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Binary black hole systems are among the most important sources for gravitational wave detection. They
are also good objects for theoretical research for general relativity. A gravitational waveform template is
important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an
essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary
systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an
interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric
binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic
assumption in the model construction is that the involved eccentricity is small. We have compared our
eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our
eccentric EOBNR model against another recently proposed eccentric binary waveform model; against
numerical relativity simulation results; and against perturbation approximation results for extreme mass
ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as
about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases,
including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our
eccentric model can be the starting point to develop a faithful template for future space-based gravitational
wave detectors.
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I. INTRODUCTION

The direct detection of gravitational waves (GW) has
been announced recently by LIGO [1–3], which opens a
brand new window to the Universe-gravitational wave
astronomy. The success of LIGO is based on both the
tremendous development of experimental technology
and the improvement of theoretical research in the past
decades. A matched filtering data analysis technique is very
important to gravitational wave detection. As GW150914,
GW151226, and GW170104 have witnessed, the matched
filtering technique has improved the data quality and/or even
made the noisy data detectable. Regarding GW150914 and
GW170104, we are somewhat lucky. The signal is so strong
that the matched filtering data analysis technology is not
necessary to catch the signal, although the matched filtering
data analysis can strongly improve the signal to noise ratio
(SNR) and confidence level. Regarding GW151226, the
signal is much weaker than that of GW150914 and
GW170104. Without the matched filtering data analysis
technology, the signal is completely invisible. In contrast,
the matched filtering data analysis technology digs out

the signal from the stronger noise with a SNR 13 and
a confidence level 5σ. GW151226 is a good example
showing that the detection of the GW is the result of a
combination of experimental achievement and theoretical
research progress [4].
In order to make the matched filtering technique work,

the gravitational waveform template is essential [4]. And
the template strongly depends on the specific theoretical
model of the GW source. Currently, there are two theo-
retical models which are ready for gravitational wave data
analysis. They are an effective-one-body-numerical-relativity
(EOBNR) model [5] and IMRPhenom model [6]. For
example, all of GW150914, GW151226 and GW170104
depends strongly upon these two models.
The EOBNR model [7] is a combination of an effective-

one-body theory of post-Newtonian approximation and
numerical relativity. About the template bank of the binary
black hole gravitationalwaveform, the related parameters are
divided into intrinsic ones and extrinsic ones. The EOBNR
model needs only to be concerned about the intrinsic
parameters, including the total mass of the binary black
holeM, the mass ratio q≡ m1

m2
≥ 1, the spins of the two black

holes S⃗1;2, and the eccentricity of the orbit e. The extrinsic
parameters, including the luminosity distance D, the source*zjcao@amt.ac.cn
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location ðθ;ϕÞ, the configuration of the orbit with respect to
the sight direction ðι; βÞ, the reaching timeof the signal t0, the
initial phaseϕ0, and the polarization anglewith respect to the
detector ψ, can be straightforwardly involved when we
construct the template bank from EOBNR model.
To the quasicircular e ¼ 0 and nonprecession (S⃗1;2

perpendicular to the orbit plane) binary black hole systems
with a mass ratio q ∈ ð1; 20

1
Þ, the EOBNRmodel has done a

quite good job [5]. (Note that the author in [8] mentioned
the EOBNR model is valid for a mass ratio range 1 < q <
100 and a spin range −1 < χ < 0.99. But as pointed out by
[9–12], the current EOBNRmodel can at most be calibrated
to a numerical relativity only for the range 1 < q < 20 and
−0.85 < χ < 0.85.) Regarding the precession binaries, a
primary development of EOBNR model is available [13].
Very recently, we have done an initial investigation to extend
the EOBNR model to include a gravitational wave memory
in Ref. [14]. As to the mass ratio, there is no essential
difficulty to extend the EOBNR model to cover a larger
parameter range. But the current simulation power of
numerical relativity limits such a development [15]. In
principle, if only the relevant numerical relativity results
are available, the EOBNRmodel can be calibrated to involve
the mass ratio. Regarding the eccentricity, the situation is
different. Until now, the EOBNRmodel only worked for the
e ¼ 0 case. Reference [16] touched on this problem, but
the authors only considered the energy flux while they left
the relevant gravitational waveform alone. Although the
EOBNR model admits the kinds of limitations as described
above, it provides a framework which makes it possible to
extend the EOBNR model to treat these limitations.
Recently, the authors in [17] have extended EOB framework
to a scalar-tensor theory. Hopefully, ones can treat the
gravitational waveform template for different gravitational
theories [18] within one uniform framework, the EOBNR
model, in the future.
Because of the circularization effect of gravitational

radiation [19], one may expect that the binary black hole
systems are always near circular when they enter the LIGO
frequency band. But recent investigations show that it is not
absolutely true. The study of the galactic cluster M22
indicate that about 20% of the binary black hole (BBH)
mergers in globular clusters will have eccentricities larger
than 0.1 when they first enter the advanced LIGO band at
10 Hz [20] and that ∼10% may have eccentricities e ∼ 1
[21]. Furthermore, a fraction of galactic field binaries may
retain a significant eccentricity prior to the merger event
[22]. BBHs formed in the vicinity of supermassive black
holes (BH) may also merge with significant residual
eccentricities [23]. For space-based detectors such as
eLISA [24], LISA [25,26], Taiji [27], and Tianqin [28],
the orbit of the involved binary black hole systems may be
highly eccentric due to recent perturbations by other
orbiting objects [29,30]. Recently, there are many authors
that care about the binary black hole systems with an

eccentric orbit with regards to gravitational wave detection
[31–34].
Assuming a low eccentricity, the authors of [31]

extended a low order PN waveform model in a frequency
domain to include the eccentricity. They called the corre-
sponding model a postcircular (PC) model. Later, the
authors of [32] improved the PCmodel to an EPC (enhanced
postcircular) model which recovers the TaylorF2 model
when the eccentricity vanishes. The EPC model is a
phenomenological extension of the PC model. Its overall
PN order is 3.5. Some numerical relativity simulations have
been paid in the past to the eccentric binary black hole
systems [35–37].Alongwith the numerical relativity results,
the xmodelwas proposed in [36]. The xmodel is a low order
post-Newtonian (PN) model. Recently, this model was
improved to include inspiral, merger, and ringdown phases,
and higher PN order terms for a vanishing eccentricity part
were included. This model was called the ax model by the
authors of [34]. All thesemodels are valid for anymass ratio.
Regarding the large mass ratio binary black hole sys-

tems, one may look to the binary system as a perturbation
of the big black hole. Then the gravitational wave problem is
decomposed into the trajectory problem and the related
waveform problem. In [38], one of us investigated the
eccentric binary using the Teukolsky equation to treat the
waveform problem and combined the conserved EOB
dynamics with a numerical energy flux to treat the trajectory
[39]. In [38,39], the Teukolsky equation is solved numeri-
cally. One can also solve it through some analytical method
[40] or post-Newtonian approximation [41]. In [42], the
authors used a geodesic equation to treat the eccentric orbit
of a large mass ratio binary and used the Teukolsky equation
to treat the waveform problem. Interestingly, people have
used the method of the geodesic equation and the Teukolsky
equation to find that the eccentricity may increase [43,44]
instead of always decaying as found through the post-
Newtonian approximation [19]. In addition, people used the
method of the geodesic equation and the Teukolsky equation
to find the interesting transient resonance phenomena
[45,46]. When a binary system passes through a transient
resonance, the radial frequency and polar frequency become
commensurate, and the orbital parameters will show a jump
behavior. To our knowledge, the post-Newtonian approxi-
mationmethod can not yet give the eccentricity increase and
the transient resonance results. Of course, it is possible that
the available post-Newtonian result is not accurate enough
to get these two interesting phenomena. But it is also
deserving to ask whether these two phenomena imply that
the perturbation method breaks down. Ideally, ones may
use a numerical relativity simulation to check this problem.
But unfortunately, current numerical relativity techniques
are far away from investigating this problem due to the huge
computational cost for large mass ratio binary systems [15]
(see [47]). Hopefully, the effective-one-body-numerical-
relativity (EOBNR) model may be used to check this
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problem. This is because on the side of almost equal mass
cases, the EOBNR framework can be and has been cali-
brated against numerical relativity; on the side of extreme
mass ratio cases, the EOB framework can also be and has
also been used to describe the dynamics and the gravitational
waveform [48]. So we can expect the EOBNR framework
may play a bridge role to connect the numerical relativity
result with a largemass ratio problem. In order to realize this
kind of investigation, we need a EOBNR model valid for
eccentric binary systems, which is absent now. In the current
paper, we will go a step further to construct an EOBNR
model for eccentric binary systems.
This paper is organized as follows. In the next section,

we will describe the extended EOBNR model, including
eccentricity. We call our model SEOBNRE (spinning
effective-one-body-numerical-relativity model for eccentric
binary). This model includes three essential parts, which
will be explained in detail, respectively, in the subsections
of next section. The involved detailed calculations and long
equations are postponed to the Appendixes. Then in
Sec. III, we check and test our SEOBNRE model against
the quasicircular EOBNR model, against the existing
eccentric waveform model–ax model, against the numerical
relativity simulation results, and against the Teukolsky
equation based waveform model for extreme mass ratio
binary systems. Finally, we give a summary and a dis-
cussion in Sec. IV. Throughout this paper, we will use the
units c ¼ G ¼ 1. Regarding the mass of the binary, we
always assume m1 ≥ m2.

II. WAVEFORM MODEL FOR ECCENTRIC
BINARY BASED ON THE EOBNR MODEL

An effective one body technique is a standard trick to
treat the two body problem in the central force situation of
classical mechanics, especially for the Newtonian gravity
theory [49]. In [50], Buonanno and Damour introduced the
seminal idea of an effective-one-body approach for a
general relativistic two body problem. The effective-one-
body approach needs many inputs from a post-Newtonian
approximation, but it is more powerful than a post-
Newtonian approximation. Unlike the post-Newtonian
approximation, which will diverge before the late inspiral
stage of the binary evolution, the effective-one-body
approach works until the binary merger. And moreover,
it is convenient for the effective-one-body approach to
adopt the result of a perturbation method [48]. At the same
time, we can also combine the results of the effective-one-
body approach and numerical relativity. As done first by
Pan and his coworkers in [7], such combination gives the
effective-one-body numerical relativity (EOBNR) model.
Currently, the most advanced EOBNR model is the
SEOBNR, which includes version 1 [51], version 2 [5],
and version 3 [3,52,53]. SEOBNR is valid only for a
quasicircular orbit and black hole spin perpendicular to the
orbital plane, which means the precession is not presented.

In this paper, we will extend the SEOBNR model to treat
the eccentric orbit.
The EOB approach includes three building parts: (1) a

description of the conservative part of the dynamics of two
compact bodies, which is represented by a Hamiltonian;
(2) an expression for the radiation-reaction force, which is
added to the conservative Hamiltonian equations of motion;
and (3) a description of the asymptotic gravitational
waveform emitted by the binary system. The part 1 is
independent of the character of the involved orbit. In other
words, the part 1 is valid no matter whether the orbit is
circular or eccentric. In the current paper, we adopt the
result from the SEOBNRv1 model, which will be summa-
rized in the following. Regarding parts 2 and 3, the current
SEOBNRv1 model is not valid to an eccentric orbit. We
will extend these two parts in the current work. For
convenience, we will refer to our model SEOBNRE, where
the last letter E represents eccentricity.

A. Conservative part for SEOBNRE model

The conservative part for the SEOBNRE model is the
same to that of SEOBNRv1 [51]. But the related equations
are distributed in different papers. For convenience, we give
a summary here.
The basic idea of the EOB approach is reducing the

conservative dynamics of the two body problem in general
relativity to a geodesic motion (more precisely, the
Mathisson-Papapetrou-Dixon equation [54]) on the top
of a reduced spacetime, which corresponds to the reduced
one body. Roughly, the reduced spacetime is a deformed
Kerr black hole with the metric form [55]

ds2¼ gttdt2þgrrdr2þgθθdθ2þgϕϕdϕ2þ2gtϕdtdϕ; ð1Þ

gtt ¼ −
Λt

ΔtΣ
; ð2Þ

grr ¼ Δr

Σ
; ð3Þ

gθθ ¼ 1

Σ
; ð4Þ

gϕϕ ¼ 1

Λt

�
−

~ω2
fd

ΔtΣ
þ Σ
sin2 θ

�
; ð5Þ

gtϕ ¼ −
~ωfd

ΔtΣ
; ð6Þ

where

Σ ¼ r2 þ a2 cos2 θ; ð7Þ

Δt ¼ r2
�
AðuÞ þ a2u2

M2

�
; ð8Þ
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Δr ¼
Δt

DðuÞ ; ð9Þ

Λt ¼ ω̄4 − a2Δt sin2 θ; ð10Þ

ω̄≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; ð11Þ

~ωfd ¼ 2MarþMaη
r

ðωfd
1 M2 þ ωfd

2 a2Þ: ð12Þ

We still call the coordinate ðt; r; θ;ϕÞ used here the
Boyer-Lindquist coordinate. Following SEOBNRv1, we
set ωfd

1 ¼ 0 and ωfd
2 ¼ 0. Here, M and a are, respectively,

the mass and the Kerr spin parameter of the deformed Kerr
black hole

M ≡m1 þm2; ð13Þ

Ma⃗≡ σ⃗ ≡ a⃗1m1 þ a⃗2m2; ð14Þ

and we have used notation u≡ M
r , and

AðuÞ≡ 1 − 2uþ 2ηu3 þ η

�
94

3
−
41

32
π2
�
u4; ð15Þ

DðuÞ≡ 1=f1þ log½1þ 6ηu2 þ 2ð26 − 3ηÞηu3�g; ð16Þ

where η≡ m1m2

ðm1þm2Þ2 is the symmetric mass ratio of the

binary with the components mass m1, m2 and Kerr
parameter a⃗1 and a⃗2.
Corresponding to the geodesic motion, or to say the

Mathisson-Papapetrou-Dixon equations, the Hamiltonian
can be written as [51,56]

H ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η

�
Heff

Mη
− 1

�s
; ð17Þ

Heff ¼ HNS þHS þHSC: ð18Þ

The detailed expressions for the quantities HNS, HS, and
HSC involved in the above Hamiltonian are listed in the
Appendix A.
Based on the above given Hamiltonian, we have then the

equation of motion with respect to the conservative part as

_⃗r ¼ ∂H
∂ ~⃗p ; ð19Þ

_⃗
~p ¼ −

∂H
∂r⃗ : ð20Þ

B. Gravitational waveform part for the
SEOBNRE model

In the EOBNR framework, the gravitational waveform
is described by spin-weighted −2 spherical harmonic
modes. These kinds of modes are also extensively used
in numerical relativity [57]. In SEOBNRv1, the modes l ∈
f2; 3; 4; 5; 6; 7; 8g; m ∈ ½−l;l� are available. Note that only
the positive m modes are considered while the negative m
modes are produced through relation hlm ¼ ð−1Þlh�l;−m
[58]. Here, � means the complex conjugate.
In this work, we only consider the ðl; mÞ ¼ ð2; 2Þ mode

although other modes can be straightforwardly extended.
Our basic idea is decomposing the waveform into a
quasicircular part and an eccentric part. The strategy is
following [34]. We treat the eccentric part as a perturbation
by assuming that the eccentricity is small. Regarding the
quasicircular part, we borrow exactly the ones from
SEOBNRv1. For convenience, we firstly review this part.
Within the EOBNR framework, the waveform is divided
into two segments. One is after a merger, which is described
with the quasinormal modes of some Kerr black hole. The
other is an inspiral-plunge stage, which is described in the
factorized form as [58]

hðCÞlm ¼ hðN;ϵÞ
lm ŜðϵÞeffTlmeiδlmðρlmÞlNlm; ð21Þ

hðN;ϵÞ
lm ¼ Mη

R
nðϵÞlmclþϵVl

ΦY
l−ϵ;−m

�
π

2
;Φ

�
; ð22Þ

where R is the distance to the source;Φ is the orbital phase;
YlmðΘ;ΦÞ are the scalar spherical harmonics. Particularly
for the (2,2) mode, we have [51,58,59]

ϵ ¼ 0; ð23Þ

V2
Φ ¼ v2Φ; ð24Þ

v⃗Φ ¼ v⃗p − n⃗ðv⃗p · n⃗Þ; v⃗p ≡ _⃗r ¼ ∂H
∂ ~⃗p ; ð25Þ

nð0Þlm ¼ ðimÞl 8π

ð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðlþ 2Þ

lðl − 1Þ

s
; ð26Þ

cl ¼
�

m2

m1 þm2

�
l−1

þ ð−1Þl
�

m1

m1 þm2

�
l−1

; ð27Þ

Ŝð0Þeff ¼
Heff

Mη
; ð28Þ

Tlm ¼ Γðlþ 1 − 2imΩHÞ
Γðlþ 1Þ eπmΩHþ2imΩH lnð2mΩr0Þ; ð29Þ

Ω≡ v3Φ; r0 ≡ 2ðm1 þm2Þffiffiffi
e

p ; ð30Þ
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Nlm ¼
�
1þ ~p2

r

ðrΩÞ2
�
ahlm1 þ ahlm2

r
þ ahlm3 þ ahlm3S

r3=2
þ ahlm4

r2
þ ahlm5

r5=2

��

× exp

�
i

�
~pr

rΩ
bhlm1 þ ~p3

r

rΩ

�
bhlm2 þ bhlm3

r1=2
þ bhlm4

r

���
; ð31Þ

δ22 ¼
7

3
v̄3 þ

�
428

105
π −

4

3
a

�
v̄6 þ

�
1712

315
π2 −

2203

81

�
v̄9 − 24ηv5Φ þ 20

63
av8Φ; ð32Þ

ρ22 ¼ 1þ
�
55

84
η −

43

42

�
v2Φ −

2

3
½χSð1 − ηÞ þ χA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
�v3Φ þ

�
a2

2
−
20555

10584
−
33025

21168
ηþ 19583

42336
η2
�
v4Φ −

34

21
av5Φ

þ
�
1556919113

122245200
þ 89

252
a2 −

48993925

9779616
η −

6292061

3259872
η2 þ 10620745

39118464
η3 þ 41

192
ηπ2 −

428

105
eulerlog2ðv2ΦÞ

�
v6Φ

þ
�
18733

15876
aþ 1

3
a3
�
v7Φ

þ
�
18353

21168
a2 −

1

8
a4 − ð5.6þ 117.6ηÞη − 387216563023

160190110080
þ 9202

2205
eulerlog2ðv2ΦÞ

�
v8Φ

−
�
16094530514677

533967033600
−
439877

55566
eulerlog2ðv2ΦÞ

�
v10Φ ; ð33Þ

χS ¼
a1=m1 þ a2=m2

2
; χA ¼ a1=m1 − a2=m2

2
; ð34Þ

where we have defined the eulerlogmðv2ΦÞ≡ γEþ lnð2mvΦÞ
with γE ≈ 0.5772156649015328606065120900824024
being the Euler constant. In the equation of Nlm, the
parameters ahlm1 , ahlm2 , ahlm3 , bhlm1 , bhlm2 are functions of η,
and the parameters ahlm3S , ahlm4 , ahlm5 , bhlm3 , and bhlm4 are
functions of a and η. Following SEOBNRv1, we construct
data tables for ahlmi , ahlm3S , bhlm1 and bhlm2 based on the
numerical relativity results of some specific cases for a
and η. Then, we interpolate to get the wanted values for the a
and η in question. Then, we solve the conditions (21)–(25) of
[51] for bhlm3 and bhlm4 .

For the eccentric part, the post-Newtonian (PN) result is
valid until second PN order [60]

hij ¼ 2ηðQij þ P
1
2Qij þ PQij þ P

3
2Qij þ P

3
2Qij

tailÞ; ð35Þ

Qij ¼ 2

�
vipv

j
p −

ninj

r

�
; ð36Þ

P
1
2Qij ¼ ðm1 −m2Þ

�
3Nn

r
ðnivjp þ vipnj − _rninjÞ

þ Nv

�
ninj

r
− 2vipv

j
p

��
; ð37Þ

PQij ¼ 1

3

�
ð1 − 3ηÞ

�
N2

n

r

��
3v2p − 15_r2 þ 7

r

�
ninj þ 15_rðnivjp þ vipnjÞ − 14vipv

j
p

�

þ NnNv

r
ð12_rninj − 16ðnivjp þ vipnjÞÞ þ N2

v

�
6vipv

j
p −

2

r
ninj

��
þ
�
3ð1 − 3ηÞv2p − 2

ð2 − 3ηÞ
r

�
vipv

j
p

þ 2

r
_rð5þ 3ηÞðnivjp þ vipnjÞ þ

�
3ð1 − 3ηÞ_r2 − ð10þ 3ηÞv2p þ

29

r

�
ninj

r

�
; ð38Þ
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P
3
2Qij ¼ ðm1 −m2Þð1 − 2ηÞ

�
N3

n

r

�
5

4

�
3v2p − 7_r2 þ 6

r

�
_rninj −

17

2
_rvipv

j
p −

�
21v2p − 105_r2 þ 44

r

�
nivjp þ vipnj

12

�

þ 1

4

N2
nNv

r

�
58vipv

j
p þ

�
45_r2 − 9v2p −

28

r

�
ninj − 54_rðnivjp þ vipnjÞ

�
þ 3

2

NnN2
v

r
ð5ðnivjp þ vipnjÞ − 3_rninjÞ

þ 1

2
N3

v

�
ninj

r
− 4vipv

j
p

��
þ δm

12

Nn

r

�
ðnivjp þ vipnjÞ

�
_r2ð63þ 54ηÞ − 128 − 36η

r
þ v2pð33 − 18ηÞ

�

þ ninj _r

�
_r2ð15 − 90ηÞ − v2pð63 − 54ηÞ þ 242 − 24η

r

�
− _rvipv

j
pð186þ 24ηÞ

�

þ ðm1 −m2ÞNv

�
1

2
vipv

j
p

�
3 − 8η

r
− 2v2pð1 − 5ηÞ

�
−
nivjp þ vipnj

2r
_rð7þ 4ηÞ

−
ninj

r

�
3

4
ð1 − 2ηÞ_r2 þ 1

3

26 − 3η

r
−
1

4
ð7 − 2ηÞv2p

��
; ð39Þ

P
3
2Qij

tail ¼ 4v5p½πðλiλj − ninjÞ þ 6 ln vpðλinj þ niλjÞ�: ð40Þ

In the above equations, we have used the following
notations. N̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cosϕÞ is the radial
direction to the observer. p̂¼ðcosθcosϕ;cosθsinϕ;−sinθÞ
lies along the line of nodes. q̂ ¼ N̂ × p̂ and more notations
include [60,61]

Nn ¼ N̂ · n⃗; ð41Þ

Nv ¼ N̂ · v⃗p; ð42Þ

λ⃗ ¼ v⃗p − ðv⃗p · n⃗Þn⃗
jv⃗p − ðv⃗p · n⃗Þn⃗j

: ð43Þ

We define the spin-weighted spherical harmonic modes as

ϵþij ¼
1

2
ðp̂ip̂j − q̂iq̂jÞ; ð44Þ

ϵ×ij ¼
1

2
ðp̂iq̂j þ q̂ip̂jÞ: ð45Þ

hþ ¼ ϵþijh
ij; ð46Þ

h× ¼ ϵ×ijh
ij: ð47Þ

h ¼ hþ − ih×; ð48Þ

hl;m ¼
Z

h−2Y�
l;mdΩ: ð49Þ

Based on the above results, we express the (2,2) mode as

h22 ¼ 2η½ΘijðQij þ P0Qij þ P
3
2Qij

tailÞ þ PnΘijðP
1
2
nQij þ P

3
2
nQijÞ þ PvΘijðP

1
2
vQij þ P

3
2
vQijÞ þ PnnΘijPnnQij

þ PnvΘijPnvQij þ PvvΘijPvvQij þ PnnnΘijP
3
2
nnnQij þ PnnvΘijP

3
2
nnvQij þ PnvvΘijP

3
2
nvvQij

þ PvvvΘijP
3
2
vvvQij�: ð50Þ

The involved notations, such Θij and PnΘij, are explained
one by one in the Appendix B.
We assume the h22 in the Eq. (50) includes a quasicir-

cular part corresponding to h22j_r¼0 and the left eccentric
part. It is straightforward to check that h22j_r¼0 is consistent
to the Eq. (9.3) of [62]. So we define the eccentric
correction as

hðPNEÞ
22 ¼ h22 − h22j_r¼0; ð51Þ

where h22 means the one given in the Eq. (50). In summary,
the inspiral-plunge waveform for SEOBNRE is

hinsp−plun22 ¼ hðCÞ22 þ hðPNEÞ
22 ; ð52Þ

where hðCÞ22 is given in Eq. (21).

C. Radiation-reaction force for the SEOBNRE model

We have mentioned the conservative part of the EOB
dynamics in Eqs. (19) and (20). But that is only a partial
part of the whole EOB dynamics. The left part is related
to the radiation-reaction force. Assuming the radiation-
reaction force is F⃗ , then the whole EOB dynamics can be
expressed as
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_⃗r ¼ ∂H
∂ ~⃗p ; ð53Þ

_⃗
~p ¼ −

∂H
∂r⃗ þ F⃗ : ð54Þ

In the SEOBNRv1 model, the radiation-reaction force F⃗ is
related to the energy flux of the gravitational radiation dE

dt
through [51]

F⃗ ¼ 1

MηωΦjr⃗ × ~⃗pj
dE
dt

~⃗p; ð55Þ

ωΦ ¼ jr⃗ × _⃗rj
r2

: ð56Þ

Here, we need to note the sign of dEdt . Since E here means the
energy of the binary system, E decreases due to the
gravitational radiation, dE

dt < 0. So people sometimes call
it dissipation. This corresponds to the SEOBNRv1 code
[63], since it treats quasicircular cases without precession,

jr⃗ × ~⃗pj ≈ ~pϕ, which reduces

F⃗ ¼ 1

MηωΦ

dE
dt

~⃗p
~pϕ

: ð57Þ

Regarding the energy flux dE
dt , the SEOBNR model

relates it to the gravitational waveform through [59]

−
dE
dt

¼ 1

16π

X
l

Xl
m¼−l

j _hlmj2: ð58Þ

And the more the SEOBNRmodel assumes the dependence
of hlm onto time, it is more of an harmonic oscillation.
So _hlm ≈mΩhlm with Ω the orbital frequency of the
binary. Then,

−
dE
dt

¼ 1

16π

X
l

Xl
m¼−l

ðmΩÞ2jhlmj2 ð59Þ

¼ 1

8π

X
l

Xl
m¼1

ðmΩÞ2jhlmj2: ð60Þ

Like theEOBNRmodels, our SEOBNREmodel is valid only
for spin aligned binary black holes (spin is perpendicular to
the orbital plane). In these systems, there is no precession to
be involved. Most importantly, these systems admit a plane
reflection symmetry with respect to the orbital plane.
Because of this symmetry of the corresponding spacetime
and the symmetry of the spin-weighted spherical harmonic
functions, we have [Eqs. (44)–(46) of [64]]

hðt; π − θ;ϕÞ ¼ h�ðt; θ;ϕÞ; ð61Þ

−2Yl;−mðπ − θ;ϕÞ ¼ −2Y�
lmðθ;ϕÞ: ð62Þ

Here, we have used ðθ;ϕÞ to represent the spherical
coordinate with respect to the gravitational wave source.
Consequently, we have hlm ¼ ð−1Þlh�l;−m [58]. In the
second equality of the above energy flux equation, the
SEOBNR model has taken this relation into consideration
and has neglected the “memory” modes hl0 [14,65].
We also note that some authors use the relation hlm ¼
ð−1Þlh�l;−m as an assumption in the cases where the plane
reflection symmetry breaks down [5,13,52].
In our SEOBNRE model, we follow the steps of the

SEOBNRv1model to construct the radiation reaction force.
The only difference is replacing the waveform with our
SEOBNRE waveforms (52).
Besides the above method to calculate the energy flux,

one may also calculate dE
dt based on a post-Newtonian

approximation together with results from the conservative
part of the EOBNR model. This is the method taken by the
ax model [34]. Similar to the idea we have taken to treat the
waveform in the above Sec. II A, we divide the energy flux
into two parts which correspond to the circular part and the
noncircular correction part. Then, the overall energy flux
can be written as

dE
dt

¼ dE
dt

				
ðCÞ

þ dE
dt

				
Elip

−
dE
dt

				
Elip;_r¼0

: ð63Þ

We give the detail calculations for the post-Newtonian
energy fluxes including dE

dt jðCÞ and dE
dt jElip for eccentric

binary in the Appendix C.

D. Initial data setting for the SEOBNRE dynamics

Within the EOB framework, we solve the dynamical
Eqs. (53) and (54), then plug the evolved dynamical
variables into the waveform expression (52). But first,
we need to setup the initial value for the dynamical
variables ðr⃗; ~⃗pÞ. We take two steps to set the initial values.
First, we look for the dynamical variable values for a
circular orbit (the authors in [66] call it a spherical orbit).
Secondly, we adjust the momentum to achieve wanted
eccentricity. In this work, we consider binary black holes
with a spin perpendicular to the orbital plane. So the
dynamics can be described with the test particle moves on
the ecliptic plane of the central deformed Kerr geometry
[58]. Within the Boyer-Lindquist coordinate, we have
ϕ ¼ 0, θ ¼ π

2
, ~pθ ¼ 0. In order to get r, ~pr, and ~pϕ, we

follow the Eqs. (4.8) and (4.9) of [66] to solve

dH
dr

¼ 0; ð64Þ

dH
d ~pθ

¼ 0; ð65Þ
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dH
d ~pϕ

¼ ω0; ð66Þ

where ω0 ¼ π
f0
is the speculated orbital frequency at initial

time and the f0 is the given frequency for a gravitational
wave at initial time. Assuming the resulting solution for r is
r̂, we adjust r through

r0 ¼ r̂=ð1þ e0Þ; ð67Þ

which means we put the test particle on the periastron of an
elliptic orbit with an eccentricity e0 based on a Newtonian
picture [38]. If the approximation of the test particle and the
Newtonian picture is not good enough, our initial data
setting method can not work well. More sophisticated initial
conditions for the eccentric binary black hole system are
possible [67]. We leave such investigations to future study.

E. Match the inspiral waveform to the
merger-ringdown waveform

Like other EOBNR models, we assume the ringdown
waveform can be described by the combination of quasi-
normal modes as

hmerger-RD
lm ¼

XN−1

n¼0

Almne−iσlmnðt−tlmmatchÞ; ð68Þ

where σlmn are the complex eigenvalues of the correspond-
ing quasinormal modes for a Kerr black hole, tlmmatch is the
matching time point, and Almn are the combination
coefficients for each mode. The same for SEOBNRv1
[63], we take N ¼ 8.
In order to determine σlmn, we need to know the mass

and spin of the final Kerr black hole. In principle, the mass
and the spin may be affected by the eccentricity. But here
we neglect such a dependence on the eccentricity as [34]
based on the assumption that the eccentricity is small for
the cases considered in current work. We specify the mass
and the spin of the final black hole following [68,69]

Mfinal ¼ M½1þ 4ðm0 − 1Þηþ 16m1η2ðχ1 þ χ2Þ�; ð69Þ

χfinal ≡ afinal
Mfinal

¼ χ0 þ ηχ0ðt4χ0 þ t5ηþ t0Þ

þ ηð2
ffiffiffi
3

p
þ t2ηþ t3η2Þ;

m0 ¼ 0.9515; m1 ¼ −0.013;

q ¼ m1

m2

; χ0 ¼ χ1 þ χ2q2

1þ q2
; χ1;2 ≡ a1;2

m1;2
;

t0 ¼ −2.8904; t2 ¼ −3.5171; t3 ¼ 2.5763;

t4 ¼ −0.1229; t5 ¼ 0.4537: ð70Þ

Note that the above relations are valid only for the spins of
the two black holes perpendicular to the orbital plane,
which are the cases considered in current work.
Regarding the matching time point tlmmatch, we determine it

based on inspiral dynamics as follows. For the inspiral part,
we solve the dynamics (53) and (54) until a time point which
is called “merger time point” for convenience. The criteria of
the “merger time point” is r < 6M, and the orbital frequency
begins to decrease. Then, we chose the matching time point
tlmmatch corresponding to the time of the peak amplitude of the
waveform hinsp−plunlm .
At last, we determine the coefficients Almn based on the

rule that the matching is smooth at tlmmatch through the first
order derivative of the waveform.

III. TEST RESULTS FOR THE SEOBNRE MODEL

In this section, we will compare our SEOBNREmodel to
several existing waveform results, including the SEOBNR
model, ax model, a numerical relativity simulation, and
Teukolsky equation results. In addition to the comparison
between the waveforms directly, we use an overlap factor to
quantify the difference between our SEOBNRE model and
these existing waveform results [70]. For two waveforms
hðtÞ and sðtÞ, the overlap factor is defined as

Oðh; sÞ≡ hhjsiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhjhihsjsip ; ð71Þ

with the inner product defined as

hhjsi≡ 4Re
Z

fmax

fmin

~hðfÞ~s�ðfÞ
SnðfÞ

df; ð72Þ

where ~ means the Fourier transformation, f represents
frequency, SnðfÞ is the one sided power spectral density of
the detector noise, and (fmin, fmax) is the frequency range of
the detector. As a typical example, we consider an
advanced LIGO detector in the following investigations.
More specifically, we take the sensitivity of LIGO-Hanford
during O1 run as our SnðfÞ, which was determined from the
LSC webpage [71]. Correspondingly, we take fmin ¼
20 Hz and fmax ¼ 2000 Hz. Like other existing waveform
models, the total mass M of the binary black hole, the
source location (θ, ϕ), the angles between the eccentric
orbit and the line direction (ι, β), and the polarization angle
ψ are free parameters [33]. But in order to let the waveform
fall into the LIGO’s frequency band, we choose M ¼
20M⊙ as an example to calculate the overlap factor O.
Regarding the five angles, values θ ¼ ϕ ¼ ι ¼ β ¼ ψ ¼ 0
are taken.

A. Comparison to SEOBNRv1

Firstly, we compare the result of the SEOBNRE model
with e0 ¼ 0 against to SEOBNRv1. We consider two
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spinless black holes with an equal mass. In Fig. 1
t22match ≈ 9048.1579M. The overlap factor between the
two waveforms shown in Fig. 1 is O ¼ 0.99998. At the
same time, we have also checked the energy flux − dE

dt jðCÞ
introduced in [34] which is shown in (C1) and the elliptical
orbit correction we calculated in (63). We find that the
energy flux (C1) can describe the real flux used by
SEOBNRE dynamics (60) quite well in the early inspiral
stage but fails at the late inspiral and plunge stage. At later
times, the energy flux (C1) even becomes positive, which is
unphysical. This implies that the PN energy flux expression
breaks down at the late inspiral and plunge stage.
In Fig. 2, we compare the waveform h22 more quantita-

tively, where the amplitude and phase are considered.
Regarding the elliptical orbit correction terms, as one
expects, they are ignorable before plunge in this quasicir-
cular case as shown in the bottom panel of Fig. 1. Near the
merger, our elliptic correction terms fail to distinguish a real
eccentric orbit with the plunge behavior in the quasicircular
orbit, so the difference for both the amplitude and phase
increase.At themerger, the differences for the amplitude and
phase get maximal values, about 0.03 and 0.026 rad,
respectively. As shown in Figs. 1 and 2, our SEOBNRE
model can recover the SEOBNRv1 result somewhat well. In
Figs. 1 and 2, we align the time at the simulation start time
(t ¼ 0), which corresponds to a gravitational wave fre-
quencyMf0≈0.004. For two 10M⊙ black holes, f0¼40Hz.
At this alignment time, we also set the phase of the
gravitational wave 0, which makes the comparison easier.

Our second testing case is two identical spinless
black holes with an eccentricity e0 ¼ 0.003 at Mf0≈
0.001477647, which corresponds to two 10M⊙ black holes
with f0 ¼ 15 Hz. As shown in Fig. 3, we can see clearly the
oscillation of a radial coordinate r with respect to time,
which corresponds to the eccentric orbital motion. But this
level of eccentricity is ignorable for a waveform as shown in
Fig. 4.Although small,we can see the oscillation behavior of
the energy flux with the same frequency to the r motion in
the bottompanel of Fig. 4.And again,we find that the energy
flux (C1) can describe the real flux quite well in the early
inspiral stage but fails at a late inspiral and plunge stage. In
Figs. 3 and 4,we have adjusted the time coordinate of e0 ¼ 0
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FIG. 1. Test for two identical spinless black holes with an
eccentricity e0 ¼ 0. The four top panels are comparison of the
(l ¼ 2, m ¼ 2) mode of the gravitational waveform for
SEOBNRE and SEOBNRv1. The bottom two panels are com-
parison of the energy flux for the one generated with waveform
(60), − dE

dt given in (63) and − dE
dt jðCÞ in (C1). In the plot, the

energy flux generated with waveform (60) is marked with “flux
based on waveform”. The − dE

dt given in (63) is marked with “with
elliptic correction”. The − dE

dt jðCÞ in (C1) is marked with “without
elliptic correction”. The SEOBNRE model is used in the energy
flux comparison.
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result to align with the merger time of e0 ¼ 0.003, which is
t22match ≈ 128427.86M. The overlap factor between the two
waveforms shown in Fig. 4 is O ¼ 0.99995.
When we increase the eccentricity to e0 ¼ 0.03 for

Mf0 ≈ 0.001477647, the radial oscillation becomes
stronger than that of Fig. 3. But the overall behavior is
similar. Regarding the waveform, a phase difference to a
quasicircular case appears as shown in Fig. 5. More
quantitatively, the amplitude difference and the phase
difference are shown in Fig. 6. Along with the time, the
two differences decrease. This is because the eccentricity is
decreasing due to the circularizing effect of a gravitational
radiation. Near a merger, such a difference almost dis-
appears. This result supports our assumption that we ignore
the effect of eccentricity on the mass and spin of the final
Kerr black hole in (69) and (70). Near the merger, the
difference becomes larger again. But we note that the
maximal difference is 0.03 and 0.02 rad for the amplitude

and phase, respectively. This level of difference is the same
as the onewe determined for the quasicircular case shown in
Fig. 2. Sowe believe this resulted from the same reason as in
quasicircular case. Similar to Fig. 4, we here have adjusted
the time coordinate of e0 ¼ 0 result to align with the merger
time of e0 ¼ 0.03, which is t22match ≈ 101345.99M. The over-
lap factor between the two waveforms shown in Fig. 5
is O ¼ 0.99300.
When we increase the eccentricity more to e0 ¼ 0.3 for

Mf0 ≈ 0.001477647, the radial oscillation becomes much
stronger as expected while the overall behavior is similar to
that of Fig. 3. Regarding the waveform, the oscillation
behavior of the amplitude can be clearly seen as shown in
Fig. 7. The amplitude difference and the phase difference
are quantitatively shown in Fig. 8. The overall behavior is
similar to that of Fig. 6. In this case, the maximal difference
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holes with an eccentricity e0 ¼ 0.03 atMf0 ≈ 0.0015. The result
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in the early inspiral stage is 0.03 and 16 rad for the amplitude
and phase, respectively. Similar to Fig. 4, we here have
adjusted the time coordinate of e0 ¼ 0 result to align with
the merger time of e0 ¼ 0.3 which is t22match ≈ 11357.098M.
The overlap factor between the two waveforms shown in
Fig. 7 is O ¼ 0.46942.
When the initial eccentricity e0 becomes bigger than 0.6

forMf0 ≈ 0.001477647, we find that the correction term of
the waveform (51) becomes significant which means the
perturbation assumption of the small eccentricity breaks
down. This situation may be improved by a higher order
post-Newtonian result for an eccentric orbit binary. But
unfortunately, the higher order PN results for an eccentric
orbit binary is not yet available. Of course, this does not
mean our model can be applied to e0 < 0.6 cases. Cases
with such large eccentricity need more tests against, for
example, numerical relativity simulations. The tests done in
this subsection indicate that our SEOBNRE model can give
consistent results compared to the quasicircular case.

B. Comparison to advanced x model (ax model)

In [36], the authors proposed a x model to describe the
gravitational waveform for an eccentric orbital binary black
hole. For the early inspiral stage, the authors of [36] showed
consistency between the x model and the numerical
relativity simulation result. Noting that the x model is
based on a low order post-Newtonian approximation,
Huerta and his coworkers improved the x model with high
order PN results to get an advanced x model (ax model) in
[34]. The full ax model includes inspiral, merger, and
ringdown stages. Similar to our treatment about a merger
and ringdown, the ax model also makes the assumption that
the eccentricity is small and has been dissipated away
before the merger. So here, we only compare our
SEOBNRE model to an ax model for the inspiral part.

In the ax model, the adiabatic picture is taken. So the
eccentricity itself is treated as a dynamical variable. In all,
the ax model includes dynamical variables eccentricity e,
reduced orbital frequency x ≈ ðωMÞ2=3 with ω the orbital
frequency, the mean anomaly l, and the relative angular
coordinate ϕ. In the comparison here, we take the initial
data x ¼ 0.05, l ¼ ϕ ¼ 0 and vary e.
Firstly, we compare the e0 ¼ 0 case in Fig. 9. Overall the

two waveforms show very good consistency, which cor-
responds to the result of a fitting factor 0.95 with respect to
the advanced LIGO determination in [34]. But we can still
see some amplitude differences near the merger, and some
phase differences when the evolution time becomes longer.
Since we have confirmed our SEOBNRE model in Figs. 1
and 2 for the e0 ¼ 0 case, we attribute this difference to the
relatively low order PN approximation of an ax model.
Effectively, the EOBNR model admits more than a 3.5 PN
order [7,72]; this is why we call the ax model a relatively
low PN order. The overlap factor between the two wave-
forms (inspiral part, t < 0) shown in Fig. 9 isO ¼ 0.99802.
In contrast to the ax model, the eccentricity is not an

explicitly dynamical variable in the SEOBNREmodel. And
limited by the simplified method, we have taken to treating
the initial data described in the above section; we start our
SEOBNRE simulation from the somewhat low frequency
Mf0 ≈ 0.001477647 and vary different e0 to fit the ax
model result. The fitting process has not been optimized, so
the real consistency result may be better than the ones
presented here. We have considered two concrete examples.
The first example is e0 ¼ 0.1 at x0 ¼ 0.05 for an ax model
and e0 ¼ 0.15 at Mf0 ≈ 0.001477647 for the SEOBNRE
model. The initial eccentricity for the SEOBNRE model is
larger. We suspect this is because the effective initial
separation implemented in the SEOBNRE model is larger
than the one in an ax model. After some evolution time, the
circularization effect drives the eccentricity within the
SEOBNRE model to the one presented in an ax model.
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model for the e0 ¼ 0 case.
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The comparison result is shown in Fig. 10. We can see the
consistency of the amplitude and phase between the ax
model and the SEOBNRE model lasts more than 8000 M.
The overlap factor between the two waveforms shown in
Fig. 10 is O ¼ 0.93031. Our second example is the
comparison between e0 ¼ 0.3 at x0 ¼ 0.05 of the ax model
and e0 ¼ 0.4 at Mf0 ≈ 0.001477647 of the SEOBNRE
model. The result is shown in Fig. 11. The consistency
of the amplitude and phase between an ax model and
the SEOBNRE model lasts about 5000 M. The overlap
factor between the two waveforms shown in Fig. 11
is O ¼ 0.66617.

C. Comparison to numerical relativity results

No matter how reasonable, we have taken several
approximations when we construct our SEOBNRE model.
In contrast to this situation, numerical relativity solves the

Einstein equation directly [73]. Up to the numerical error,
the results given by numerical relativity is the exact solution
to the Einstein equation. So we can use the simulation
results by numerical relativity to check and calibrate the
validity of the SEOBNRE model. Since the EOBNR
models have been well calibrated to numerical relativity
results for circular cases, and our SEOBNRE model can
recover the usual EOBNR model as shown in Figs. 1 and 2
for e0 ¼ 0 case, there is no surprise that our SEOBNRE
model is consistent to quasicircular simulation results of
numerical relativity.
For eccentric cases, there are some subtleties in defining

the eccentricity due to the “in”-spiral effect reduced by the
gravitational radiation. In this work, we are not intending to
touch this subtle problem involved in numerical relativity
[74,75]. Instead, we take the similar recipe adopted in the
above subsection to do the comparison. For a given
numerical relativity simulation result, we vary the initial
eccentricity e0 corresponding to Mf0 ≈ 0.001477647 for
SEOBNRE to fit the numerical relativity result. Again the
fitting process is not optimized, so the consistency between
our SEOBNRE model and the numerical relativity result
may be better than the ones presented here.
We have done three comparisons in the current work.

The numerical relativity simulation results come from the
public data [76], which are calculated by the SPEC code
[77]. The first one is the waveform SXS:BBH:0091 [76],
which corresponds to an equal mass, spinless binary
black hole with an initial eccentricity e0 ¼ 0.02181 starting
to evolve at an orbital frequencyMf0 ¼ 0.0105565727235.
On the SEOBNRE side, the initial eccentricity is e0 ¼ 0.1
starting to evolve at an orbital frequency Mf0 ¼
0.001477647, which is the same as the ones shown in
previous figures. The comparison is presented in Fig. 12.
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Although the eccentricity involved in this comparison is
somewhat small, the oscillation of the gravitational wave-
form amplitude is clear. The consistency for both the
amplitude and the phase is quite good. The overlap factor
between the two waveforms shown in Fig. 12 is
O ¼ 0.99201. At the same time, we also note that the
overlap factor between the numerical relativity waveform
and the e0 ¼ 0 SEOBNRE waveform is 0.990. Our second
comparison for a numerical relativity simulation result is
SXS:BBH:0106 [76]. Both the numerical relativity simu-
lations result and the SEOBNRE simulation admit exactly
the same eccentricity parameters as the first comparison.
The only difference to the first comparison is the mass ratio
for the binary black hole, which is 5∶1 here. The com-
parison is shown in Fig. 13. The overlap factor between the
two waveforms shown in Fig. 13 is O ¼ 0.99739. In
contrast, the overlapping factor between the numerical
relativity waveform and the e0 ¼ 0 SEOBNRE waveform
is 0.989. Interestingly, we find that the consistency between
the numerical relativity result and the SEOBNRE result is
even better than the first one. The SEOBNRE result can
recover the numerical relativity result for the whole
inspiral-merger-ringdown process. We can understand this
result as follows. As shown by Peters through a post-
Newtonian approximation in [19], the decay of an eccen-
tricity and the lifetime for the binary can be estimated

de
dt

¼ −
304

15

M3η

a4ð1 − e2Þ5=2 e
�
1þ 121

304
e2
�
; ð73Þ

Tða0; e0Þ ¼
768

425

5a40
256M3η

ð1 − e20Þ7=2; ð74Þ

where a means the separation (semimajor axis) of the
binary, and the subindex 0 means the initial quantities.

Definitely this estimation can not be correct for the late
inspiral and merger stages considered in the current paper.
But this estimation can give us a qualitative picture.
Compare Figs. 12 and 13, we can see the lifetime for
the mass ratio 5∶1 binary is much shorter than the one for
the equal mass case. According to the above lifetime
estimation, we can deduce that the initial separation for
a mass ratio 5∶1 binary is shorter than that of an equal mass
one. The initial separations used in the numerical relativity
simulations are 19 for an equal mass binary and 14 for a
mass ratio 5∶1 binary, respectively. Although these sepa-
ration values are gauge dependent, they show consistency
to the PN prediction. Then noting that the eccentricity
decay is proportional to the fourth power of a, we can
expect that the eccentricity decay involved in Fig. 13 case is
much faster than that in Fig. 12. Faster eccentricity decay
results in a smaller eccentricity during the later process. So
our small eccentricity assumption works better.
Our third comparison investigates a larger eccentricity

case for an equal mass binary. On the numerical relativity
simulation side, the initial eccentricity is e0 ¼ 0.1935665
starting to evolve at an orbital frequency Mf0 ¼
0.0146842176288. The eccentricity is about 1 order larger
than the above two cases. The simulation data correspond to
SXS:BBH:0323 [76]. The mass ratio of the two black holes
in this simulation is 11∶9. And the dimensionless spins
for the big and small black hole are 0.33 and −0.44,
respectively. On the SEOBNRE side, the initial eccentricity
is e0 ¼ 0.3 starting to evolve at an orbital frequency
Mf0 ¼ 0.001477647. The comparison is shown in Fig. 14.
During the inspiral stage, we can see thewaveform amplitude
and phase are roughly consistent between the numerical
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two spinless black holes with a mass ratio 1∶5 start orbit with
e0 ¼ 0.02181 at an orbital frequency 0.0105565727235. The
SEOBNRE one corresponds to e0 ¼ 0.1 at Mf0 ≈ 0.001477647
for two spinless black holes with a mass ratio 1∶5.
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relativity result and the SEOBNRE result. The overlap
factor between the two waveforms shown in Fig. 14 is
O ¼ 0.98171. In contrast, the overlap factor between the
numerical relativity waveform and the e0 ¼ 0 SEOBNRE
waveform is 0.849. Because of the larger eccentricity, the
consistency is not as good as the e0 ≈ 0.02 cases shown in
Figs. 12 and 13. But we can note that the consistency is quite
good for the merger and ringdown stage. We suspect this is
because the eccentricity has decayed quite an amount, so the
consistency improves during these stages.

D. Comparison to Teukolsky equation results
for an extreme mass ratio binary

The largest mass ratio of binary black holes investigated
by numerical relativity is 100∶1 [15]. But the simulation
only lasts two orbits, which is too short to be used for a
gravitational waveform analysis. Until now, the mass ratio
of a binary black hole investigated by numerical relativity
for gravitational waveform usage is less than 20∶1 [9–12].
This limitation of numerical relativity is due to the com-
putational cost for a finite difference code, and/or due to the
complicated computational grid adjustment for a spectral
code. In the future, the finite element code may be some
help for this problem [78–80]. But it is still under develop-
ment. In contrast, our SEOBNRE model is free from this
kind of limitation. This is similar to all other EOBNR
models.
When the mass ratio becomes quite large, the small black

hole can be looked as a perturbation source with respect to
the spacetime of the large black hole. Consequently, the
Teukolsky formalism is reasonable to treat this kind of
binary problem. In [39], we constructed such a model to
investigate the extreme mass ratio binary system. In [38],
one of us applied such a model to investigate the eccentric
binary black holes. It is interesting to compare the results
found in [38] and the ones simulated with the SEOBNRE
model proposed here.
In all we have tested four cases. All of them are binary

black holes with a mass ratio about 1000∶1. More
accurately, the symmetric mass ratio is η ¼ 10−3. The
dynamical variables involved in the Teukolsky model
[38,39] are the same as the ones in the SEOBNRE model.
So for the comparison in this subsection, we set the initial
data for the SEOBNRE model exactly the same as the ones
for the Teukolsky model. More concretely, within spherical
coordinate, we set r0 ¼ p0

1þe0
with p0 ¼ 12, e0 ¼ 0.3,

ϕ0 ¼ 0, pr0 ¼ 0, and pϕ0
, similar to the Fig. 4 of [38].

Not like the above test cases, which involve slowly
spinning black holes considered in previous subsec-
tions, the four test cases here admit high-spin black holes.
We set the big black hole spinning while leaving the small
black hole spinless. The spin parameters χ for the four
test cases are 0.9, 0.5, −0.5, and −0.9, respectively.
Here, the negative value means the spin direction is
antiparalleled to the direction of the orbital angular

momentum of the binary. And the parameters pϕ0
for

the initial data are 3.75295952324398, 3.86330280736881,
4.19862434393390, and 4.35790829850906, respectively.
Different to the Fig. 4 of [38], here we have fixed p0 ¼ 12
while varied pϕ0

for corresponding χ. This setting makes it
easier to check the effect of χ on the gravitational
waveform.
The gravitational waveform description adopted in [38]

used hþ;× (note the y-axis label typos involved in the Fig. 4
of [38]). In order to make the comparison easier between
the results in current paper and the ones in [38], we also
adopt hþ;× to describe the gravitational waveform in this
subsection. This is different to the spherical harmonic
modes description used in previous subsections. Here,
we ignore the higher than 22 spherical harmonic modes
and relate the hþ;× to h22 through

hþ − ih× ¼ h22−2Y22 þ h�22
−2Y2−2; ð75Þ

where we have used the relation h2−2 ¼ h�22 with an upper
star denoting the complex conjugate [58]. Then, hþ;× are
functions of direction angles. Following the Fig. 4 of [38],
we plot hþ;×ðπ2 ; 0Þ in Fig. 15. Overall, we can see that the
consistency between the results of the Teukolsky model and
the ones of the SEOBNRE model is good. When the
comparison time becomes longer, the phase difference
shows up. In Fig. 16, we compare the phase of hþ − ih×
corresponding to the cases shown in Fig. 15.
As mentioned above, the four cases admit the same

initial separation parameter p0 ¼ 12. Based on Newtonian
gravity, the same mass ratio, the same initial separation, and
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the same eccentric setting may roughly reduce the same
orbital angular frequency. But we can see the larger χ ones
admit a little bit faster frequency of a gravitational wave-
form, while correspondingly, a smaller orbital angular
momentum pϕ0

(3.75 < 3.86 < 4.20 < 4.36). We attribute
this to the faster frame dragging effect of the big black hole.
In order to stay at the same radius position, corotating
objects need a smaller orbital angular momentum, but the
antirotating objects need a larger orbital angular momen-
tum. And the frame dragging effect makes the gravitational
wave frequency bigger for the corotating case while smaller
for the antirotating case.
The overlap factors between the two respective wave-

forms for the cases shown in Fig. 15 are O ¼ 0.985367,
0.985209, 0.986240, and 0.985558 for χ ¼ 0.9, 0.5, −0.5,
and−0.9, respectively.When the comparison time increases
to 20000 M, the overlap factors decrease to 0.690179,
0.672447, 0.549308, and 0.498645, respectively. One cau-
tion is in order here. Neither the SEOBNRE model nor the
Teukolsky model is guaranteed to be accurate at 1 post-
adiabatic order. So the good overlapping does not mean
either model is accurate enough for gravitational wave
detection usage. Since the two models make different
approximations and therefore introduce different errors,
the good overlapping does imply those differences are
ignorable for the compared cases. Only when one post-
adiabatic results are available, our SEOBNREmodel can be
checkedmore quantitatively for extrememass ratio systems.

IV. DISCUSSION AND CONCLUSION

The EOBNR model has contributed much to the gravi-
tational wave detection. But the existing EOBNR models
are limited to quasicircular (e ¼ 0) systems. Without a
doubt, the EOBNR model will continue to play an
important role in the following LIGO observations. After
about 20 years, space-based detectors will begin to work. It
is interesting and important to ask whether the EOBNR

model can still play an important role in the space-based
gravitational wave detection. Among the gravitational wave
sources for space-based detectors, binary systems are
important. And many such binary systems admit an
eccentric orbital motion [81]. A partial reason for this fact
is that the decay rate of the eccentricity is proportional to
the symmetric mass ratio. So although it may be not all of
the issues limiting the EOBNR model to work for space-
based detectors, the eccentric orbit problem is an important
point blocking the EOBNR model to work for space-based
detectors. So it is quite important to extend the EOBNR
model to describe eccentric binary systems. We proposed
the first such extending model in the current paper—the
SEOBNRE model.
Our idea for constructing the SEOBNRE model is

combining the existing excellent property ofEOBNRmodels
for quasicircular binary and the corrections coming from the
eccentric orbit motion. The strategy is expanding, involving
quantities with respect to the eccentricity by assuming the
smallness of the eccentricity. Then we calculate the correc-
tion terms coming from the eccentricity through the post-
Newtonian approximation. Although the post-Newtonian
order of the correction terms we determine is only to second
order, we expect that such kinds of correction terms may
work well. The reason is because when the eccentricity is
large, the separation of the binary is also large, then a relative
low order post-Newtonian approximation is necessary.
Along with the decreasing of the separation of the binary,
the eccentricity also decreases due to the circularizing effect
of the gravitational radiation. Consequently, the correction
terms contribution is weaker and weaker. In contrast,
although the high PN order approximation is needed due
to the decrease of the separation, the existing excellent
property of the EOBNR model can do the job.
Our SEOBNREmodel includes a Hamiltonian [Eq. (17)],

waveform expression [Eqs. (52) and (68)] and the related
energy flux [Eq. (60)]. We have compared our SEOBNRE
model against the quasicircular EOBNR model for a con-
sistency check. Fore ¼ 0, the SEOBNREmodel can recover
the existing EOBNR models well. When the eccentricity e
increases, the difference between the SEOBNREmodel and
the quasicircular EOBNRmodel grows.We have introduced
an overlap factor as defined in (71) to quantify this differ-
ence. When e < 0.03, the difference is small. The corre-
sponding overlap factor is larger than 0.99. When e > 0.1,
the overlap factor becomes very low. As an example, the
overlap factor for e ¼ 0.3 becomes 0.47. This result added
evidences to the literature [33] that a quasicircular template
will break down when the eccentricity becomes larger
than 0.1.
We have also compared the SEOBNRE model against

another eccentric binary waveform model—the ax model
[34]. When e < 0.15, the overlap factor between the ax
model and the SEOBNRE model is bigger than 0.9. This
implies the consistency between the ax model and the
SEOBNE model. As an example of the e > 0.2 cases, the
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overlap factor for e ¼ 0.3 between the ax model and
the SEOBNRE model is as low as 0.67. This cautions
us that more investigations are needed for the waveform
model about highly eccentric binary.
Numerical relativity (NR) simulation results can be

looked as the standard answer for the eccentric binary.
We have tested three numerical relativity simulation results.
These three cases include spinless binary and spinning
binary, equal mass binary, and unequal mass binary.
Compared to NR simulations with eccentricity 0.02, 0.02,
and 0.19, the overlap factor for SEOBNRE model is 0.992,
0.997, and 0.982, respectively. In contrast, the overlap factor
between a NR waveform and a e ¼ 0 SEOBNREwaveform
is 0.990, 0.989, and 0.849, respectively.
Motivated by the gravitational wave sources for a space-

based detector, we have applied the SEOBNRE model to
extreme mass ratio binaries. Specifically, we considered
binaries with a mass ratio 1 to 1000. Since numerical
relativity is not available yet for this kind of binaries, we
compared the SEOBNRE model against the Teukolsky
equation based model. Both spin aligned cases and anti-
aligned cases are considered. All cases admit a high
eccentricity e ¼ 0.3. If we only care about time lasting
several thousands M, the overlap factor between the
SEOBNREmodel and the Teukolsky equation based model
is then 0.9. For a total massM ¼ 106, solar mass binaries of
several thousandsM corresponds to the time of hours. If we
consider avlasting time with tens of thousands M, the
overlap factor drops below 0.7. Although the Teukolsky
equation based model does not represent the standard
answer as numerical relativity, this result also reminds us
more work is needed when a long duration time is involved.
In the current paper, a simple overlap factor is considered

to quantify the accuracy of the SEOBNRE model. For
realistic gravitational wave detection, a much more detailed
accuracy requirement [82–86] is needed. It is interesting to
ask if our SEOBNRE model is ready or not for particular
detection projects, such as eLISA [24], LISA [26], Taiji
[27], and Tianqin [28]. We leave such investigation as

future works. On the other hand, there at least two possible
clues to improve the SEOBNRE model. The first one is
calculating higher PN order terms for the eccentric cor-
rection. The second one is the trick adopted by Pan and his
coworkers when they developed the EOBNR model [7].
The trick is adding some tuning parameters into the
SEOBNRE model and then requiring these parameters to
fit the calibration waveform such as numerical relativity
simulation results. Noting that we did not put in any tunable
parameters in the eccentric correction terms, there are two
strategies to apply the mentioned trick. The first one is
adjusting the existing parameters introduced in the original
EOBNR models. The second one is adding more param-
eters into the eccentric correction terms and adjusting them.
Regarding the merger and ringdown parts waveform

(68), the possible improvement is taking the effect of the
eccentricity on the mass and the spin of the final Kerr black
hole into consideration. This point needs many more
numerical relativity simulations to extend the relations
(69) and (70) to include eccentricity. We leave these
investigations to future study.
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APPENDIX A: DETAIL EXPRESSIONS FOR
THE SEOBNRE HAMILTOANIAN

The SEOBNR Hamiltonian develops gradually, so the
overall expressions are spread throughout the literature. In
this Appendix section, we collect all the results for the
SEOBNR Hamiltonian together. Our major references are
[51,56]. The involved terms corresponding to Eq. (18) can
be expressed as the following:

HNS

Mη
¼ βipi þ α
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σ� ; σ� ¼ a1m2þa2m1; ðA6Þ

Δð1Þ
σ� ¼ η

12r
fσ½3ðQ − 1Þr − 8 − 36p̄2

nr�
þ σ�½4ðQ − 1Þrþ 14 − 30p̄2

nr�g; ðA7Þ

Δð2Þ
σ� ¼ σ

144r2
f4ð51η2 − 109ηÞðQ − 1Þr − 16½7ηð8þ 3ηÞ�

þ 810η2p̄4
nr2 − 45ηðQ − 1Þ2r2

− 6p̄2
nrð16ηþ 147η2 þ ð39η2 − 6ηÞðQ − 1ÞrÞg

−
σ�

72r2
f2ηð27η − 353Þ þ 2ð103η − 60η2ÞðQ − 1Þr

− 360η2p̄4
nr2 þ ð23þ 3ηÞηðQ − 1Þ2r2

þ 6p̄2
nr½54η2 − 47ηþ ð21η2 − 16ηÞðQ − 1Þr�g;

ðA8Þ

Δð3Þ
σ� ¼ dSOη

r3
σ�; ðA9Þ

where S� is the spin of the test particle deduced in the
effective-one-body reduction. Following SEOBNRv1, we
set dSO ¼ −69.5, dheffSS ¼ 2.75. Our setting exactly fol-
lows the SEOBNRv1 code [63]. In the above equations, we
have used notations

n⃗≡ r⃗
r
; ξ⃗≡ σ⃗

σ
× n⃗; v⃗≡ n⃗ × ξ⃗; ðA10Þ

pn ≡ p⃗ · n⃗; pξ ≡ p⃗ · ξ⃗; pv ≡ p⃗ · v⃗; ðA11Þ
Sn ≡ S⃗� · n⃗; Sξ ≡ S⃗� · ξ⃗; Sv ≡ S⃗� · v⃗; ðA12Þ

Sâ ≡ S⃗� ·
a⃗
a
; p̄n ≡

ffiffiffiffiffiffi
grr

p
pn; ~pn ≡ n⃗ · ~⃗p ðA13Þ

ν ¼ 1

2
log

�
ΔtΣ
Λt

�
; μ ¼ 1

2
logðΣÞ; ðA14Þ

ω≡ ~ωfd

Λt
; B≡ ffiffiffiffiffi

Δt

p
; ðA15Þ

νr ≡ r
Σ
þ ω̄2ðω̄2Δ0

t − 4rΔtÞ
2ΛtΔt

; μr ≡ r
Σ
−

1ffiffiffiffiffiffi
Δr

p ; ðA16Þ

ωr ≡ ~ωfd
0Λt − ~ωfdΛ0

t

Λ2
t

; Br ≡
ffiffiffiffiffiffi
Δr

p
Δ0

t − 2Δt

2
ffiffiffiffiffiffiffiffiffiffi
ΔtΔr

p ; ðA17Þ

νcosθ≡a2ω̄2 cosθðω̄2−ΔtÞ
ΛtΣ

; μcosθ≡a2 cosθ
Σ

; ðA18Þ

ωcos θ ≡ −
2a2 cos θΔt ~ωfd

Λ2
t

; ðA19Þ

where the prime denotes the derivatives with respect to r.

ðr⃗; ~⃗pÞ are the canonical variable within Boyer-Lindquist
coordinate of the geodesic motion, while p⃗ is the momen-

tum vector within the tortoise coordinate. p⃗ and ~⃗p are
related through [87]

p⃗ ¼ ~⃗p − n⃗ðn⃗ · ~⃗pÞ ξa − 1

ξa
; ðA20Þ

ξa ≡
ffiffiffiffiffiffiffiffiffiffi
ΔtΔr

p
r2 þ a2

: ðA21Þ

Within a spherical coordinate r⃗ ¼ ðr; θ;ϕÞ, we set a⃗ along
the θ ¼ 0 direction, so ξ ¼ sin θ in (A10).

APPENDIX B: DETAIL EXPRESSIONS FOR THE
ECCENTRIC PART OF SEOBNRE WAVEFORM

In this Appendix section, we show the detailed calcu-
lation for the eccentric part of the SEOBNRE waveform.
We begin with the notations introduced in Eq. (50) as the
following:

Θij ¼
Z

ðϵþij − iϵ×ijÞ−2Y�
22dΩ; ðB1Þ

PnΘij ¼
Z

Nnðϵþij − iϵ×ijÞ−2Y�
22dΩ; ðB2Þ

PvΘij ¼
Z

Nvðϵþij − iϵ×ijÞ−2Y�
22dΩ; ðB3Þ

PnnΘij ¼
Z

N2
nðϵþij − iϵ×ijÞ−2Y�

22dΩ; ðB4Þ

PnvΘij ¼
Z

NnNvðϵþij − iϵ×ijÞ−2Y�
22dΩ; ðB5Þ

PvvΘij ¼
Z

N2
vðϵþij − iϵ×ijÞ−2Y�

22dΩ; ðB6Þ

PnnnΘij ¼
Z

N3
nðϵþij − iϵ×ijÞ−2Y�

22dΩ; ðB7Þ

PnnvΘij ¼
Z

N2
nNvðϵþij − iϵ×ijÞ−2Y�

22dΩ; ðB8Þ
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PnvvΘij ¼
Z

NnN2
vðϵþij − iϵ×ijÞ−2Y�

22dΩ; ðB9Þ

PvvvΘij ¼
Z

N3
vðϵþij − iϵ×ijÞ−2Y�

22dΩ: ðB10Þ

Based on Eqs. (35)–(49), direct calculation gives

Θij ¼
�
1

3

ffiffiffi
π

5

r
;−

i
3

ffiffiffi
π

5

r
; 0;−

1

3

ffiffiffi
π

5

r
;

8

3
ffiffiffiffiffiffi
5π

p ; 0

�
; ðB11Þ

PnΘij¼
�
0;0;−

ffiffi
π
5

p ðx1− ix2Þ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þx22þx23

p ;0;

ffiffi
π
5

p ðix1þx2Þ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þx22þx23

p ;0

�
;

ðB12Þ

PvΘij ¼
�
0; 0;−

1

3

ffiffiffi
π

5

r
ðv1 − iv2Þ; 0;

1

3

ffiffiffi
π

5

r
ðiv1 þ v2Þ; 0

�
;

ðB13Þ

PnnΘij ¼
� ffiffi

π
5

p ð−x21 þ 8ix1x2 þ 7x22 þ x23Þ
21ðx21 þ x22 þ x23Þ

;−
i

ffiffi
π
5

p ð3x21 þ 3x22 þ x23Þ
21ðx21 þ x22 þ x23Þ

;
2

ffiffi
π
5

p ðx1 − ix2Þx3
21ðx21 þ x22 þ x23Þ

;

ffiffi
π
5

p ð−7x21 þ 8ix1x2 þ x22 − x23Þ
21ðx21 þ x22 þ x23Þ

;−
2i

ffiffi
π
5

p ðx1 − ix2Þx3
21ðx21 þ x22 þ x23Þ

;
8

ffiffi
π
5

p ðx1 − ix2Þ2
21ðx21 þ x22 þ x23Þ

�
; ðB14Þ

PnvΘij ¼
� ffiffi

π
5

p ð−v1x1 þ 4iv2x1 þ 4iv1x2 þ 7v2x2 þ v3x3Þ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p ;−
i

ffiffi
π
5

p ð3v1x1 þ 3v2x2 þ v3x3Þ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p ;

ffiffi
π
5

p ðv3ðx1 − ix2Þ þ ðv1 − iv2Þx3Þ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p ;

ffiffi
π
5

p ð−7v1x1 þ 4iv2x1 þ 4iv1x2 þ v2x2 − v3x3Þ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p ;

−
ffiffi
π
5

p ðv3ðix1 þ x2Þ þ ðiv1 þ v2Þx3Þ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p ;
8

ffiffi
π
5

p ðv1 − iv2Þðx1 − ix2Þ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p �
; ðB15Þ

PvvΘij ¼
�
1

21

ffiffiffi
π

5

r
ð−v21 þ 8iv1v2 þ 7v22 þ v23Þ;−

1

21
i

ffiffiffi
π

5

r
ð3v21 þ 3v22 þ v23Þ;

2

21

ffiffiffi
π

5

r
ðv1 − iv2Þv3;

1

21

ffiffiffi
π

5

r
ð−7v21 þ 8iv1v2 þ v22 − v23Þ;

−
2

21
i

ffiffiffi
π

5

r
ðv1 − iv2Þv3;

8

21

ffiffiffi
π

5

r
ðv1 − iv2Þ2

�
; ðB16Þ

PnnnΘij ¼
� ffiffi

π
5

p ðx1 − ix2Þ2x3
7ðx21 þ x22 þ x23Þ3=2

; 0;−
ffiffi
π
5

p ðx1 − ix2Þð2x21 þ 5ix1x2 þ 7x22 þ 3x23Þ
21ðx21 þ x22 þ x23Þ3=2

;

ffiffi
π
5

p ðx1 − ix2Þ2x3
7ðx21 þ x22 þ x23Þ3=2

;

ffiffi
π
5

p ðix1 þ x2Þð7x21 − 5ix1x2 þ 2x22 þ 3x23Þ
21ðx21 þ x22 þ x23Þ3=2

;−
2

ffiffi
π
5

p ðx1 − ix2Þ2x3
7ðx21 þ x22 þ x23Þ3=2

�
; ðB17Þ

PnnvΘij ¼
� ffiffi

π
5

p ðx1 − ix2Þðv3ðx1 − ix2Þ þ 2ðv1 − iv2Þx3Þ
21ðx21 þ x22 þ x23Þ

; 0;

−
ffiffi
π
5

p ððx1 − ix2Þð2v1x1 þ iv2x1 þ 4iv1x2 þ 7v2x2Þ þ 2v3ðx1 − ix2Þx3 þ ðv1 − iv2Þx23Þ
21ðx21 þ x22 þ x23Þ

;

ffiffi
π
5

p ðx1 − ix2Þðv3ðx1 − ix2Þ þ 2ðv1 − iv2Þx3Þ
21ðx21 þ x22 þ x23Þ

;

ffiffi
π
5

p ððx1 − ix2Þð7iv1x1 þ 4v2x1 þ v1x2 þ 2iv2x2Þ þ 2v3ðix1 þ x2Þx3 þ ðiv1 þ v2Þx23Þ
21ðx21 þ x22 þ x23Þ

;

−
2

ffiffi
π
5

p ðx1 − ix2Þðv3ðx1 − ix2Þ þ 2ðv1 − iv2Þx3Þ
21ðx21 þ x22 þ x23Þ

�
; ðB18Þ
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PnvvΘij ¼
� ffiffi

π
5

p ðv1 − iv2Þð2v3ðx1 − ix2Þ þ ðv1 − iv2Þx3Þ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p ; 0;

−
ffiffi
π
5

p ðv23ðx1 − ix2Þ þ v21ð2x1 þ ix2Þ þ v22ð4x1 − 7ix2Þ − 2iv2v3x3 þ 2v1ðiv2x1 þ 4v2x2 þ v3x3ÞÞ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p ;

ffiffi
π
5

p ðv1 − iv2Þð2v3ðx1 − ix2Þ þ ðv1 − iv2Þx3Þ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p ;

ffiffi
π
5

p ðv23ðix1 þ x2Þ þ v22ð−ix1 þ 2x2Þ þ v21ð7ix1 þ 4x2Þ þ 2v2v3x3 þ v1ð8v2x1 − 2iv2x2 þ 2iv3x3ÞÞ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p ;

−
2

ffiffi
π
5

p ðv1 − iv2Þð2v3ðx1 − ix2Þ þ ðv1 − iv2Þx3Þ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p �
; ðB19Þ

PvvvΘij ¼
�
1

7

ffiffiffi
π

5

r
ðv1 − iv2Þ2v3; 0;−

1

21

ffiffiffi
π

5

r
ðv1 − iv2Þð2v21 þ 5iv1v2 þ 7v22 þ 3v23Þ;

1

7

ffiffiffi
π

5

r
ðv1 − iv2Þ2v3;

1

21

ffiffiffi
π

5

r
ðiv1 þ v2Þð7v21 − 5iv1v2 þ 2v22 þ 3v23Þ;−

2

7

ffiffiffi
π

5

r
ðv1 − iv2Þ2v3

�
: ðB20Þ

In the above equations, we have listed by the components order 11, 12, 13, 22, 23, and 33 within a Cartesian coordinate. The
position and velocity components mean r⃗ ¼ ðx1; x2; x3Þ; v⃗p ¼ ðv1; v2; v3Þ. And more we have

P
1
2
nQij ¼ 3ðm1 −m2Þ

r
ðnivjp þ vipnj − _rninjÞ; ðB21Þ

P
1
2
vQij ¼ ðm1 −m2Þ

�
ninj

r
− 2vipv

j
p

�
; ðB22Þ

P0Qij ¼ 1

3

��
3ð1 − 3ηÞv2p − 2

ð2 − 3ηÞ
r

�
vipv

j
p þ 2

r
_rð5þ 3ηÞðnivjp þ vipnjÞ þ

�
3ð1 − 3ηÞ_r2 − ð10þ 3ηÞv2p þ

29

r

�
ninj

r

�
;

ðB23Þ

PnnQij ¼ 1 − 3η

3r

��
3v2p − 15_r2 þ 7

r

�
ninj þ 15_rðnivjp þ vipnjÞ − 14vipv

j
p

�
; ðB24Þ

PnvQij ¼ 1 − 3η

3r
½12_rninj − 16ðnivjp þ vipnjÞ�; ðB25Þ

PvvQij ¼ 1 − 3η

3

�
6vipv

j
p −

2

r
ninj

�
; ðB26Þ

P
3
2
nQij ¼ ðm1 −m2Þ

12r

�
ðnivjp þ vipnjÞ

�
_r2ð63þ 54ηÞ − 128 − 36η

r
þ v2pð33 − 18ηÞ

�

þ ninj _r

�
_r2ð15 − 90ηÞ − v2pð63 − 54ηÞ þ 242 − 24η

r

�
− _rvipv

j
pð186þ 24ηÞ

�
; ðB27Þ

P
3
2
vQij ¼ ðm1 −m2Þ

�
1

2
vipv

j
p

�
3 − 8η

r
− 2v2pð1 − 5ηÞ

�
−
nivj þ vipnj

2r
_rð7þ 4ηÞ

−
ninj

r

�
3

4
ð1 − 2ηÞ_r2 þ 1

3

26 − 3η

r
−
1

4
ð7 − 2ηÞv2p

��
; ðB28Þ
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P
3
2
nnnQij ¼ ðm1 −m2Þð1 − 2ηÞ

r

�
5

4

�
3v2p − 7_r2 þ 6

r

�
_rninj −

17

2
_rvipv

j
p −

�
21v2p − 105_r2 þ 44

r

�
nivjp þ vipnj

12

�
; ðB29Þ

P
3
2
nnvQij ¼ ðm1 −m2Þð1 − 2ηÞ

4r

�
58vipv

j
p þ

�
45_r2 − 9v2p −

28

r

�
ninj − 54_rðnivjp þ vipnjÞ

�
; ðB30Þ

P
3
2
nvvQij ¼ 3ðm1 −m2Þð1 − 2ηÞ

2r
ð5ðnivjp þ vipnjÞ − 3_rninjÞ; ðB31Þ

P
3
2
vvvQij ¼ ðm1 −m2Þð1 − 2ηÞ

2

�
ninj

r
− 4vipv

j
p

�
: ðB32Þ

APPENDIX C: POST-NEWTONIAN ENERGY FLUX FOR AN ECCENTRIC BINARY

In this Appendix section, we show the post-Newtonian energy flux for an eccentric binary. Following [34] for the circular
part, we can combine the results involved in SEOBNRv1 [14,34,88] to get

−
dE
dt

				
ðCÞ

¼ 32

5
η2x5

�
1−

1247þ 980η

336
xþ 4πx3=2 þ

�
−
44711

9072
þ 9271η

504
þ 65η2

18

�
x2 −

�
8191

672
þ 583η

24

�
πx5=2

þ
�
6643739519

69854400
−
1712γE
105

þ 16π2

3
−
134543η

7776
þ 41π2η

48
−
94403η2

3024
−
775η3

324
−
856 logð16Þ

105
−
856 logðxÞ

105

�
x3

þ
�
−
16285

504
þ 214745η

1728
þ 27755η2

432

�
πx7=2

þ
�
−
23971119313

93139200
þ 856γE

35
− 8π2 −

59292668653η

838252800
þ 5a0ηþ

856γη

315
þ 31495π2η

8064
−
54732199η2

93312
þ 3157π2η2

144

þ 18929389η3

435456
þ 97η4

3888
þ 428 logð16Þ

35
þ 428

315
η logð16Þ þ 428 logðxÞ

35
þ 47468

315
η logðxÞ

�
x4

þ
�
−
80213

768
þ 51438847η

48384
−
205π2η

6
−
42745411η2

145152
−
4199η3
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�
πx9=2

þ
�
−
121423329103

82790400
þ 5778γE

35
− 54π2 þ 4820443583363η

1257379200
−
3715a0η
336

þ 6a1η−
4066γEη

35
−
31869941π2η

435456

−
2006716046219η2

3353011200
−
55a0η2

4
þ 214γEη

2
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þ 406321π2η2

48384
þ 2683003625η3
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−
100819π2η3

3456
−
192478799η4

5225472
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þ 2889 logð16Þ
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−
2033
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η logð16Þ þ 107
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η2 logð16Þ þ 2889 logðxÞ

35

−
391669

315
η logðxÞ− 122981

105
η2 logðxÞ

�
x5 þ

�
−
623565

1792
−
235274549η

241920
þ 20a0ηþ

852595π2η

16128

−
187219705η2

32256
þ 12915π2η2
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þ 503913815η3
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−
24065η4

3456
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3
η logðxÞ

�
πx11=2

þ
�
−
1216355221
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þ 4815γE

7
− 225π2 þ 45811843687349η

1149603840
þ 170515a0η

18144
−
743a1η
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þ 7a2ηþ a3η

−
737123γEη
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−
84643435883π2η
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γEπ

2η−
410π4η

9
−
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−
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2
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2
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−
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3
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−
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−
145089945295η4
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þ 141655π2η4
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378
η logð16Þ

þ 4387

63
π2η logð16Þ þ 3317

63
η2 logð16Þ þ 107

486
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2430
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3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ
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−
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�
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�
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�
x7=2

�
; ðC1Þ

with a0 ¼ 153.8803, a2 ¼ −55.13, a2 ¼ 588, a3 ¼ −1144. These a values are taken from [34,88]. Here, x≡ ffiffiffi
v

p
. The PN

results for an elliptic orbit read [60,61]
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where the PN order for the nonspin part and spin-spin interaction part is second, but the PN order for the spin-orbit
interaction part is only 1.5.
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