltonian for this wall is then

H1 ≡HK þ V1: ð73Þ
It is evident that p− is conserved since the poisson bracket
fp−; H1g ¼ 0. Therefore its change at this potential wall is
zero,

Δp− ¼ 0: ð74Þ
However the momentum pþ (which is conserved for dust-
Bianchi I) undergoes a change upon collision. To find this
change let us consider the equations of motion in dust-time,

_pΩ ¼ −3H1 þ 4V1ðΩ; βþ; β−Þ ð75Þ
_pþ ¼ 8V1ðΩ; βþ; β−Þ: ð76Þ

These imply

pΩ −
1

2
pþ ¼ −3H1tþ α; ð77Þ

where α is an integration constant for the Bianchi IX
universe near the section of the potential characterized by
V1. Now recalling that pþ and p− are (approximate)
conserved quantities away from the potential wall (where
HK ≫ V1), the Universe returns to this region with a
different value of pþ after a bounce at the wall.
Therefore the dust-Bianchi I regimes before and after
collision at the wall VIX ≈ V1 are all characterized by
the following condition on the integration constants (i.e. the
last equation evaluated at t ¼ 0):

p0
Ω −

1

2
p0þ ¼ α: ð78Þ

Now since α is a dust-Bianchi IX integration constant for
this wall, we have the relation

Δp0
Ω −

1

2
Δp0þ ¼ 0; ð79Þ

which gives the initial data change for the dust-Kasner
phase after collision with V1. This equation is central to our
analysis below.

A. Transition law: Hp = 0

This is the vacuum case. The following steps give an
elegant derivation of the BKL law, which demonstrates the
utility of the dust time gauge. Away from the potential wall
we have Hp ≈HK ¼ 0; therefore

p2þ þ p2
− − p2

Ω ¼ 0: ð80Þ

This suggests the parametrization cos θ≡ pþ=pΩ and
sin θ≡ p−=pΩ. Since θ undergoes a change at a wall,

let us denote its values before and after the bounce
respectively as ðpþ=pΩÞðiÞ ¼ cos θi, ðp−=pΩÞðiÞ ¼ sin θi,
and ðpþ=pΩÞðfÞ ¼ − cos θf, ðp−=pΩÞðfÞ ¼ sin θf. [θ pro-
vides an abstract parametrization, and in general we cannot
interpret it as the angle of incidence or deflection in the
ðβþ; β−Þ plane.]
The conservation of p− at the wall V1 gives

pðiÞ
Ω sin θi ¼ pðfÞ

Ω sin θf; ð81Þ

and (79) gives

pðiÞ
Ω

�
1 −

1

2
cos θi

�
¼ pðfÞ

Ω

�
1þ 1

2
cos θf

�
: ð82Þ

Combining these equations gives

sin θf − sin θi ¼
1

2
sinðθi þ θfÞ: ð83Þ

This rule can be cast in terms of one parameter u. Since pΩ
is a constant when Hp ≈HK ¼ 0, following Misner [13]
we choose the parametrization

pþ
pΩ

¼ cos θ ¼ u2 þ u − 1=2
u2 þ uþ 1

;

p−

pΩ
¼ sin θ ¼

ffiffiffi
3

p ðuþ 1=2Þ
u2 þ uþ 1

: ð84Þ

Then the transition law (83) becomes uf ¼ ðui − 1Þ=3.

B. Transition law: Hp ≠ 0

This is the case that gives one of our new results. It
differs from the previous (Hp ¼ 0) case in two respects.
First, in contrast to (80), the dust-Kasner physical
Hamiltonian (65) now gives

p2þ þ p2
− ¼ ðp0

ΩÞ2 − 24Hpδ ¼ Γ2; ð85Þ
where δ ¼ e−3Ωð0Þ is the initial volume of the dust-Bianchi I
solution and Γ is defined in Sec. III B. It is important to
remember that though the dust-Kasner solution involves six
integration constants, the dust-Kasner phase is completely
characterized by three integration constants as three con-
stants can be absorbed in redefinitions of the spatial
coordinates. Thus a collision with Bianchi IX wall V1

induces the shift,

ðp0
Ω; pþ; δÞ → ðp00

Ω; pþ0; δ0Þ: ð86Þ
Importantly, the shift in δ is now relevant since Hp ≠ 0. Its
role is critical for extracting the matter independence of the
near singularity transition law we derive below.
Secondly, in the kinetic term dominated region (i.e.

H1 ≈HK), pΩ is not a constant but depends linearly on t.
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Thus 1
2
pþ − pΩ ≠ const. Nevertheless from (78) we still

have (79) as the relation between the integration constants
for dust-Bianchi I before and after the bounce at V1, since
this condition was derived from the full Bianchi IX
equations at wall V1.
Given (85), we define the modified parametrization,

before (i) and after (f) the collision, by�
pþ
Γ

�ðiÞ
¼ cos θi;

�
p−

Γ

�ðiÞ
¼ sin θi;�

pþ
Γ

�ðfÞ
¼ − cos θf;

�
p−

Γ

�ðfÞ
¼ sin θf: ð87Þ

Then the conservation of p− at the bounce gives, as before,

ΓðiÞ sin θi ¼ ΓðfÞ sin θf: ð88Þ
Note, θ is a redundant parameter introduced for conven-
ience, and the shift in θ is determined by the shift in Γ
which in turn is governed by the shift in p0

Ω and δ. Now the
condition 1

2
Δp0þ ¼ Δp0

Ω, combined with the last equation,
gives�
p0
Ω
Γ

�ðiÞ
sin θf −

�
p0
Ω
Γ

�ðfÞ
sin θi ¼

1

2
sinðθi þ θfÞ: ð89Þ

We note that if Hp ¼ 0 (i.e. no dust) this reduces to the
BKL-Misner rule. However, as it stands the transition rule
is not complete since we have so far not given a prescription
for how δ changes. The shift in δ can be obtained by using
the dust-Kasner energy conservation, which for the wall V1

gives

−Δðp2þÞ þ Δðp2
ΩÞ ¼ 24HpΔδ: ð90Þ

Equation (89) supplemented by (90) is one of our main
results.
We contend that the transition rule derived above, (89)

and (90), also applies away from the singularity. This is
because the only input in its derivation is collision at this
wall, regardless of the size of the Universe. Indeed, the
Universe undergoes bounces between dust-Kasner regimes
for all dust-time (unlike volume time which is not mon-
otonic), though the bounce frequency decreases as the
maximum expansion is approached; in the latter regime, the
Universe spends longer periods of dust-time in each dust-
Kasner phase, but still bounces to a different phase when
the potential term in the Hamiltonian becomes dominant.
This fact is evident in numerical simulations in dust-time.
We now show how these equations yield the vacuum

BKL-Misner rule.

1. Matter does not matter: δ transition law

As it stands (89) raises the question of compatibility with
results from other approaches which establish that the

transition rule is matter independent. We now show that
sufficiently close to a singularity, the transition rule is such
that δ → 0. Therefore Γ → pΩ, and our new law reduces to
BKL-Misner rule. We demonstrate this for both the initial
and final singularity. As a by-product, we see that our law is
the first generalization to include matter, via a matter time
gauge, in the intermediate region where “matter begins to
matter”.
To establish this let us note the following: the transition

law ðdust-KasnerÞðiÞ → ðdust-KasnerÞðfÞ at any wall is
governed by the dust-Kasner energy conservation equation

−Δðp2þÞ − Δðp2
−Þ þ Δðp2

ΩÞ ¼ 24HpΔδ; ð91Þ

since the total energy Hp of the Bianchi IX solution does
not change. Now the change in pþ and p− is bounded since
_p� can be positive or negative at different walls. Therefore
close to a singularity, the sign of Δδ is completely
determined by Δðp2

ΩÞ.
We now establish that Δδ > 0 during the expansion

phase and Δδ < 0 during the contraction phase. This is
sufficient to show that (89) reduces to the vacuum rule
sufficiently close to a singularity. We do this by showing
that Δðp2

ΩÞ accumulates in one direction.
Let us first note that the dust-Kasner evolution implies

_ΩI < 0; p̈I
Ω ¼ 0: ð92Þ

Since the sign of _Ω is determined by the sign of pΩ, we
have pΩ < 0 for dust-Kasner evolution. During the expan-
sion phase _ΩI and _ΩIX have the same sign (−ve) and near
the singularity in regions where the potential is significant,
(63) gives

_pIX
Ω ≪ _pI

Ω < 0: ð93Þ
Thus, after a bounce from the wall V1, _pIX

Ω decreases more
than it would due to dust-Kasner evolution alone. This extra
decrease implies that the shift in the dust-Kasner parameter
p0
Ω is negative, i.e. Δp0

Ω < 0. Moreover, as the singularity
is approached, the inequality in (93) grows and so does the
magnitude of the shift. Since the inequality in (92) always
holds, if the initial conditions for the initial dust-Kasner
phase are set such that δi ¼ 0, then p0i

Ω < 0. [This choice of
initial conditions is always possible by shifting the dust
time origin by t0 ¼ ðΓi − ΛiÞ=3Hp.]
Thus, Δðp0

ΩÞ2 > 0 and increases with each successive
bounce, whileΔp2

� remains bounded. Therefore,Δδ > 0 in
the expanding phase. A similar argument leads to the
conclusion that Δδ < 0 in the contracting phase. Therefore,
as either the past or future singularity is approached in dust
time, we have

Γ → pΩ; ð94Þ
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and our transition law (89) reduces to the matter-
independent BKL-Misner rule.
We note that the transition rules at the other walls (V2

and V3) will in general be different from the law derived
above. This is because though the quantity conserved at
these walls can be obtained by suitably rotating (74), it is
not possible to obtain the analog of (79) in a similar
fashion. Therefore, the transition law at the other walls
cannot be transformed into the law derived above. This is
evident when we note that though the potential term in the
Hamiltonian is invariant under rotations of 2π

3
, the kinetic

term HK does not have the same symmetry.
Lastly, we can recover the dust-Kasner scale factors

before and after a bounce by noting that the integration
constants appearing in the transition rule are related to dust-
Kasner exponents by

p1 ¼
1

3
ð1 − cos θ −

ffiffiffi
3

p
sin θÞ;

p2 ¼
1

3
ð1 − cos θ þ

ffiffiffi
3

p
sin θÞ;

p3 ¼
1

3
ð1þ 2 cos θÞ: ð95Þ

VI. BIANCHI IX DYNAMICS WITH DUST
AND SCALAR FIELD

It is known that a scalar field suppresses the oscillations
between Kasner regimes that characterize the mixmaster
dynamics of a generic approach to a singularity. Berger [31]
first used MCP to clarify the role of the scalar field. In this
section we apply this technique to investigate the near
singularity dynamics of a Bianchi IX universe filled with
dust and a homogeneous scalar field. In the dust time
gauge, the physical Hamiltonian for a Bianchi IX spacetime
with dust and a homogeneous scalar field χ is

Hp ¼ −
e3Ω

24
ðp2þ þ p2

− − p2
Ω þ 12p2

χÞ
þ VIXðΩ; βþ; β−Þ − e−3ΩVχðχÞ; ð96Þ

where pχ denotes the momentum conjugate to the scalar
field and VχðχÞ is the scalar field potential. As in the last
section, we can again view the Hamiltonian as a sum of two
terms HK and HV where

HK ¼ −
e3Ω

24
ðp2þ þ p2

− − p2
Ω þ 12p2

χÞ ð97Þ

HV ¼ VIXðΩ; βþ; β−Þ − e−3ΩVχðχÞ: ð98Þ
To apply MCP we are interested in the solutions with the
free Hamiltonian HK . The equations of motion are the set
(63) with v ¼ 0. We note also that from (97)

p2þ þ p2
− þ 12p2

χ ¼ constant≡ L: ð99Þ
Therefore, we can parametrize p� as

pþ ¼ k
ffiffiffiffi
L

p
sin θ; p− ¼ k

ffiffiffiffi
L

p
cos θ; ð100Þ

with

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12p2
χ

L

s
: ð101Þ

Using the asymptotic expansions for β� in HV , near the
singularity we have

HV ≈ 2ðeΩð�4k sin θ�4
ffiffi
3

p
k cos θ−1Þ

þ eΩð�4k sin θ∓4
ffiffi
3

p
k cos θ−1Þ þ eΩð∓8k sin θ−1ÞÞ: ð102Þ

None of the terms in HV are significant if the following
inequalities are satisfied simultaneously:

�4k sin θ � 4
ffiffiffi
3

p
k cos θ − 1 < 0

�4k sin θ ∓ 4
ffiffiffi
3

p
k cos θ − 1 < 0

∓ 8k sin θ − 1 < 0: ð103Þ

Figure 4 shows a plot of these inequalities. All three
inequalities are satisfied for k < 1=4. Thus, in the presence
of the scalar field the oscillatory dynamics of the dust filled

FIG. 4. This is a plot of the expressions on the left-hand side of
(103) with respect to θ for a value of k < 0.25. The solid line
indicates the first condition, the dashed line indicates the second
condition and the dotted line indicates the last condition. The gray
regions indicate θ values for which all the terms in the potential
are decaying. As the value of k decreases this region grows larger.
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Bianchi IX model is suppressed when the scalar field
momentum satisfies

4

5
p2
χ > p2þ þ p2

−: ð104Þ

VII. DUST TIME PATH INTEGRAL

There is so far no complete quantization of the Bianchi
IX system, despite a long history of attempts at solving the
Wheeler-DeWitt equation. All attempts involve approxi-
mations of one type or another and are largely qualitative in
nature. Here we give a path integral quantization of the
dust-Bianchi I model in the dust time gauge. Specifically
we derive an effective action for the scale factor Ω by
integrating out the anisotropy degrees of freedom β� in the
path integral.
The canonical action in dust time gauge,

S ¼
Z

dt

�
_ΩpΩ þ _βþpþ þ _β−p− þ e3Ω

24
ðp2þ þ p2

− − p2
ΩÞ
�
;

ð105Þ

gives the Lagrangian

L ¼ 6e−3Ωð _β2− þ _β2þ − _Ω2Þ: ð106Þ

This resembles a particle version of sigma-model action
with nontrivial Ω − p� interaction.
An effective action for Ω is defined by

Z½Ω�≡
Z

Dβ−Dβþ exp

�
i
ℏ

Z
dt6e−3Ω½ _Ω2 − _β2− − _β2þ�

�
:

ð107Þ

This is a standard computation. Discretizing time in steps ϵ
and writing Dβ ¼ dβ1 � � � βN , each Dβ integral is

I ¼
Z

dβ1 � � � dβN exp

�
6i
ℏϵ

XN
n¼1

e−3Ωnðβn − βn−1Þ2
�

¼
�
πϵℏ
6i

�
N=2YN

n¼1

e3Ωn=2: ð108Þ

The full path integral is then

Z ¼
Z

DΩ exp

�
i
ℏ
Seff ½Ω�

�
; ð109Þ

where the measure is defined to absorb the factors coming
from the β− and βþ integrations, and

Seff ¼
Z

dtð6e−3Ω _Ω2Þ: ð110Þ

The curious feature of this result is that Seff is the same as
what one would obtain by merely switching off by hand the
anisotropic degrees of freedom. Had we not reabsorbed the
Ω factors coming from the β� integrations into the measure,
it would not have ben possible to define an effective action
in the usual manner.
The effective equation of motion is

Ω̈ −
3

2
_Ω2 ¼ 0; ð111Þ

which has the general solution

Ω ¼ −
2

3
lnðc1tþ c2Þ: ð112Þ

From (61) the resulting scalar factor is a ¼ expð−ΩÞ ¼
ðc1tþ c2Þ2=3, which is the usual matter dominated result.
Using this observation, it may be possible to treat the full
action for the Bianchi IX case, including the potential, using
tunneling methods between different dust-Kasner vacua.

VIII. SUMMARY AND DISCUSSION

We studied the Bianchi I and IX cosmologies with dust
in the Hamiltonian theory in the dust time gauge. We first
gave a new derivation of the Heckmann-Schücking solution
(dust-Kasner) in the dust time gauge and used this to study
the Bianchi IX dynamics. We showed this approach gives a
new physical picture of Bianchi IX evolution, as a series of
dust-Kasner epochs between bounces from the anisotropy
potential walls. We then derived the transition law for these
dust-Kasner epochs. This law differs significantly in detail
from the vacuum case derived by BKL and Misner, and its
form is different at each of the potential walls.
In the dust time gauge it is not possible to separate the

dust degrees of freedom from the gravitational degrees of
freedom, since the extra degree of freedom is manifested in
the metric, and matter is “locked in” with time. Therefore it
is not surprising that the transition between different dust-
Kasner regimes is governed by more than one parameter.
This leads to a puzzle: how does the “matter does not

matter” result arise in a context where evolution is defined
with respect to matter time, (dust in our case)? To answer
this we showed that the transition rule we derived reduces
to the vacuum BKL-Misner law sufficiently close to a
singularity.
We emphasize that our analysis in deriving the gener-

alized transition law makes no assumption about the size of
the Universe. Rather, it relies only on the fact that collisions
with walls occur throughout evolution in dust time. As such
it may be interpreted as simply a “wall collision law”.
Lastly we used the dust time classical analysis to develop

a path integral quantization with the aim of integrating out
the anisotropy degrees of freedom. This is a new idea which
bypasses the usual approach to the path integral in quantum
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gravity, eliminating the need for an integration over the
lapse function, and instead using the more tractable
physical Hamiltonian in the dust time gauge. For the
dust-Kasner case, the effective action for the homogeneous
dynamics turned out to be equivalent to matter-dominated
cosmology. The effective action with the anisotropy poten-
tial remains open.
The main thrust of the paper is an exploration of

Hamiltonian cosmology in the context of the physical
time-independent Hamiltonian obtained in the dust time
gauge. We consider this to be a potentially useful approach
for studying the classical and quantum dynamics of more
complex models such as the Gowdy cosmologies. These
have so far only been studied to some extent in a volume
time gauge, which introduces explicit time dependence in
the Hamiltonian and equations of motion. Of particular
interest is the approach to the singularity in the quantum
theory, which may be simple if the classical equations are
indeed vacuum dominated and homogenous [32]. For then
the classical singularity to be resolved is the one provided
by a homogeneous cosmology.
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APPENDIX: OTHER APPROACHES

The study of Bianchi IX dynamics was initiated by
Belinskii, Khalatnikov and Lifschitz (BKL) in an effort to
characterize the dynamics near a cosmological singularity.
The BKL program resulted in the well-known BKL
conjecture which states that generically the dynamics near
a cosmological singularity is vacuum dominated, homo-
geneous and oscillatory. Bianchi IX spacetimes have since
become a subject of interest due to the chaotic behavior
exhibited near the singularity. Various authors have studied
different aspects of this chaotic dynamics, and the literature
on asymptotic dynamics is vast. The techniques used to
study this dynamics can be roughly divided into three
categories (i) the scattering problem approach, (ii) the
particle in a box Hamiltonian approach, and (iii) the
dynamical systems method. BKL were the first to treat
the dynamics as a scattering problem and this approach is
sketched in A 1. Misner introduced the particle in a box
approach in [13]. Misner used ADM variables to formulate
vacuum Bianchi IX as a constrained Hamiltonian system
and formulated the asymptotic dynamics as the dynamics
of a particle in a triangular box. Details of Misner’s analysis
are given in A 2. Several authors have also studied this
Hamiltonian system using Ashtekar variables (e.g.:
[33,34]). The third approach to studying Bianchi IX
dynamics involves formulating the system in terms of

expansion normalized bounded variables to apply dynami-
cal systems techniques. These variables were first intro-
duced in [20]. The advantage of the this approach is that it
allows one to write the general Einstein equations for
homogeneous cosmologies, thus uniting all the Bianchi
models within a single framework. Therefore, this approach
has been extremely successful in providing rigorous proofs
for a variety of hypotheses about the dynamics. However,
unlike the other approaches, it does not provide a physical
picture for the evolution of a Bianchi IX universe.

1. The BKL analysis

Belinskii, Khalatnikov and Lifschitz (BKL) were among
the first to construct an approximate solution describing the
near singularity dynamics of a diagonal vacuum Bianchi IX
universe. Here we provide a summary of their analysis. In a
synchronous reference frame the spatial metric for this
spacetime is characterized by three scale factors aðtÞ, bðtÞ,
cðtÞ along the spatial directions la, ma and na,

γab ¼ a2lalb þ b2mamb þ c2nanb: ðA1Þ
The vacuum Einstein’s equations for this system are a set of
three evolution equations and a constraint for these scale
factors (excluding the constraints given by the R0a ¼ 0
equations),

ð _abcÞ_
abc

þ 1

2a2b2c2
½a4 − ðb2 − c2Þ� ¼ 0

ða _bcÞ_
abc

þ 1

2a2b2c2
½b4 − ðc2 − a2Þ� ¼ 0

ðab_cÞ_
abc

þ 1

2a2b2c2
½c4 − ða2 − b2Þ� ¼ 0

ä
a
þ b̈
b
þ c̈
c
¼ 0; ðA2Þ

where _f ¼ df
dt . Using the transformations

a ¼ eα; b ¼ eβ; c ¼ eγ; ðA3Þ

and a new time variable τ

dt ¼ abcdτ; ðA4Þ
(A2) take the form

2αττ ¼ ðe2β − e2γÞ2 − e4α

2βττ ¼ ðe2γ − e2αÞ2 − e4β

2γττ ¼ ðe2α − e2βÞ2 − e4γ ðA5Þ
1

2
ðαþ β þ γÞττ ¼ ατβτ þ ατγτ þ γτβτ; ðA6Þ

with fτ ¼ df
dτ. Assuming there exists a period during the

evolution when all terms on the right-hand side of (A5) can
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be neglected, the above equations can be solved exactly to
give

a ≈ tp1 ; b ≈ tp2 ; c ≈ tp3 ; ðA7Þ
where the exponents satisfy the following conditions:

p1 þ p2 þ p3 ¼ p2
1 þ p2

2 þ p2
3 ¼ 1; ðA8Þ

and t ¼ 0 is a singularity. BKL called this the Kasner
regime. The Kasner regime cannot persist since at least
some of the terms on the right-hand side of (A5) are
growing. Furthermore, in order to satisfy the conditions
(A8) the exponents cannot all have the same sign. Without
loss of generality we can assume p1 < 0. Then as the
singularity is approached, the Kasner regime is perturbed
by the term e4α. Neglecting all other terms in (A5) we have

αττ ¼ −
1

2
e4α

βττ ¼ γττ ¼
1

2
e4α: ðA9Þ

Thus, according to BKL the Kasner regime defined by
(A7) provides the initial conditions for the evolution
characterized by (A9). Essentially BKL treated Bianchi
IX dynamics as a scattering problem with the initial and
final (asymptotic) states defined by a Kasner regime. BKL
showed that equations (A9) can be solved exactly to give

a2 ¼ 2jp1j
coshð2jp1jτÞ

b2 ¼ b20 exp½2ðp2 − jp1jÞ� cosh ð2jp1jτÞ
c2 ¼ c20 exp½2ðp3 − jp1jÞ� cosh ð2jp1jτÞ: ðA10Þ

In the limit t → 0, the asymptotic form of these solutions is
identical with (A7). In the limit t → ∞, the asymptotic
form of (A10) is

a ≈ tp
0
1 ; b ≈ tp

0
2 ; c ≈ tp

0
3 ðA11Þ

with

t ≈ exp½ð1þ 2p1Þτ�

p0
1 ¼

jp1j
1 − 2jp1j

; p0
2 ¼ −

2jp1j − p2

1 − 2jp1j
;

p0
3 ¼

p3 − 2jp1j
1 − 2jp1j

: ðA12Þ

(A11) defines a new Kasner regime where p0
1 and p0

3 are
positive and p0

2 is the negative exponent. This new Kasner
regime is perturbed by the term e4β, and over time
transitions to another Kasner regime. BKL parametrized
the Kasner exponents as

p1ðuÞ ¼
−u

1þ uþ u2
;

p2ðuÞ ¼
1þ u

1þ uþ u2
;

p3ðuÞ ¼
uð1þ uÞ
1þ uþ u2

: ðA13Þ

In terms of this parametrization the transition from one
Kasner regime to another can be described as

if p1ðuÞ< 0<p2ðuÞ<p3ðuÞ
then p0

1 ¼ p2ðu− 1Þ; p0
2 ¼ p1ðu− 1Þ; p0

3 ¼ p3ðu− 1Þ:
ðA14Þ

The value of the parameter u decreases by one during each
transition. When u becomes less than one, then it trans-
forms as u → 1=u since

p1

�
1

u

�
¼ p1ðuÞ; p2

�
1

u

�
¼ p3ðuÞ;

p3

�
1

u

�
¼ p2ðuÞ: ðA15Þ

Further details on these Kasner transitions and the dynam-
ics of vacuum Bianchi IX can be found in the review by
BKL [3].

2. Misner’s analysis of vacuum Bianchi IX dynamics

A spatially homogeneous spacetime has (at least) a three
dimensional isometry group. These spacetimes can be
classified into nine types, as enumerated by Bianchi. For
type A Bianchi models, i.e. models with structure constants
satisfying Ci

ij ¼ 0, it is possible to arrive at a Hamiltonian
formulation by imposing homogeneity at the level of the
action. In this paper we consider Bianchi I and IX models,
both of which are type A models. The reduced ADM action
after imposing homogeneity is

S¼ 1

2π

Z
dtω1 ∧ω2 ∧ω3ð ~πab _qabþpχ _χ −NHÞ; ðA16Þ

where the phase space variables only depend on t, ωi are
invariant 1-forms corresponding to the isometry group of
the manifold and the shift function (Na) has been set to
zero. The lapse (N) function is the coefficient of the
Hamiltonian constraint

H ¼ HG þHM;

where

HG ¼ −
ffiffiffi
q

p
Rð3Þ þ 1ffiffiffi

q
p

�
~πab ~πab −

1

2
~π2
�
: ðA17Þ
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The trace of the gravitational momentum is ~π ¼ qab ~πab,
Rð3Þ is the scalar curvature of the spatial hypersurfaces,
and HM is the matter Hamiltonian. The corresponding
spacetime metric is

ds2 ¼ −N2dt2 þ qijωiωj: ðA18Þ

When qijðtÞ is diagonal, we can choose

qijðtÞ ¼ diagfa2ðtÞ; b2ðtÞ; c2ðtÞg;

πijðtÞ ¼ diag

�
pa

2a
;
pb

2b
;
pc

2c

�
: ðA19Þ

The phase space variables are the scale factors and
their conjugate momenta ½aðtÞ; paðtÞ�, ½bðtÞ; pbðtÞ� and
½cðtÞ; pcðtÞ�. The Hamiltonian constraint takes the form

HG ¼ 1

4abc

�
1

2
ða2p2

a þ b2p2
b þ c2p2

cÞ

− ðabpapb þ acpapc þ bcpbpcÞ
�

þ Vða; b; cÞ; ðA20Þ

where Vða; b; cÞ is related to the scalar curvature of the
spatial slice.
A useful set of variables which separate the expansion

from the anisotropy were introduced by Misner [12]. In
these variables the spatial metric is parametrized as
qij ¼ expð−2ΩÞðexp βÞij, where βij is a symmetric trace-
less matrix and e−Ω is the average scale factor. For the
special case when βij is diagonal, we have

qij ¼ e−2Ωdiagð2βþ þ 2
ffiffiffi
3

p
β−; 2βþ − 2

ffiffiffi
3

p
β−;−4βþÞ;

πij ¼
1

6
diagðpþ þ

ffiffiffi
3

p
p−; pþ −

ffiffiffi
3

p
p−;−2pþÞ −

1

3
δijpΩ;

ðA21Þ

where, βþ and β− are independent phase space variables
with conjugate momenta pþ and p− respectively. The other
phase space variables are ðΩ; pΩÞ. These variables are
related to the scale factors and their conjugate momenta by
the following canonical transformation:

Ω ¼ −
1

3
ln ðabcÞ; pΩ ¼ −ðapa þ bpb þ cpcÞ

βþ ¼ 1

6
ln

�
ab
c2

�
; pþ ¼ apa þ bpb − 2cpc

β− ¼ 1

2
ffiffiffi
3

p ln

�
a
b

�
; p− ¼

ffiffiffi
3

p
ðapa − bpbÞ: ðA22Þ

The Hamiltonian constraint in these variables is

HG ¼ e3Ω

24
ðp2þ þ p2

− − p2
ΩÞ − VðΩ; βþ; β−Þ: ðA23Þ

Misner carried out a Hamiltonian analysis that paralleled
BKL’s in [12]. He proceeded by multiplying the
Hamiltonian constraint by

ffiffiffi
q

p ¼ e−3Ω and reduced the
theory by choosing the time gauge t ¼ Ω. The physical
Hamiltonian for this choice of time is

Hp ¼
�
p2þ þ p2

− þ e−4Ω
��

2

3
e4βþðcoshð4

ffiffiffi
3

p
β−Þ − 1Þ

−
4

3
e−2βþ coshð2

ffiffiffi
3

p
β−Þ þ

1

3
e−8βþ

���
1=2

: ðA24Þ

This Hamiltonian is explicitly time dependent, and the
system can be viewed as a particle in an expanding
triangular box. The singularity is approached as Ω → ∞.
Therefore, near the singularity the potential term is only
dominant when vðβþ; β−Þ ¼ ½2

3
e4βþðcoshð4 ffiffiffi

3
p

β−Þ − 1Þ −
4
3
e−2βþ coshð2 ffiffiffi

3
p

β−Þ þ 1
3
e−8βþ� is sufficiently large. When

the potential term is negligible the Hamiltonian reduces to
the Bianchi I (time independent) Hamiltonian

HI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ þ p2

−

q
; ðA25Þ

and the “universe particle” behaves as a Bianchi I universe,
i.e. it moves along straight lines in the ðβþ; β−;ΩÞ space.
Misner parametrized this straight line motion as

βþ ¼Ω
u2 þ u− 1=2
u2 þ uþ 1

; β− ¼ Ω
ffiffiffi
3

p ðuþ 1=2Þ
u2 þ uþ 1

: ðA26Þ

This parametrization works because ðβ0þÞ2þðβ0−Þ2¼
ðpþ=HÞ2þðp−=HÞ2¼1. Furthermore, during the Bianchi I
regime we can also use the alternative parametrization
pþ=H ¼ cos θ and p−=H ¼ sin θ.
The potential walls rise steeply away from β ¼ 0 and the

equipotentials form equilateral triangles in the βþβ− plane
with tunnellike vertices. The central regions of the three
equivalent sides are described by the asymptotic forms
V1 ¼ 1

3
e−8βþ , V2 ¼ 2

3
e4βþþ4

ffiffi
3

p
β− and V3 ¼ 2

3
e4βþ−4

ffiffi
3

p
β− . It

can be shown that the wall velocity is β0wall ¼ 1=2; thus the
universe particle moves twice as fast as the wall in the
region V < 1. Therefore, at finite intervals the trajectory of
the particle collides with the potential wall and is deflected
from one straight line (Bianchi I) motion to another.
This Misner denoted as the bounce. In order to characterize
this bouncing (oscillatory) dynamics we need to relate the
parameters of the trajectory after the bounce to those before
the bounce. Misner did this by relating the angle θ after the
bounce to that before the bounce. Since _β is the velocity of
the universe particle, the angle θ can be interpreted as the
angle of incidence of the particle trajectory on to the
potential wall. Let the parametrization of the initial
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velocities be ðβþ0ÞðiÞ ¼ pðiÞ
þ =HðiÞ ¼ − cos θi and ðβ−0ÞðiÞ ¼

pðiÞ
− =HðiÞ ¼ sin θi, and the parametrization after the

bounce be ðβþ0ÞðfÞ¼pðfÞ
þ =HðfÞ¼cosθf and ðβ−0ÞðfÞ ¼

pðfÞ
− =HðfÞ ¼ sin θf. The asymptotic form of the

Hamiltonian near the wall defined by V1 is

H ¼
�
p2þ þ p2

− þ 1

3
e−4Ω−8βþ

�
1=2

: ðA27Þ

Then, p− and the quantity K ¼ 1
2
pþ þH are conserved

during the bounce. This gives the following two equations:

HðiÞ sin θi ¼ HðfÞ sin θf;

HðiÞ

�
1þ 1

2
cos θi

�
¼ HðfÞ

�
1 −

1

2
cos θf

�
; ðA28Þ

which lead to the following rule relating θi and θf:

sin θf − sin θi ¼
1

2
sinðθi þ θfÞ: ðA29Þ

In terms of the parameter u, the above rule is uf ¼ ui − 1.

3. Dynamical systems approach

In order to effectively apply dynamical systems tech-
niques to the Bianchi IX system, the Einstein field
equations must be expressed in terms of bounded variables.
Such a set of variables can be obtained in the 1þ 3
formalism and are known as expansion normalized vari-
ables. In the 1þ 3 formalism one begins by choosing an
orthonormal frame such that the local line element becomes
ds2 ¼ ηabσ

aσb where σa are dynamics one forms which
satisfy the Lie algebra of the symmetry group for some
Bianchi type. The time variable (τ) is chosen such that it is
constant on the group orbits. The dynamical variables in
this approach are the structure constants γαμν of the group
Lie algebra which are constants on the group orbits
but functions of the global time variable. These can be
written as

γα0β ¼ −σαβ −Hδαβ − ϵαβμðωμ þ ΩμÞ
γ00α ¼ _uα; γ0αβ ¼ −2ϵμαβωμ; ðA30Þ

where H is the expansion scalar, σab is the shear tensor, Ωa

is the angular velocity and ωa is the vorticity of some
fundamental timelike velocity field. The spatial compo-
nents can be decomposed as

γcab ¼ ϵabdncd þ 2a½aδcb�: ðA31Þ

The Einstein field equations consist of evolution equations
for (H, σab, ωa, nab, aa) and four constraint equations. The
variables uα and Ωa are completely determined by a choice

of frame (equivalent to determining the ADM lapse
and shift). A key step in the dynamical systems analysis
is to normalize all dynamical variables by appropriate
powers of the expansion scalar to ensure that the variables
remain bounded as the singularity is approached. Using a
time coordinate such that the lapse is set to the expansion
scalar, H cancels out from the evolution equations for the
other variables. Thus the state space is reduced to (Σab, ωa,
Nab, Aa, Ω), where each variable is normalized by the
expansion scalar and Ω is the matter density divided
by H2. For the class A Bianchi models Aa ¼ 0, so we
neglect this variable from hereon. The evolution can be
formulated as

dX
dτ

¼ fððXÞÞ; X ∈ Rn; ðA32Þ

whereX denotes the reduced state space since the evolution
of the expansion scalar decouples. For the Bianchi IX
models with orthogonal perfect fluid the reduced state
space is five dimensional. It is desirable that the state space
be compact, that is no variable diverges faster than the
expansion scalar as the singularity is approached or goes to
zero faster in the late time limit. For all Bianchi models
except Bianchi VII0 and VIII the expansion normalized
state space is compact. Defining the shear parameter Σ ¼
ω2

3H2 and the curvature parameter K ¼ 3R
3H2 the Friedmanm

equation (Hamiltonian constraint) takes the simple form

Σ2 þ K þ Ω ¼ 1: ðA33Þ

The matter degree of freedom satisfies the evolution
equation

dΩ
dτ

¼ ½2q − ð3γ − 2Þ�Ω; ðA34Þ

where q is the deceleration parameter. Thus, Ω ¼ 0 defines
an invariant set for this system of equations. This invariant
set is also the boundary which defines the evolution of
the vacuum Bianchi models. In a seminal paper [24],
Ringstrom proved the Bianchi IX attractor theorem that
states a generic Bianchi IX orbit has a limit set near past and
future infinity which is a subset of the Bianchi IX attractor.
The Bianchi IX attractor is the union of the vacuum Bianchi
I and Bianchi II invariant sets of the evolution equations for
X. The vacuum Bianchi I invariant set is characterized by
Na ¼ 0 for a ¼ 13̈ and Ω ¼ 0 and is nothing but the
Kasner circle discussed in the metric variable approach.
The vacuum Bianchi II subset is characterized by one
Na > 0, and the other two equal to zero along with Ω ¼ 0.
The Bianchi IX attractor theorem formalizes BKL and
Misner’s analysis of the near singularity Bianchi IX
dynamics in terms of transitions between Kasner solutions
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via Bianchi II bounces. Ringstrom showed that Ω tends to
zero in the asymptotic limit, and therefore the Bianchi IX
attractor is the union of vacuum invariant sets. This is the
analogue of

ffiffiffiffiffi
q0

p
tending to zero as the singularity is

approached. For details about these variables and the use of
dynamical systems technique in cosmology refer to [23].
Details about the Bianchi IX attractor and the proof of
theorem can be found in [24,35].
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