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The recent birth of gravitational wave astronomy invites a new generation of precision tests of general
relativity. Signatures of black hole (BH) mergers must be systematically explored in a wide spectrum of
modified gravity theories. Here, we turn to one such theory in which the initial value problem for BH
mergers is well posed, the Einstein-Maxwell-dilaton system. We present conservative estimates for the
merger parameters (final spins, quasinormal modes) based on techniques that have worked well for
ordinary gravity mergers and utilize information extracted from test particle motion in the final BH metric.
The computation is developed in parallel for the modified gravity BHs (we specifically focus on the
Kaluza-Klein value of the dilaton coupling, for which analytic BH solutions are known) and ordinary Kerr-
Newman BHs. We comment on the possibility of obtaining final BHs with spins consistent with current
observations.
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I. INTRODUCTION

The spectacular detections of GW150914 [1],
GW151226 [2], and GW170104 [3] resoundingly marked
the beginning of gravitational wave astronomy. The new
observational window opened by such a feat is offering
unprecedented opportunities to scrutinize our Universe and
probe fundamental questions. Among these, perhaps the
most exciting prospect is to examine gravity in highly
dynamical/strongly nonlinear regimes for the first time and
to put general relativity (GR) through the most stringent
tests to date. The abovementioned signals, produced by
merging binary black holes (BHs), have been shown to be
consistent with GR [4,5]. Deeper scrutiny will be gradually
possible in the coming years (e.g., [6–8]) as more events
and higher signal-to-noise is achieved in binary BH
detections. (Even further complementary tests will be made
possible when nonvacuum binaries are detected. This will
discriminate between theories giving rise to the same
dynamics as in GR in binary BHs systems, but producing
nontrivial differences when at least one neutron star is
involved [9–12].)
Importantly, with the information so far available (and

GR remaining consistent with observations), it is natural to
expect that any deviations from GR will be subtle. This
implies that the search for potential deviations is a delicate
task, especially given the fact that signals will be typically

buried in the aLIGO/VIRGO noise.1 To facilitate this task,
theoretical guidance is required for detection and analysis.
Such guidance is gradually becoming available through
phenomenological approaches [13,14] or through explicit
calculations of merger dynamics within possible extensions
to GR [9–11,15]. While the former makes minimal
assumptions with respect to such extensions, the latter
requires understanding the complex nonlinear behavior of
modified gravities. This, in turn, can only be done within
mathematically well-defined theories [16] (see also, e.g.,
[17,18]). (Most extensions/alternatives to GR are not
formulated in a way leading to a well-posed problem
due to the presence of higher derivatives, ghosts, a suspect
initial value problem, etc. Incipient work is exploring how
to handle these otherwise reasonably motivated theories,
e.g., [19–21].)
With data coming in at an increased rate in the immediate

future, from a theoretical point of view, it is imperative to
provide a sound guidance covering a range of relevant
theories. The principal target for this type of analysis is to
identify the key signatures of the waveforms (during the
transition from inspiral to plunge, and in postmerger
behavior), which would provide important insights into
the dynamics of the system as well as the nature of the
objects involved in the merger event.
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1Future facilities like the space-based LISA, and planned ET
and cosmic explorer will have a much higher sensitivity though
they are over a decade away. Nevertheless, coherent analysis of
multiple events in aLIGO/VIRGO can boost SNR by a significant
amount to extract subtle features of the signal, e.g., [8].
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In the present work, we take a step toward the compre-
hensive analysis of modified gravity mergers, focusing on
the particular framework of the so-called “Einstein-
Maxwell-dilaton” (EMD) theory. In this theory, in addition
to the standard tensor (metric) field, a scalar and a gauge
field are present. The presence of a gauge field allows, in
particular, for the BH to sustain nontrivial hair and the
system to radiate scalar and vector modes. This theory is
motivated by various low-energy limits of string theories
and is thus a natural candidate to explore deviations from
standard gravity. In the EMD theory, explicit analytic
solutions called the KK BHs are known for a specific
value of the dilaton coupling parameter. While we expect
that the behaviors are qualitatively similar at different
comparable values of the dilaton coupling parameter, in
our derivations, we focus on this value that makes the
situation analytically tractable. We furthermore systemati-
cally compare our derivations with the corresponding
results in the standard Einstein-Maxwell theory.
Full numerical simulations of gravitational systems are

very costly, in standard GR and, even more so, with
additional fields present (see, e.g., [22,23]). It is important
to identify not fully rigorous but reliable estimates for the
merger processes, which would precede and guide costly
numerical work. In ordinary GR, it has been rather solidly
established that information on test particle motion in the
final state BH can be utilized to build estimates for the
merger dynamics with a precision on the scale of 10%.
Thus, the analysis of so-called “innermost stable circular
orbits” (ISCO) for massive particles can produce accurate
estimates for the final spin of the merger via what is referred
to as the BKL recipe, after the initials of the authors of [24]
where it was introduced. The circular orbits for massless
particles, known as the “light ring”, provide information on
the quasinormal modes of the final BH and therefore
gravitational wave emission patterns at the late stages of
a relaxation of the merger product, the “ring down” [25]
(see however [25,26] for limitations).
We see the type of estimates we present here as a first step

in two significant directions. First, the results can guide
future numerical simulations of BH collisions in the
EMD theory [27] (simulations of collisions of Reissner-
Nordström BHs involving Maxwell fields have been pre-
viously reported in [28–30]). Second, the type of estimates
we present here are straightforwardly applicable in other
modified gravity theories in which explicit BH solutions
are known. For example, an analytic treatment of geodesics
in STU BH spacetimes that generalize KK BHs has just
appeared in [31]. (Full numerical simulations in generic
modified gravity theories would have to be preceded by in-
depth analysis of the corresponding equations of motion to
ascertain that the collision problem is well posed.)
Our estimates of final merger spins invite some contem-

plation of the potential “low spin issue” of individual black
holes involved in the merger. The LIGO detections point to

spin-to-mass ratio of the BH resulting from the merger being
quite close to what would have resulted from colliding
binary BHs with intriguingly small spins, if these were
aligned with the orbital angular momentum. Alternatively,
such scenario also arises from spin configurations with a
rather small projection of their spin along the direction of the
orbital angular momentum—a puzzling possibility on astro-
physical grounds. The estimates for charged BHs we present
here make it possible to lower the final spin of the merger at
generic values of the collision parameters. While charged
BHs are not part of the standard astrophysical lore, they have
occasionally been evoked in addressing possible observa-
tional paradoxes (see [30] and references therein).
The paper is organized as follows. In Sec. II, we review

the background material on our estimation techniques
and the BH metrics involved. In Sec. III, we show how
the original BKL recipe utilizing pure geodesic motion
can be applied to Kaluza-Klein BHs in the EMD theory.
In Sec. IV, we incorporate corrections to the test particle
motion due to the presence of charges and develop improved
estimates. In Sec. V, we repeat these derivations for the
standard Kerr-Newmann BHs of ordinary gravity, and in
Sec. VI compare these results with what we have obtained in
modified gravity. We finally provide a summary in Sec. VII.

II. GENERALITIES

A. Final spin estimation: The BKL recipe

Our strategy is simple and relies on “conservation
arguments” to estimate the final BH mass and angular
momentum resulting from quasicircular binary BH mergers
as presented in [24] (often referred to as the BKL
approach). One thinks of the initial phase of the merger
process, in the low eccentricity case, as a gradual con-
traction of the binary orbit due to the energy loss via a
gravitational wave emission. This phase cannot proceed
indefinitely however, since circular orbits become unstable
once the two BHs get closer than a certain distance apart.
(This distance is known as the ISCO radius.) Once this
moment has been reached, a “plunge” occurs resulting in
the final BH formation. Since during the plunge only a
small amount of angular momentum is radiated, one can
use the angular momentum conservation and the informa-
tion on the ISCO to estimate the final BH spin.
The BKL approach can be viewed as an extrapolation

of the test-particle (extreme-mass-ratio) behavior to the
comparable mass case [24]. That such an approximation is
able to capture the correct behavior even in the equal mass
regime follows naturally from regarding the merger as
described perturbatively with respect to the final BH
spacetime. Both theoretical studies and the behavior
inferred from recent gravitational wave observations with
LIGO [1,2] lend support for such a picture.
For simplicity, we assume the change in masses is small

and thus estimateMfinal¼M1þM2. (Further improvements
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can be incorporated as in [32], but the resulting differences
are small so this assumption is adequate for our current
purposes.) Conservation of angular momentum at the
moment of plunge implies [24],

MAf ¼ LorbðrISCO; AfÞ þM1A1 þM2A2; ð2:1Þ

where M1, M2 are the initial masses of BHs and M ¼
M1 þM2 is the mass of the merger product BH. A1 and A2

are the initial spin parameters; Af is the final BH spin.
Lorbðr; AfÞ is the angular momentum of a test particle
carrying the reduced mass μ ¼ M1M2=M orbiting around
the final BH of massM and spin parameter Af on a circular
orbit of radius r, and rISCO is the radius of the ISCO.
We will assume that the angular momentum of each individ-
ual BH is either aligned or counteraligned with respect to the
orbital angular momentum (misalignments can be accounted
for by suitable projections as explained in [24]).
For future use, it is convenient to reexpress the above

equation for Af through χi ¼ Ai=Mi and ν ¼ M1M2=M2 as

Af ¼ lðrISCO; AfÞνþ
Mχ1
4

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
Þ2

þMχ2
4

ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
Þ2; ð2:2Þ

where lðr; AfÞ refers to the angular momentum of a unit
mass test particle on a circular orbit. Both rISCO and
lðrISCO; AfÞ are completely expressible through geodesic
motion in the metric of the final BH. Equation (2.2) is
solved to obtain an estimate for the final BH spin Af. In this
work, we will apply this technique to the case of BHs in the
Einstein-Maxell-dilaton and Einstein-Maxwell theories.

B. The light ring

As we have just explained, ISCO analysis for massive
test particles allows for the estimation of the final spin of
the merger via the BKL recipe. Additional information on
the merger process can be extracted by considering lightlike
orbits in the final BH metric.
At the final stages of BHs mergers, the merger product

settles to a stationary configuration, which is known as the
ringdown stage. This stage is primarily characterized by
linearized vibrational modes with complex-valued frequen-
cies, known as the quasinormal modes (QNMs), in the
background of the final BH. The frequencies of BH
quasinormal modes can be effectively approximated by
considering unstable geodesics of massless particles, also
known as the light ring [33] (see however [25,26] for a
discussion of subtleties). The QNM frequency can be
estimated along these lines as

ωQNM ¼ Ωcj − i

�
nþ 1

2

�
jλj; ð2:3Þ

where n is the overtone number and j is the angular
momentum of the perturbation. The real part of QNM
frequencies is determined by the angular velocity at the
unstable null geodesicΩc, and the imaginary part, λ, denotes
the Lyapunov exponent, which is related to the instability
time scale of the orbit. The radial equation of motion for a
massless test particle can be generically written in the form

_r2 ¼ VeffðrÞ: ð2:4Þ

The Lyapunov exponent can be computed as

λ ¼
ffiffiffiffiffiffiffiffi
V 00
eff

2_t2

r
; ð2:5Þ

with this expression evaluated at the unstable null geodesic.
We shall demonstrate how this evaluation works in practice
in subsequent sections. At this point, we find it important to
stress that it is not known whether the light ring calculation
produces reasonably accurate estimates of the QNMs in
generic extensions to GR. For the EMD case we focus in
this work, further support for this approach is provided by:
(i) Recent studies in full nonlinear regimes, which not only
illustrates the QNM behavior but also stresses how BHs in
this theory can be regarded as interpolating between charged
to neutral black holes in GRwhen considering small to large
values of the dilaton coupling. (ii) Calculations of QNMs
and direct comparisons with results from the light-ring
calculation presented in [34].Of course, a rigorous treatment
requires the calculation of QNMs through a linearized
study but given the dearth of such studies for the (many)
extensions to GR in existence, our approach provides a
rather simple way to build intuition (see also [35]).

C. Einstein-Maxwell-dilaton BHs

The approach discussed above relies on understanding
the behavior of test particles in suitable BH spacetimes. To
explore mergers in an extension to general relativity, we
consider here the case of the Einstein-Maxwell-dilaton
theory, which arises as a low energy limit in string theory.
The action of this theory is given by [36],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½−Rþ 2ð∇ΦÞ2 þ e−2αΦF2�: ð2:6Þ

For charged rotating BHs, analytic solutions (Kaluza-Klein
BHs) are only available for the dilaton coupling α ¼ ffiffiffi

3
p

[37,38], known as the Kaluza-Klein (KK) value of the
coupling.2 We shall hereafter focus on these particular

2Numerical solutions describing the behavior of single and
binary BH systems for a broad set of α values will be presented in
[27]. Importantly for our discussions, such black holes appear to
be stable and the black hole mergers behave qualitatively similar
to the ones obtained in GR.
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solutions, though we do not anticipate dramatic differences
for other values of the coupling.
The metric for the KK solution in spherical coordinates is

ds2 ¼ −
1 − Z
B

dt2 −
2aZsin2θ

B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p dtdϕ

þ
�
Bðr2 þ a2Þ þ a2sin2θ

Z
B

�
sin2θdϕ2

þ BΣ
�
dr2

Δ
þ dθ2

�
; ð2:7Þ

where

B ¼
�
1þ v2Z

1 − v2

�
1=2

; Z ¼ 2mr
Σ

;

Δ ¼ r2 þ a2 − 2mr; and Σ ¼ r2 þ a2cos2θ: ð2:8Þ
The vector potential and the dilaton field are

At ¼
v

2ð1 − v2Þ
Z
B2

; Aϕ ¼ −asin2θ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
At; and

Φ ¼ −
ffiffiffi
3

p

2
lnB: ð2:9Þ

The physical mass M, charge Q, and angular momentum J
are expressed through m, v and a as

M ¼ m

�
1þ v2

2ð1 − v2Þ
�
; Q ¼ mv

1 − v2
; and

J ¼ maffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð2:10Þ

(One may recognize boostlike dependences on v, and
indeed, four-dimensional Kaluza-Klein BHs descend from
boosted BH solutions in five-dimensional gravity.)
For completeness, we also quote the standard Kerr-

Newman metric for a charged rotating BH in ordinary
general relativity. For a BH of mass M, spin a, and electric
chargeQ in ðt; r; θ;ϕÞ coordinates, this metric has the form

ds2¼−
�
1−

2Mr−Q2

ρ2

�
dt2−

2ð2Mr−Q2Þasin2θ
ρ2

dtdϕ

þρ2

Δ
dr2þρ2dθ2þ sin2θ

ρ2
ððr2þa2Þ2−a2Δsin2θÞdϕ2;

ð2:11Þ

where

Δ ¼ r2 þ a2 − 2MrþQ2; and ρ ¼ r2 þ a2cos2θ:

ð2:12Þ
The corresponding vector potential is

At ¼
Qr
ρ2

; Aϕ ¼ −
Qarsin2θ

ρ2
: ð2:13Þ

D. Newtonian limit of charged particle motion

In the standard BKL recipe [24], one relies on pure
geodesic motion, and therefore, the mass of the test particle
does not affect the shape of its trajectory or the location of the
ISCO. Once electromagnetic effects are taken into account,
the motion of test particle depends on its charge-to-mass
ratio. We shall now briefly examine the Newtonian limit of
the test particle motion and identify reasonable mass and
charge assignments for our generalization of the BKL recipe.
The motion of a test particle of mass μ and charge q is

described by the action,

L ¼ 1

2
μgλν _xλ _xν − qAν _xν; ð2:14Þ

and the corresponding equation of motion,

μðẍμ þ Γμ
νρ _xν _xρÞ ¼ −q _xνFμ

ν: ð2:15Þ
One has to be careful choosing the sign in front of q in the
action. We shall see below that our choice of the sign, in
combination with the standard parametrization of BH
solutions, reproduces the correct Coulomb force for motion
of test particles in the Newtonian limit.
To reproduce the Newtonian limit, we impose _xi ≪ _t;

m; a ≪ r. The above equation of motion reduces to

μðẍμ þ Γμ
00
_t2Þ ¼ −q_tFμ

0: ð2:16Þ
For the sake of parameter identification, we specialize to
purely radial motion. For the metric and field strength
corresponding to the KK BH solution, one gets

μ

�
d2r
dt2

þ m
r2

�
¼ q

r2
mv

1 − v2
: ð2:17Þ

At q ¼ 0, this obviously reproduces the classical equation
of motion in Newtonian gravity. Assuming v ≪ 1 (which is
equivalent to Q ≪ M) and expressing everything through
the physical mass and charge of the BH given by (2.10), we
recover a radial motion equation due to Newtonian gravity
and Coulomb force (note the correct sign of the Coulomb
term),

μ

�
d2r
dt2

þM
r2

�
¼ qQ

r2
: ð2:18Þ

This can be compared to the dynamics of two particles
of massesM1 andM2, and charges Q1 and Q2 governed by
the equation of motion,

M1M2

M1 þM2

d2r
dt2

þM1M2

r2
¼ Q1Q2

r2
: ð2:19Þ

One of the ingredients of the BKL recipe is to approximate
the motion of BHs during an approach by the motion in the
metric of the final BH. If we assume that the final BH has a
mass M ¼ M1 þM2, and a charge Q ¼ Q1 þQ2, guided
by the above Newtonian limit, it is reasonable to assign the
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following mass μ and charge q to the test particle, which
makes (2.18) and (2.19) agree:

μ ¼ M1M2

M1 þM2

; q ¼ Q1Q2

Q1 þQ2

: ð2:20Þ

Remark: Ordinary charged rotating BHs in general
relativity are described by the Kerr-Newman metric (2.11).
The motion of a charged particle around the Kerr-Newman
BH in the Newtonian limit (2.16) is identical to (2.18). Thus,
by comparing with the Newtonian equations (2.19), we
recover the parameters of the test particle (2.20) in the BKL
recipe. Note that for the Kerr-Newman case, we do not need
to impose the small charge condition Q ≪ M.
We are now ready to apply the BKL approach to estimate

the outcome of binary BH mergers in the EMD theory.
We organize this computation by first neglecting the effect
of charges on test particle motion (but retaining it in the
metric). This estimate based on pure geodesic motion is
directly inherited from the original BKL considerations,
and it immediately applies if one of the colliding binaries
has a negligible charge. The estimates based on pure
geodesics are also technically simpler and produce rea-
sonable results even in the presence of charges, as we shall
eventually see. After completing the derivation based on
pure geodesic motion, we turn to more accurate estimates
incorporating the effects of charges.

III. MERGER ESTIMATES FOR KK BHS BASED
ON PURE GEODESIC MOTION

A. Kinematic considerations

1. Orbits in the equatorial plane

Consider the motion of a neutral test particle in the
equatorial plane of a KK BH (2.7), forced by the conditions
θ ¼ π=2 and _θ ¼ 0. The relevant metric components are

gtt ¼ −
1

B

�
1 −

2m
r

�
; gtϕ ¼ −

2γma
rB

;

grr ¼
Br2

Δ
; gϕϕ ¼ Bðr2 þ a2Þ þ 2ma2

rB
; ð3:1Þ

where B2 ¼ 1þ 2mðγ2 − 1Þ=r. We will work with positive
final BH chargesQ corresponding to v > 0 (this is a matter
of convention as the sign can always be flipped) and replace
the boost parameter v in the metric (2.7) with the “Lorentz
factor,”

γ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ≥ 1: ð3:2Þ

In our derivations, we shall repeatedly use the identity

g2tϕ − gttgϕϕ ¼ Δ: ð3:3Þ
The Lagrangian of a unit mass test particle is given by

L ¼ gtt_t2 þ 2gtϕ_t _ϕþgϕϕ _ϕ
2 þ grr _r2; ð3:4Þ

where dots represent derivatives with respect to the proper
time τ. Because none of the metric components depend on t
or ϕ, the corresponding conjugate momenta, which are just
the total energy ε, and the angular momentum l of the test
particle are conserved,

ε ¼ −gtt_t − gtϕ _ϕ; l ¼ gtϕ_tþ gϕϕ _ϕ: ð3:5Þ
One therefore has

_t ¼ gtϕlþ gϕϕε

Δ
; _ϕ ¼ −

gttlþ gtϕε

Δ
: ð3:6Þ

We now focus on circular orbits (_r ¼ 0). The equations
of motion are given by

gtt_t2 þ 2gtϕ_t _ϕþgϕϕ _ϕ
2 ¼ −1 ð3:7Þ

g0tt_t2 þ 2g0tϕ_t _ϕþg0ϕϕ _ϕ
2 ¼ 0; ð3:8Þ

where primes denote derivatives with respect to the radial
coordinate r. The second equation is the r component of
the Lagrangian equations of motion, while the first one
enforces τ to be the proper time. Using (3.7), (3.5), and
(3.3), we write ε as

ε2 ¼ _ϕ2Δ − gtt: ð3:9Þ
The expression for _ϕ can be found by solving (3.7) and
(3.8) simultaneously,

_ϕ ¼ � g0tt

ðg0ttð2gtϕg0tϕ þ gttg0ϕϕÞ − gϕϕðg0ttÞ2 − 2gttðg0tϕÞ2 � 2ðgtϕg0tt − gttg0tϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0tϕÞ2 − g0ttg0ϕϕ

q
Þ1=2

: ð3:10Þ

The upper sign refers to prograde orbits and the lower sign to retrograde orbits. After evaluating the derivatives, we have the
expression

_ϕ ¼ � Vðm2=4rUÞ14
ðð2m − rÞW − rVðmV þ ðm − rÞUÞ � 2aγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrU½rVðV þ ðm − rÞðγ2 − 1ÞÞ −W�

p
Þ1=2 ; ð3:11Þ

where
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U ¼ rþ 2mðγ2 − 1Þ;
V ¼ r − 2mþ ðrþ 2mÞγ2;
W ¼ ma2ðγ2 − 1Þ2: ð3:12Þ

Knowing ε and _ϕ, one can use (3.6) to find the value of l
corresponding to the given circular orbit as

l ¼ −
1

gtt
ð _ϕΔþ gtϕεÞ: ð3:13Þ

Note that the expression for ε and l presented in (3.9) and
(3.13) reduces to the expression for the Kerr BH [39] when
γ ¼ 1, i.e., in the absence of charge.

2. The ISCO

For a massive particle moving on a general trajectory in
the equatorial plane, we have

−1 ¼ gtt_t2 þ 2gtϕ_t _ϕþgϕϕ _ϕ
2 þ grr _r2: ð3:14Þ

Writing the above equation in terms of conserved quantities
ε and l using (3.6) and (3.3), one gets

_r2 þ 1

Br2
ð−gttl2 − 2gtϕlε − gϕϕε2 þ ΔÞ ¼ 0: ð3:15Þ

We now define the effective potential as

Veff ≡ 1

Br2
ðgttl2 þ 2gtϕlεþ gϕϕε2 − ΔÞ: ð3:16Þ

In order to find the ISCO radius, we have to impose the
conditions (see [39] for the Kerr BH),

Veff ¼ 0;
d
dr

Veff ¼ 0; and
d2

dr2
Veff ¼ 0: ð3:17Þ

The first two conditions simply enforce circularity of the
orbit and could be equivalently replaced by constraints on
conserved quantities of circular orbits from the previous
section. It is, however, convenient to deal with the above
formulation in terms of the effective potential, which results
in the following three equations:

gttl2 þ 2gtϕlεþ gϕϕε2 ¼ Δ;

g0ttl2 þ 2g0tϕlεþ g0ϕϕε
2 ¼ Δ0;

g00ttl2 þ 2g00tϕlεþ g00ϕϕε
2 ¼ Δ00: ð3:18Þ

Solving the above equations for ε2, we get

ε2 ¼ g0tϕg
00
ttΔ − gtϕg00ttΔ0 − g0ttg00tϕΔþ gttg00tϕΔ0 þ gtϕg0ttΔ00 − gttg0tϕΔ00

gϕϕg0tϕg
00
tt − gtϕg0ϕϕg

00
tt − gϕϕg0ttg00tϕ þ gttg0ϕϕg

00
tϕ þ gtϕg0ttg00ϕϕ − gttg0tϕg

00
ϕϕ

: ð3:19Þ

Substituting ε2 from (3.9) into (3.19), we obtain the following 12th order equation for ISCO radius rISCO:

RðrÞ ¼
X12
n¼0

cnrn ¼ 0; ð3:20Þ

where

c0 ¼ a8m4ðγ2 − 1Þ6;
c1 ¼ −12a6m5ðγ2 − 1Þ6;
c2 ¼ 6a4m4ðγ2 − 1Þ5½14m2ðγ2 − 1Þ − a2ð4γ2 − 1Þ�;
c3 ¼ −2a2m3ðγ2 − 1Þ4½144m4ðγ2 − 1Þ2 þ a4ð13γ2 − 9Þ − 2a2m2ð83γ4 − 70γ2 − 13Þ�;
c4 ¼ 3m2ðγ2 − 1Þ4½−2a6 þ 192m6ðγ2 − 1Þ2 − 8a2m4ð−16 − 27γ2 þ 43γ4Þ þ a4m2ð−13þ 254γ2 þ 50γ4Þ�;
c5 ¼ 6m3ðγ2 − 1Þ3½16m4ðγ2 − 1Þ2ð22þ 9γ2Þ þ a4ð6þ 127γ2 þ 53γ4Þ − 2a2m2ð28 − 256γ2 þ 173γ4 þ 55γ6Þ�;
c6 ¼ m2ðγ2 − 1Þ2½4m4ðγ2 − 1Þ2ð844þ 648γ2 þ 45γ4Þ þ a4ð101þ 424γ2 þ 243γ4Þ

− 2a2m2ð504 − 1965γ2 þ 634γ4 þ 791γ6 þ 36γ8Þ�;
c7 ¼ 6mðγ2 − 1Þ½a4ð9þ 22γ2 þ 13γ4Þ − 2m4ðγ2 − 1Þ2ð−256 − 268γ2 − 29γ4 þ 9γ6Þ

þ a2m2ð−141þ 396γ2 þ 6γ4 − 236γ6 − 25γ8Þ�;
c8 ¼ 3½3a4ð1þ γ2Þ2 þm4ðγ2 − 1Þ2ð580þ 704γ2 þ 55γ4 − 78γ6 þ 3γ8Þ − 4a2m2ð29 − 59γ2 − 27γ4 þ 47γ6 þ 10γ8Þ�;
c9 ¼ −2mð1þ γ2Þ½a2ð−36þ 42γ2 þ 22γ4Þ þm2ð314 − 241γ2 − 181γ4 þ 117γ6 − 9γ8Þ�;
c10 ¼ −3ð1þ γ2Þ½2a2ð1þ γ2Þ −m2ð47þ 3γ2 − 31γ4 þ 5γ6Þ�;
c11 ¼ 6mðγ2 − 3Þð1þ γ2Þ2; c12 ¼ ð1þ γ2Þ2: ð3:21Þ
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The equationRðrÞ ¼ 0 generically has 12 solutions, which
can be both real and complex. Physically, only two of these
roots should be real and positive, the larger radius corre-
sponding to the retrograde orbit and the smaller one to
the prograde orbit. We have verified numerically that it is
indeed the case for a few arbitrarily chosen parameter
values. Again, the Eq. (3.20) reduces to the Kerr case [39]
when γ ¼ 1.

3. The light ring

Null geodesics in the equatorial plane are described by a
formalism essentially identical to the presentation above
for massive particles, with the same Lagrangian (3.4) and
conserved quantities (3.5). The only difference is that
Eq. (3.14) gets replaced by

0 ¼ gtt_t2 þ 2gtϕ_t _ϕþgϕϕ _ϕ
2 þ grr _r2: ð3:22Þ

The effective potential is then

_r2 ¼ −
1

grr
ðgtt_t2 þ 2gtϕ_t _ϕþgϕϕ _ϕ

2Þ≡ Veff : ð3:23Þ

In terms of the conserved quantities, one has

Veff ¼
1

grrΔ
ðgttl2 þ 2gtϕlεþ gϕϕε2Þ: ð3:24Þ

We now restrict ourselves to circular orbits enforced by
Veff ¼ 0 and V 0

eff ¼ 0, that is

gttX2 þ 2gtϕX þ gϕϕ ¼ 0; g0ttX2 þ 2g0tϕX þ g0ϕϕ ¼ 0;

ð3:25Þ

where we have defined the impact parameter X ≡ l=ε. The
above equations give the value of X and the radius r of the
null circular geodesic. An unstable circular orbit r ¼ rc
must also satisfy

V 00
effðrcÞ > 0: ð3:26Þ

Finally, we obtain an expression for both real and imagi-
nary parts of QNMs,

Ωc ¼
_ϕ
_t

����
rc

¼ 1

XðrcÞ
; and λ ¼

ffiffiffiffiffiffiffiffi
V 00
eff

2_t2

r ����
rc

: ð3:27Þ

We will evaluate these expressions for each case studied in
later sections.
To summarize, we have obtained the necessary results on

geodesic motion in the KK metric. The angular momentum
of a unit mass uncharged test particle moving along the
ISCO of a KK BH is given by (3.13), where _ϕ and ε can be
computed using (3.9) and (3.11), and r ¼ rISCO is the

solutions of (3.20). The estimates for QNMs are provided
by (3.27). The parameters m, a, and γ can be written in
terms of the physical parametersM,Q, and A ¼ J=M of the
KK BH as

m ¼ M
2

 
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

�
Q
M

�
2

s !
; ð3:28Þ

a ¼
ffiffiffi
2

p
A�

1 − ðQMÞ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðQMÞ2

q 	1
2

; ð3:29Þ

γ2 ¼
2þ ðQMÞ2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðQMÞ2

q
4 − ðQMÞ2

: ð3:30Þ

B. Pure geodesic final spin estimate

Armed with the above results on geodesic motion, we
can estimate the final spin for a binary merger of KK BHs
in the Einstein-Maxwell-dilaton theory. Our estimate,
strictly speaking, applies when one of the colliding BHs
is neutral (since we ignored electromagnetic effects on the
acceleration of the test particle, the charged case will be
analyzed in the following section); however, the compu-
tation is instructive to keep in mind even more generally
since charges have moderate effects on trajectories.

1. Bound on Af for the KK BHs

We can first derive an upper bound for the possible final
spin generated by the merger. The metric (2.7) appears
singular when Σ ¼ 0 and Δ ¼ 0. The former one is a
curvature singularity, r ¼ 0; θ ¼ π=2, and the latter one is a
coordinate singularity, which turns out to consist of an
inner horizon at r ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
and an event horizon

at r ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
. In the standard interpretation of

BH solutions, one imposes m2 ≥ a2 to avoid a naked
singularity, where the equality sign corresponds to the
extremal limit.
In terms of the physical parameters M;Af, and Q, we

arrive at the condition

�
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðQMÞ2

q 	�
1 − ðQMÞ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðQMÞ2

q 	1
2

2
ffiffiffi
2

p ≥
����Af

M

����;
ð3:31Þ

where Q=M ∈ ½0; 2Þ. The allowed values of jAf=Mj
computed from (3.31) are shown in Fig. 1. According to
the plot, the maximal spin jAf=Mj for the KK BHs
decreases as the charge to mass ratio Q=M increases.
This general observation underlies our sense that the final
spins of BH mergers can be lowered by introducing
charges.
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2. Final spin estimate for equal spin binary BH mergers

Consider initial BHs of the equal spins χi ¼ χ, the BKL
formula (2.2) can then be rewritten as

Af ¼ lðrISCO; AfÞνþMð1 − 2νÞχ: ð3:32Þ

Using the above equation, we can numerically solve for
Af=M given ν and χ. First, consider the case χ ¼ 0, i.e.,
nonrotating binary BH coalescence, as shown in Fig. 2.
When Q ¼ 0, KK BHs reduce to Kerr BHs, and we get the
usual GR value Af=M ≃ 0.66 for the equal mass case
(ν ¼ 0.25). WhenQ=M increases, Af=M obtained from the
BKL recipe decreases.
As another specific illustration, Fig. 3 shows the

behavior of the final spin Af=M as a function of ν
for χ ¼ 0.4. As we can see from the plot, the final
spin goes up from Af=M ¼ 0.4 when ν rises from 0 to
0.25. Similar to the first case, Af=M decreases as Q=M
increases.
In contrast to the above two cases, for the nearly

extreme spin parameters, say χ ¼ 0.98, the value of the
final spin Af=M falls while ν increases, as illustrated
in Fig. 4.
We remark that for extremely exotic values of the

colliding BH parameters (large spins and charge-to-mass
ratios of order 1), the BKL estimate produces results that
violate the maximal spin bound (3.31). This, of course,
indicates incompleteness of the recipe in the extreme
regimes, but will not bother us here as we are only
interested in moderate values of spins and charges.

FIG. 1. The final spin jAf=Mj vs Q=M. The filled area
illustrates possible values of Af=M, while the blue line represents
the extremal value of jAf=Mj. The final spin decreases as Q=M
increases.

FIG. 2. The final spin Af=M vs ν for χ ¼ 0.

FIG. 3. The final spin Af=M vs ν for χ ¼ 0.4.
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IV. MERGER ESTIMATES FOR KK BHS FROM
CHARGED PARTICLE MOTION

In the previous section, we only considered neutral test
particles moving along geodesics of KK BHs. If individual
colliding BHs have charges, it is more natural to consider
test particles subject also to electromagnetic interactions,
which would make them deviate from pure geodesics. In
this section, we will take into account the effect of the
electromagnetic field of the final BH on the motion of the
test particle trajectories.

A. Kinematics

1. Circular orbits in the equatorial plane

We consider a test particle of mass μ and charge q
moving around a charged rotating KK BH described by

(2.7). The motion of the test particle follows from the
Lagrangian

L ¼ 1

2
μgλν _xλ _xν − qAν _xν: ð4:1Þ

Because L does not depend on ðt;ϕÞ, we have two
conserved quantities, which are the energy and the angular
momentum per mass of the test particle, respectively,

−ε¼ gtt_tþgtϕ _ϕ−eAt; l¼ gtϕ_tþgϕϕ _ϕ−eAϕ; ð4:2Þ

where we define e ¼ q=μ.
Similar to Sec. III, we consider circular orbits in the

equatorial plane, θ ¼ π=2, _θ ¼ 0, and _r ¼ 0. The equations
of motion are

gtt_t2 þ 2gtϕ_t _ϕþgϕϕ _ϕ
2 ¼ −1;

g0tt_t2 þ 2g0tϕ_t _ϕþg0ϕϕ _ϕ
2 ¼ 2eðA0

t_tþ A0
ϕ
_ϕÞ: ð4:3Þ

Using (4.2) and (4.3), we obtain the following expressions:

ðε − eAtÞ2 ¼ _ϕ2Δ − gtt;

l ¼ −
1

gtt
ð _ϕΔþ gtϕðεþ eAtÞÞ − eAϕ: ð4:4Þ

Combining (4.2) and (4.3), we get an equation determin-
ing _ϕ,

b1 _ϕ
4 þ b2 _ϕ

3 þ b3 _ϕ
2 þ b4 _ϕþ b5 ¼ 0; ð4:5Þ

where the coefficients bi are functions of r defined by

b1 ¼ 2g0ϕϕðg0ttð2g2tϕ − gttgϕϕÞ − 2gttgtϕg0tϕÞ þ gϕϕð4g0tϕðgttg0tϕ − gtϕg0ttÞ þ gϕϕðg0ttÞ2Þ þ g2ttðg0ϕϕÞ2
b2 ¼ −4eð−gtϕðA0

tðgϕϕg0tt þ gttg0ϕϕÞ þ 2gttAϕ
0 g0tϕÞ þ gttðgϕϕð2A0

tg0tϕ − Aϕ
0 g0ttÞ þ gttAϕ

0 g0ϕϕÞ þ 2g2tϕAϕ
0 g0ttÞ

b3 ¼ 4e2gttðAϕ
0 ðgttAϕ

0 − 2gtϕA0
tÞ þ gϕϕðA0

tÞ2Þ þ 2g0ttðgϕϕg0tt − 2gtϕg0tϕÞ þ gttð4ðg0tϕÞ2 − 2g0ttg0ϕϕÞ
b4 ¼ 4eðgttðAϕ

0 g0tt − 2A0
tg0tϕÞ þ gtϕA0

tg0ttÞ
b5 ¼ 4e2gttðA0

tÞ2 þ ðg0ttÞ2: ð4:6Þ

Note that if we neglect the electromagnetic influence on the
motion, the odd powers of ϕ drop out, and we recover the
simple result (3.10).
We now turn to the ISCO radius. Using the normalization

condition gμν _xμ _xν ¼ −1 in the equatorial plane and
Eq. (4.2), we arrive at the equation of motion

_r2 ¼ VeffðrÞ; ð4:7Þ
where the effective potential is defined by

Veff ¼
1

Br2
ðgttðlþ eAϕÞ2 þ 2gtϕðlþ eAϕÞðε − eAtÞ

þ gϕϕðε − eAtÞ2 − ΔÞ: ð4:8Þ

To find the ISCO radius, we have to impose the condition

d2

dr2
Veff ¼ 0 ð4:9Þ

(in addition to enforcing the orbit to be circular).

2. The ISCO radius of a charged particle

Starting from the condition (4.9) and substituting l and ε
computed from (4.2), we can solve numerically for the
ISCO radius. Figures 5 and 6 below show the values of
rISCO plotted against e, the charge to mass ratio of the test
particle.

FIG. 4. The final spin Af=M plotted against varying ν andQ=M
for the case χ ¼ 0.98.
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With the electric charge assigned to the test particle, its
angular momentum on circular orbits varies as the magni-
tude of charge increases. As one can anticipate, the case
eQ < 0 incurs an attractive force which helps to increase
the angular momentum, while the case eQ > 0 produces
the opposite effect as it incurs a repulsive force.

B. Merger estimates for the KK BHs

1. Final spin

We are now able to perform the BKL estimation of
the final spin according to ([24]), with electromagnetic
effects taken into account. We assume a positive final
BH charge Q=M > 0 and vary the test particle charge e.
As we have explained, the natural assignment for e in terms
of the charges of colliding BHs is the “reduced charge”
Q1Q2=ðQ1 þQ2Þ. The results for the case when both
initial BHs are nonspinning (χ ¼ 0) are shown in Fig. 7
(Q ¼ 0.4M) and Fig. 8 (Q ¼ M).
As visible from the plots, when the electromagnetic force

between BHs enters into consideration, the final spin is
corrected. For BHs with opposite sign charges, the final
spin is increased (and depending on the charge, the value
can be larger from that resulting in Kerr binary BH
collision). If the charges have the same sign, the final spin

is smaller and is generally smaller than the one resulting
in a Kerr collision. These behaviors also extend to the
case when both initial BHs have a nonzero spin (χ ≠ 0),
shown in Fig. 9. The resulting spin is always lower than for
Kerr BHs.

2. The light ring

For the Kaluza-Klein metric (2.7), we can compute the
impact parameter XðrÞ by solving (3.25). It turns out that

XðrÞ ¼ 1

ΩðrÞ ¼
−2maγ þ rB

ffiffiffiffi
Δ

p

r − 2m
: ð4:10Þ

FIG. 5. ISCO radius rISCO=M vs e for A ¼ 0.5M.

FIG. 6. Angular momentum per mass lðrISCOÞ=M vs e for
A ¼ 0.5M.

FIG. 7. The final spin Af=M vs ν for χ ¼ 0, and Q ¼ 0.4M.

FIG. 8. The final spin Af=M vs ν for χ ¼ 0, and Q ¼ M.

FIG. 9. The final spin Af=M vs ν for χ ¼ 0.4, and Q ¼ 0.8M.
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The radius of circular photon orbit is obtained by solving
the equation

0 ¼ r6 þ 2ðγ2 − 4Þmr5 þ ðγ4 − 16γ2 þ 24Þm2r4

− 2mða2ðγ2 þ 1Þ þ 4ðγ4 − 5γ2 þ 4Þm2Þr3
− 2ðγ2 − 1Þm2ða2ðγ2 þ 4Þ − 8ðγ2 − 1Þm2Þr2
− 8a2ðγ2 − 1Þ2m3rþ a4ðγ2 − 1Þ2m2: ð4:11Þ

We thus obtain the frequencies of QNMs (3.27) of the KK
BHs. (We evidently recover the light ring of Schwarzschild
BHs, r ¼ 3m, by setting γ ¼ 1 and a ¼ 0.)
Figures 10 and 11 below show how the frequency

parameters Ωc and λ change with initial BHs charges
Q1, and Q2, in the equal-mass case with zero initial spins.
We observe that the oscillation frequency Ωc decreases as
the charge ratio increases, and the Lyapunov exponent λ
increases. However, the differences are rather small; which
is consistent with the discussion of quasinormal modes in
the case of nonspinning black holes in EMD theory [40].

V. FINAL SPIN ESTIMATION FOR
KERR-NEWMAN BHS

It is instructive to compare our above results for KK BHs
in EMD gravity to their counterparts in ordinary gravity,

the Kerr-Newmann BHs. Below, we essentially repeat the
analysis of Secs. III–IV for the Kerr-Newman BHs
described by the metric (2.11).

A. Kinematics

In order to apply the BKL recipe, we need to find the
angular momentum of a test particle orbiting the Kerr-
Newman (KN) BH at the ISCO radius. For a test particle of
mass μ and charge to mass ratio e, the energy per mass ε
and angular momentum per mass l can be computed from
the equations

ðε − eAtÞ2 ¼ _ϕ2Δ − gtt;

l ¼ −
1

gtt
ð _ϕΔþ gtϕðεþ eAtÞÞ − eAϕ; ð5:1Þ

where now the metric and electromagnetic potential refer
to the KN solution (2.11)–(2.13). The value of _ϕ can be
determined from the equation

f1 _ϕ
4 þ f2 _ϕ

3 þ f3 _ϕ
2 þ f4 _ϕþ f5 ¼ 0; ð5:2Þ

with the coefficients

FIG. 10. Ωc and λ vs the charge ratio Q2=Q1 for different Q (KK BHs of equal masses with zero initial spins).

FIG. 11. Ωc and λ vs the total charge Q (KK BHs of equal masses with zero initial spins).
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f1 ¼
4ð4a2ðQ2 −mrÞ þ ðrðr − 3mÞ þ 2Q2Þ2Þ

r2

f2 ¼ −
8aeQðr −mÞ

r2

f3 ¼ −
4ðQ2rððe2 − 2Þr − 2ðe2 − 5ÞmÞ þ ðe2 − 4ÞQ4 þ 2mr2ðr − 3mÞÞ

r4

f4 ¼
8aeQðQ2 −mrÞ

r5

f5 ¼
8ðe2 − 1ÞmQ2r − 4ðe2 − 1ÞQ4 þ 4r2ðm − eQÞðeQþmÞ

r6
: ð5:3Þ

The ISCO orbit can be obtained by analyzing the effective
potential Veff defined by

Veff ¼
1

r2
ðgttðlþ eAϕÞ2 þ 2gtϕðlþ eAϕÞðε − eAtÞ

þ gϕϕðε − eAtÞ2 − ΔÞ: ð5:4Þ
The equation determining the ISCO radius rISCO is again of
the form (4.9). If our test particle is taken to be neutral, the
formulas simplify and yield explicitly

_ϕ2 ¼ðQ2−mrÞð3mr−2Q2−r2�2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr−Q2

p
Þ

r2ð4a2ðQ2−mrÞþðrðr−3mÞþ2Q2Þ2Þ ; ð5:5Þ

where the upper sign is for prograde orbits and the lower
sign is for retrograde orbits. The ISCO radius is obtained by
solving the equation

a2ðmr2ð7mþ 3rÞ þ 8Q4 − 2Q2rð7mþ 2rÞÞ
þ ðmr2ð6m − rÞ þ 4Q4 − 9mQ2rÞðrðr − 3mÞ þ 2Q2Þ
� 2að4Q2 − 3mrÞða2 þ rðr − 2mÞ þQ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr −Q2

p
¼ 0: ð5:6Þ

Figures 12 and 13 show the values of ISCO radius rISCO
and angular momentum of the test particle at ISCO

lðrISCOÞ plotted against e, the charge to mass ratio of the
test particle.

B. Final spin of KN BHs coalescence

Consider the coalescence of two BHs with parameters
ðM1; Q1; A1Þ and ðM2; Q2; A2Þ, which results in a final BH
with parameters ðM;Q;AfÞ, where M ¼ M1 þM2 and
Q ¼ Q1 þQ2. The effect of electromagnetic fields on the
final spin Af can be seen from Fig. 14 below (where the
initial spins are assumed to be zero).

FIG. 12. ISCO radius rISCO=M vs e for a ¼ 0.5M for Kerr-
Newman BHs.

FIG. 13. Angular momentum per mass lðrISCOÞ=M vs e for
a ¼ 0.5M for Kerr-Newman BHs.

FIG. 14. Kerr-Newman: The final spin Af=M vs ν for
Q ¼ 0.4M, and χ ¼ 0.
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Similarly to the KK case, final spins are lowered by the
presence of charges (compared to Kerr collisions), except
for the situation with large charges of the opposite sign,
which can make the final spin slightly higher than the Kerr
collisions. The situation is qualitatively similar for initially
spinning BHs as shown in Fig. 15.

C. The light ring

Given the KN metric, we perform the light-ring analysis
in the same manner as for the KK case. The impact
parameter XðrÞ is given by

XðrÞ ¼ 1

ΩðrÞ ¼
aQ2 − 2marþ r2

ffiffiffiffi
Δ

p

r2 − 2mrþQ2
; ð5:7Þ

and the radius of the null circular orbits can be obtained by
solving

r4 − 6mr3 þ ð9m2 þ 4Q2Þr2 − 4mða2 þ 3Q2Þr
þ 4Q2ða2 þQ2Þ ¼ 0: ð5:8Þ

As before, we can obtain from the solution an approxima-
tion to the oscillation frequency and decay rate of pertur-
bations. The parameters Ωc and λ of the QNMs in this KN
case display similar behavior to the KK case, as presented
in Figs. 16 and 17.

VI. COMPARISON BETWEEN KALUZA-KLEIN
AND KERR-NEWMAN BHS

A. Final spins

For our comparison of KK BHs and KN BHs, we mainly
restrict ourselves to the equal-mass case with zero initial
spins (ν ¼ 0.25 and χ ¼ 0) and present the final spin as a
function of the total charge Q ¼ Q1 þQ2 and the initial
charge ratioQ2=Q1. We use the reduced charge assignment

FIG. 16. Kerr-Newman:Ωc and λ vs the charge ratio for various values of the total charge, in the equal-mass case and zero initial spins.

FIG. 17. Kerr-Newman: Ωc and λ vs the total charge, in the equal-mass case and zero initial spins.

FIG. 15. Kerr-Newman: The final spin Af=M vs ν for
Q ¼ 0.4M, and χ ¼ 0.4.
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e ¼ Q1Q2=Q for the test particle involved in the BKL
estimate for both the KK and KN cases.
Figure 18 shows the values of the final spin for the KK

case and KN case, which display qualitatively similar
behaviors. For fixed total charges, the final spins drop with
the charge ratio. Additionally, depending on the charge
ratios Q2=Q1, the final spin either increases or decreases
with the total charge. The differences of final spins between
KK case and KN case are presented in Fig. 19.
For equal charges Q1 ¼ Q2, as presented in Fig. 20

for both the KN and KK cases, the final spin falls with

increasing total charge. Additionally, at this value of
Q2=Q1, the spins of KK BHs are greater than the spins
of KN BH.
It is also interesting to visualize the final spins for various

charge ratios Q2=Q1, these are shown in Fig. 21. For low
charge values, the predicted final spins for both KN and KK
black holes are quite close but significant differences arise
for large charges.
Since the final spin value can be raised or lowered by

electrically charged BHs, it is interesting to consider
what initial spins (χ ≠ 0) and charges give rise in an
equal mass binary merger to a final BH with a spin
parameter Af=M ¼ 0.66. Figure 22 displays the necessary
values of χ for both KK and KN cases. For the most
“natural” case of Q1 ¼ Q2, depending on the charge,
significantly spinning individual BHs are compatible with
such a final outcome.

B. The light ring

Figure 23 below presents Ωc and λ of both KK and KN
BHs. We observe minor differences between these two
cases. The real part Ωc of the KN case is smaller than the
KK BHs, but this behavior reverses when the ratio Q2=Q1

reaches a certain value. In addition, the imaginary part λ of
the KK BHs is always bigger than for the KN BHs.FIG. 19. Difference of Af=M between Kaluza-Klein and Kerr-

Newman BHs vs Q2=Q1

FIG. 20. Af=M vsQ=M (solid line) KN BHs, (dashed line) KK
BHs, in the equal-charge case. (The value for Kerr BHs is
indicated for reference).

FIG. 21. Af=M vs Q=M (solid lines) KN BHs, (dashed line)
KK BHs, for various charge ratios. (The value for the Kerr BH is
indicated for reference).

FIG. 18. Af=M vs Q2=Q1 for Kaluza-Klein (left) and Kerr-Newman (right) BHs.
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Figure 24 presents Ωc and λ compatible with the final
spin Af=M ¼ 0.66 (from equal-mass binaries) of both KK
and KN BHs.

VII. FINAL COMMENTS

In this work, we studied the main possible features of BH
coalescence in Einstein-Maxwell-dilaton theory—for the
specific coupling value of α ¼ ffiffiffi

3
p

—as well as the coales-
cence of charged BHs in GR. By applying straightforward
estimation techniqueswithout adjustable parameters basedon
angular momentum conservation, we obtained approximate

final spins of BH mergers. One particularly interesting
observation drawn from our analysis is that the spin of the
final BH is lowered when (an equal charge sign) BH
coalescence is considered in our setup. This, in turn, implies
that in such amerger, lower chargedBHswillmerge later than
the more highly charged ones as the approximate “innermost
stable circular orbit” lies at a lower frequency (larger radius)
in the less charged BH case. Interestingly, we find that for
both the KN and KK black holes merging with spins aligned
with the orbital angular momentum, the effect of individual
charges in the black holes can contribute against the final
black hole spin. In particular, for equal mass black holes
(which in the nonspinning GR case yields a final spin with a
valueAf=Mf ≃ 0.66), a broad rangeof individual spinvalues
can be compensated by suitable charges so as to provide the
same final spin value. Since the effect of charges is subtle in
the quasinormal frequencies, this observation highlights the
importance of correlating results obtained during different
stages of themerger (e.g., [4]) as well as digging deeper in the
extraction of subleading QNMs (e.g., [6–8]).
The behavior hinted by the analysis presented here has

been evidenced in fully nonlinear simulations [27], in a
subclass of systems through a perturbative analysis [41]
and through the analysis of geodesic motion in the KN
geometry [42]. As a final comment, we stress that the
strategy pursued here is applicable beyond the particular

FIG. 23. Fundamental frequencies of QNMs: (solid lines) KN BHs, (dashed line) KK BHs, for various charge ratios.

FIG. 24. Fundamental frequencies of QNMs: (solid lines) KN BHs, (dashed line) KK BHs, for various total charges compatible with
final spin of 0.66

FIG. 22. χ vs Q=M that produce Af=M ¼ 0.66. (solid lines)
KN BHs, (dashed line) KK BHs, for various charge ratios.
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theories we have focused on. Indeed, we expect that the
same approach can be taken in any alternative gravity
theory, once rotating BH solutions are known, and
exploited to estimate the final BH parameters resulting
from coalescence and key quasinormal decay properties
that can be confronted with observations.
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