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Binary black hole systems are among the most important sources for gravitational wave detection. They
are also good objects for theoretical research for general relativity. A gravitational waveform template is
important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an
essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary
systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an
interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric
binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic
assumption in the model construction is that the involved eccentricity is small. We have compared our
eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our
eccentric EOBNR model against another recently proposed eccentric binary waveform model; against
numerical relativity simulation results; and against perturbation approximation results for extreme mass
ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as
about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases,
including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our
eccentric model can be the starting point to develop a faithful template for future space-based gravitational

wave detectors.
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I. INTRODUCTION

The direct detection of gravitational waves (GW) has
been announced recently by LIGO [1-3], which opens a
brand new window to the Universe-gravitational wave
astronomy. The success of LIGO is based on both the
tremendous development of experimental technology
and the improvement of theoretical research in the past
decades. A matched filtering data analysis technique is very
important to gravitational wave detection. As GW150914,
GW151226, and GW170104 have witnessed, the matched
filtering technique has improved the data quality and/or even
made the noisy data detectable. Regarding GW150914 and
GW170104, we are somewhat lucky. The signal is so strong
that the matched filtering data analysis technology is not
necessary to catch the signal, although the matched filtering
data analysis can strongly improve the signal to noise ratio
(SNR) and confidence level. Regarding GW 151226, the
signal is much weaker than that of GW150914 and
GW170104. Without the matched filtering data analysis
technology, the signal is completely invisible. In contrast,
the matched filtering data analysis technology digs out
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the signal from the stronger noise with a SNR 13 and
a confidence level 506. GW151226 is a good example
showing that the detection of the GW is the result of a
combination of experimental achievement and theoretical
research progress [4].

In order to make the matched filtering technique work,
the gravitational waveform template is essential [4]. And
the template strongly depends on the specific theoretical
model of the GW source. Currently, there are two theo-
retical models which are ready for gravitational wave data
analysis. They are an effective-one-body-numerical-relativity
(EOBNR) model [5] and IMRPhenom model [6]. For
example, all of GW150914, GW151226 and GW170104
depends strongly upon these two models.

The EOBNR model [7] is a combination of an effective-
one-body theory of post-Newtonian approximation and
numerical relativity. About the template bank of the binary
black hole gravitational waveform, the related parameters are
divided into intrinsic ones and extrinsic ones. The EOBNR
model needs only to be concerned about the intrinsic
parameters, including the total mass of the binary black
hole M, the mass ratio ¢ = “ > 1, the spins of the two black

2 ny
holes S ,, and the eccentricity of the orbit e. The extrinsic

parameters, including the luminosity distance D, the source
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location (6, ¢), the configuration of the orbit with respect to
the sight direction (z, /3), the reaching time of the signal 7, the
initial phase ¢, and the polarization angle with respect to the
detector y, can be straightforwardly involved when we
construct the template bank from EOBNR model. R

To the quasicircular ¢ =0 and nonprecession (S,
perpendicular to the orbit plane) binary black hole systems
with a mass ratio ¢ € (1,2%), the EOBNR model has done a
quite good job [5]. (Note that the author in [8] mentioned
the EOBNR model is valid for a mass ratio range 1 < g <
100 and a spin range —1 < y < 0.99. But as pointed out by
[9—12], the current EOBNR model can at most be calibrated
to a numerical relativity only for the range 1 < ¢ < 20 and
—0.85 < y < 0.85.) Regarding the precession binaries, a
primary development of EOBNR model is available [13].
Very recently, we have done an initial investigation to extend
the EOBNR model to include a gravitational wave memory
in Ref. [14]. As to the mass ratio, there is no essential
difficulty to extend the EOBNR model to cover a larger
parameter range. But the current simulation power of
numerical relativity limits such a development [15]. In
principle, if only the relevant numerical relativity results
are available, the EOBNR model can be calibrated to involve
the mass ratio. Regarding the eccentricity, the situation is
different. Until now, the EOBNR model only worked for the
e = 0 case. Reference [16] touched on this problem, but
the authors only considered the energy flux while they left
the relevant gravitational waveform alone. Although the
EOBNR model admits the kinds of limitations as described
above, it provides a framework which makes it possible to
extend the EOBNR model to treat these limitations.
Recently, the authors in [17] have extended EOB framework
to a scalar-tensor theory. Hopefully, ones can treat the
gravitational waveform template for different gravitational
theories [18] within one uniform framework, the EOBNR
model, in the future.

Because of the circularization effect of gravitational
radiation [19], one may expect that the binary black hole
systems are always near circular when they enter the LIGO
frequency band. But recent investigations show that it is not
absolutely true. The study of the galactic cluster M22
indicate that about 20% of the binary black hole (BBH)
mergers in globular clusters will have eccentricities larger
than 0.1 when they first enter the advanced LIGO band at
10 Hz [20] and that ~10% may have eccentricities e ~ 1
[21]. Furthermore, a fraction of galactic field binaries may
retain a significant eccentricity prior to the merger event
[22]. BBHs formed in the vicinity of supermassive black
holes (BH) may also merge with significant residual
eccentricities [23]. For space-based detectors such as
eLISA [24], LISA [25,26], Taiji [27], and Tiangin [28],
the orbit of the involved binary black hole systems may be
highly eccentric due to recent perturbations by other
orbiting objects [29,30]. Recently, there are many authors
that care about the binary black hole systems with an
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eccentric orbit with regards to gravitational wave detection
[31-34].

Assuming a low eccentricity, the authors of [31]
extended a low order PN waveform model in a frequency
domain to include the eccentricity. They called the corre-
sponding model a postcircular (PC) model. Later, the
authors of [32] improved the PC model to an EPC (enhanced
postcircular) model which recovers the TaylorF2 model
when the eccentricity vanishes. The EPC model is a
phenomenological extension of the PC model. Its overall
PN order is 3.5. Some numerical relativity simulations have
been paid in the past to the eccentric binary black hole
systems [35-37]. Along with the numerical relativity results,
the x model was proposed in [36]. The x model is a low order
post-Newtonian (PN) model. Recently, this model was
improved to include inspiral, merger, and ringdown phases,
and higher PN order terms for a vanishing eccentricity part
were included. This model was called the ax model by the
authors of [34]. All these models are valid for any mass ratio.

Regarding the large mass ratio binary black hole sys-
tems, one may look to the binary system as a perturbation
of the big black hole. Then the gravitational wave problem is
decomposed into the trajectory problem and the related
waveform problem. In [38], one of us investigated the
eccentric binary using the Teukolsky equation to treat the
waveform problem and combined the conserved EOB
dynamics with a numerical energy flux to treat the trajectory
[39]. In [38,39], the Teukolsky equation is solved numeri-
cally. One can also solve it through some analytical method
[40] or post-Newtonian approximation [41]. In [42], the
authors used a geodesic equation to treat the eccentric orbit
of a large mass ratio binary and used the Teukolsky equation
to treat the waveform problem. Interestingly, people have
used the method of the geodesic equation and the Teukolsky
equation to find that the eccentricity may increase [43,44]
instead of always decaying as found through the post-
Newtonian approximation [19]. In addition, people used the
method of the geodesic equation and the Teukolsky equation
to find the interesting transient resonance phenomena
[45,46]. When a binary system passes through a transient
resonance, the radial frequency and polar frequency become
commensurate, and the orbital parameters will show a jump
behavior. To our knowledge, the post-Newtonian approxi-
mation method can not yet give the eccentricity increase and
the transient resonance results. Of course, it is possible that
the available post-Newtonian result is not accurate enough
to get these two interesting phenomena. But it is also
deserving to ask whether these two phenomena imply that
the perturbation method breaks down. Ideally, ones may
use a numerical relativity simulation to check this problem.
But unfortunately, current numerical relativity techniques
are far away from investigating this problem due to the huge
computational cost for large mass ratio binary systems [15]
(see [47]). Hopefully, the effective-one-body-numerical-
relativity (EOBNR) model may be used to check this
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problem. This is because on the side of almost equal mass
cases, the EOBNR framework can be and has been cali-
brated against numerical relativity; on the side of extreme
mass ratio cases, the EOB framework can also be and has
also been used to describe the dynamics and the gravitational
waveform [48]. So we can expect the EOBNR framework
may play a bridge role to connect the numerical relativity
result with a large mass ratio problem. In order to realize this
kind of investigation, we need a EOBNR model valid for
eccentric binary systems, which is absent now. In the current
paper, we will go a step further to construct an EOBNR
model for eccentric binary systems.

This paper is organized as follows. In the next section,
we will describe the extended EOBNR model, including
eccentricity. We call our model SEOBNRE (spinning
effective-one-body-numerical-relativity model for eccentric
binary). This model includes three essential parts, which
will be explained in detail, respectively, in the subsections
of next section. The involved detailed calculations and long
equations are postponed to the Appendixes. Then in
Sec. III, we check and test our SEOBNRE model against
the quasicircular EOBNR model, against the existing
eccentric waveform model-ax model, against the numerical
relativity simulation results, and against the Teukolsky
equation based waveform model for extreme mass ratio
binary systems. Finally, we give a summary and a dis-
cussion in Sec. IV. Throughout this paper, we will use the
units ¢ = G = 1. Regarding the mass of the binary, we
always assume m; > m,.

II. WAVEFORM MODEL FOR ECCENTRIC
BINARY BASED ON THE EOBNR MODEL

An effective one body technique is a standard trick to
treat the two body problem in the central force situation of
classical mechanics, especially for the Newtonian gravity
theory [49]. In [50], Buonanno and Damour introduced the
seminal idea of an effective-one-body approach for a
general relativistic two body problem. The effective-one-
body approach needs many inputs from a post-Newtonian
approximation, but it is more powerful than a post-
Newtonian approximation. Unlike the post-Newtonian
approximation, which will diverge before the late inspiral
stage of the binary evolution, the effective-one-body
approach works until the binary merger. And moreover,
it is convenient for the effective-one-body approach to
adopt the result of a perturbation method [48]. At the same
time, we can also combine the results of the effective-one-
body approach and numerical relativity. As done first by
Pan and his coworkers in [7], such combination gives the
effective-one-body numerical relativity (EOBNR) model.
Currently, the most advanced EOBNR model is the
SEOBNR, which includes version 1 [51], version 2 [5],
and version 3 [3,52,53]. SEOBNR is valid only for a
quasicircular orbit and black hole spin perpendicular to the
orbital plane, which means the precession is not presented.
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In this paper, we will extend the SEOBNR model to treat
the eccentric orbit.

The EOB approach includes three building parts: (1) a
description of the conservative part of the dynamics of two
compact bodies, which is represented by a Hamiltonian;
(2) an expression for the radiation-reaction force, which is
added to the conservative Hamiltonian equations of motion;
and (3) a description of the asymptotic gravitational
waveform emitted by the binary system. The part 1 is
independent of the character of the involved orbit. In other
words, the part 1 is valid no matter whether the orbit is
circular or eccentric. In the current paper, we adopt the
result from the SEOBNRv1 model, which will be summa-
rized in the following. Regarding parts 2 and 3, the current
SEOBNRvV1 model is not valid to an eccentric orbit. We
will extend these two parts in the current work. For
convenience, we will refer to our model SEOBNRE, where
the last letter E represents eccentricity.

A. Conservative part for SEOBNRE model

The conservative part for the SEOBNRE model is the
same to that of SEOBNRv1 [51]. But the related equations
are distributed in different papers. For convenience, we give
a summary here.

The basic idea of the EOB approach is reducing the
conservative dynamics of the two body problem in general
relativity to a geodesic motion (more precisely, the
Mathisson-Papapetrou-Dixon equation [54]) on the top
of a reduced spacetime, which corresponds to the reduced
one body. Roughly, the reduced spacetime is a deformed
Kerr black hole with the metric form [55]

ds* = g, dr* + g,,dr* + gogd® + gy dp* + 2g,4drdg, (1)

it _ 2
g As (2)
A
- _f’ 3
9 =3 3)
1
00 _ 4
=5 (4)
o L( O, 2 )
A W NS ey
)
tp _ _ fd 6
g Ay (6)
where
T = r? + a*cos? 6, (7)
atu?
A = <A(u) +W>’ (8)
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A, = , 9
"= D) ©)
A, = @ — a*A, sin? 0, (10)
o=\r+ad, (11)
M
@y = 2Mar+ﬂ(a1{dM2 +ollad®.  (12)
* r

We still call the coordinate (7,r,60,¢) used here the
Boyer-Lindquist coordinate. Following SEOBNRv1, we
set a){ 4 —0and a)’;d = 0. Here, M and a are, respectively,
the mass and the Kerr spin parameter of the deformed Kerr

black hole
M =my + m,, (13)
Md=c6=dm + aym,, (14)
and we have used notation u =, and

41

4
Alu) =1 =2u + 2nu? +l1(9?—3—2ﬂ'2> ut,  (15)

D(u) = 1/{1 +log[l + 6nu* +2(26 = 3n)nu’]},  (16)

= _mm
where 5 = )

binary with the components mass m;, m, and Kerr
parameter ¢; and d,.

Corresponding to the geodesic motion, or to say the
Mathisson-Papapetrou-Dixon equations, the Hamiltonian
can be written as [51,56]

Heff
H=M/1+4+2 -1, 17
/¢ + "(Mn ) (17)

Het = Hys + Hs + Hgc. (18)

is the symmetric mass ratio of the

The detailed expressions for the quantities Hyg, Hg, and
Hgc involved in the above Hamiltonian are listed in the
Appendix A.

Based on the above given Hamiltonian, we have then the
equation of motion with respect to the conservative part as

OH

?:—_., 19
P (19)
> OH
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B. Gravitational waveform part for the
SEOBNRE model

In the EOBNR framework, the gravitational waveform
is described by spin-weighted —2 spherical harmonic
modes. These kinds of modes are also extensively used
in numerical relativity [57]. In SEOBNRv1, the modes ¢ €
{2,3,4,5,6,7,8},m € [-¢, £] are available. Note that only
the positive m modes are considered while the negative m
modes are produced through relation &y, = (—1)7h} _,,
[58]. Here, * means the complex conjugate.

In this work, we only consider the (£, m) = (2,2) mode
although other modes can be straightforwardly extended.
Our basic idea is decomposing the waveform into a
quasicircular part and an eccentric part. The strategy is
following [34]. We treat the eccentric part as a perturbation
by assuming that the eccentricity is small. Regarding the
quasicircular part, we borrow exactly the ones from
SEOBNRUvVI. For convenience, we firstly review this part.
Within the EOBNR framework, the waveform is divided
into two segments. One is after a merger, which is described
with the quasinormal modes of some Kerr black hole. The
other is an inspiral-plunge stage, which is described in the
factorized form as [58]

C N.e) o(e i
hz(/”m) = h<fm )Sﬁszfme Oem (pfm)fomi (21)
€ M €
pVe) — T”n( ) g VG YEmem (g , cp>, (22)

where R is the distance to the source; @ is the orbital phase;

Y“™(®, ®) are the scalar spherical harmonics. Particularly
for the (2,2) mode, we have [51,58,59]

e=0, (23)
Vi =13, (24)
: H
To =, — ii(3, - 7). 17[,57225, (25)
O _ e 8 [einers
my, )¢ om
=|(——- -1 —_— s 27
Ce <m1 + mz) + ( ) <m1 + mz) ( )
o0) _ Hegr
S = , 28
eff M77 ( )
I'Z+1-2imQH) .
T, = amQH+2imQH In(2mQry) 2
om rZ+1) )
2(m; +m,)
QEU?D,rOE—, (30)
Ve
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~2 hfm hfm h/m hfn hfz
_ Pr hew | %2 tay"  a" ds
Ney = |:1+W(alf +T+T+ 2 + 5/2>]
~ hem hem
A Pr gy, hem b3 b4
xexp{z(rgb + Q(b +r1/2+ p ))} (31)
7 . (428 4\ (1712 , 2203 20
522:§v3+ <ﬁﬂ—§a>vé+ <mﬂ2 o1 ) 24r]vq,+63a1)¢, (32)
55 43 2 @ 20555 33025 19583 34
—1 Bl PP S ST —dned + (L - _ A 5
N (84 42) va =3 lsl =1 +a Mve + (2 10584~ 21168" " 42336 )”‘D 21"
ISS6919113 | 89 , 48993925 6292061 , 10620745 , 41 ., 438 .o,
1556919113 89 , _ 3 A, 428
122245200 ' 252 79779616 "~ 3259872 T 30118464 T 192 T 105 £21%e/| Yo
18733 15\
* <15876 3¢ >”‘1’
18353 , 1, 387216563023 9202
“at = (5.6 + 117.6 lerlog, (v3) | 0%
+ [ 21168 =~ (5:6+ 17601 = 165750110080 + 2205 1" ng(%)} Yo
16094530514677 439877
lerlog, (v3) | 19 33
[ 533967033600 55566 C 1082 (a) | o (33)

_ay/my+ay/my _ay/myp—ay/my

For the eccentric part, the post-Newtonian (PN) result is

s = > , XA = > ., (34)  valid until second PN order [60]
where we have defined the eulerlog,, (v3,) =7z +In(2mve)  pii — 2(Q7 + POl 4+ PO 4 PAQU + P%Q{jﬂ), (35)
with ve ~ 0.5772156649015328606065120900824024
being the Euler constant. In the equation of N,,, the o
parameters a}f aé’f’”, ag“, bh”’”, bhf’ are functions of 7, 0l — 2<v ol ”]) (36)
P ’
and the parameters aé’s , aZ” , ag'” , bg’””’, and bZ”’" are ! r
functions of a and 5. Following SEOBNRvV1, we construct
data tables for ahf”’, agg”’, bfff’” and bg"”" based on the [y 3N, i i
numerical relativity results of some specific cases for a P20V = (my —my) r — (' UP +vpnl —in'n)
and 7. Then, we interpolate to get the wanted values for the a -
and 7 in question. Then, we solve the conditions (21)—(25) of +N, <ﬂ - 20}, v{, ﬂ . (37)
[51] for bgf’” and bff”’". g
P"f'—113N23 151 + 2\ nind + 151(ni), + vin?) — 1405,
0 =3 (1-13n) v} — r+ nin/ + 15r(n'v}, + vi,n/) — 140,05,
N,N, o o . o2 2-3 o
+ 2220 (124nind — 16(niv) + vhnl)) + N2 (6%% - —n’"’ﬂ + [3(1 ~3nyzg -2t ’1)} U
r r r
2. o o ) 29] nin’
+;r(5+37])(n’vﬁ,+v’pn1)+ [3(1—3n)r2—(10+3n)v%+7} . } (38)
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12

44) niv) + vé,nf]
r

I N2N, o ) 28\ . . A 3N,N? S
+— ”r - {581}},1}2 + <4Sr2 - 93 —7> n'n/ — 54r(n'v), + v;,nf)] o = (5(n'v) + vin/) — 3in'n/)
1 ipj o SmN o o 128 — 36
+=N3 mn — 4vl,v) 4 0 (n'vp, + vi,nl) [2(63 + 541) —7n+v%(33— 187)
2 r 12 r r
- 242 — 24 o
+ n’n/i{i’z(lS —90n) — v3(63 — 54) + 7’7] — vl v (186 + 247])}
r
1, ;[3-8 "wp + v
+ (m; — mz)NU{—U’prJ [—’7 —203(1 - 517)] - Miﬂ + 4n)
2 r 2r
ninf [3 . 126 -3 1
- “(1=2p)i*+= ——(7=2n)v3| ¢, 39
r {4( U B ")””]} )
I
PN i P i iy 1 .. A
PQY, =403 [a(Z¥ — nind) 4+ 61n v, (A0 + n'A)]. (40) e Zi(pipj ~4,3)). (44)
In the above equations, we have used the following 1
notations. N = (sin @ cos ¢, sin fsin ¢, cos ¢p) is the radial € = 5 (Piq; + q:p;)- (45)
direction to the observer. p=(cosfcos¢,cosfsing,—sind)
lies along the line of nodes. § = N x p and more notations i)
include [60,61] by = eh”. (46)
N, =N-i. (41) hy = €shV. (47)
N,=N-u,, (42) h=h, —ih,, (48)
7o = (WM (43) hy = /th* dQ (49)
|’U_]; (’UP _,)r_[| ‘.m £m .

We define the spin-weighted spherical harmonic modes as
|

Based on the above results, we express the (2,2) mode as

.. .. P L .. 3 .. 1 .. 3 .. ..
h22 = 277[®l](Ql] + P()QU + P% g_ﬂ) + Pn®lj(P%lQ” + P?lQU) + Pv®ij(P%JQl] + P%}Q”) + Pier@iananj

3
2

+ Pm}®ianUQU + va®ijP1}1}Ql] + Pnnn®ijP;mﬂQl] + Pnnv®ianVl1)Ql] + anv®ijP§11/'UQl]

3

+ Pmrv®ijP%Uinj]‘

The involved notations, such ©;; and P,0;
one by one in the Appendix B.

We assume the /,, in the Eq. (50) includes a quasicir-
cular part corresponding to hs,|;_o and the left eccentric
part. It is straightforward to check that y,|;_, is consistent
to the Eq. (9.3) of [62]. So we define the eccentric
correction as

j» are explained

thE) = hyy — hy ;s (51)

where /1,, means the one given in the Eq. (50). In summary,
the inspiral-plunge waveform for SEOBNRE is

(50)

insp—plun C PNE
hzzsp Pl — hgz) + hgz )’ (52)

where A is given in Eq. (21).

C. Radiation-reaction force for the SEOBNRE model

We have mentioned the conservative part of the EOB
dynamics in Eqgs. (19) and (20). But that is only a partial
part of the whole EOB dynamics. The left part is related
to the radiation-reaction force. Assuming the radiation-
reaction force is F, then the whole EOB dynamics can be
expressed as
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708 (53)
op
> OH =
p——ﬁ—kf. (54)

In the SEOBNRv1 model, the radiation-reaction force 7 is
related to the energy flux of the gravitational radiation &
through [51]

dt

1 dE >

F=— = 55

Mnwe|7 x p| dt )
P

Dp = | r2 _1 . (56)

Here, we need to note the sign of ‘fl—f. Since E here means the
energy of the binary system E decreases due to the
gravitational radiation, < & E (. So people sometimes call
it dissipation. This corresponds to the SEOBNRv1 code
[63], since it treats quasicircular cases without precession,

Fx p|~ P» which reduces
. 1 dEp
F= =L (57)
Mnwq dt py

Regarding the energy flux ‘QE, the SEOBNR model

relates it to the gravitational waveform through [59]

6 Z o (58)

And the more the SEOBNR model assumes the dependence
of hy, onto time, it is more of an harmonic oscillation.
So izfm ~ mQhy, with Q the orbital frequency of the
binary. Then,

1 4

3 mf—f

14
_ %Z S Q)2 . (60)

¢ m=l1

Like the EOBNR models, our SEOBNRE model is valid only
for spin aligned binary black holes (spin is perpendicular to
the orbital plane). In these systems, there is no precession to
be involved. Most importantly, these systems admit a plane
reflection symmetry with respect to the orbital plane.
Because of this symmetry of the corresponding spacetime
and the symmetry of the spin-weighted spherical harmonic
functions, we have [Eqgs. (44)—(46) of [64]]

h(t,m—0.¢) = h*(1.0.4). (61)
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72Yf,—m (ﬂ - 91 ¢) = 72Y}m (91 ¢) (62)

Here, we have used (6,¢) to represent the spherical
coordinate with respect to the gravitational wave source.
Consequently, we have hg, = (—1)h}_, [58]. In the
second equality of the above energy flux equation, the
SEOBNR model has taken this relation into consideration
and has neglected the “memory” modes h,, [14,65].
We also note that some authors use the relation h,, =
(=1)"h} _,, as an assumption in the cases where the plane
reflection symmetry breaks down [5,13,52].

In our SEOBNRE model, we follow the steps of the
SEOBNRv1 model to construct the radiation reaction force.
The only difference is replacing the waveform with our
SEOBNRE waveforms (52).

Besides the above method to calculate the energy flux,
one may also calculate 4 E based on a post-Newtonian
approximation together with results from the conservative
part of the EOBNR model. This is the method taken by the
ax model [34]. Similar to the idea we have taken to treat the
waveform in the above Sec. Il A, we divide the energy flux
into two parts which correspond to the circular part and the
noncircular correction part. Then, the overall energy flux
can be written as

dE _dE
dr  dt

n dE

dE

-— (63)
pip At

Elip.i=0

We give the detail calculations for the post-Newtonian

energy fluxes including %k and ¢ < \Ehp for eccentric

binary in the Appendix C.

D. Initial data setting for the SEOBNRE dynamics

Within the EOB framework, we solve the dynamical
Egs. (53) and (54), then plug the evolved dynamical
variables into the waveform expression (52). But first,
we need to setup the initial value for the dynamical
variables (7, p). We take two steps to set the initial values.
First, we look for the dynamical variable values for a
circular orbit (the authors in [66] call it a spherical orbit).
Secondly, we adjust the momentum to achieve wanted
eccentricity. In this work, we consider binary black holes
with a spin perpendicular to the orbital plane. So the
dynamics can be described with the test particle moves on
the ecliptic plane of the central deformed Kerr geometry
[58]. Within the Boyer-Lindquist coordinate, we have
$»=0,0=73 py=0.In order to get r, p,, and p,y, we
follow the Egs. (4.8) and (4.9) of [66] to solve

dH

, 64
dr (64)
dH

—_— = O, 65
e (65)
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dH
% = Wo, (66)

where @, = = is the speculated orbital frequency at initial

time and the f is the given frequency for a gravitational
wave at initial time. Assuming the resulting solution for r is
7, we adjust r through

ro =7/(1+ €), (67)

which means we put the test particle on the periastron of an
elliptic orbit with an eccentricity e, based on a Newtonian
picture [38]. If the approximation of the test particle and the
Newtonian picture is not good enough, our initial data
setting method can not work well. More sophisticated initial
conditions for the eccentric binary black hole system are
possible [67]. We leave such investigations to future study.

E. Match the inspiral waveform to the
merger-ringdown waveform

Like other EOBNR models, we assume the ringdown
waveform can be described by the combination of quasi-
normal modes as

merger RD

o
he § : Ay~ 0em (=) | (68)

where 6,,,, are the complex eigenvalues of the correspond—
ing quasinormal modes for a Kerr black hole, 2" , is the
matching time point, and A,,, are the combination
coefficients for each mode. The same for SEOBNRvl
[63], we take N = 8.

In order to determine o,,,,, we need to know the mass
and spin of the final Kerr black hole. In principle, the mass
and the spin may be affected by the eccentricity. But here
we neglect such a dependence on the eccentricity as [34]
based on the assumption that the eccentricity is small for
the cases considered in current work. We specify the mass
and the spin of the final black hole following [68,69]

Mg = M[1 4 4(m° — 1)n 4+ 16m'n* (y + x2)].  (69)
o Afinal 0
Xfinal = m = 2"+ m°(tx® + tsn + 1)
+0(2V3 + by + ty17?),
m® = 0.9515, m! = —0.013,
_m o _ N t0nd _ain
my’ 144> : Comyy
f = —2.8904, 1, =—35171, 15 =2.5763,
ty=—0.1229, 15 = 0.4537. (70)
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Note that the above relations are valid only for the spins of
the two black holes perpendicular to the orbital plane,
which are the cases considered in current work.
Regarding the matching time point tmmh, we determine it
based on inspiral dynamics as follows. For the inspiral part,
we solve the dynamics (53) and (54) until a time point which
is called “merger time point” for convenience. The criteria of
the “merger time point”is r < 6/, and the orbital frequency
begins to decrease. Then, we chose the matching time point

“n ., corresponding to the time of the peak amplitude of the

matc! 1
waveform thp plun

At last, we determme the coefficients A, based on the
rule that the matching is smooth at 72 . through the first
order derivative of the waveform.

III. TEST RESULTS FOR THE SEOBNRE MODEL

In this section, we will compare our SEOBNRE model to
several existing waveform results, including the SEOBNR
model, ax model, a numerical relativity simulation, and
Teukolsky equation results. In addition to the comparison
between the waveforms directly, we use an overlap factor to
quantify the difference between our SEOBNRE model and
these existing waveform results [70]. For two waveforms
h(t) and s(t), the overlap factor is defined as

il
O3 = ool 7

with the inner product defined as

foux h(f)5*(f)
hls) = 4Re / df, 72
< | > - Sn (f) ( )
where ~ means the Fourier transformation, f represents
frequency, S, (f) is the one sided power spectral density of

the detector noise, and (f in, fmax) 1S the frequency range of
the detector. As a typical example, we consider an
advanced LIGO detector in the following investigations.
More specifically, we take the sensitivity of LIGO-Hanford
during O1 run as our S, (f), which was determined from the
LSC webpage [71]. Correspondingly, we take f. i, =
20 Hz and f .« = 2000 Hz. Like other existing waveform
models, the total mass M of the binary black hole, the
source location (6, ¢), the angles between the eccentric
orbit and the line direction (z, f#), and the polarization angle
y are free parameters [33]. But in order to let the waveform
fall into the LIGO’s frequency band, we choose M =
20Mg as an example to calculate the overlap factor O.
Regarding the five angles, values 0 = ¢p =1 ==y =0
are taken.

A. Comparison to SEOBNRv1

Firstly, we compare the result of the SEOBNRE model
with ey = 0 against to SEOBNRvI. We consider two
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FIG. 1. Test for two identical spinless black holes with an

eccentricity ey = 0. The four top panels are comparison of the
(=2, m=2) mode of the gravitational waveform for
SEOBNRE and SEOBNRvI1. The bottom two panels are com-
parison of the energy flux for the one generated with waveform
(60), —% given in (63) and —% (©) in (Cl1). In the plot, the
energy flux generated with waveform (60) is marked with “flux
based on waveform”. The — ‘Z,—f given in (63) is marked with “with
elliptic correction”. The — % |(c) in (C1) is marked with “without
elliptic correction”. The SEOBNRE model is used in the energy
flux comparison.

spinless black holes with an equal mass. In Fig. 1
122 o ~9048.1579M. The overlap factor between the
two waveforms shown in Fig. 1 is O = 0.99998. At the

. dE
same time, we have also checked the energy flux — <.

introduced in [34] which is shown in (C1) and the elliptical
orbit correction we calculated in (63). We find that the
energy flux (Cl) can describe the real flux used by
SEOBNRE dynamics (60) quite well in the early inspiral
stage but fails at the late inspiral and plunge stage. At later
times, the energy flux (C1) even becomes positive, which is
unphysical. This implies that the PN energy flux expression
breaks down at the late inspiral and plunge stage.

In Fig. 2, we compare the waveform /,, more quantita-
tively, where the amplitude and phase are considered.
Regarding the elliptical orbit correction terms, as one
expects, they are ignorable before plunge in this quasicir-
cular case as shown in the bottom panel of Fig. 1. Near the
merger, our elliptic correction terms fail to distinguish a real
eccentric orbit with the plunge behavior in the quasicircular
orbit, so the difference for both the amplitude and phase
increase. At the merger, the differences for the amplitude and
phase get maximal values, about 0.03 and 0.026 rad,
respectively. As shown in Figs. 1 and 2, our SEOBNRE
model can recover the SEOBNRv1 result somewhat well. In
Figs. 1 and 2, we align the time at the simulation start time
(t = 0), which corresponds to a gravitational wave fre-
quency M f(~0.004. For two 10M, black holes, f,=40Hz.
At this alignment time, we also set the phase of the
gravitational wave 0, which makes the comparison easier.
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FIG. 2. Quantitative comparison of waveform /,, corresponding
to Fig. 1. In the plot, A|hyyR/M|= abs(|h spopnreR/M|—
|h2.seoBNryi R/ M), A(phaseofh,,; ) =abs(phaseofhyy seopnrE—
phaseof 12 sgoBNRv1 )-

Our second testing case is two identical spinless
black holes with an eccentricity ey = 0.003 at Mfy=~
0.001477647, which corresponds to two 10M, black holes
with f, = 15 Hz. As shown in Fig. 3, we can see clearly the
oscillation of a radial coordinate r with respect to time,
which corresponds to the eccentric orbital motion. But this
level of eccentricity is ignorable for a waveform as shown in
Fig. 4. Although small, we can see the oscillation behavior of
the energy flux with the same frequency to the  motion in
the bottom panel of Fig. 4. And again, we find that the energy
flux (C1) can describe the real flux quite well in the early
inspiral stage but fails at a late inspiral and plunge stage. In
Figs. 3 and 4, we have adjusted the time coordinate of ¢ = 0

40 T

35

30

25 .
S 20f .
15 1 .
10 b .
5| ) ) ) Y .7 i
10000 20000 30000 40000
20000 0 20000 40000 60000 80000 100000 120000 140000
tM]
FIG. 3. Test for two identical spinless black holes with

eccentricity ey = 0.003 at Mf, ~ 0.0015. The comparison of
orbital evolution for ey = 0.003 and ¢y = 0. The result of ¢y = 0
is from the SEOBNRv1 code, and the e, = 0.003 result is from
the SEOBNRE model. The inset of the plot is the blowup of the
corresponding range.
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FIG. 4. Similar to Fig. 1 but for two identical spinless black
holes with an eccentricity ey = 0.003 at M f, =~ 0.0015. The
result of ey = 0 is determined by the SEOBNRvV1 code, and the
eo = 0.003 result is from the SEOBNRE model.

result to align with the merger time of e, = 0.003, which is
122 4 ~ 128427.86M. The overlap factor between the two
waveforms shown in Fig. 4 is O = 0.99995.

When we increase the eccentricity to ey = 0.03 for
Mf,~0.001477647, the radial oscillation becomes
stronger than that of Fig. 3. But the overall behavior is
similar. Regarding the waveform, a phase difference to a
quasicircular case appears as shown in Fig. 5. More
quantitatively, the amplitude difference and the phase
difference are shown in Fig. 6. Along with the time, the
two differences decrease. This is because the eccentricity is
decreasing due to the circularizing effect of a gravitational
radiation. Near a merger, such a difference almost dis-
appears. This result supports our assumption that we ignore
the effect of eccentricity on the mass and spin of the final
Kerr black hole in (69) and (70). Near the merger, the
difference becomes larger again. But we note that the
maximal difference is 0.03 and 0.02 rad for the amplitude

o 04f P 0.4
s 02 . 0.2
Q (B YaVaVaVaeVaVaVaV, 0

£
E -0.2 | -0.2
0.4k
04 r 1 04
S o2t {02
I -
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04 :
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° with elliptic correction - 4
4 flux based on waveform -~ ‘/N 10
66-9 ) s . s s \ i s
0 1000 2000 3000 4000 5000 6000 7000 8000101200 101450
t[M] t[M]
FIG. 5. Similar to Fig. 1 but for two identical spinless black

holes with an eccentricity e, = 0.03 at M f, ~ 0.0015. The result
of ¢y = 0 is from the SEOBNRvV1 code, and the ¢y = 0.03 result
is from the SEOBNRE model.
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FIG. 6. Amplitude and phase comparison for /,, corresponding
to the case ¢y = 0.03 shown in Fig. 5. The result of ¢y = 01is from
the SEOBNRvI code, and the e; = 0.03 result is from the
SEOBNRE model.

and phase, respectively. This level of difference is the same
as the one we determined for the quasicircular case shown in
Fig. 2. So we believe this resulted from the same reason as in
quasicircular case. Similar to Fig. 4, we here have adjusted
the time coordinate of e, = O result to align with the merger
time of ¢y = 0.03, whichis 722, ~ 101345.99M. The over-
lap factor between the two waveforms shown in Fig. 5
is O = 0.99300.

When we increase the eccentricity more to ¢, = 0.3 for
Mf,~0.001477647, the radial oscillation becomes much
stronger as expected while the overall behavior is similar to
that of Fig. 3. Regarding the waveform, the oscillation
behavior of the amplitude can be clearly seen as shown in
Fig. 7. The amplitude difference and the phase difference
are quantitatively shown in Fig. 8. The overall behavior is
similar to that of Fig. 6. In this case, the maximal difference

N 3 0.4
=

@ 102
& | 0
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T 1-0.2
o

1 0.4

s {02
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5 !
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FIG. 7. Similar to Fig. 1 but for two identical spinless black

holes with eccentricity eq = 0.3 at M f, ~ 0.0015. The result of
eo = 0 is from the SEOBNRvI code, and the e; = 0.3 result is
from the SEOBNRE model.
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FIG. 8. Amplitude and phase comparison for /,, corresponding

to the case shown in Fig. 7. The result of ey = 0 is from the
SEOBNRV1 code, and the ¢, = 0.3 result is from the SEOBNRE
model.

in the early inspiral stage is 0.03 and 16 rad for the amplitude
and phase, respectively. Similar to Fig. 4, we here have
adjusted the time coordinate of e, = O result to align with
the merger time of ¢ = 0.3 which is 22, ~ 11357.098M.
The overlap factor between the two waveforms shown in
Fig. 7 is O = 0.46942.

When the initial eccentricity e, becomes bigger than 0.6
for M f, ~ 0.001477647, we find that the correction term of
the waveform (51) becomes significant which means the
perturbation assumption of the small eccentricity breaks
down. This situation may be improved by a higher order
post-Newtonian result for an eccentric orbit binary. But
unfortunately, the higher order PN results for an eccentric
orbit binary is not yet available. Of course, this does not
mean our model can be applied to ¢; < 0.6 cases. Cases
with such large eccentricity need more tests against, for
example, numerical relativity simulations. The tests done in
this subsection indicate that our SEOBNRE model can give
consistent results compared to the quasicircular case.

B. Comparison to advanced x model (ax model)

In [36], the authors proposed a x model to describe the
gravitational waveform for an eccentric orbital binary black
hole. For the early inspiral stage, the authors of [36] showed
consistency between the x model and the numerical
relativity simulation result. Noting that the x model is
based on a low order post-Newtonian approximation,
Huerta and his coworkers improved the x model with high
order PN results to get an advanced x model (ax model) in
[34]. The full ax model includes inspiral, merger, and
ringdown stages. Similar to our treatment about a merger
and ringdown, the ax model also makes the assumption that
the eccentricity is small and has been dissipated away
before the merger. So here, we only compare our
SEOBNRE model to an ax model for the inspiral part.

PHYSICAL REVIEW D 96, 044028 (2017)
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FIG. 9. Comparison between the ax model and the SEOBNRE
model for the ¢y, = 0 case.

In the ax model, the adiabatic picture is taken. So the
eccentricity itself is treated as a dynamical variable. In all,
the ax model includes dynamical variables eccentricity e,
reduced orbital frequency x = (oM )?/3 with @ the orbital
frequency, the mean anomaly /, and the relative angular
coordinate ¢. In the comparison here, we take the initial
data x = 0.05, [ = ¢ = 0 and vary e.

Firstly, we compare the e, = 0 case in Fig. 9. Overall the
two waveforms show very good consistency, which cor-
responds to the result of a fitting factor 0.95 with respect to
the advanced LIGO determination in [34]. But we can still
see some amplitude differences near the merger, and some
phase differences when the evolution time becomes longer.
Since we have confirmed our SEOBNRE model in Figs. 1
and 2 for the e; = 0 case, we attribute this difference to the
relatively low order PN approximation of an ax model.
Effectively, the EOBNR model admits more than a 3.5 PN
order [7,72]; this is why we call the ax model a relatively
low PN order. The overlap factor between the two wave-
forms (inspiral part, r < 0) shown in Fig. 9 is O = 0.99802.

In contrast to the ax model, the eccentricity is not an
explicitly dynamical variable in the SEOBNRE model. And
limited by the simplified method, we have taken to treating
the initial data described in the above section; we start our
SEOBNRE simulation from the somewhat low frequency
Mfy~0.001477647 and vary different e, to fit the ax
model result. The fitting process has not been optimized, so
the real consistency result may be better than the ones
presented here. We have considered two concrete examples.
The first example is ey = 0.1 at xy = 0.05 for an ax model
and ey = 0.15 at M f, =~ 0.001477647 for the SEOBNRE
model. The initial eccentricity for the SEOBNRE model is
larger. We suspect this is because the effective initial
separation implemented in the SEOBNRE model is larger
than the one in an ax model. After some evolution time, the
circularization effect drives the eccentricity within the
SEOBNRE model to the one presented in an ax model.
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FIG. 10. Comparison between an ax model (ey = 0.1,

x9 =0.05) and the SEOBNRE model (¢y =0.15, Mfy=
0.001477647).

The comparison result is shown in Fig. 10. We can see the
consistency of the amplitude and phase between the ax
model and the SEOBNRE model lasts more than 8000 M.
The overlap factor between the two waveforms shown in
Fig. 10 is O =0.93031. Our second example is the
comparison between e, = 0.3 at x, = 0.05 of the ax model
and ey = 0.4 at Mf,=0.001477647 of the SEOBNRE
model. The result is shown in Fig. 11. The consistency
of the amplitude and phase between an ax model and
the SEOBNRE model lasts about 5000 M. The overlap
factor between the two waveforms shown in Fig. 11
is O = 0.66617.

C. Comparison to numerical relativity results

No matter how reasonable, we have taken several
approximations when we construct our SEOBNRE model.
In contrast to this situation, numerical relativity solves the
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s
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FIG. 11. Comparison between the ax model (ey = 0.3,

Xo=0.05) and the SEOBNRE model (¢, =04, Mf,~
0.001477647).
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Einstein equation directly [73]. Up to the numerical error,
the results given by numerical relativity is the exact solution
to the Einstein equation. So we can use the simulation
results by numerical relativity to check and calibrate the
validity of the SEOBNRE model. Since the EOBNR
models have been well calibrated to numerical relativity
results for circular cases, and our SEOBNRE model can
recover the usual EOBNR model as shown in Figs. 1 and 2
for ey = 0 case, there is no surprise that our SEOBNRE
model is consistent to quasicircular simulation results of
numerical relativity.

For eccentric cases, there are some subtleties in defining
the eccentricity due to the “in”-spiral effect reduced by the
gravitational radiation. In this work, we are not intending to
touch this subtle problem involved in numerical relativity
[74,75]. Instead, we take the similar recipe adopted in the
above subsection to do the comparison. For a given
numerical relativity simulation result, we vary the initial
eccentricity e, corresponding to M f, ~ 0.001477647 for
SEOBNRE to fit the numerical relativity result. Again the
fitting process is not optimized, so the consistency between
our SEOBNRE model and the numerical relativity result
may be better than the ones presented here.

We have done three comparisons in the current work.
The numerical relativity simulation results come from the
public data [76], which are calculated by the SPEC code
[77]. The first one is the waveform SXS:BBH:0091 [76],
which corresponds to an equal mass, spinless binary
black hole with an initial eccentricity e, = 0.02181 starting
to evolve at an orbital frequency M f, = 0.0105565727235.
On the SEOBNRE side, the initial eccentricity is ¢y = 0.1
starting to evolve at an orbital frequency Mf, =
0.001477647, which is the same as the ones shown in
previous figures. The comparison is presented in Fig. 12.

SXS:BBH:0091
SEOBNRE

0.2 |

Re(hyp R/M)

-02

0.2 |

Im(hyy R/M)

02

-12000 -8000 -4000 0

t[M]

FIG. 12. SXS:BBH:0091 one is the SPEC simulation result for
an equal mass spinless binary black hole with ¢, = 0.02181 at an
orbital frequency 0.0105565727235. The SEOBNRE one corre-
sponds to ey = 0.1 at Mf,~0.001477647 for an equal mass
spinless binary black hole.
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Although the eccentricity involved in this comparison is
somewhat small, the oscillation of the gravitational wave-
form amplitude is clear. The consistency for both the
amplitude and the phase is quite good. The overlap factor
between the two waveforms shown in Fig. 12 is
O =0.99201. At the same time, we also note that the
overlap factor between the numerical relativity waveform
and the ¢; = 0 SEOBNRE waveform is 0.990. Our second
comparison for a numerical relativity simulation result is
SXS:BBH:0106 [76]. Both the numerical relativity simu-
lations result and the SEOBNRE simulation admit exactly
the same eccentricity parameters as the first comparison.
The only difference to the first comparison is the mass ratio
for the binary black hole, which is 5:1 here. The com-
parison is shown in Fig. 13. The overlap factor between the
two waveforms shown in Fig. 13 is O =0.99739. In
contrast, the overlapping factor between the numerical
relativity waveform and the ¢; = 0 SEOBNRE waveform
is 0.989. Interestingly, we find that the consistency between
the numerical relativity result and the SEOBNRE result is
even better than the first one. The SEOBNRE result can
recover the numerical relativity result for the whole
inspiral-merger-ringdown process. We can understand this
result as follows. As shown by Peters through a post-
Newtonian approximation in [19], the decay of an eccen-
tricity and the lifetime for the binary can be estimated

de 304 My 121
@ T B (- ezwze(l T304 ) (73)
768 5d’
T(ag. eg) = EWA?I% (1—e)">, (74)

where a means the separation (semimajor axis) of the
binary, and the subindex 0 means the initial quantities.
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FIG. 13. SXS:BBH:0106 one is the sPEC simulation result for

two spinless black holes with a mass ratio 1:5 start orbit with
ep = 0.02181 at an orbital frequency 0.0105565727235. The
SEOBNRE one corresponds to e = 0.1 at M f, ~ 0.001477647
for two spinless black holes with a mass ratio 1:5.
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Definitely this estimation can not be correct for the late
inspiral and merger stages considered in the current paper.
But this estimation can give us a qualitative picture.
Compare Figs. 12 and 13, we can see the lifetime for
the mass ratio 5:1 binary is much shorter than the one for
the equal mass case. According to the above lifetime
estimation, we can deduce that the initial separation for
amass ratio 5: 1 binary is shorter than that of an equal mass
one. The initial separations used in the numerical relativity
simulations are 19 for an equal mass binary and 14 for a
mass ratio 5:1 binary, respectively. Although these sepa-
ration values are gauge dependent, they show consistency
to the PN prediction. Then noting that the eccentricity
decay is proportional to the fourth power of a, we can
expect that the eccentricity decay involved in Fig. 13 case is
much faster than that in Fig. 12. Faster eccentricity decay
results in a smaller eccentricity during the later process. So
our small eccentricity assumption works better.

Our third comparison investigates a larger eccentricity
case for an equal mass binary. On the numerical relativity
simulation side, the initial eccentricity is ey = 0.1935665
starting to evolve at an orbital frequency Mf, =
0.0146842176288. The eccentricity is about 1 order larger
than the above two cases. The simulation data correspond to
SXS:BBH:0323 [76]. The mass ratio of the two black holes
in this simulation is 11:9. And the dimensionless spins
for the big and small black hole are 0.33 and —0.44,
respectively. On the SEOBNRE side, the initial eccentricity
is eg = 0.3 starting to evolve at an orbital frequency
Mf, = 0.001477647. The comparison is shown in Fig. 14.
During the inspiral stage, we can see the waveform amplitude
and phase are roughly consistent between the numerical

I

-4000 -2000 -200 0
t [M] t [M]

0.4 SXS:BBH:0323

SEOBNRE

Re(hy, RIM)

Im(hyy R/M)

FIG. 14. SXS:BBH:0323 one is the SPEC simulation result for
two spinless black holes with an equal mass start orbit with ey =
0.1935665 at an orbital frequency 0.0146842176288. SEOBNRE
one corresponds to ey = 0.3 at Mf,~0.001477647 for two
black holes with a mass ratio 11:9 and spin y; = 0.33 and
x> = —0.44, respectively, which corresponds to the setting of
SXS:BBH:0323.
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relativity result and the SEOBNRE result. The overlap
factor between the two waveforms shown in Fig. 14 is
O =0.98171. In contrast, the overlap factor between the
numerical relativity waveform and the ¢; = 0 SEOBNRE
waveform is 0.849. Because of the larger eccentricity, the
consistency is not as good as the e, ~ 0.02 cases shown in
Figs. 12 and 13. But we can note that the consistency is quite
good for the merger and ringdown stage. We suspect this is
because the eccentricity has decayed quite an amount, so the
consistency improves during these stages.

D. Comparison to Teukolsky equation results
for an extreme mass ratio binary

The largest mass ratio of binary black holes investigated
by numerical relativity is 100:1 [15]. But the simulation
only lasts two orbits, which is too short to be used for a
gravitational waveform analysis. Until now, the mass ratio
of a binary black hole investigated by numerical relativity
for gravitational waveform usage is less than 20:1 [9-12].
This limitation of numerical relativity is due to the com-
putational cost for a finite difference code, and/or due to the
complicated computational grid adjustment for a spectral
code. In the future, the finite element code may be some
help for this problem [78—80]. But it is still under develop-
ment. In contrast, our SEOBNRE model is free from this
kind of limitation. This is similar to all other EOBNR
models.

When the mass ratio becomes quite large, the small black
hole can be looked as a perturbation source with respect to
the spacetime of the large black hole. Consequently, the
Teukolsky formalism is reasonable to treat this kind of
binary problem. In [39], we constructed such a model to
investigate the extreme mass ratio binary system. In [38],
one of us applied such a model to investigate the eccentric
binary black holes. It is interesting to compare the results
found in [38] and the ones simulated with the SEOBNRE
model proposed here.

In all we have tested four cases. All of them are binary
black holes with a mass ratio about 1000:1. More
accurately, the symmetric mass ratio is # = 1073, The
dynamical variables involved in the Teukolsky model
[38,39] are the same as the ones in the SEOBNRE model.
So for the comparison in this subsection, we set the initial
data for the SEOBNRE model exactly the same as the ones
for the Teukolsky model. More concretely, within spherical
coordinate, we set ry = lf’eo with py =12, ¢y, = 0.3,
¢o =0, p,, =0, and p, , similar to the Fig. 4 of [38].

Not like the above test cases, which involve slowly
spinning black holes considered in previous subsec-
tions, the four test cases here admit high-spin black holes.
We set the big black hole spinning while leaving the small
black hole spinless. The spin parameters y for the four
test cases are 0.9, 0.5, —0.5, and —0.9, respectively.
Here, the negative value means the spin direction is
antiparalleled to the direction of the orbital angular
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momentum of the binary. And the parameters p, for
the initial data are 3.75295952324398, 3.86330280736881,
4.19862434393390, and 4.35790829850906, respectively.
Different to the Fig. 4 of [38], here we have fixed p, = 12
while varied p, for corresponding y. This setting makes it
easier to check the effect of y on the gravitational
waveform.

The gravitational waveform description adopted in [38]
used £, . (note the y-axis label typos involved in the Fig. 4
of [38]). In order to make the comparison easier between
the results in current paper and the ones in [38], we also
adopt s, , to describe the gravitational waveform in this
subsection. This is different to the spherical harmonic
modes description used in previous subsections. Here,
we ignore the higher than 22 spherical harmonic modes
and relate the &, to hy, through

,’l+ - lh>< - h22_2Y22 + h;z_zYz_z, (75)
where we have used the relation h,_, = h}, with an upper
star denoting the complex conjugate [58]. Then, &, , are
functions of direction angles. Following the Fig. 4 of [38],
we plot hﬁx(% ,0) in Fig. 15. Overall, we can see that the
consistency between the results of the Teukolsky model and
the ones of the SEOBNRE model is good. When the
comparison time becomes longer, the phase difference
shows up. In Fig. 16, we compare the phase of h, — ik,
corresponding to the cases shown in Fig. 15.

As mentioned above, the four cases admit the same
initial separation parameter p, = 12. Based on Newtonian
gravity, the same mass ratio, the same initial separation, and

Teukolsky
SEOBNRE

0.1 01F —
£ £
s oI 5 sl

-0.1 0.1 F E

0.1 01F .
: WMMW 5 MMWMAG
< <

-0.1 -0.1

0.1 0.1+ -
5 A = i)
< \ J < / }

-0.1 -0.1

0.1 0.1
5 oMMW\/M : {\N\MM/W
< <

-0.1 -0.1

500 1000 1500 2000 500 1000 1500 2000
t M] t[M]

FIG. 15. Comparison between the Teukolsky equation based

model (marked with ‘Teukolsky’) and the SEOBNRE model. All
cases here admit a mass ratio about 1:1000, initial eccentricity

= 0.3, and the initial separation parameter p, = 12. From top
row to bottom row, the corresponding initial orbital angular
momentum are y = 0.9, Py, = 3.75; y=0.5, Py, = 3.86;
x =-05, py, =4.20, and y = -0.9, p,, = 4.36, respectively.
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Teukolsky
500} SEOBNRE ]

0

500 - 1

500 b

Phase of (h,-ih,)

500 1

0 5000 10000 15000
t[M]

20000

FIG. 16. Phase comparison of &, — ih, between the Teukolsky
equation based model and the SEOBNRE model. Cases corre-
spond to those of Fig. 15, respectively.

the same eccentric setting may roughly reduce the same
orbital angular frequency. But we can see the larger y ones
admit a little bit faster frequency of a gravitational wave-
form, while correspondingly, a smaller orbital angular
momentum py, (3.75 < 3.86 < 4.20 < 4.36). We attribute
this to the faster frame dragging effect of the big black hole.
In order to stay at the same radius position, corotating
objects need a smaller orbital angular momentum, but the
antirotating objects need a larger orbital angular momen-
tum. And the frame dragging effect makes the gravitational
wave frequency bigger for the corotating case while smaller
for the antirotating case.

The overlap factors between the two respective wave-
forms for the cases shown in Fig. 15 are O = 0.985367,
0.9852009, 0.986240, and 0.985558 for y = 0.9, 0.5, —0.5,
and —0.9, respectively. When the comparison time increases
to 20000 M, the overlap factors decrease to 0.690179,
0.672447, 0.549308, and 0.498645, respectively. One cau-
tion is in order here. Neither the SEOBNRE model nor the
Teukolsky model is guaranteed to be accurate at 1 post-
adiabatic order. So the good overlapping does not mean
either model is accurate enough for gravitational wave
detection usage. Since the two models make different
approximations and therefore introduce different errors,
the good overlapping does imply those differences are
ignorable for the compared cases. Only when one post-
adiabatic results are available, our SEOBNRE model can be
checked more quantitatively for extreme mass ratio systems.

IV. DISCUSSION AND CONCLUSION

The EOBNR model has contributed much to the gravi-
tational wave detection. But the existing EOBNR models
are limited to quasicircular (e = 0) systems. Without a
doubt, the EOBNR model will continue to play an
important role in the following LIGO observations. After
about 20 years, space-based detectors will begin to work. It
is interesting and important to ask whether the EOBNR
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model can still play an important role in the space-based
gravitational wave detection. Among the gravitational wave
sources for space-based detectors, binary systems are
important. And many such binary systems admit an
eccentric orbital motion [81]. A partial reason for this fact
is that the decay rate of the eccentricity is proportional to
the symmetric mass ratio. So although it may be not all of
the issues limiting the EOBNR model to work for space-
based detectors, the eccentric orbit problem is an important
point blocking the EOBNR model to work for space-based
detectors. So it is quite important to extend the EOBNR
model to describe eccentric binary systems. We proposed
the first such extending model in the current paper—the
SEOBNRE model.

Our idea for constructing the SEOBNRE model is
combining the existing excellent property of EOBNR models
for quasicircular binary and the corrections coming from the
eccentric orbit motion. The strategy is expanding, involving
quantities with respect to the eccentricity by assuming the
smallness of the eccentricity. Then we calculate the correc-
tion terms coming from the eccentricity through the post-
Newtonian approximation. Although the post-Newtonian
order of the correction terms we determine is only to second
order, we expect that such kinds of correction terms may
work well. The reason is because when the eccentricity is
large, the separation of the binary is also large, then a relative
low order post-Newtonian approximation is necessary.
Along with the decreasing of the separation of the binary,
the eccentricity also decreases due to the circularizing effect
of the gravitational radiation. Consequently, the correction
terms contribution is weaker and weaker. In contrast,
although the high PN order approximation is needed due
to the decrease of the separation, the existing excellent
property of the EOBNR model can do the job.

Our SEOBNRE model includes a Hamiltonian [Eq. (17)],
waveform expression [Egs. (52) and (68)] and the related
energy flux [Eq. (60)]. We have compared our SEOBNRE
model against the quasicircular EOBNR model for a con-
sistency check. For e = 0, the SEOBNRE model can recover
the existing EOBNR models well. When the eccentricity e
increases, the difference between the SEOBNRE model and
the quasicircular EOBNR model grows. We have introduced
an overlap factor as defined in (71) to quantify this differ-
ence. When e < 0.03, the difference is small. The corre-
sponding overlap factor is larger than 0.99. When e > 0.1,
the overlap factor becomes very low. As an example, the
overlap factor for ¢ = 0.3 becomes 0.47. This result added
evidences to the literature [33] that a quasicircular template
will break down when the eccentricity becomes larger
than 0.1.

We have also compared the SEOBNRE model against
another eccentric binary waveform model—the ax model
[34]. When e < 0.15, the overlap factor between the ax
model and the SEOBNRE model is bigger than 0.9. This
implies the consistency between the ax model and the
SEOBNE model. As an example of the e > 0.2 cases, the
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overlap factor for e¢ = 0.3 between the ax model and
the SEOBNRE model is as low as 0.67. This cautions
us that more investigations are needed for the waveform
model about highly eccentric binary.

Numerical relativity (NR) simulation results can be
looked as the standard answer for the eccentric binary.
We have tested three numerical relativity simulation results.
These three cases include spinless binary and spinning
binary, equal mass binary, and unequal mass binary.
Compared to NR simulations with eccentricity 0.02, 0.02,
and 0.19, the overlap factor for SEOBNRE model is 0.992,
0.997, and 0.982, respectively. In contrast, the overlap factor
between a NR waveform and a e = 0 SEOBNRE waveform
is 0.990, 0.989, and 0.849, respectively.

Motivated by the gravitational wave sources for a space-
based detector, we have applied the SEOBNRE model to
extreme mass ratio binaries. Specifically, we considered
binaries with a mass ratio 1 to 1000. Since numerical
relativity is not available yet for this kind of binaries, we
compared the SEOBNRE model against the Teukolsky
equation based model. Both spin aligned cases and anti-
aligned cases are considered. All cases admit a high
eccentricity e = 0.3. If we only care about time lasting
several thousands M, the overlap factor between the
SEOBNRE model and the Teukolsky equation based model
is then 0.9. For a total mass M = 10°, solar mass binaries of
several thousands M corresponds to the time of hours. If we
consider avlasting time with tens of thousands M, the
overlap factor drops below 0.7. Although the Teukolsky
equation based model does not represent the standard
answer as numerical relativity, this result also reminds us
more work is needed when a long duration time is involved.

In the current paper, a simple overlap factor is considered
to quantify the accuracy of the SEOBNRE model. For
realistic gravitational wave detection, a much more detailed
accuracy requirement [82-86] is needed. It is interesting to
ask if our SEOBNRE model is ready or not for particular
detection projects, such as eLISA [24], LISA [26], Taiji
[27], and Tianqgin [28]. We leave such investigation as

|
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future works. On the other hand, there at least two possible
clues to improve the SEOBNRE model. The first one is
calculating higher PN order terms for the eccentric cor-
rection. The second one is the trick adopted by Pan and his
coworkers when they developed the EOBNR model [7].
The trick is adding some tuning parameters into the
SEOBNRE model and then requiring these parameters to
fit the calibration waveform such as numerical relativity
simulation results. Noting that we did not put in any tunable
parameters in the eccentric correction terms, there are two
strategies to apply the mentioned trick. The first one is
adjusting the existing parameters introduced in the original
EOBNR models. The second one is adding more param-
eters into the eccentric correction terms and adjusting them.

Regarding the merger and ringdown parts waveform
(68), the possible improvement is taking the effect of the
eccentricity on the mass and the spin of the final Kerr black
hole into consideration. This point needs many more
numerical relativity simulations to extend the relations
(69) and (70) to include eccentricity. We leave these
investigations to future study.
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APPENDIX A: DETAIL EXPRESSIONS FOR
THE SEOBNRE HAMILTOANIAN

The SEOBNR Hamiltonian develops gradually, so the
overall expressions are spread throughout the literature. In
this Appendix section, we collect all the results for the
SEOBNR Hamiltonian together. Our major references are
[51,56]. The involved terms corresponding to Eq. (18) can
be expressed as the following:

e =pipit a\/l +77pir; + Qa(p).

(A1)

piS,r = Be' ' p,p:Ser* + B2 (X (\/Q+ Q)S, + p,p,rSa/A, — P2S,A,)]
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e

where S, is the spin of the test particle deduced in the
effective-one-body reduction. Following SEOBNRv1, we
set dgg = —09.5, dheges = 2.75. Our setting exactly fol-
lows the SEOBNRvV1 code [63]. In the above equations, we
have used notations
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Weosy = — A2 s
t

where the prime denotes the derivatives with respect to r.
(7, p) are the canonical variable within Boyer-Lindquist
coordinate of the geodesic motion, while p is the momen-

tum vector within the tortoise coordinate. p and i; are
related through [87]

I IR &, -1
p=p—n(i-p) o (A20)
AA,
= _ A21
fa="3 i (A21)

Within a spherical coordinate ¥ = (r, 0, ¢), we set @ along
the & = 0 direction, so £ = sinf in (A10).

APPENDIX B: DETAIL EXPRESSIONS FOR THE
ECCENTRIC PART OF SEOBNRE WAVEFORM

In this Appendix section, we show the detailed calcu-
lation for the eccentric part of the SEOBNRE waveform.
We begin with the notations introduced in Eq. (50) as the
following:

0, = / (e, — ie}) 2V 3,dQ, (B1)
P,0;; = /Nn —ief)” 2Y5,dQ, (B2)
P,0, = / N, ( 2Y5dQ,  (B3)
Pnn®ij = /NQ( = I€; ) 2Yﬁzd.Q., (B4)

an®ij = /Nan(e — ielxj)_QY;de, (BS)
Pu®y = [ Niel — ey Wi (B0
Pnnn@u /N3 2Y22d§2 (B7)
Pon®y; = / N2N (], — i€} 2Y3pdQ.  (BS)
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Pp®;j = / N N2(e} = ief)2V5,dQ.  (B9)
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In the above equations, we have listed by the components order 11, 12, 13,22, 23, and 33 within a Cartesian coordinate. The
position and velocity components mean 7 = (X, X, X3), U, = (v}, v, v3). And more we have
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APPENDIX C: POST-NEWTONIAN ENERGY FLUX FOR AN ECCENTRIC BINARY

In this Appendix section, we show the post-Newtonian energy flux for an eccentric binary. Following [34] for the circular
part, we can combine the results involved in SEOBNRvI1 [14,34,88] to get
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with aq = 153.8803, a, = —55.13, a, = 588, a3 = —1144. These a values are taken from [34,88]. Here, x = y/v. The PN
results for an elliptic orbit read [60,61]
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where the PN order for the nonspin part and spin-spin interaction part is second, but the PN order for the spin-orbit
interaction part is only 1.5.
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