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We derive spherically symmetric solutions of the classical λ-R model, a minimal, anisotropic
modification of general relativity with a preferred foliation and two local degrees of freedom. Starting
from a 3þ 1 decomposition of the four-metric in a general spherically symmetric ansatz, we perform a
phase space analysis of the reduced model. We show that its constraint algebra is consistent with that of the
full λ-R model, and also yields a constant mean curvature or maximal slicing condition as a tertiary
constraint. Although the solutions contain the standard Schwarzschild geometry for the general relativistic
value λ ¼ 1 or for vanishing mean extrinsic curvature K, they are in general nonstatic, incompatible with
asymptotic flatness, and parametrized not only by a conserved mass. We show by explicit computation that
the four-dimensional Ricci scalar of the solutions is in general time dependent and nonvanishing.
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I. INTRODUCTION

When trying to describe physics in a way that encom-
passes both general relativity and quantum theory, one is
confronted with the fact that in each of them “time” seems
to play a very different role. While standard quantum (field)
theory on flat space has, up to Poincaré transformations, a
distinguished notion of time that forms part of its fixed
background structure, there is no a priori distinguished
time in general relativity, and any physical notion of time is
subject to the dynamics of gravity.
While much has been said about the role time may play

in a quantum theory of gravity and on how to implement
particular proposals in technical terms [1], the primary
focus of the present piece of work is classical, although its
motivation stems in part from quantum considerations.
More specifically, we will investigate properties of a one-
parameter family of theories of “neighbors” of general
relativity, where a preferred foliation of spacetime by
spatial hypersurfaces—and therefore a preferred class of
times—forms part of the theory’s background structure.
In ordinary gravity, the fact that a Lorentzian spacetime

M is diffeomorphic to a product

M ¼ R × Σ ð1Þ
of a smooth spacelike hypersurface Σ and a time directionR
follows from the usual requirement of global hyperbolicity,
which ensures the causal structure of spacetime is suffi-
ciently well behaved. There are of course infinitely many
ways of foliating any particular spacetime geometry. If the
spacetime is given by a Lorentzian metric gμνðxÞ solving the
Einstein equations, different foliations will correspond to
different choices of time coordinate. However, arbitrary

spacetime-dependent reparametrizations of time are exam-
ples of spacetime diffeomorphisms, which leave the theory
invariant and lead to physically equivalent metrics. In this
sense, different choices of foliation can be considered part of
the gauge freedom of general relativity.
The situation is different in the so-called λ-R model1 we

will study here. This theory generalizes the metric formu-
lation of pure gravity and is also formulated in terms of
metric fields. It is based on a minimal, one-parameter
modification of the classical Einstein-Hilbert action in a
3þ 1 decomposition and was first investigated in a purely
classical context in the 1990s [3]. More recently it has
appeared as a low-energy limit of a class of so-called
nonprojectable Hořava-Lifshitz gravities [2,4–7]. These
generalized gravity theories are associated with a preferred
foliation of spacetime. As a consequence, they are only
invariant under a subset of spacetime diffeomorphisms,
namely those that do not change the preferred foliation. The
remaining invariance group consists of three-dimensional
diffeomorphisms acting independently on each leaf Σt
(labeled by time t) and space-independent time reparamet-
rizations. The most general local action of the metric fields
which is at most quadratic in derivatives and invariant
under this reduced symmetry group is not the Einstein
action, but a two-parametric generalization thereof. The
λ-R model can be viewed as the simplest such theory,
obtained by setting one of the two new coupling constants
to zero.2 The remaining real parameter λ appears inside the
kinetic term of the Einstein-Hilbert action, which reduces to
its standard, general relativistic form for λ ¼ 1.
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1The λ in the “λ-R model” refers to a dimensionless coupling
constant in the kinetic part of the Lagrangian, while the potential
part consists merely of the Ricci scalar R of the three-dimensional
slices [2]; see below for further details.

2This is the parameter associated with a term containing spatial
derivatives of the lapse function.
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We will not concern ourselves with the viability of
Hořava-Lifshitz theories as possible candidate theories of
quantum gravity, but will investigate the classical λ-R
theory on its own merits, and explore some of the
consequences of the altered status of time and of the
symmetry structure, compared with usual gravity. What
makes the λ-Rmodel particularly attractive is the fact that it
has two local physical degrees of freedom, matching those
of general relativity, albeit with a second-class instead of a
first-class constraint algebra [2,6,7].
Building on our earlier work [7], we will in this paper

treat the case of spherical symmetry, and will look for a
physical signature that distinguishes the λ-R gravity theory
from general relativity proper. Within the larger context of
Hořava-Lifshitz gravities, results on spherically symmetric
solutions and black holes have been obtained [8–11], but to
our knowledge have no overlap with our current inves-
tigation. Their new features arise from higher-derivative
operators or terms in the action depending on the vector
∇i logN, neither of which we consider. In addition, they
assume either staticity, vanishing shift or asymptotic flat-
ness, in contrast with crucial features exhibited by our
solutions, as we will demonstrate.
This article is organized as follows. In the remainder of

this section we recall essential features of the classical
Hamiltonian formulation of the λ-Rmodel and some earlier
results on its constraint structure, and explain how we
implement spherical symmetry. In Sec. II we follow the
metric ansatz of [12], including a nonvanishing radial shift,
to set up a Hamiltonian formulation of the spherically
symmetric sector of the λ-R model and derive its total
Hamiltonian. We determine the constraint algebra system-
atically à la Dirac [13–15], solve the constraints explicitly,
and compute the time evolution of the canonical variables.
In Sec. III we investigate the properties of the solutions.
This also involves a careful discussion of the falloff
conditions of the dynamical variables. We derive explicit
expressions for the extrinsic curvature, the spacetime metric
and the four-dimensional scalar curvature of the solutions,
and write them in a form that can be compared directly with
general relativity in a constant mean curvature (CMC)
foliation. For λ ≠ 1 and foliations with nonvanishing mean
curvature, the solutions cannot be interpreted as solutions
to the vacuum Einstein equations. Finally, in Sec. IV we
present a summary and conclusion of our results.

A. Hamiltonian setup

Before getting to the specifics of how we implement
spherical symmetry, let us recall some important ingre-
dients of the general setup. Because of the presence of the
preferred spatial foliation3 and since we will work within

the Hamiltonian formalism throughout, we use the 3þ 1
Arnowitt-Deser-Misner (ADM) decomposition of the
metric [16] with line element

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; ð2Þ

where NðxÞ is the lapse function and NiðxÞ ¼ gijNjðxÞ the
shift three-vector. The inverse of the spatial metric gij is
denoted by gij, not to be confused with the spatial
components of the inverse four-metric gμν. We will recon-
struct the full four-dimensional metric gμν only when we
have obtained a class of spherically symmetric solutions of
the theory. In the ADM setting, the usual Einstein-Hilbert
action on a differential manifold M of the form (1) is
given by

S ¼ κ

Z
dt

Z
d3x

ffiffiffi
g

p
NðGijklKijKkl þRÞ ð3aÞ

¼ κ

Z
dt

Z
d3x

ffiffiffi
g

p
NðKijKij − K2 þRÞ; ð3bÞ

where κ depends on Newton’s constantG through κ ¼ 1
16πG,

g denotes the determinant of the three-metric gij, R is the
three-dimensional Ricci scalar on Σt, and Kij the extrinsic
curvature

Kij ¼
1

2N
ð _gij −∇iNj −∇jNiÞ: ð4Þ

The overdot in definition (4) denotes a time derivative, and
∇i is the covariant derivative with respect to gij. Lastly, in
writing the action (3a) we employed the Wheeler-DeWitt
metric Gijkl [17,18],

Gijkl ≔
1

2
ðgikgjl þ gilgjkÞ − gijgkl; ð5Þ

which defines a metric on the infinite-dimensional space of
three-metrics on Σ.
The expression GijklKijKkl in (3a) is the most general

local and spatially covariant term which is of second order
in time derivatives. By contrast, we want to restrict
ourselves to foliation-preserving diffeomorphisms, whose
infinitesimal generators are

δt ¼ fðtÞ; δxi ¼ ζiðx; tÞ; ð6Þ

and act on the ADM fields according to

δgij ¼ ζk∂kgij þ f _gij þ ð∂iζ
kÞgjk þ ð∂jζ

kÞgik; ð7aÞ

δNi ¼ ð∂iζ
jÞNj þ ζj∂jNi þ _ζjgij þ _fNi þ f _Ni; ð7bÞ

δN ¼ ζj∂jN þ _fN þ f _N: ð7cÞ

3We will consider a mild generalization in the main part of the
paper, where we allow the spacelike leaves of the foliation to
become null asymptotically; we will continue to refer to such
leaves as “spatial hypersurfaces.”
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Under the transformations (7), the two scalars KijKij and
K2 are independently invariant and we are therefore free to
introduce a new dimensionless relative coupling constant λ
between them. The resulting action reads

S ¼ κ

Z
dt

Z
d3x

ffiffiffi
g

p
NðKijKij − λK2 þRÞ ð8aÞ

¼ κ

Z
dt

Z
d3x

ffiffiffi
g

p
NðGijkl

λ KijKkl þRÞ; ð8bÞ

where Gijkl
λ now denotes a generalized Wheeler-DeWitt

metric of the form

Gijkl
λ ¼ 1

2
ðgikgjl þ gilgjkÞ − λgijgkl: ð9Þ

The fact that (9) constitutes the most general ultralocal
metric (a metric not involving derivatives of gij) on the
space of metrics motivated the earlier-mentioned study [3]
of the generalized gravity theory given by (8). Since the
generalized Wheeler-DeWitt metric does not have an
inverse for λ ¼ 1=3, we will not consider this special value.
In addition, as will become apparent in Sec. II B, we must
exclude values λ < 1=3 to obtain physically sensible
solutions. In the remainder of this paper we will therefore
restrict ourselves to the parameter range λ > 1=3.
With the action (8) we have finally arrived at the “λ-R

model,” a term coined originally in [2], whose authors were
the first to study the Hamiltonian formulation of the model
for asymptotically flat spatial hypersurfaces. The generali-
zation of this analysis to closed and compact hypersurfaces
was performed in [7], with results that turn out to be
applicable also to the case of asymptotically null hyper-
surfaces considered below.
In this work, we will determine the solutions of the λ-R

model without a cosmological constant, as defined by the
action (8), for the case that the leaves of the foliation
possess an additional spherical symmetry. For λ ≠ 1 the
constraint algebra becomes second class, due to the
appearance of the second-class constraint

∇iπ ¼ 0; ð10Þ

where π ¼ gijπij is the trace of the three-momentum πij

conjugate to gij.
4 Equation (10) is a CMC condition, and

familiar from standard general relativity, where it can be
adopted as a possible gauge choice to gauge-fix the
Hamiltonian constraint. By contrast, in the λ-R model it
appears as a second-class constraint during the Dirac
constraint analysis, where together with the Hamiltonian

constraint Hλ ≈ 0 it forms a pair of second-class con-
straints. Requiring (10) to be conserved in time in general
relativity in CMC gauge [19–23] leads to a consistency
condition, which has a direct (λ-dependent) analogue in the
λ-R model, obtained by demanding closure of its constraint
algebra [7].
In the context of general relativity, condition (10)

has been studied and shown to have solutions for open
hypersurfaces that are asymptotically flat or asymptotically
null, and for closed and compact hypersurfaces. With
asymptotic flatness, the only consistent solution is π ¼ 0
(known in general relativity as “maximal slicing condi-
tion”), the asymptotically null case requires π ¼ ffiffiffi

g
p

AðtÞ,
with a function AðtÞ that is nowhere vanishing,5 and the
compact case allows for any AðtÞ.
While in the case of gravity, these are mere gauge

choices that do not affect the physical content of solutions,
the situation in the λ-R model is different. An analysis
of the initial value problem of the model [24] shows
that different choices of the function AðtÞ are in general
associated with physically inequivalent solutions. Moreover,
for π ≠ 0 they can no longer be thought of as (gauge-fixed)
solutions to general relativity and therefore genuinely
transcend that theory. One finds that the λ dependence in
these cases cannot be absorbed simultaneously in the initial
data and the evolution equations by suitable redefinitions of
constants or dynamical variables [24].
The general phenomenon just described will be illus-

trated by our discussion of the spherically symmetric case.
In our analysis below we also find a λ dependence when
solving the equations of motion. As we will show explic-
itly, this implies a nontrivial generalization of the CMC
slicings of the Schwarzschild solution in ordinary gravity
[25–27]. The general form of a CMC foliation of the
Schwarzschild spacetime was obtained relatively recently
[28], while similar constructions for the Kruskal extension
and more general black holes are the subject of ongoing
research [29–31].

B. Spherical symmetry

A spacetime ðM; gμνÞ is spherically symmetric if the
group SOð3Þ acts on it as a group of isometries and if its
orbits are spacelike two-spheres. Physically this is relevant
in the presence of an isolated spherically symmetric source.
To determine the gravitational field outside it, one solves
the vacuum Einstein equations in a spherically symmetric
ansatz. In general relativity, one can always choose
coordinates such that all spherical orbits lie in hyper-
surfaces of constant time. The Killing vectors generating
the SOð3Þ isometries are then everywhere tangent to the
constant-time slices.

4With the sign convention (4) for the extrinsic curvature, the
relation between π and the trace K ≔ gijKij of the extrinsic
curvature is given by π ¼ − ffiffiffi

g
p ð3λ − 1ÞK.

5If there is a time t for which A is zero, the corresponding
hypersurface will no longer be asymptotically null.
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By contrast, the λ-R model comes with a preferred
foliation into slices Σt of constant time. The slices can be
relabeled, but by assumption the foliation itself cannot be
changed by any of the allowed diffeomorphisms. As a
consequence, one can distinguish between two realizations
of spherical symmetry: either all SOð3Þ orbits are contained
in leaves of the preferred foliation, or they are not. Our
analysis below will deal with the former case, where the
orbits are “aligned” with the preferred foliation, and which
is technically simpler. There is no obvious reason for not
also considering the more general, nonaligned case, but we
will not do so here.
Another way of phrasing the issue is to assume the

presence of an isolated pointlike source somewhere in a
given, foliated spacetime described by λ-R gravity. Because
of the absence of space-dependent time reparametrizations,
there will in general be an obstruction to performing a
coordinate transformation that eliminates cross terms pro-
portional to dtdϕ and dtdθ in the line element to arrive at a
block-diagonal metric of the form

ds2 ¼ dτ2ðt; rÞ þ R2ðt; rÞdΩ2ðθ;ϕÞ; ð11Þ

where dτ2 describes an indefinite two-surface and θ and ϕ
are standard angular coordinates on the unit two-sphere
with line element dΩ2 ¼ dθ2 þ sin2θdϕ2.
Even when the SOð3Þ orbits are contained in the leaves

of the preferred foliation and the metric is of the form (11)
—as we will be assuming—it will in general not be
possible to eliminate the cross term proportional to dtdr
in dτ2 and thus rewrite the line element as

ds2 ¼ −a2ðt; rÞdt2 þ b2ðt; rÞdr2 þ R2ðt; rÞdΩ2ðθ;ϕÞ:
ð12Þ

However, note that eliminating the radial shift forms part of
a standard derivation of Birkhoff’s theorem in general
relativity (see, for example, [32]), according to which the
(static and asymptotically flat) Schwarzschild metric is
the unique solution of the vacuum Einstein equations
outside a nonrotating, spherically symmetric gravitating
body. This raises the question whether there is an analogue
of Birkhoff’s theorem for the λ-R model. One reason to
expect that the Schwarzschild solution may have to be
generalized is the fact that transforming the Schwarzschild
metric from standard Schwarzschild coordinates to a CMC
slicing with π ≠ 0 in general relativity requires a space-
dependent time reparametrization [26–28]. In standard
gravity this is a particular four-dimensional diffeomor-
phism, which implies that the metrics before and after the
transformation are physically equivalent. This can no
longer be the case in the λ-R model, where this type of
diffeomorphism is not allowed because it does not preserve
the foliation. The consequences of this observation will be
analyzed in the following sections.

II. REDUCED MODEL AND PHASE
SPACE ANALYSIS

From now on, we will assume that the geometry on each
leaf Σt of the foliation is spherically symmetric in the sense
that SOð3Þ orbits through points in Σt never leave Σt, and
are therefore aligned with the foliation, as described in the
previous section. Since the λ-R model is invariant under
spatial diffeomorphisms, we can without loss of generality
write the spatial line element of Σt as

dS2 ¼ μ2ðt; rÞdr2 þ R2ðt; rÞdΩ2; ð13Þ

for functions μðt; rÞ and Rðt; rÞ that are everywhere
positive. Taking (13) as a starting point, we follow the
treatment of [12] in writing the line element of the four-
dimensional spacetime as

ds2 ¼ −ðN2 − μ2ξ2Þdt2 þ 2μ2ξdrdtþ μ2dr2 þ R2dΩ2

ð14Þ

for real functions ξðt; rÞ and Nðt; rÞ > 0. Dotted and
primed quantities will denote partial derivatives with
respect to t and r respectively. Under transformations of
r, R behaves like a scalar and μ like a scalar density of
weight 1. This implies that ξ is a scalar density of weight
−1 and R0ðt; rÞ a density of weight 1. While N and ξ are
absent from (13), we will not treat them as Lagrange
multipliers but as fields.
Having set up the metric variables, we can compute both

the intrinsic scalar curvature R of Σt,

R ¼ 2

R2

�
1 −

ðR0Þ2
μ2

− 2
R
μ

�
R0

μ

�0�
; ð15Þ

and the extrinsic curvatures

Krr ¼
1

N
ðμ _μ − μ2ξ0 − μμ0ξÞ; ð16aÞ

Kθθ ¼
1

N
ðR _R − RR0ξÞ ¼ Kϕϕ

sin2θ
: ð16bÞ

Noting that the determinant satisfies
ffiffiffi
g

p ¼ μR2 sin θ, we
can now integrate out the angular dependence of the action,

S¼ κ

Z
dt
Z þ∞

−∞
dr

Z
π

0

dθ
Z

2π

0

dϕ
ffiffiffi
g

p
NðKijKij−λK2þRÞ

ð17aÞ

¼ 4πκ

Z
dt

Z þ∞

−∞
drμR2NðKijKij − λK2 þRÞ: ð17bÞ

We have chosen the range r ∈ ð−∞;þ∞Þ for the radial
coordinate, which implies that the spatial hypersurfaces run
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from the left to the right wedge of the Kruskal diagram.
This also matches the CMC treatment of the Schwarzschild
solution [28] wewill be comparing with later on. It will turn
out that our result for the special choice of a vanishing trace
of the extrinsic curvature, K ¼ 0, coincides with the
Schwarzschild metric of general relativity, written in a
constant mean curvature slicing. Potentially new spheri-
cally symmetric solutions will arise in the λ-R setting for
K ≠ 0, again in a CMC slicing.
Setting 4πκ ¼ 1 in what follows (this is equivalent to

setting G ¼ 1
4
in units where c ¼ 1), we define conjugate

momentum variables from the Hamiltonian form (17b) of
the action, yielding

ϕN ≔
δS

δ _N
¼ 0; ϕξ ≔

δS

δ _ξ
¼ 0; ð18aÞ

πμ ¼
2R
N

�
ð1 − λÞR

μ
ð _μ − μξ0 − μ0ξÞ − 2λð _R − R0ξÞ

�
;

ð18bÞ

πR ¼ 4μ

N

�
ð1 − 2λÞð _R − R0ξÞ − λ

R
μ
ð _μ − μξ0 − ξμ0Þ

�
:

ð18cÞ

The momenta ϕN and ϕξ conjugate to the fields N and ξ
define the primary constraints of the theory. Inverting (18b)
and (18c), we can write the Hamiltonian, first without any
primary constraints, as

H ¼
Z

drðξHr þ NHλÞ þH∂Σ; ð19Þ

where Hr and Hλ stand for the phase space functions

Hr ¼ πRR0 − μπ0μ; ð20aÞ

Hλ ¼
2λ − 1

4ð3λ − 1Þ
μπ2μ
R2

þ λ − 1

8ð3λ − 1Þ
π2R
μ

−
λ

2ð3λ − 1Þ
πμπR
R

− 2

�
μ −

ðR0Þ2
μ

− 2R

�
R0

μ

�0�
: ð20bÞ

We have added a boundary term H∂Σ to the Hamiltonian,
which must be chosen such that the action is sufficiently
“differentiable” in the sense of Regge and Teitelboim [33].
Its precise form will become important once we discuss
boundary and falloff conditions for the fields, an issue we
will return to in Sec. III B below. Finally, after adding the
primary constraints, the total Hamiltonian Htot reads

Htot ¼
Z

drfNHλ þ ξHr þ αϕN þ βϕξg þH∂Σ; ð21Þ

where α and β are Lagrange multipliers.

A. Constraint algebra

Since the total Hamiltonian Htot of the λ-R model is
linear in both the radial shift ξ and the lapse N, Poisson-
commuting it with the primary constraints yields the radial
momentum and Hamiltonian constraints,

_ϕξ ¼ fϕξ; Htotg ¼ −Hr ≈ 0; ð22aÞ

_ϕN ¼ fϕN;Htotg ¼ −Hλ ≈ 0; ð22bÞ

which must themselves be preserved in time. Since we still
have invariance under spatial diffeomorphisms, requiring
that the momentum constraint Hr hold for all times yields
the same expression as in general relativity,

_Hr ¼ fHr; Htotg ¼ 2Hrξ
0 þ ξH0

r þHλN0; ð23Þ

which vanishes on the constraint surface, without yielding
any further constraints. Computing the time derivative of
Hλ results in

_Hλ ¼ ðξHλÞ0 þ
2N0 þ N∂r

3λ − 1

×

�
2λ

Hr

μ2
þ ðλ − 1Þ

�
−2

πμ
μR

R0 þ R
μ

�
πR
μ

�0��
; ð24Þ

which vanishes in a straightforward manner only for the
general relativistic value λ ¼ 1. Demanding that the right-
hand side of (24) vanish on the constraint surface for
arbitrary values of λ yields a tertiary constraint, which after
some algebraic manipulations takes the form

R2

μ

�
N2

�
πμ
R2

þ πR
Rμ

�0�0
≈ 0: ð25Þ

It is solved by setting

ω ≔ μπμ þ RπR − AðtÞμR2 ¼ 0; ð26Þ

where AðtÞ is a function of time which we will later show to
be proportional to the trace of the extrinsic curvature.
Recall from the general analysis in [7] that the CMC con-
dition is given by ∇iπ ¼ 0 and solved by π − AðtÞ ffiffiffi

g
p ¼ 0.

This means that Eq. (26) can be viewed as the implemen-
tation of the CMC condition on the reduced phase space. In
geometric terms, it implies the extrinsic curvature has a
trace that is spatially constant. Next, we must demand that
the time derivative of (26) vanishes on the constraint
surface, _ω ≈ 0. This yields a lapse-fixing equation as a
quaternary constraint, namely,
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_ω ¼ ∂
∂tωþ fω; Htotg ¼ − _AμR2 þ fω; Htotg

≈ 4μR2

��
Rþ A2

8ð3λ − 1Þ −
1

μR2
∂r

�
R2

μ
∂r

��
N −

_A
4

�

≈ 0; ð27Þ

where the spatial Ricci scalar R was given in (15) above.
The Dirac algorithm ends after imposing that the lapse-
fixing equation (27) should be preserved in time, which
fixes the Lagrange multiplier α and in turn determines the
time evolution _N of the lapse function. We will do this in
the same way we dealt with relation (24), first solving
Eq. (27) for N and then demanding time preservation.

B. Solving the constraints

Using Eq. (26) to eliminate πR from the momentum
constraint Hr ≈ 0 and solving the resulting differential
equation for πμ we obtain

R0
�
ARμ −

μπμ
R

�
− μπ0μ ¼ 0 ⇒ πμ ¼

C
R
þ A

3
R2; ð28Þ

where C ¼ CðtÞ is a new constant of integration, possibly
time dependent. We will see in Sec. III A that CðtÞ is related
to the transverse-traceless components of the extrinsic
curvature tensor. Writing now the radial momentum πR
as a function of A and C,

πR ¼ μ

�
2

3
AR −

C
R2

�
; ð29Þ

we have succeeded in solving both momenta in terms of
metric variables and two integration constants. After
substituting these solutions into the Hamiltonian constraint
Hλ ≈ 0 and performing some algebraic manipulations, it
becomes a total derivative which we can immediately solve,

��
R

�
R0

μ

�
2
�
− R −

C2

16R3
−

A2

72ð3λ − 1ÞR
3

�0
¼ 0 ð30aÞ

⇒

�
R

�
R0

μ

�
2
�
− R −

C2

16R3
−

A2

72ð3λ − 1ÞR
3 ¼ −8m:

ð30bÞ

Its solution introduces a new integration constant,
denoted by m. As we will show in the next section, the
Schwarzschild mass Ms for A ≠ 0 is a λ-dependent combi-
nation ofm, A, and C. Inverting Eq. (30b), we can write the
metric variable μ in terms of R, its derivatives and
integration constants as

μ2

ðR0Þ2 ¼
1

BðRÞ ; ð31Þ

where we have introduced the notation BðRÞ as a shorthand
for the function

BðR;m;A; CÞ ¼ 1 −
8m
R

þ C2

16R4
þ A2R2

72ð3λ − 1Þ : ð32Þ

Note that for A ¼ C ¼ 0 and R ¼ r, we recover the metric
component grr ¼ μ2 of the standard Schwarzschild solution
with mass Ms ¼ 16m. Formula (32) also illustrates why
λ < 1=3 leads to unphysical behavior, as stated in Sec. I A
above. For these parameter values the function BðRÞ and
therefore the metric component grr will become negative
for sufficiently large R, as a result of which the hypersur-
face will have the wrong signature.
Next, in order to solve the lapse-fixing equation (27), we

first determine the most general solution to the associated
homogeneous equation. It is given by

N ¼
ffiffiffiffi
B

p �
n1 þ

Z
r

r0

d~r
R0

B3=2

n2
R2

�
ðhomogeneous caseÞ

ð33Þ

where n1 and n2 are (possibly time-dependent) integration
constants. We will show later that n1 determines the
behavior of the lapse at spatial infinity and that n2 measures
the time derivative of the transverse-traceless components
of the extrinsic curvature. To obtain a solution of the full,
inhomogeneous equation (27), we add to (33) a particular
solution of (27), resulting in

Nsol ¼
ffiffiffiffi
B

p �
n1 þ

Z
r

r0

d~r
R0

B3=2

�
n2
R2

−
_AR
12

��
: ð34Þ

Having solved the lapse-fixing equation _ω ¼ 0, we write
the quaternary constraint induced by it as

M ≔ N − Nsol ≈ 0; ð35Þ

where Nsol refers to the right-hand side of (34). To make
sure the constraint (35) is preserved in time, we take its
Poisson brackets with the Hamiltonian Htot. We use Htot in
its original version, that is, without replacing πR, πμ, or μ by
their solutions, and will therefore also reexpress the right-
hand side of Eq. (34) as far as possible in terms of these
variables. This is a well-defined operation on the constraint
surface, leading to

Nsol ≈�R0

μ

�
n1 þ

Z
r

r0

d~r
μ3

ðR0Þ2 bðRÞ
�
; ð36Þ

where the plus sign must be chosen for positive R0 and the
minus sign for negative R0, to make sure that

ffiffiffiffi
B

p
, defined

by taking the square-root of Eq. (31), is always positive
(recall that by our initial assumption μ > 0). We will show
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later that R ¼ jrj is a consistent gauge choice, which makes
Nsol of Eq. (36) well defined for r ≠ 0. For ease of writing,
we have in Eq. (36) introduced another abbreviation,
namely,

bðRÞ ≔ n2
R2

−
_AR
12

ð37Þ

for a combination of terms that will appear frequently
below. When computing the time development _M of the
constraint (35), we must include explicit time derivatives
because of the dependence of Nsol on the time-dependent
quantities n1, n2, and _A. Taking them into account, the
condition for time preservation of this constraint reads

_M ¼ ∂
∂tMþ fM; Htotg

¼ −
∂
∂t Nsol þ α − fNsol; Htotg ≈ 0: ð38Þ

After a long but unilluminating computation, the remaining
Poisson bracket in (38) is found to be

fNsol; Htotg ¼ ξN0 −
N
R0

�
AR

6ð3λ − 1Þ þ
C
4R2

��
N0 þ bR0

B

�

þ
ffiffiffiffi
B

p Z
r

r0

d~r
3R0b2

B5=2

�
AR

6ð3λ − 1Þ þ
C
4R2

�
:

ð39Þ

To obtain Eq. (39), we have discarded all boundary terms
evaluated at r0. This is justified because we will in due
course set r0 ¼ �∞, limits for which these terms vanish
with the boundary conditions we will adopt later. Using this
result, Eq. (38) can be written as

α ¼
ffiffiffiffi
B

p Z
r

r0

d~r

�
1

B3=2

�
R0
�

_n2
R2

−
ÄR
12

��

þ 3R0b2

B5=2

�
AR

6ð3λ − 1Þ þ
C
4R2

��

þ
ffiffiffiffi
B

p
_n1 þ ξN0 −

N
R0

�
AR

6ð3λ − 1Þ þ
C
4R2

��
N0 þ bR0

B

�

ð40Þ

for the Lagrange multiplier α. As we will see when
discussing the time evolution equations, imposing
_N ¼ α, with α given by (40), yields no nontrivial conditions
when the equations of motion for the coordinates gij and
momenta πij are satisfied. Before determining the time
evolution of the canonical variables, we will in the next
subsection comment briefly on the first- and second-class
nature of the constraints.

C. Classification of the constraints

The λ-R model with spherical symmetry has eight phase
space variables, namely, ðμ; R; N; ξ; πμ; πR;ϕN;ϕξÞ, and six
constraints,

ϕξ ¼ 0; ϕN ¼ 0; Hr ≈ 0; Hλ ≈ 0; ω ≈ 0; M ≈ 0:

ð41Þ

The only obvious first-class constraint of the set (41) is
ϕξ ¼ 0, because none of the constraints depend on ξ. From
our earlier computations of _Hr, _Hλ, and _ω we deduce that
the radial momentum constraint Hr Poisson-commutes
with Hλ and ω, as well as with ϕξ and ϕN . However,
the constraint M does not, since by virtue of Eq. (39)

fN − Nsol;Hrg ¼ −N0; ð42Þ

which does not vanish on the constraint surface. The point
is that in its current form the constraint Hr only generates
spatial diffeomorphisms of μ, R and their conjugate
momenta. This can be remedied easily by adding to it a
term linear in the constraints,6 which is always allowed.
The modified momentum constraint we will be using from
now on,

~Hr ≔ Hr þ ϕNN0 ≈ 0; ð43Þ

generates infinitesimal diffeomorphisms of the lapse and its
momentum and also Poisson-commutes with M on the
constraint surface since

fN − Nsol; ~Hrg ≈ N0 − N0 ¼ 0: ð44Þ

At the same time, this means that ~Hr ≈ 0 is first class. To
summarize, we have two first-class constraints, ~Hr ≈ 0 and
ϕξ ¼ 0, and the remaining four constraints are second class.

D. Time evolution

After having determined and solved the complete con-
straint algebra of the system, we will now compute the time
evolution of the canonical variables. Starting with the
metric variables we find

_R ¼ fR;Htotg ¼ N
4ð3λ − 1Þ

�
ðλ − 1Þ πR

μ
− 2λ

πμ
R

�
þ R0ξ;

ð45aÞ

_μ ¼ fμ; Htotg ¼ N
2ð3λ − 1Þ

�
ð2λ − 1Þ μπμ

R2
− λ

πR
R

�

þ ξ0μþ ξμ0: ð45bÞ

6The necessity to redefine Hr already arose in the context of
the full model [7].
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Substituting the expressions for the canonical momenta πμ
and πR from Eqs. (28), (29) into Eq. (45a), we determine
the radial component of the shift as

ξ ¼
_R
R0 þ

N
R0

�
C
4R2

þ AR
6ð3λ − 1Þ

�
: ð46Þ

Using in addition the solutions for μ2, N, and ξ, obtained in
Eqs. (31), (34), and (46) respectively, and substituting
everything into the expression (45b) for _μ gives

R0

BR

��
n2A

3ð3λ − 1Þ −
C _A
24

− 8 _m

�
þ C
2R3

�
_C
4
þ n2

��
¼ 0;

ð47Þ

whose solution is

8 _m ¼ n2A
3ð3λ − 1Þ −

C _A
24

∧ ð _C ¼ −4n2∨C ¼ 0Þ: ð48Þ

The relation n2 ¼ − _C
4
implies that n2 measures the time

evolution of the transverse-traceless components of the
extrinsic curvature captured by C, while the relation
involving _m will later be used to define a conserved
quantity M, related to the mass. Note that _m ¼ 0 holds
for A ¼ 0 and for the special case _C ¼ _A ¼ 0.
The equations of motion for the canonical momenta πμ

and πR read

_πμ ¼N

�
2þ 2

ðR0Þ2
μ2

þ 1

4ð3λ− 1Þ
�
λ−1

2

π2R
μ2

− ð2λ− 1Þ π
2
μ

R2

��

−4
R0

μ2
ðN0RþR0NÞþ ξπ0μ; ð49aÞ

_πR¼N

�
1

2ð3λ−1Þ
�
ð2λ−1Þμπ

2
μ

R3
−λ

πμπR
R2

�
−4

R00

μ
þ4

R0μ0

μ2

�

−4
R0

μ
N0−4

R
μ
N00 þ4

R
μ2

μ0N0 þξπ0RþπRξ
0: ð49bÞ

Substituting the results for πμ, πR, μ, N, and ξ in terms of R
into Eq. (49a) reduces it to

_C
R
þ

_A
3
R2 ¼ −4

n2
R

þ
_A
3
R2; ð50Þ

which is again solved by _C ¼ −4n2. A lengthy algebraic
computation shows that Eq. (49b) is satisfied if

ðR0Þ2
B2

ðP0 þ P−2R−2 þ P−3R−3Þ ¼ 0; ð51Þ

where the Pk are polynomials of degree k in the metric
function R and otherwise functions of A, _A, C, _C,m, _m, n2,

and λ. Since ðR0Þ2
B2 cannot vanish everywhere,7 the individual

PkðRÞ must vanish identically for all ðr; tÞ. The condition
P−2 ¼ 0 is again solved by _C ¼ −4n2. Once this condition
is substituted into both P0 and P−3, both equations yield the
condition on _m we already obtained as a solution to the
equation for _μ,

P0 ¼ 0 ⇒ A ¼ 0∨8 _m ¼ n2A
3ð3λ − 1Þ −

C _A
24

; ð52aÞ

P−3 ¼ 0 ⇒ C ¼ 0∨8 _m ¼ n2A
3ð3λ − 1Þ −

C _A
24

: ð52bÞ

We conclude that the equations of motion for all phase
space variables are solved by the two conditions

8 _m ¼ n2A
3ð3λ − 1Þ −

C _A
24

∧ _C ¼ −4n2: ð53Þ

Finally, we should solve _N ¼ α, with α given by Eq. (40).
Expanding _N, we obtain

_N ¼ ∂N
∂R _Rþ ∂N

∂n1 _n1 þ
∂N
∂n2 _n2 þ

∂N
∂m _mþ ∂N

∂A _Aþ ∂N
∂C _C:

ð54Þ

Substituting the shift ξ given in Eq. (46) into Eq. (40) for α,
the _R terms cancel immediately, as does the N0 term in α.
The same is true for the terms involving _n1, _n2, and Ä. The
remaining terms read

α ¼ _N ⇔ b

�
C
4R2

þ AR
6ð3λ − 1Þ

�

¼ −
1

2

�∂B
∂m _mþ ∂B

∂A _Aþ ∂B
∂C _C

�
; ð55Þ

which is immediately satisfied once Eq. (53) is substituted
on the right-hand side.
After solving all constraints and equations of motion,

only two quantities remain undetermined, the canonical
coordinate Rðt; rÞ and the Lagrange multiplier βðt; rÞ
associated with the radial momentum constraint. The
arbitrary nature of β is related to the diffeomorphism
symmetry in the radial direction, which the spherically
symmetric ansatz leaves unfixed. The associated coordinate
freedom can be used to fix R as a function of ðt; rÞ. To
implement this, one first imposes a gauge-fixing condition
ξ − ξgf ≈ 0 on the shift ξ. Demanding that this gauge choice
be preserved in time then leads to an equation for β, namely,

7As we will see later, for A ≠ 0 this combination vanishes in
the r → �∞ limit, as a result of which the hypersurface Σ
becomes asymptotically null.
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d
dt

ðξ − ξgfÞ ¼ β − _ξgf ¼ β −
∂ξgf
∂t − fξgf; Htotg ≈ 0: ð56Þ

Of course, we must make sure that any expression derived
for ξgf is compatible with Eq. (46), under the substitution
ξ → ξgf. Our gauge choice for ξ is inspired by Eq. (46) and
reads

ξgf ≔ aNsol

�
C
4R2

þ AR
6ð3λ − 1Þ

�
; ð57Þ

where a is a real number that will be chosen separately for
r > 0 and r < 0. It is an unphysical gauge parameter that is
introduced for mere convenience, as will become clear
below. On the constraint surface, ξgf can be written
equivalently as

ξgf ¼
aNsol

2ð3λ − 1Þ
�
λ
πμ
R

þ 1 − λ

2

πR
μ

�
: ð58Þ

Substituting expression (58) into Eq. (56), the latter
becomes

β ≈
αξgf
Nsol

þ aNsol

2ð3λ − 1Þ
��

λ
πμ
R

þ 1 − λ

2

πR
μ

�
; Htot

�
: ð59Þ

To obtain (59), we have used that the only contribution to
∂ξgf
∂t comes from ∂Nsol∂t , which combined with fNsol; Htotg
yields the α-dependent term on the right-hand side of
Eq. (59). Computing the Poisson bracket in Eq. (59), this
equation becomes

β ≈
αξgf
Nsol

þ aN2
sol

2ð3λ − 1Þ
�

A2R
18ð3λ − 1Þ −

3λ − 1

4

C2

R5
−

AC
12R2

�

× ðaR0 − 1Þ ð60aÞ

þaNsol

�
_AR

6ð3λ − 1Þ −
n2
R2

�
: ð60bÞ

Computing _ξgf and substituting it into Eq. (56),

β − _ξgf ≈ 0, together with the expression just obtained
for β yields

β − _ξgf ≈
aN2

sol

2ð3λ − 1Þ
�

A2R
18ð3λ − 1Þ −

3λ − 1

4

C2

R5
−

AC
12R2

�

× ðaR0 − 1Þ ð61aÞ

− aNsol
_R

�
A

6ð3λ − 1Þ −
C
2R3

�
≈ 0; ð61bÞ

which is solved by _R ¼ 0 and R0 ¼ 1
a. These are precisely

the same conditions as one obtains from demanding
consistency between Eqs. (57) and (46).

In the remainder of the paper, we will set _R ¼ 0 but not
fix R as a function of the coordinate r, to emphasize the
validity of our results for general RðrÞ. The only exception
will be the discussion of boundary conditions in Sec. III B,
where we will set R ¼ jrj. Furthermore, we will choose
a ¼ 1 for r > 0 and a ¼ −1 for r < 0. The motivation for
this choice is to have the same spacetime for positive and
negative r. As can be seen from the definition of B in terms
of R, R must be even with respect to the inversion r → −r
for this to happen. Moreover, this choice is needed to have
the integrand in the lapse vanish for r → −∞, implying that
n1 determines the behavior of the lapse at both spatial
infinities.
Note that setting _R ¼ 0 does not remove all time

dependence from the metric. This would only be true if
_A, _C, _n1, and _m vanished too, which would imply a
considerable restriction on the space of solutions. However,
we can still use conditions (53) to define a quantity M that
is conserved, _M ¼ 0, and in such a way that B contains a
term of the form 1 − 2M

R . For the general relativistic case
λ ¼ 1 this is achieved in a straightforward manner by
noting that (53) simplifies to

8 _m ¼ −
1

24
ð _CAþ C _AÞ ð62Þ

which implies that

2M ¼ 8mþ CA
24

ð63Þ

is conserved. For the general case λ ≠ 1, we define the
conserved M by

2M ≔ 8mþ CA
12ð3λ − 1Þ þ

λ − 1

8ð3λ − 1Þ
Z

t

−∞
dt0C _A; ð64Þ

where we have set the lower integration limit to −∞ to have
_MðtÞ ¼ 0 for all times t. In order for the integral to exist
and be finite, we must demand that the functions AðtÞ and
CðtÞ are such that C _A goes to zero faster than 1=t in the
limit t → −∞. We will assume in the following that this is
the case. It allows us to rewrite the function B as

B ¼ 1 −
2M
R

þ 1

3λ − 1

�
CA
12

þ λ − 1

8

Z
t

−∞
d~tC _A

�
1

R

þ C2

16R4
þ A2R2

72ð3λ − 1Þ : ð65Þ

Before turning to the discussion of the model’s solutions
and their properties, let us finally substitute n2 ¼ − _C=4
into the lapse function (34) and set r0 ¼ þ∞, yielding
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Nsol ¼
ffiffiffiffi
B

p �
n1 þ

1

4

Z
∞

r
d~r

R0

B3=2

�
_C
R2

þ
_AR
3

��
: ð66Þ

Inspecting (66), we can reconfirm that the function n1ðtÞ
determines the value of the lapse at radial infinity, as stated
earlier below Eq. (33).

III. THE λ-DEPENDENT SPHERICALLY
SYMMETRIC SOLUTIONS

Our next step will be to determine some geometric
properties of the solutions we have obtained. Computing
the extrinsic curvature of the constant-time slices will lead
to a geometric interpretation of the functions AðtÞ and CðtÞ
introduced earlier. This will be followed by a discussion of
boundary and falloff conditions that must be imposed on
the fields. Implementing them enables us to write the four-
dimensional metrics corresponding to the λ-R solutions in a
form where they can be compared easily with their general
relativistic counterparts. Finally, we compute the four-
dimensional scalar curvature ð4ÞR of the λ-R model and
find it to be proportional to (λ − 1) and nonvanishing as
long as the trace of the extrinsic curvature does not vanish,
a situation which is very different from that in standard
gravity.

A. Extrinsic curvatures

We begin by reexpressing the extrinsic curvatures of
(16a), (16b) in terms of the parameters of the reduced phase
space,

Krr ¼ μ2
�

C
2R3

−
A

6ð3λ − 1Þ
�
; ð67aÞ

Kθθ ¼
Kϕϕ

sin2θ
¼ −

AR2

6ð3λ − 1Þ −
C
4R

: ð67bÞ

From this, the trace of the extrinsic curvature K ¼ gijKij
(the “mean curvature”) can be computed straightforwardly
and, up to a λ-dependent constant, turns out to be equal to the
integration constant AðtÞ first introduced in Eq. (26) above,

K ¼ −
A

2ð3λ − 1Þ ⇒ A ¼ −2ð3λ − 1ÞK: ð68Þ

We have therefore shown that the mean curvature of the
slices of the preferred foliation is spatially constant. Using
(67), we can now also justify our previous assertion that C
measures the transverse-traceless components of the extrin-
sic curvature Kij. Defining the traceless extrinsic curvature
tensor KT

ij by

KT
ij ≔ Kij −

1

3
gijK; ð69Þ

the principal curvatures KT
i
i—the coordinate-independent

eigenvalues of the Weingarten map—are found to be

KT
r
r ¼ C

2R3
; KT

θ
θ ¼ KT

ϕ
ϕ ¼ −

C
4R3

: ð70Þ

The fact that they only depend on C and R shows that C
carries all the transverse-traceless information of the extrin-
sic curvature.
To be able to compare our results with the general CMC

foliations of the Schwarzschild geometry, we now intro-
duce the same variables as in [28] and replace A by K
everywhere, leading to

μ2

ðR0Þ2 ¼
1

B
¼

�
1 −

2M
R

þ
�
KR
3

−
C
4R2

�
2

þ ðλ − 1Þ
�
K2R2

6
−

1

4R

Z
t

−∞
dt0C _K

��
−1
;

N ¼
ffiffiffiffi
B

p �
n1 þ

1

4

Z
∞

r
d~r

Rð~rÞ0
B3=2

�
_C

Rð~rÞ2 −
4

3
_KRð~rÞ − 2ðλ − 1Þ _KRð~rÞ

��
;

ξ ¼ N
R0

�
C
4R2

−
KR
3

�
: ð71Þ

B. Falloff conditions and boundary Hamiltonian

As mentioned in Sec. II, the Hamiltonian H in general
has to include a boundary term HδΣ to make the variational
principle well defined, in the sense that its variation δH can
be written as

δH ¼
Z

d3xðAijδgij þ Bijδπ
ijÞ; ð72Þ

without any boundary contributions on the right-hand side,
such that the equations of motion

_gij ¼
δH
δπij

≡ Bij; _πij ¼ −
δH
δgij

≡ Aij ð73Þ

follow from it in a unique manner [33] (see also the
related discussion in [12]). In our reduced setting, Eq. (72)
becomes

δH ¼
Z þ∞

−∞
drðAμδμþ ARδRþ Bμδπμ þ BRδπRÞ: ð74Þ

A straightforward variation of the Hamiltonian (19)
does not yield an equation of the form (74), because
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some phase space variables occur in the Hamiltonian with
spatial derivatives. To cast their variation into a form
matching the terms in the integrand of (74), one has to
perform partial integrations, leading to additional boundary
terms. We will collect all boundary contributions generated
in this way, impose the coordinate condition R ¼ jrj
motivated in Sec. II D above, evaluate the boundary terms
on solutions, and finally determine the boundary
Hamiltonian whose variation cancels these unwanted
contributions.
Note that we have a nonvanishing boundary Hamiltonian

from the outset, because a partial integration

Z þ∞

−∞
drπμðμξÞ0 ¼ −

Z þ∞

−∞
drμξπ0μ þ μξπμjþ∞

−∞ ð75Þ

has to be performed to obtain the Hamiltonian H in the
form (19). In addition, we find a boundary contribution

ξðπRδR − μδπμÞjþ∞
−∞ ð76Þ

from the variation of the shift-dependent term in (19) and a
contribution

4

�
NR
μ

δR0 −
N0R
μ

δR −
NRR0

μ2
δμ

�				
þ∞

−∞
ð77Þ

from varying the lapse-dependent term. Adding (75) and
(76), the shift-dependent boundary variation is given by

ðξπRδRþ πμδðξμÞÞjþ∞
−∞ : ð78Þ

We now implement the gauge-fixing R ¼ jrj, which
implies R0 ¼ −1 for r < 0 and R0 ¼ 1 for r > 0. In line
with our earlier comments below Eq. (36) this means that
for r > 0we have μ ¼ R0=

ffiffiffiffi
B

p
, while for r < 0wemust use

μ ¼ −R0=
ffiffiffiffi
B

p
, leading to μ ¼ B−1=2 for either sign of the

coordinate r. With this choice, both δR and δR0 vanish.
Setting the corresponding terms in the variations to zero,
we now substitute the solutions for μ, R, N, ξ, and πμ in
terms of integration constants into the remainders.
Expression (77) becomes

4NRR0δ
1

μ

				
þ∞

−∞
¼ 2n1jrjjrj0δ

�
1 −

8m
jrj þ

C2

16r4
þ 3λ − 1

18
K2r2

�				
þ∞

−∞

¼ 2 lim
r→∞

n1

�
2

9
ð3λ − 1Þjrj3KδK − 16δm

�
; ð79Þ

while expression (78) yields

πμδðξμÞjþ∞
−∞ ¼

�
C
jrj −

2

3
ð3λ − 1ÞKr2

�
1

jrj0 δ
�
n1

�
C
4r2

−
Kjrj
3

��				
þ∞

−∞

¼ 2 lim
r→∞

�
δn1

�
2

9
ð3λ − 1ÞK2jrj3 − 3λþ 1

6
CK

�

þ n1

�
2

9
ð3λ − 1Þjrj3KδK −

δðKCÞ
3

þ 1 − λ

2
KδC

��
: ð80Þ

We first consider the last term of expression (79),

−32 lim
r→∞

n1δm ¼ −32n1δm; ð81Þ

which only depends on time, because both m and n1 are
spatially constant. To make this vanish, we could demand
that n1ðtÞ ¼ 0. This would imply that the lapse vanishes at
spatial infinity and that no time evolution takes place there,
which is not physically acceptable.
Alternatively, we can include a term 32n1m in the

boundary Hamiltonian H∂Σ, as a consequence of which
we would have to demand that

32mδn1 ¼ 0: ð82Þ
However, setting m ¼ 0 would imply M ¼ 0 in the
asymptotically flat case, as follows straightforwardly from

Eq. (64) when the convergence condition for the integrand
C _A are satisfied, as we are assuming. This condition
appears too restrictive, since it would not even allow for
the standard Schwarzschild solution.
The only other possibility to satisfy Eq. (82), arguing

along the lines of [12], is to assume that n1 is a
prescribed function at radial infinity (and thus every-
where), which we therefore do not vary. Adopting this
assumption and setting δn1 ¼ 0, we can add the remain-
ing nonvanishing variations from expressions (79) and
(80), leading to

2 lim
r→∞

n1

�
2

9
ð3λ − 1Þjrj3δðK2Þ − δðKCÞ

3
þ 1 − λ

2
KδC

�
:

ð83Þ
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If we allow arbitrary variations of m, K, and C, it is
impossible to write down a boundary Hamiltonian whose
variation would cancel all terms in (83). One obstruction
is the term proportional to (1 − λ), because it cannot be
written as a total variation. A second issue is that the
boundary term necessary to cancel the term proportional
to δðK2Þ in (83) is manifestly divergent. Both of these
issues are resolved by setting δK to zero at radial
infinities, δKjjrj→∞ ¼ 0, and therefore everywhere.
Together with the condition δn1jjrj→∞ ¼ 0 this implies
δNjjrj→∞ ¼ 0, as can be seen by inspecting Eqs. (65)
and (66). Taking all of these considerations into account,
we arrive at a finite expression for the boundary
Hamiltonian, namely

HδΣ ¼ n1

�
32m −

3λ − 1

3
KC

�
; ð84Þ

accompanied by the conditions

δK ¼ 0; δn1 ¼ 0: ð85Þ

Note that in the general relativistic case λ ¼ 1,
K ¼ C ¼ 0, expression (84) coincides with the one given
in [12].
There is one subtlety we have so far not spelled out

explicitly in our discussion of the boundary Hamiltonian.
Since our spatial coordinate system is not well defined for
r ¼ 0, we have been working implicitly with two distinct
coordinate patches for every spatial hypersurface, defined
by r > 0 and r < 0. However, there is no reason why the
integration constants chosen for both patches should be the
same. For full generality the set of constants should be
twice as large, for example,m should be replaced bymþ for
r > 0 and m− for r < 0. Doubling all constants in this
manner leads to a boundary Hamiltonian of the form

HδΣ ¼ lim
r→þ∞

n1þ

�
16mþ −

3λ − 1

6
KþCþ

�

þ lim
r→−∞

n1−

�
16m− −

3λ − 1

6
K−C−

�
; ð86Þ

with conditions (85) replaced by

δK� ¼ 0; δn1� ¼ 0: ð87Þ

Although we will in the remainder of the text not
distinguish between integration constants for the positive
and the negative r patch, it should be understood that there
is in principle one set of distinct constants for each.
As a final comment, note that while grr vanishes as

r → �∞, the vector ∂t does not become null in this limit,
as can be seen by computing g00 ≡ NiNi − N2, leading to

lim
r→�∞

ðNiNi − N2Þ ¼ lim
r→�∞

ðμ2ξ2 − N2Þ

¼ n21A
2r2

24ð3λ − 1Þ2 ð1 − λÞ; ð88Þ

and implying that ∂t is timelike for λ > 1 and spacelike for
λ < 1.8 The fact that the vector ∂t associated with the time
coordinate t can become spacelike when the shift is large is
a function of the foliation and a familiar feature, for
example, from the Painlevé-Gullstrand representation of
the Schwarzschild metric inside the event horizon. It
illustrates how different values of the parameter λ can
affect aspects of the foliation structure. While the time
vector ∂t can cease to be timelike, the normal evolution
vector m⃗ ¼ n⃗N, with n⃗ the unit normal to the hypersurface,
will of course remain timelike whenever the hypersurface is
spacelike (or null, when the hypersurface is null).

C. Four-dimensional metric

Using the expressions (71) for μ2, N, and ξ, we can write
the g0μ components of the four-dimensional metric of the
solutions of the λ-R model as

g00 ¼ −N2 þ μ2ξ2 ¼ −
N2

B

�
B −

�
C
4R2

−
KR
3

�
2
�

¼ −
N2

B

�
1 −

2M
R

þ ðλ − 1Þ
�
K2R2

6
−

1

4R

Z
t

−∞
dt0C _K

��
;

ð89aÞ

g0r ¼ μ2ξ ¼ R0N
B

�
C
4R2

−
KR
3

�
¼ R0ffiffiffiffi

B
p

�
C
4R2

−
KR
3

�

×

�
n1 þ

1

4

Z
∞

r
d~r

Rð~rÞ0
B3=2

×

�
_C

Rð~rÞ2 −
4

3
_KRð~rÞ − 2ðλ − 1Þ _KRð~rÞ

��
; ð89bÞ

where the quotient N2

B in (89a) is given by

N2

B
¼ n1 þ

1

4

Z
∞

r
d~r

Rð~rÞ0
B3=2

×

�
_C

Rð~rÞ2 −
4

3
_KRð~rÞ − 2ðλ − 1Þ _KRð~rÞ

�
: ð90Þ

The grr entry of the metric is given by μ2 ¼ ðR0Þ2=B, which
was given in the first relation of (71). It is straightforward to
show that grr goes to zero as jrj → ∞, which implies that
the hypersurfaces of constant time become asymptotically
null, as we have already stated on several occasions. For the
inverse metric, we find

8The case λ ¼ 1 must be considered separately; the leading
term on the right-hand side of Eq. (88) in this case is of order r0
and negative, implying a timelike vector ∂t.
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g00 ¼ −
1

N2
; g0r ¼ ξ

N2
¼ 1

R0N

�
C
4R2

−
KR
3

�
; ð91aÞ

grr ¼ 1

μ2
−

ξ2

N2
¼ 1

ðR0Þ2
�
1 −

2M
R

þ ðλ − 1Þ
�
K2R2

6
−

1

4R

Z
t

−∞
dt0C _K

��
: ð91bÞ

Summarizing, the four-dimensional gμν and its inverse gμν are given by

gμν ¼

0
BBBBB@

− N2

B ðB − ð C
4R2 − KR

3
Þ2Þ R0N

B ð C
4R2 − KR

3
Þ 0 0

R0N
B ð C

4R2 − KR
3
Þ ðR0Þ2

B 0 0

0 0 R2 0

0 0 0 R2sin2θ

1
CCCCCA
; ð92aÞ

gμν ¼

0
BBBBB@

− 1
N2

1
R0N ð C

4R2 − KR
3
Þ 0 0

1
N ð C

4R2 − KR
3
Þ 1

ðR0Þ2 ðB − ð C
4R2 − KR

3
Þ2Þ 0 0

0 0 1
R2 0

0 0 0 1
R2sin2θ

1
CCCCCA
: ð92bÞ

We would like to compare the expressions for the entries
of the four-metric to their counterparts in the CMC
description of general relativity in Ref. [28].9 Rewriting
our results in terms ofK and isolating the λ dependence into
terms proportional to (λ − 1) in expressions (89a), (89b),
(90), and (91b) has made explicit how the spacetime metric
gμν differs from its general relativistic counterpart. As we
will show in Sec. III D, these extra contributions lead to a
nonvanishing four-dimensional curvature for K ≠ 0 and
λ ≠ 1.
The four-dimensional metric we have derived depends

on five parameters, two constants (λ, M), and three
functions of time (C, K, n1). Let us comment on their
role and interpretation in turn. The coupling constant λ only
occurs in the prefactors (λ − 1) of terms that do not appear
in the Schwarzschild solution. The constantM was defined
in Eq. (64) from the integration constant mðtÞ, which was
introduced earlier when solving the Hamiltonian constraint,
to have a genuinely conserved quantity that reduces to a
multiple of the Schwarzschild massMs for λ ¼ 1. It can be
checked that in this latter case we haveM ¼ Ms=4with our
choice of units.
When λ ¼ 1, neither C nor K play a direct physical role.

However, they determine the range of R for which the
function BðRÞ is positive, which in turn determines the
spacetime covered by the slices of the foliation. More
specifically, as was shown in [26,27] for _K ¼ 0 and later in

[28] for _K ≠ 0, the number and location of the roots of B
depends on both parameters. Keeping K > 0 fixed, there
are three possibilities.

(i) If C ¼ 0, B has only one root. In this case, the
foliation extends from null infinity to this minimal
radius, reemerges on the other side of the “throat”
and continues from there all the way to the other null
infinity.

(ii) For small C > 0, there are two roots and two regions
for which B is positive, one in the interior black hole
region of the Kruskal diagram, extending from the
singularity R ¼ 0 to some maximal radius and then
returning to the singularity, and another one retain-
ing the C ¼ 0 behavior.

(iii) If C is large enough, there is a critical point for
which these two roots coincide, beyond which the
leaves of the foliation start at either of the null
infinities and end again in the singularity.

We expect a qualitatively similar behaviour in our sol-
utions, certainly for small deviations from the general
relativistic case, although the roots of B will of course
become λ dependent.
Regarding the role played by C and K in the λ-R model,

recall that the former is obtained when solving the first-
class radial momentum constraint, while the latter is
associated with the second-class tertiary constraint
ω ≈ 0. This could suggest that K is a physical quantity
while C is not, but the argument turns out to be more
involved. Unlike what happens in general relativity, the
lapse function N is not determined by making a gauge
choice but by solving the quaternary constraintM ≈ 0, and
N depends on both C and n1. We will show in the next

9There is a discrepancy between our result (91b) for grr (for
λ ¼ 1) and that of [28], apparently because gij was used instead of
the correct four-dimensional inverse ð4Þgij ¼ gij − NiNj

N2 .
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section that K is a physical quantity, in the sense that the
four-dimensional scalar curvature—a scalar under local
diffeomorphisms—depends on it. However, a similar logic
applies to C and n1, by virtue of their appearance in the
lapse function: changing either C or n1 while keeping all
other parameters fixed will alter the lapse and consequently
yield a different four-dimensional Ricci scalar. At the same
time, C and n1 retain the interpretation they had in general
relativity, namely, as the transverse-traceless part of the
extrinsic curvature and the leading-order behavior of the
lapse at infinity when K ≠ 0 and λ ≠ 1.

D. Four-dimensional scalar curvature

A direct way to obtain the four-dimensional Ricci scalar
ð4ÞR is to perform a full, four-dimensional calculation
starting from the explicit expression (92a) of the four-
metric. We will instead use an expression for ð4ÞR in terms
of three-dimensional quantities, which can be derived by
combining the contracted Ricci and Gauss equations [34].10

It reads

ð4ÞR ¼ Rþ K2 þ KijKij þ 2

N
LNn⃗K −

2

N
gij∇i∇jN; ð93Þ

where LNn⃗ is the Lie derivative along the normal evolution
vector Nn⃗, and n⃗ the unit normal to the hypersurface Σ,

n⃗ ¼ N−1ð1;−NiÞ: ð94Þ

We first substitute the solutions obtained for the phase
space variables into the expression (15) for the scalar three-
curvature, resulting in

R ¼ 2

R2

�
1 − B − R

∂B
∂R

�
: ð95Þ

The term with the Lie derivative is given by

2

N
LNn⃗K ¼ 2 _K

N
; ð96Þ

while the KijKij term can in a straightforward way be
obtained from Eqs. (67),

KijKij ¼ 3

8

C2

R6
þ K2

3
: ð97Þ

To determine the last term in Eq. (93), we recall the form of
the lapse N given in (71) as a function of _K and R, and
compute its Laplacian as

−
2

N
∇i∇iN ¼ −

3λ − 1

N
_K −

�∂2B
∂R2

þ 2

R
∂B
∂R

�
: ð98Þ

Combining all contributions finally yields the four-dimen-
sional scalar curvature

ð4ÞR ¼ −3ðλ − 1Þ
_K
N
þ 3

8

C2

R6
þ 4K2

3

þ 2

R2

�
1 − B − 2R

∂B
∂R −

R2

2

∂2B
∂R2

�

¼ ð1 − λÞ
�
2K2 þ 3 _K

N

�
: ð99Þ

This expression vanishes in the general relativistic case
λ ¼ 1, as it should, and also for vanishing mean curvature,
K ¼ 0. If neither λ ¼ 1 nor K ¼ 0, it is necessarily non-
zero, because the nontrivial radial dependence of the shift
(N0 ≠ 0) prevents a tuning of the initial data K and _K such
that ð4ÞR vanishes.

IV. SUMMARY AND CONCLUSIONS

We have succeeded in finding the general solution to the
λ-R model for the case that its preferred spatial hyper-
surfaces possess spherical symmetry. As anticipated, we do
not have an analogue of Birkhoff’s theorem, since the
solutions are in general nonflat, nonstatic, incompatible
with asymptotic flatness, and parametrized not only by
their conserved mass M, but also by the mean extrinsic
curvature KðtÞ of the leaves of the foliation, as well as
prescribed functions CðtÞ and n1ðtÞ.
Because of the restriction to foliation-preserving diffeo-

morphisms, our general solutions have a nonvanishing
radial shift, which cannot be removed by an allowed
diffeomorphism. In agreement with the full λ-R model,
only constant mean curvature and maximal slicings are
permitted by the dynamics. Solving the (second-class)
constraint algebra, and imposing falloff conditions and
time evolution equations, we have derived the explicit
functional form gμν of the general spherically symmetric
solution of λ-R gravity of the class considered, given
in Eqs. (92).
The λ-dependent constant mean curvature solutions

(K ≠ 0) are not physically equivalent to the ones with
maximal slicing (K ¼ 0). Moreover, only the latter corre-
spond to vacuum solutions of general relativity, as follows
from the nonvanishing of the four-dimensional Ricci scalar
ð4ÞR of Eq. (99) in the CMC case. Like in general relativity,
the Ricci scalar is of course a local invariant. That it can be
nonvanishing for λ ≠ 1, even in the absence of matter, has
to do with the fact that the λ-R model possesses a local
invariant not present in general relativity, namely, the trace
K of the extrinsic curvature of the distinguished foliation.

10Note that the sign of the term linear in K on the right-hand
side of (93) is opposite to that given by Gourgoulhon [34],
because his extrinsic curvature has the opposite sign of ours.
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In general relativity, the CMC foliations of the
Schwarzschild geometry are all equivalent and can be
obtained from the usual asymptotically flat metric descrip-
tion (with K ¼ 0 and C ¼ 0) by means of space-dependent
time reparametrizations [26]. While these diffeomorphisms
generate nonvanishing values for K and C, they do not
change the geometry of the spacetime, but only the way in
which the 3þ 1 split is implemented. Thus K and C can be
thought of as unphysical gauge parameters. By contrast, the
same transformations are no longer allowed symmetries of
the λ-R model, and spacetimes related by them will in
general correspond to physically inequivalent solutions.
For each λ > 1=3, λ ≠ 1, the function KðtÞ becomes
effectively physical and parametrizes physically distinct
spacetimes, as is clear from the functional form of the scalar
curvature (99) in terms of KðtÞ. Although the standard,
general relativistic solution is included among those of the
λ-R model (namely, for initial data K ¼ 0), it is even for
λ ≠ 1 not unique and as a consequence of the preferred
foliation can only be attained in a restricted set of
coordinate charts.
As in previous work on the λ-R model (see [7] and

references therein), an interesting question is to what extent
physical observables are sensitive to the presence of the
parameter λ. An obvious task to attempt in the presence of
spherical symmetry is a quantitative reevaluation of classic
solar system tests of general relativity, like light deflection
or perehelion precession, in order to understand what
observational bounds exist on deviations of λ from its
canonical value of 1, and also to quantify the influence of

different choices of KðtÞ, CðtÞ, and n1ðtÞ. Of course it
should be kept in mind that we have only discussed the
specific case where the SOð3Þ orbits of the spherical
symmetry are aligned with the preferred foliation. This
will not be the case for a general spherically symmetric
solution of the λ-R model, whose treatment will be
technically more involved. A convenient framework to
tackle this problem may be the so-called covariant 1þ 1þ
2 formalism (see, e.g. [35]), which in addition to a preferred
time direction uses a preferred spatial direction, which in
our case would be given by the radial direction
perpendicular to the shells of spherical symmetry.
Another possible generalization concerns the inclusion

of a cosmological constant term in the action, which we do
not expect to present any difficulties. Given the way in
which the cosmological constant Λ appears in the λ-
dependent version of the Lichnerowicz-York equation
[24] and in the usual Schwarzschild-de Sitter solution,
we anticipate that this will lead to a Λ-dependent version of
the term proportional to R2 in the function BðRÞ of
Eqs. (32) and (71).
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