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Cosmological horizon and the quadrupole formula in de Sitter background
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An important class of observables for gravitational waves consists of the fluxes of energy, momentum,
and angular momentum carried away by them and are well understood for weak gravitational waves in
Minkowski background. In de Sitter background, the future null infinity, 7, is spacelike, which makes the
meaning of these observables subtle. A spatially compact source in de Sitter background also provides a
distinguished null hypersurface, its cosmological horizon, H™'. For sources supporting the short wave-
length approximation, we adopt the Isaacson prescription to define an effective gravitational stress tensor.
We show that the fluxes computed using this effective stress tensor can be evaluated at H*, match with
those computed at 7, and also match with those given by Ashtekar er al. at 7+ at a coarse grained level.
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I. INTRODUCTION

The weak gravitational field of a spatially compact
source is identified as a perturbation about a background
space-time which is a solution of the Einstein equation in
the source-free region. In the presence of a positive
cosmological constant, the background space-time is the
de Sitter space-time. Unlike the Minkowski background for
the zero cosmological constant, de Sitter space-time has
different patches, e.g., the global patch (R x $°), a Poincaré
patch, and a static patch. In the cosmological context, a
Poincaré patch is appropriate, which is what we focus on.
A solution at the linearized level, valid throughout the
Poincaré patch and extending to the future null infinity 7,
is available in [1-3]. However, the spacelike character of
the 7 poses challenges for defining energy, momentum,
and their fluxes.

Let us recall that the cleanest articulation of “infinity”
arises in the conformal completion of physical space-times.
Conformal completion preserves the light cone structure of
the physical space-time and naturally identifies boundary
components, J +  where timelike and null geodesics
“terminate.” The causal nature of these boundary compo-
nents is determined by the asymptotic form of “source-
free” equations: 7+ are null when A = 0 and spacelike for
A > 0 (timelike for A < 0). These boundary components
serve to define outgoing (incoming) fields as those sol-
utions of the asymptotic equations that have suitably finite
limiting values on J (7). It is then a result that the Weyl
tensor of outgoing fields evaluated along outgoing null
geodesics has a definite pattern of falloff in inverse powers
of an affine parameter along the geodesics (the peeling-off
theorem) [4,5]. This enables one to identify the leading
term as representing gravitational radiation (far field of a
source) in a coordinate invariant manner. It is conveniently
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described in terms of the Weyl scalars which are defined
with respect to a suitable null tetrad. When 77 is null, a
null tetrad at a point p € J* is uniquely determined
(modulo real scaling and rotation) by the tangent vector
Z# of an outgoing null geodesic reaching p and the null
normal n#, satisfying £-n = —1. Clearly as the null
geodesic changes its direction, £ changes but not n, and
hence the Weyl scalar W,(:=C,,,,n*m"n’m’) remains
unchanged. Its nonzero value can be taken as showing
the presence of gravitational radiation. This feature is lost
when the J* is spacelike. Now the null vector n#, with
¢ -n = —1, is chosen to be in the plane defined by #* and
the (timelike) normal N*. Clearly, as £# changes, so does n*
and none of the Weyl scalars is invariant. An invariant
characterization of gravitational radiation is no longer
available [5].

The de Sitter space-time also has the so-called observer
horizons—the boundary of the causal past of an observer’s
end point on 7. In particular, for a spatially extended but
compact source, the worldlines of different components of
the source must reach the same point on 7' to maintain a
finite physical separation among them. A spatially compact
source then defines (its) cosmological horizon as the past
light cone of the common point on J* where the source
world tube converges. Equally well, any observer who
remains at a finite physical distance from the compact
source for all times must necessarily lie within the
cosmological horizon, i.e., within the static patch bounded
by the cosmological horizon. Unlike the 7+, the cosmo-
logical horizon is a null hypersurface but shares with 7™
the property that whichever curve meets a point on it can
never causally intersect the world tube of the spatially
compact source. In other words, once any energy/momen-
tum/angular momentum is carried away across the cosmo-
logical horizon, it is “lost” from the source forever. We
would like to explore to what extent and under what
conditions we may regard the cosmological horizon as a
“substitute” for the future null infinity.
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It is obvious at the outset that the outgoing null geodesics
emanating from the source intersect the cosmological
horizon at a finite value of any affine parameter and it
can be chosen to be 1 by a suitable normalization. Such a
normalized affine parameter equals the ratio of the physical

distance from the source to \/3/A ~ 10%°m ~ 10 Gpc. All
spatially compact sources may be taken to lie within a
sphere of radius ~A~!/2. Furthermore, only sources varying
over cosmological time scales will have comparable wave-
lengths. Thus, most sources producing gravitational waves
would have wavelengths far smaller than A~'/? and any
wave crossing the horizon may be taken to be a “far zone
field.” Cosmological horizon being a null hypersurface, a
Y, can be defined on it, independent of the null geodesics
meeting the horizon. A notion of radiation based on the
asymptotic behavior of fields is physically useful, pro-
vided there are suitable definitions of fluxes of energy-
momentum, and angular momentum in terms of these
asymptotic fields. And there are many such definitions.

One of the definitions of such conserved quantities is
based on the covariant phase space framework [6,7]. In the
context of the linearized theory, it exploits the phase space
structure of the space of solutions and defines a manifestly
gauge invariant and conserved ‘“Hamiltonian” correspond-
ing to each of the seven isometries of the Poincaré patch.
Although defined on each spacelike hypersurface of the
Poincaré patch, the simplest expressions result for evalu-
ation at J*. Thus, the conserved quantities are directly
expressed in terms of the asymptotic fields.

For sources which are sufficiently rapidly varying
(relative to the scale set by the cosmological constant),
there is an alternative identification of gravitational waves
as ripples on a background within the so-called “short wave
approximation” [8,9]. Furthermore, it is possible to define
an effective gravitational stress tensor, 7,,, for the ripples.
For vanishing A, it is symmetric, conserved and gauge
invariant. For nonzero A it is not gauge invariant but the
gauge violations are suppressed by powers of v/A. It is very
convenient to have such a stress tensor to define and
compute fluxes of energy and momenta carried by the
ripples across any hypersurface.

We use the fluxes defined using the effective gravitational
stress tensor and show that for the retarded solution given in
[1-3], the fluxes of energy and momentum across the
cosmological horizon exactly equal the corresponding fluxes
across the 7. Furthermore, these fluxes computed at J*
also equal the fluxes defined in the covariant phase space
framework [2], albeit at a coarse grained level [see Eq. (93)].
The instantaneous power received at infinity matches with
that crossing the horizon. This is our main result.

The paper is organized as follows.

In Sec. II, we summarize various details needed to
establish our result. Most are available in the cited literature
and are collected here for self-contained reading. It is
divided into three subsections. In Sec. II A, we recall the
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solution at the linearized level [1-3] for which the fluxes
will be evaluated. We specify and denote the (spatial
components of) the exact retarded solution by X;;. This
is approximated when the source dimension is much
smaller than the distance to the source. The leading term
is the approximated retarded solution and is denoted by y;;.
Physical solutions have to satisfy the gauge conditions
imposed in simplifying the linearized equation. This is
achieved by extracting the (spatial) transverse and traceless
(TT) part of the solution, which is denoted by X7. For the
approximated solution, the TT part is conveniently
extracted by an algebraic projection to the same level of
approximation. The algebraically projected transverse,
traceless part of the approximated solution is denoted by
xi; and used throughout. We also collect relevant expres-
sions for subsequent use. A table of notation is included at
the end of this subsection. In Sec. II B we summarize the
covariant phase space framework and recall the definitions
of the fluxes and quadrupole power from [2]. The energy
momentum fluxes defined here are compared to those
defined in the next subsection. In Sec. II C, we discuss
the Isaacson prescription adapted to the presence of the
cosmological constant and present the definition of the
ripple tensor in Eq. (46), which is used in the next section.

Section III is divided into three subsections. In Sec. IIT A,
we present computations of the energy flux for the yf;
across various hypersurfaces. In particular we show that the
fluxes across the outgoing null hypersurfaces are zero,
implying, for example, that the energy propagation is sharp.
Section III B contains the fluxes for the momentum and the
angular momentum. In Sec. IIIC we discuss how the
computations can be extended to y/ = (X]) 1 rox-

In Sec. IV, we discuss applications of these flux
computations and establish our main results. Finally,
Sec. V concludes with a discussion. An Appendix is
included to illustrate an averaging procedure.

II. PRELIMINARIES

In this section we summarize and assemble already
available relevant details needed for our main result, with
the main citations included in the subsection headings.

A. Weak gravitational field of interest

The summary in this subsection is based on references
[1-3].

Weak gravitational fields are understood as perturbations
about a background specified in the form g,, := g, + €h,,.
The background g, is chosen to be a solution of the source-
free Einstein equation with a positive cosmological con-
stant. The Einstein equation for g,,, expanded to first order
in €, gives the linearized Einstein equation for /,,. The
physical perturbations are understood as the equivalence
classes of solutions £, with respect to the gauge

transformations: 6y, (x) = L:g,,(x) = v,gy + v,,iﬂ. In
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FIG. 1. The full square is the Penrose diagram of de Sitter

space-time with a generic point representing a two-sphere. The
world tube of a spatially compact source is taken to be centered
on the line DA. The corresponding Poincaré patch is labeled
ABD and is covered by the Poincaré chart (17, r, 6, ¢). The line
BD does not belong to the chart. The line AB denotes the future
null infinity, 7%, while the line AE denotes the cosmological
horizon, H*, of the source. The region AED is the static patch
admitting the stationary Killing vector, 7, of Eq. (21). Two
constant # spacelike hypersurfaces are shown with 7, > ;. The
two constant r, timelike hypersurfaces have r, > r|, while the
two dotted lines at 45 degrees denote the outgoing null hyper-
surfaces emanating from # = 5,7, on the worldline at r = 0.

combination  h,, =

Ry —1h,, (5% hyp), the linearized equation takes the form

terms of the trace reversed

- ilg,uv]
=8xT,, (1)

1 =~ = = — o A 7
5[—5]’1”1/ + {VMBU—FV,,B” _g;w(v Ba) H ‘|’§[huv

where B, := v,,izaﬂ. The gauge freedom is exploited
subsequently to simplify the equation.

In the present context, the background space-time is
taken to be the Poincaré patch of the de Sitter space-time
(see Fig. 1) which admits a conformally flat form of the
background metric in coordinates (17, x'):

ds? = 2[ dn? +Z (dx") } n € (—,0),
) A
Y ER, H=\[3 ()

The future null infinity is approached as # — 0_, while the
n — —oco corresponds to the Friedmann-Lemaitre-
Robertson-Walker (FLRW) singularity. The conformal
factor is a*(n) == (Hn)™2
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The linearized equation is simplified by imposing the
generalized transverse gauge conditions: B, = ZTA 1h,. The
conformal factor can be scaled out by using the fields y,, :=

2h and the linearized equation (with source included)
then takes the form' [1]

- 2. 2 - - -
_16”T/w = D)(;w +;80)(/w _?(5258)((16! +60M0u +59)(0;4)’

(3)

1
0= 0% +— (20, + 807,") (gauge condition).  (4)
n

It is further shown in [1] that the residual gauge
invariance is exhausted by i 1mp0s1ng the additional gauge
conditions: 7o, = 0 = 7(:= 700 + 7i'). The gauge condi-
tion (4) then implies that physical perturbations may be
characterized solutions of (3) which satisfy the spatial
transverse, traceless condition, or “spatial TT” for short:
dyi=0= 7% Thanks to the decoupled equations, it
suffices to focus on the spatial components of the equation.

The exact retarded solution is given by

n
X;i(nx)=4 | &*x T;i(n,x
01:%) / lx=x'|(n—]x=x|) i01:X) o =—|x—x|

_‘X_x/l Tl” /, /
+{/d%ﬁ/" d#—%%fl. (5)

The spatial integration is over the matter source confined to
a compact region and is finite. The second term in Egs. (5)
is the tail term. This particular solution does not satisfy the
spatial TT conditions. Using the transverse, traceless
decomposition of the tensor fields, the TT part X7 is
extracted, which represents the physical retarded field due
to the source.

For '|, we can approximate |X —X'| ~ r:=|X|.
This allows us to separate out the ¥’ dependence from the

— |x — x'|. The thus approximated retarded solution, y;;,
is given by

X = xij(n.x) +o(r"), with

n
Xij(n. x) = 4m/d3x/Tij(’7/vx/)

+4 / "y :
W —
. ’,[/2
We will work with the approximated solution. Note that y;;
depends on X only through r = |X|. The spatial integral of
T;; can be simplified using moments. This is done through
the matter conservation equation.

/

nm=n-r

&EXT(n x).  (6)

"From now on in this subsection, the tensor indices are raised/
lowered with the Minkowski metric.
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To define these moments, introduce the orthonormal
tetrad f“*, := —Hnd%, and denote the frame components of
the source stress tensor as p := H2P Ty, 7 := H*n*T ;6%
Define the moment variable ¥ = fi x* = —(yH )‘15§x/ =
a(t)xt. Two sets of moments are defined as functions of 5
(or of t defined through 7 := —H 'e™1") as

QY (t) = / d®xa’ (1)p(t, X) %%,
Source(r)

0Y(1) = / dPxa® (t)x(t, ¥) 7%, (7)
Source(r)

In terms of these, the approximated retarded solution is
given by

| N .
Xij(1,X) = ;fij(”lret) + 9ij(Hrer) + 9ij»  with (8)
Fister) = ———[£30;y + 2HL;Q
ij Nret) *= a(nra) TXij TXij
+ HL7Q;; + 2H?*Q;]. )

9ij(yer) = —2H[L3.0;; + HL7Qy; + HLr Oy + H2 Q1.
and (10)

(11)

All moments are evaluated at the retarded 7,,, := (5 — r),
a(nye;) = —(Hn,.,)~" and L, denotes the Lie derivative
with respect to the time translation Killing vector defined in
Eq. (21) below. On the moments, the Lie derivative is given
by

.aij = —ZHZ[EQ,']' + HQij”—oo'

LrQi; = —-Hno, +ro,)Q;; — 2HQ;;
=-H(n- r)anQij —2HQ;;

= 0,0il,,, —2HQ;. (12)

In Eq. (8), the first term is the contribution of the so-
called sharp term, while the second and the third terms
denote the tail contributions. The tail contribution has
separated into a term which depends on retarded time,
(n — r) only, just as the sharp term does, and the contri-
bution from the history of the source is given by the
limiting value at 7 = —oo. This expression is valid as the
leading term for |X| > |X|. There is no TT label on these
expressions. While the solution has a tail term, it will turn
out that the energy propagation is sharp.

For future use in Sec. III A, we display the derivatives of
xij- Since y;; depends on ¥ only through r, we need only the
derivatives with respect to # and r. On functions of #,,,,
0, = —0, and we can replace the r derivatives in favor of
derivatives. Hence,
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1
Opxij =~ Onfij + 04935

ar)(ij(r/’ r):_an)(ij_%- (13)

There is a well-known algebraic projection method to
construct spatial tensors which satisfy the spatial TT
condition to the leading order in r~'. Since the approxi-
mated solution is also valid to o(r~!), we may use this
convenient method.

For the unit vectors X denoting directions, define the
projectors

1
ki — kp i Ip k k!

PlJ = 5,’" —x,»xf, 2

)(Z = Aijkl)(kl' (14)

We have used the notation tt to refer to the algebraically
projected transverse, traceless part as in [2]. Noting that on
xi; the spatial derivative is &/ = /0,, it follows that

9 (i) = Ogxi)" 0, (rh) = (Opri)",

8m Z) :(amA{'(jg))(kl + )%m<ar)(ij)tt’

(15)
(16)

N (xft) = RN + (A )y =0+ o(r);
(17)

where we used

L. . . R
O\ = — P (i M+ 2NN 4 A+ R
=o(r ). (18)

The tracelessness of y{; is manifest and hence y}; satisfies
the spatial TT condition to o(r7!).

Using the derivatives of y;; given in (13), we can write
(the right-hand sides denote row vectors of the y = 5 and
1 = m components)

8;4)(2 = (8,1)(3-,)??,”8,)(;; + (amAijkl))(kl) (19)

r

i
— (O (1 —) — (—) (0.%,)
1
- (0, (R 1 4 1AM+ 35N+ 3 )
(20)

The first term is proportional to a null vector. The second
term is proportional to the spacelike, radial vector. The third
is again a spacelike vector. Both the second and the third
terms are down by a power of r relative to y;; and therefore
also relative to the first term. We will see later in the
calculation of the fluxes that for energy and momentum, the
second and the third terms can be neglected. However for
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the flux of angular momentum, the third term is crucial.
When the second and the third terms can be neglected, the
effective gravitational stress tensor turns out to correspond
to an outgoing null dust with energy density proportional

t0 (Ol mnOpt™")-

Generator of time translation
Generators of space translation :

Generators of space rotations @ L ;
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Finally, we note the isometries of the Poincaré patch.
There are seven globally defined Killing vectors on the
Poincaré chart, corresponding to energy, three momenta,
and three angular momenta [2,10]. They are given by (up to
constant scaling)

: T =—-Hno, + x'0;) (21)
) == €jki.xkai. (23)

We focus on the time translation vector field, which is timelike in the static patch, null on the cosmological horizon, and
spacelike beyond it. In particular it is spacelike and tangential to 7.
Many different symbols used for the retarded solution, its approximations, their TT parts, and different “radiation fields”

are summarized below:

Xij - generic solution of linearized equation

X;; :  exact, retarded solution Eq. (5)
X} : TTpartof exact, retarded solution Eq. (86)
xij - approximated, retarded solution Eq. (6)
;{Z : A-projection of approximated, retarded solution Eq. (14)

xiF + approximation of X7 for [¥'] < ||
)(iTjT does not denote the TT part of y; j
RIT :  radiation field defined in [2]
Qi+ radiation field used throughout
Ql" . definedto equal 20, M[/

B. Covariant phase space framework

Traditionally, the conserved energy, momentum, etc. are
defined through pseudotensors, which have the short-
coming of not being covariant. The framework of covariant
phase space provides manifestly gauge invariant definitions
of the conserved quantities and is briefly recalled below
[2,6,7].

Consider the space C of a class of solutions of the full
Einstein equation, satisfying the stipulated boundary con-
dition. At each point of this space, the linearized solutions
provide tangent vectors. Under certain conditions, it is
possible to define a presymplectic form on the tangent
spaces. Every infinitesimal diffeomorphism of the space-
time, with suitable asymptotic behavior, induces a vector
field on C. Some of these lie in the kernel of the presymplectic
form and constitute “gauge directions,” while the remaining
ones constitute (asymptotic) symmetries shared by the
stipulated class of solutions. By modding out by the gauge
directions (null space of the presymplectic form), one imparts
a symplectic structure to the space of solutions, now denoted

Above Eq. (87)
See foot note 3.
Eqgs. (33), (34)
Egs. (58), (59)
Eq. (87)

I

as the I ~ C/gauge. Under favorable conditions, the vector
fields on C corresponding to the asymptotic symmetries
descend to I' and generate infinitesimal canonical trans-
formations. Their generating functions, or “Hamiltonians,”
are candidates for representing energy, momenta, angular
momenta, etc. [6].

In [2,7], this strategy is applied to the space of fully gauge
fixed solutions of the linearized equation and we summarize
it below. Isometries of the background leave the covariant
phase space itself invariant and constitute canonical trans-
formations. In the present context, the Hamiltonians corre-
sponding to the seven isometries are the proposed definitions
of energy, linear momentum, and angular momentum.

Explicitly, C denotes the solutions of Eq. (24) together
with the gauge fixing conditions (25):

.2,
Ly +E8n)(ij =0

7i; =0, X207 =0,
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A symplectic form is defined by an integral over a
cosmological slice %,. A definition which has a smooth
limitto J* (y — 0,) is defined in terms of the electric part
of the perturbed Weyl tensor, £;; := —(Hn)™'[VCY,] =
ﬁ (Opxi; + 1V i) = 217” (92 - %8,7))},»]». For two ele-
ments y, y € C, the symplectic form is defined by [2]

1 oo
CU()(,)_() _—167[H\/2y, d3x(xij§k[_lklgij)5 ot (26)

The TT label on the y’s is suppressed.

A Killing vector K of the de Sitter background defines a
vector field Al = Lyhy = a?(Ligy; +2(a™ Lxa)zi;) =
azfgff) , on the space C. This vector field generates a

canonical transformation and the corresponding
Hamiltonian function is given by

1 1
Hy = —Ew(h,h(’()) = —Ew(;?,)?(’())- (27)

For the time translation Killing vector T, Hy (=: E7), is
obtained as

..
ET = _Ew(va(T))

1 - T ~(T i .
= -5 L Bx(z,E0 - 70,5k (28)

1 - ~ - oo
:—32711_][24 dPx(7iLrE—EnLlriij—3Hz;Eu)8* 8"

(29)

This integral is independent of the choice of Z, and is
conveniently performed on JT =%,. The Killing
vector T also has a smooth limit to J*, T|, =
—H(x0, + y0, + z0.). Equation (29) simplifies to

1
E p—
"~ lerH

/ dxEy(Lryi; +2Hy;)8% 6. (30)
‘7+

Now using (Lr7i; + 2Hy ;)| 7+ = T" 0,k ij»

1
E =
"7 16zH [+

d3x5kl(Tm8m)?ij)5ik5ﬂ (31)

1 Ly TN ot
:32ﬂH2/7+d3x b (a%_zaﬂ))(kl] (T™8,,7:;)TT 5",

(32)
In the last line we have used the equation of motion and

restored the TT label [2]. Both & and T™0,,r;; have a
smooth limit on J .
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When evaluated at the approximated solution given in
(6), the energy flux turns out to be given by [2]

1 o
ET = 8_ dezs[Rkle}T]élkéjl, (33)

T )Tt

where R; j denotes the “radiation field” on J*, expressed
in terms of source moments, and is given by

RZ};E = [an + 3Han + 2H2an + Han
+ 3H2 0, + 2H3 Q|77 (1) (34)

with the overdot denoting the Lie derivative L.
The instantaneous power received on J T at 7 is given by

P(e) = - /S &S[RIRY)(=r(x)). (35)

T

This expression is not manifestly positive. Manifestly
positive expressions for the flux and the power are given

by [2]

1 .
Er =— | dtd*s[0,M]][0,M{;], where
2 Ve
(36)
M (n—r) = /dsx/T{,-T (n—rX); (37)

1 TT ij
P(r) =5 /S &[0, MI7[0, M) (=1 (7).
(38)

In the definition of MZ]-T, the 7T’ on the stress tensor on the
right-hand side denotes transversality with respect to the X’
argument. The M has no simple relation to the various
source moments and its radial derivative is distinct from the
RST For completeness, the momentum and angular
momentum fluxes are given by [2]

1

P. = dBxEmn FTT — (- 3

I~ 16zH | ;- XEM Lg jomn = 0; (39)
J. =— ! d3x5mn£L )?TT

77 8aH 4+ Amn

1 .. . *m -
——ﬂ/d’iszé'jmanl[sz+Hle—|—HQ1 —|—H2le]TT'

(40)

The momentum flux is zero because the integrand is
linear in x; (parity odd) and in the angular momentum flux,
the second factor is proportional to the tail term.
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C. Isaacson prescription

In the previous subsection we saw a definition of the total
energy of the radiation field of compactly supported
sources in Eq. (33). The radiated power, received at infinity,
is given in Eq. (35). In this subsection we recall an
alternative framework, based on a short wavelength expan-
sion [8,9], for a restricted class of sources but with the
benefit of a symmetric, conserved, and suitably gauge
invariant effective gravitational stress tensor.

Conceptually, the framework is somewhat different from
perturbation about a fixed, given background solution. It is
designed to construct a class of solutions for which there
exists a coordinate system in which the metric components
display two widely separated temporal/spatial scales of
variation. The slowly varying (or long wavelength ~L)
component is taken as the background component and the
fast (or short wavelength ~4) component, whose amplitude
is small compared to that of the background, is identified as
the ripple component.2 These statements are manifestly
coordinate dependent, but the existence of a coordinate
system with sufficiently large domain admitting such an
identification is itself a physical property. The calculational
scheme is again iterative but now allows for both the
background and the ripple components to be corrected. To
make such a separation, an averaging scheme is introduced.
It splits the Einstein equation into two separate, coupled
equations for the background and the ripple. These equa-
tions provide a definition of the effective gravitational
stress tensor.

For the metric of the form g,, = g,, + €h
equation to o(e?) takes the form

> the Einstein

_ _ 1
R, (7 +eh) = A(g,, +eh,) + 8xe <T/w - Eg#,,g”‘ﬂTaﬁ>
0) /- 1),- 2) /-
© R (3) + R (3. h) + R (3. h)
_ L _
= A(g/u/ + eh;w) + Sﬂ{eTyv - 5 (g/w + eh;w)

x (% — eh” + ezhaphpﬂ)(eTaﬂ)}. (41)

Introduce an averaging over an intermediate scale 7,
A <K ¢ < L, which satisfies the following properties: (i) the
average of the odd powers of % vanish and (ii) the average
of the space-time divergence of the tensors is subleading
[9,11]. The average of course leaves the L-scale variations
intact; in particular, the average of g, equals g,,. For
simplicity, we will assume that the average of the matter
stress tensor is zero; i.e., it has only A-scale variations.

’In the present context, L ~ A~1/2, while A could be taken as
the inverse of the characteristic frequency. The length scale R
denoting the extent of a spatially compact source satisfies R < A.
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Taking the average of the above equation and noting that
<Rl(4?/)> = Rﬁl(li) and R/%/) - <RI(4%)> ~ (R}%))ﬂ—scale’ Eq (41) can
be separated into Eq. (43) for the background and Eq. (42)
for the ripple:

82T,, = Gl + Ah,,

1 _ _
1 - - a
= R/(w> -3 (gle(l) - g;wh ﬂRa/;’ + hﬂl/R)

2
+ Ahy, (42)
_ 1_ - _ .
87ty = R,y — 3 GuR + Agy,, with (43)
_ [ non 1o o
tyv(.g’ h) = % <RI4U > - Eg;wg <Ra/j> . (44)

Equation (42) is exactly the same linearized Einstein
equation we had before for the weak field 4,, and every
term of it has a scale of variation 4. However, Eq. (43) for
the background is different. Although it has terms of order
€2, every term has a scale of variation L. If we now
recognize that for A-scale variation Oh ~ A h, and € =
A/L is taken to be of the same order as ¢, then the effective
stress tensor, which has a leading term of the form (0h)?, is
of the order (e¢/€')> ~o(1) and is thus included in the
equation.

The effective stress tensor defined in Eq. (44) is
manifestly symmetric and is covariantly conserved with
respect to the background covariant derivative, since the
divergence of the right-hand side of (43) vanishes identi-
cally. For ripples over the Minkowski background, it is
gauge invariant and the energy momentum computed using
it agrees with the quadrupole formula obtained by other
methods, thereby strengthening its interpretation as a
gravitational stress tensor. An averaging procedure con-
structing a tensor has been given in [8,12] and an explicit
illustrative computation is given in the Appendix.

At the zeroth iteration, we choose the Poincaré patch of
the de Sitter space-time as the solution of (43), ignoring the
effective gravitational stress tensor. Let us quickly verify
the gauge invariance of 7, under 6:h,, = L:g,,, to leading
order in e. Recall that the gauge transformation involves
derivatives of &, and for a consistency with the background
plus ripple split, the gauge transformation should also be
restricted to preserve it. There are two possibilities for the
generator: (i) £ is comparable with # and slowly varying,
and (i) ¢ is order eh but is rapidly varying so that its
derivative becomes order h. The gauge transformation of
t,,, after dropping space-time divergences in the averaging,
has leftover terms of the form A(hVE). These vanish
identically for the Minkowski background, making the
t,, gauge invariant. For the ¢ of type (i), the average
vanishes since the enclosed quantity is rapidly varying and
for £ of type (ii), the averaged quantity is order €. But 7,
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itselfis o(1) and hence gauge invariance of 7, is ensured to
the leading order [8].

Using the properties of averaged quantities, the effective
gravitational stress tensor for the gauge fixed solution of the
ripple equation evaluates to

- 8m‘w

This expression reduces to the stress tensor for the
Minkowski background by taking V,, — d, and dropping
the last two terms. However, for the ripple,
Oh ~ 2~'h ~ ¢~'h. The connection terms in the covariant
derivatives are order h. Hence, to the leading order in
€ ~ A/L, all terms without derivatives of the ripple can be
dropped and we are back to the same expression for the
Minkowski background. Notice that the leading term has
no e. .

In the conformal coordinates, substituting .3 = a2)?aﬂ
and once again, keeping only the terms with derivatives of
the ripple, the stress tensor for the fully gauge fixed
solutions of (42) becomes

t/w <8MTT81/)?17{T> (46)

We will refer to this as the ripple stress tensor. We will
compute this for the tt projected, approximated retarded
solution, yit. In Sec. IIIC, we will discuss how the

computations change when yj; — XTT.

III. CONSERVED QUANTITIES

Given any symmetric, conserved stress tensor, for every
Killing vector of the background space-time, &, the current
J’g ~ TF,E is covariantly conserved. In order that for a
future directed timelike Killing vector, the corresponding
energy-momentum current is also timelike and future
directed, we define J’g = —T)&. We adopt this definition
for the time translation Killing vector 7=—H (0, +x'0;).

The time translation Killing vector field, 70,, involves
only the 7 and r derivatives since x'0; = r0, and these pass
through the A projector. For the space translation along the
Jjth direction, we have 9;, which does act on the A projector.
In the present context where derivatives of the ripple
dominate over (ripple/r), the derivative of the projector
can be neglected and we write 9y}, ~%;0,x,. For gen-
erators of rotation, however, the situatlon is different. Once
again we get two terms from 0;, but now € ,;x*3'0, ™" =
0! and we can no longer neglect the derivative of the
projector. With these understood, we write the correspond-

ing currents, Jj = —%(8"){{'} A, E. Note that the
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ripple stress tensor has been defined as a covariant
rank-2 tensor and hence there is the factor of a=2 =
H?5? since the index u has been raised. The currents are
given by

H
T2 {77<811)(;'tm n)(lt;m> + r<ar])(ll ar)(irtm>} (47)

2]’7:
4T T T30,

[ H a0 ~1 mn
Ty = AnF 0" Optiin) + r(¥ " O,in) } - (48)

1
2 _ mn s

a ‘IZ/ - E <a17)(1t X ar)(ffm>a

4 o
a2‘]léj == E <xlar)(;rtmxjar)(£ttm> (49)
az‘lzj = - E €jmn-%m <a17)(;lt[)(lk~%k> ,

o . A
a2‘]le = 167 ejmnx <xlar)(?t])(lkxk>' (50)

The unit vectors within the angular brackets have come
from the spatial derivatives, while those outside the
brackets come from the Killing vector. It is shown in the
Appendix [Eq. (A9)] that for the averaging regions far
away from the source, the unit vectors can be taken across
the angular brackets and we will do so in the subsequent
expressions.

Notice that for the energy and momentum currents (48),
(49), both fields have the tt label, whereas for the angular
momentum current (50), the second factor does not have
the tt label. The entire contribution to the angular momen-
tum current comes from the derivative of the A projector.
The contribution from the derivative of the field vanishes
since the field (without the projector) is spherically
symmetric. In all these equations we may use 0,y,,, =

—Omn — L2 from (13).

We note 1n passing that if ~3* L can be neglected compared
t0 0, my» then the currents correspondmg to the generators
of time and space translations both become proportional to
the vector (1, x'/r), which is a null vector. Both energy and
momentum propagate along this direction.

Let V denote a space-time region with a boundary o).
Then it follows that

0= / d*x\/gV I = / d*xd,(Vgl%) = / do,J%,  (51)
% 1% 9%

where do, is the oriented volume element of the boun-
dary OV.

In the next subsection we evaluate the energy flux,
Fy = fz doﬂf’}, for various hypersurfaces, X’s. These,
together with the conservation equation (51), will be used

to relate power received at J' to that crossing the
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cosmological horizon. In the following subsection, we will
present the fluxes for momentum and angular momentum.

A. Flux computations

We present flux calculations for three classes of hyper-
surfaces: (a) hypersurfaces of constant physical radial
distance, (b) spacelike hypersurfaces of constant 7, and
(c) the outgoing and incoming null hypersurfaces.

The solution y;; in this and the next subsection stands
for yii.

1. Hypersurface of constant physical radial distance

These hypersurfaces are timelike, null, or spacelike,
respectively, according to the physical distance being less
than, equal to, or greater than the physical distance to the
cosmological horizon, namely, H~'. They are spanned by
the integral curves of the Killing vector 7.

This Killing vector is special because in the static patch,
it is timelike and its integral curves represent Killing
observers. Denoting x' := r&’, '#/8;; = 1, in general, its
integral curves are given by 7(z) = e, r(z) = r.e7,
%' = %.. Evidently, along each curve, p:=r/(—Hn) =
r./(—Hn,) is constant. This also represents the physical
radial distance, 7, = [Q|r. Each particular curve is
labeled by p and the two angular coordinates Xi. We
compute the flux across the hypersurface X,, defined by
rpny = p- This surface is coordinatized by the Killing
parameter 7 and the usual spherical angles 8, ¢ represented
by the unit vectors . These hypersurfaces are topologi-
cally £, ~ At X §? and their embedding is given by

n(z.0.¢) =n.e™",

y = r,e " sin@sin ¢,

x = r,e M7 sin@cos ¢,

—Ht

z=r.e cos g,

with r, + Hpn, = 0.

The induced metric is given by h,;, = diag(H?*p* — 1, p?,
p?sin?@). This has Lorentzian signature for Hp < 1
(inside the static patch), is degenerate for Hp = 1 (the
cosmological horizon), and has Euclidean signature for
Hp > 1 (beyond the cosmological horizon). The measure
factor for the non-null cases is given by +/|deth,,| =

V|1 = H?p?|p? sin 6, while on the cosmological horizon it
is given by \/hu, = p*sin6. Here a,b denote the trans-
verse coordinates 6,¢. In the non-null case, the unit
normal is given by nﬂ:‘H—S’]‘|1—H2p2|‘1/2(Hp,xi/r)<—>
n* =e|Hn||1—H?p*|"/>(~Hp,x'/r). Here €= 41 for
timelike X, (Hp <1) and e= -1 for spacelike X,
(Hp > 1). On the cosmological horizon, we choose
the normal to be n,=—|Hy|"'(Hp,x;/r) < n* =
—|Hn|(=Hp,x'/r), so that n* = T* is future directed.
Introduce N* := (—Hp, &), so that the normal for non-null
cases is expressed as n* = e|Hn||1 — H?>p?|~'/2N*. Note
that n* is the same for the spacelike and the null
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hypersurfaces, Z,5-1. For the timelike hypersurface, the
n* points in the opposite direction. However, the induced
orientation on X, is also reversed as the hypersurface
changes from being spacelike to being timelike. Hence,
in all cases, Hp > 0, n"~/h = —|Hn|N*p*sin@, and the
hypersurface integral is expressed as

[ azg == ["ar [ s -lm@n-,m)
2, 7 s2

with
N#t, T = —Hr(t){t,, + ¥1;% — ¥'t,,((Hp)™" + Hp)}.
(52)

The minus sign in front of the hypersurface integral is
because the orientation defined by the Killing parameter
and the angles is negative relative to that defined by the r
and the angles. The sin @ is absorbed in d”s. The minus sign
inside the last parentheses is due to the definition J, =
—1,,T". In the second line, we have also used —Hpn = r
valid on %,.

Substituting for the ripple stress tensor, and taking the
unit vectors X outside of the angular bracket as mentioned
before, the expression within the braces becomes

1
= E { <aﬂ)(mnar/)(mn + ar)(mnar)(mn>

1+ H?p?
Hp

0
<a,xmna,ﬂm">}. (53)

The (implicit) tt projection introduces angle dependence in
X however, Eq. (52) needs only # and r derivatives.

Eliminating 0,y;; using Eq. (13), we write

_ oy (1 + Hp)?
~ 30, |:<8r[)(mnan)( >Tp

mn mn 1+ H, . mn. "
(o) e ()

e S A 8 mn mn
32 Hp O™ + . o

Hp fmnfmn
+(1+Hﬂ)2< rt >}

é ,, dS,J% = / dr /S s} (54)

{

The approximated solution y;; is valid for (source
dimension)/(distance to the source) < 1. This is consistent
with the assumption that A/r < 1. Furthermore, the source
being rapidly changing, AH < 1, it follows that f,,,/r* <
foun/ 1 Hence we drop f,,,/r* terms. With this, {} takes a
simple quadratic form 3-(14Hp)?(Hp) ™ (0,1, Ox™).

044026-9



GHANASHYAM DATE and SK JAHANUR HOQUE

To compute 0, we recall that 75, =n—r:=
—H 'e7Her := —(Hal(t,,,))”" and use
ar/fij (”rel) = amafij (”ret) = a(r]ret)at,e,fij(tret)

= alllyer)(Lr+2H)f i (trer).

This leads to (overdot denoting L)

1
a}y){mn(r]ret) = 7817fmn (nret) + ar]gmn (nret)
_alt,
(I" t) (‘chmn + 2Hfmn)
+ a(tret)(‘CTgmn + ngn) (55)
‘CTfmn = {an + Han - 2H2an + Han
a(tyer)
+ Hszn - 2H? an] (56)
'CTgmn 2H[an +Han +Han +H2an] (57)
2 7 .
tt e e 111
aﬂ){mn(”ret) - rp—r mn Wlth ’ (58)

i’I{ln = [émn + 3Han + 2H2an + Hémn
o 3H2 0, + 2H3 0] (1rer)- (59)

a(tye)rH) =
all expressions, we write the flux through a segment of the
r,ny = p hypersurface in a convenient form as

Here we have also used (1 — —L. Collecting

phy

/ dZ,J% = / dr / d2s[—p?H2n(7)r(7)]
e | (] )

/ & Azdz[ ]Qfﬁ D). (60)

In the Appendix, we show that for large p, the expression
within the square brackets inside the angular brackets can
be taken outside. Then, using r = —Hpn, which is valid
over the hypersurface Vp € R™, we see that the explicit
dependence on p (for large enough p) disappears from the
integrand but there is an implicit dependence on p and 7
through ¢,,,. If, however, the 7 integration is extended over
its full range, (—oo0, ), then the integral is independent of p
as well. Hence, for sufficiently large p, all Killing observers
infer the same energy flux in the limit (z1,7,) = (—00,00).

The p independence of the full flux integral in particular
means that the total flux across J* equals the total flux
across the cosmological horizon, H™:

lim [ dz,t— / d3, 0 / 4z, = / dz, .
p=e z, Z(H/):l) J* H*

| (61)
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2. Flux through a constant n slice

The hypersurface %, defined by n =17, is a cosmo-
logical slice ~R3. Tt is spacelike, with a normal n,=
—|Hno|~"(1.0) <> n# =|Hnp|(1,0), which is future directed.
We choose a finite portion of it with r € [r, r,]. The
hypersurface is topologically Ar x s?>. Choosing the
(r,0,¢) coordinates on the hypersurface, the embedding
is given by

n(r.0.¢) =no.
y = rsin@sing,

x = rsinécos ¢,

z = rcoso.

The induced metric is given by h, = (Hny) >diag(1,r?,
r?sin?@), giving \/|deth,,| = |Hno|>r* sin@. Denoting

NH = (1, 6) the hypersurface integral is given by

/ dx,J; = /r2 dr /52 d*sr*a*(no)(—=N*1,,T%),  with

10

(62)
Nﬂtm/Ty = (_H)(timn + tni-x[)

= % (n(ai’])(mnay,){m”> + x' ((9,,)(mnai)(’””>) (63)

A mn
— E ((’7 - r) <anxmn8nxmn> _ <fT anxmn>>

Az, = =5 H2 / drAzcﬂsr

/z,,

0

x {@@Waﬂmw} (65)
< [y o a2
(66)

By the same reasoning as before, we have dropped f%
and also used Eq. (Al12). In the limit 5y, — 0 with

(ri,r2) = (0, 00), the hypersurface becomes J* and the
integration measure becomes . The limit 7 — 0 is thus
finite.

As noted earlier, the hypersurface integral when
expressed in terms of the Killing parameter has a minus
sign due to the reversal of the induced orientation. The
measures (positive) themselves are related as % = dr,
leading to [° dr/Hr = — [ dz, and we get

lim dx,Ji = lim

17o—0 p—c0 z,

dz,Jh. (67)

'70
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FIG. 2. Left: The p = constant hypersurfaces which are timelike for Hp < 1, null for Hp = 1, and spacelike for Hp > 1. The two

45 degree outgoing null hypersurfaces intersecting H* and J+

in the spheres at r(z), ¥’ (7'), R(z), R'(7’) bound a space-time region.

Right: The spacelike hypersurfaces with a constant value of 7. The fluxes across the outgoing null hypersurfaces turn out to be zero,

signifying sharp propagation of energy-momentum and angular
bounded by the spheres at r(z), ¥’ (z’) equals the flux across the

3. Flux through null hypersurfaces

There are two families of future directed null hyper-
surfaces given by 1 + er 4+ ¢ = 0; see Fig. 2. For € = +1,
these 45 degree lines in the Penrose diagram are parallel to
the cosmological horizon while for € = —1, the lines are
parallel to the null boundary of the Poincaré patch. We refer
to these as the incoming (¢ = 1) and outgoing (e = —1)
null hypersurfaces. The parameter ¢ labels members of
these families.

The null normals of these families are of the form
n, =y(l,ex;) < n* = (Hn)*y(—1,€ek’), where y is to be

|

momentum. Hence the energy flux across the portion of the horizon
portion of the future infinity bounded by the spheres at R(z), R'(7’).

chosen suitably and should be negative for future directed
hypersurfaces. Choosing coordinates (4,6, ¢) on a null
hypersurface, its embedding may be taken as n(4), r(4)
with identity mapping of the angles. Here A is an affine
parameter of the null geodesics generating the null
hypersurfaces. The induced metric is obtained as
ha, = (Hn) 2diag(0, r*, r* sin® ). Note that the orienta-
tion of the hypersurfaces, relative to that defined by
(r,0,¢), is the same for the outgoing hypersurfaces and
opposite for the incoming hypersurfaces. The hypersurface
integral is then given by [N¥ := (=1, ex')]

A dZJ’;:—eA dz/ dz[r }sz)(N”t ), (68)
NF1,, T = —H (=t — t;r% + €X't;n + erk't;;37)
= % (=10 mn O™ + (€1 = 1) (DX mnOx™) + €r(0 X ynOx™))
= - (1 6)r = 1) Dyl D") + o) (69)
-+ - [ () + o) 70
o ami=e [Ca [ @ e [t )

As before, we have dropped the f,,,/r* terms from 0,y,,, and used Eq. (A12).
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It is immediately clear that the flux through the outgoing
null hypersurfaces (p or r increase along these) vanishes.
In the ¢ = 1 family, only the cosmological horizon is of
interest. For this we have (3 = —r) and we choose the
factor y = —(Hr)™! so the null normal matches with the
Killing vector (y is negative as desired for future orienta-
tion) and the affine parameter A matches with the Killing
parameter 7. With this choice, the flux in Eq. (71) matches
with that given in Eq. (60) for Hp = 1. Thus, once again,
the full flux through the cosmological horizon is exactly the
same as that of the rppygea = const hypersurfaces.

Remarks.—All three calculations consistently have the
same [+1/8z] factor, with integrals oriented along the
stationary Killing vector.

It is surprising at first that the flux through the 5 — r =
constant hypersurfaces is zero, which indicates sharp
propagation of the energy, even though the retarded
solution has a tail contribution. This can be seen more
directly as follows. Let us recast Eq. (54) as

/dZJ“

where we have neglected the 1/72 terms and have used
r=—Hpn.

Now in taking the 5 derivative, contribution of the tail
term in (5) cancels out, leaving only the contribution from
the sharp term:

1

Za,]){” = - r,x/). (73)

d3x/Tij (71

B. Momentum and angular momentum fluxes

For the same three classes of hypersurfaces, we present
the momentum and angular momentum fluxes. We already
have the measures for these hypersurfaces as well as the
currents given in (49), (50). The full fluxes, only to the
leading order in r~!, are given by

- /_ : dr /S 2 dz‘sszi;7 (Hp. &;)J" (74)
© 2 1 .
el -
A
A, di lz d’s LH%F] ex;)J*.  (76)
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Momentum fluxes: The momentum current is given by

no_ 2 7
g 3271' rn—r

r@m u V@)L, (77)

Dotting with the n, produces a rotational scalar and the
average is a rotational scalar too. Then the angular
integration with %; vanishes, in all three cases. Hence,
the momentum flux is zero across the three classes of
hypersurfaces.

Angular momentum fluxes: Replacing 0,yj/" =~ —0,x1i",
we can write the angular momentum current as

2 n ama n £
J/Zj = T [;m] [ejmnx xk<taZ)(kl>](1’x )-

The fluxes then take the form

Lo fo

1 © oy
i ———— dr—— | &
"o 871'H2|7’]0|/0 rr—ﬂo/sz S[ jmn <Qtt)(kl>}
(79)

X" Q)] (78)

l+e [# m NI n
S —ege | ) | Pl Q)
1

(80)

Consider the average. The function enclosed in averag-
ing is the product of the A projector containing angular
dependence and a function having dependence on (7, r).
The averaging can then be split into averaging over a cell
Aw in the angular coordinates around the direction 7 and
averaging over a cell in the (#, ) plane; see Eq. (A9). Thus,
we write

(@ r.7.D) = |1

D JAw

JZS'A?’SI(’A’/)] Q" xw)(m. 1)]
(81)
— AZ(P(Q xa) (. 7). (82)

The angular integration over the sphere can be done
explicitly:

AZ dzsejmn)%mxk/\nlrs(?> < Q”Zkl(’/[’ r>>

8
= T2 € (Q"2) (n.1). (83)

This is to be integrated over the Killing parameter 7 or r or 4
for the three classes of hypersurfaces. The average is now
over an (n,r) cell.
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This integration in the flux expressions above can be
expressed in terms of the Killing parameter z and then they
all take the same form provided for ¥, we consider the
1o~ 0 — J* and for the null hypersurface we choose the
cosmological horizon, H' (¢ = +1,n = —r):

Flux of the (Angular Momentum);

1 00

= ~15 | _ dealn(@)r(@e;n( Q7). (34

The radiation field Q™ is given in Eq. (34) but without the
1t label and

2 .. . - _
Xim = 7~ [le + 2Hle + Hle + 2H2Q1m] (nret)
ra(n)

+ 2H2[le + Hle] (nret) - 2H2[le + Hle} (—00)
(85)

This flux does not have a finite limit to 7+ due to the tail
term in y}" and does not match with the flux given by [2]. It
is finite along the H* though. It does not match with the
correct angular momentum flux in the flat space limit as
well and it is well known [9,13] that the Isaacson effective
stress tensor does not suffice to capture the flux of angular
momentum. The sharp propagation property still holds in
the sense that the flux across the outgoing null hypersurface
is zero.

C. Extending from tt to TT

We have used the algebraic tt projection on the approxi-
mated, retarded solution. How would the results change if
we were to use the TT decomposition of the exact solution
prior to the |x’|/|X| < 1 approximation? For this we note a
few points.

It is easy to see that the TT part of the retarded solution is
given by [2]

X7 (n,x)
n ,
=4 X TIT /’ N, ,
| P T T O e
n_lx_x/l TITT/ /,X/
+4 / &£ / d#%, (86)

where the TT' refers to the second argument of the stress
tensor. This follows by checking that the divergence, 9%, of
the right-hand side converts into the divergence, d',, on the
second argument of the stress tensor. For this relation, it is
important to have the exact |x — x’| dependence and for the
source to have compact support. The TT part of the
approximated solution cannot be similarly expressed in
terms of the TT part of the source stress tensor.
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We can now consider the solution (86) for |x| > |x'| and
replace |x — x'| ~ r, which simplifies the source integral.
We denote this approximated expression as y/!. This

satisfies the transversality condition to o(r') only.’

Furthermore, since the transverse, traceless part of the

stress tensor drops out of its conservation equation, we
: T

cannot directly express [, . T7 ; in terms of correspond-

ingly defined moments. Nevertheless, we do get

n
an)(iTjT(’?’ x) =4 r(n—r) 6riMiTjT’
MiTjT(;y —7r) = /d3x’T,-TjT' (n—r,x) (87)
a M~T~T
am)(;‘I;‘T(r]’ X) = 4x_m <L 8er?}T - —U>
r\n-r r
= Ol =45 MET (88)
MIT
sl = =0l - 4r—21. (89)

Equation (89) has the same form as Eq. (13). Equation (87)
has the same form as Eq. (58), which introduced the
radiation field Qf;. We can thus introduce a new radiation

field, QiTjT = 28,7/\/157. With this, the form of the expres-
sions for fluxes will remain the same with Q% — QiTjT.

Note that unlike Qf, Q,»TJT does not have a simple relation to
the source moments defined earlier. Nevertheless, it shares
an important property with Qj’; namely, it too is a function
of 7 — r alone. This enables the space-time averaging to be
reduced to averaging over p = constant hypersurfaces, as

shown in Eq. (A13):

a? (%)

7

(O ET Oy (1, r,7) = 4 (QIT Q) (70, 7). (90)

In the next section we restrict to the energy fluxes and
see two applications of the conservation equation and the
sharp propagation property.

IV. IMPLICATIONS OF CONSERVATION
EQUATION AND SHARP PROPAGATION

In the previous subsection, we assembled fluxes through
various hypersurfaces, all having the topology A x S%. We
considered A to be a finite interval and also the cases with
A = R. The relevant hypersurfaces have p = constant. In
all cases, the energy flux integral had the form

3Extracting the TT part and making the approximation for
|X] > || do not commute, i.e., [(Xi)approc) " # (X1 ) approx-
This is so because the 0’ of the lhs is always zero by definition
while that of the rhs is nonzero in general. We are using the rhs.
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ab)-/dr/c[zs[] )

= [ dstr) (o). o1)

As shown in the Appendix, Eq. (A12), the angular brackets
denote averaging over 7 intervals and a trivial averaging
over the angular intervals. Since the angular average is
trivial, we have taken the angular integration across the
averaging and denoted the integration over the sphere by
(F)(7). Using the mean value theorem, we write

l " de{F)(z) = (F)(c)(b—a)

c+6 (b — a)
- F
/C_(S ek —5—

Let us choose (a,b) to be an averaging interval, i.e.,
(b — a) = 26. Recall that the averaged quantities are slowly
varying; i.e., (F) is varying only over the scale L > 2§ and
is thus essentially constant over the averaging interval.
Therefore, we can choose ¢ = (a + b)/2, possibly making
a small error. But then the right-hand side of the last
equality in the above equation becomes [’ drF(r). In
effect, for the integral over an averaging interval, we can
drop the angular brackets in Eq. (91).

For a < 0, b > 0, the 7 integral can be replaced by a
sum with each subinterval [ay,b;] being an averaging
interval. Using the above argument, we can write

Fla,b) Z/ df/dz[ } ioQmn . (93)

However, the averaging 7 intervals cannot be made arbi-
trarily finer and the Riemann sum cannot be taken to the
integral. Hence, the flux integral over an averaged inte-
grand matches with the flux integral over an unaveraged
integrand only at a coarse grained level. The same argu-
ments also hold for QI — QI and then the fluxes
defined using the averaged stress tensor match with the
expressions (36) at a coarse grained level.

By judicious choices of hypersurfaces comprising the
boundary 0V of a space-time region V), we can relate
different fluxes using the conservation equation (51). The
sharp propagation of energy comes in very handy. We note
two of its implications.

(1) The flux across two hypersurfaces %, and X,

cannot be equal; see the right panel of Fig. 2.
Letn, > ;. LetZ, meetthe r = 0line at A;. Let
the outgoing null hypersurface through A; intersect
the %, in §? at B, with the radial coordinate being
ri. The three hypersurfaces %, , the outgoing null
hypersurface, and the hypersurface %, bounded by
the sphere at B enclose a space-time region, A; BB;.

€ (a.b). (92)
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By the conservation equation (51), the sum of the
fluxes through these bounding hypersurfaces must
vanish. But the flux through the outgoing null
hypersurface vanishes as shown before. Hence the
fluxes through %, and the partial hypersurface %,
between B; and B must be equal. However, this
leaves the contribution of the flux through the
remaining portion of the %, hypersurface between
B, and B;. Hence the result. Alternatively, one can
also see this explicitly by writing the full flux
through the two hypersurfaces using the expression
given in Eq. (66) and matching the integrands along
the outgoing null hypersurface. Evidently, the full
flux through %, is also not equal to that through
J*. Physically this is understandable since the
hypersurface at a later value of 5 receives energy
emitted after the earlier value of #. The null infinity
of course records all the energy emitted by the
source and so does the cosmological horizon. We
also conclude that the total flux at 7+ computed by
Ashtekar et al., as given in Eq. (36), matches (at a
coarse grained level) with that given in Eq. (66)
(with @ — R) only for n = 0. Note that unlike the
spatial slices %,, all hypersurfaces Z,. intercept all
the emitted energy.

(2) The sharp propagation of energy can also be used to
infer the instantaneous emitted power. Consider two
outgoing null hypersurfaces intersecting the cosmo-
logical horizon in spheres with radii r(z) and /' (7').
The same hypersurfaces intersect the null infinity at
corresponding spheres at R(z) and R'(7’); see the left
panel in Fig. 2. For 7 > 7, we have /(') < r(r) and
R'(7') < R(z). By the conservation equation and
sharp propagation, the flux integral over the portion
bounded by the spheres R, R’ on J* and the flux
integral over the portion bounded by the spheres
r(r), r'(7') on H" are equal. Taking 7" = 7 + 6z, the
integral becomes d7x the integral over the sphere at
r(z). The emitted power is then defined by dividing
the flux integral by oz and taking the limit. Thus we
get the instantaneous power as

. Flr+or,t
P(z) = 51112%) ( ot ) 87r

cﬂs(Q”Q ).
(94)

This is manifestly positive.

This is very similar to the definition given by Ashtekar
et al. [2] in the form of Eq. (38) except that the integrand is
an average over 7 and angular windows. The power is
usually averaged over a few periods. If this is done to the
power expression in [2], it will match with the above
expression, again at a coarse grained level.
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The upshot is that the quadrupole power defined above is
gauge invariant and can be computed at the cosmological
horizon.

V. DISCUSSION AND SUMMARY

We have dealt with two aspects, namely, the role of the
cosmological horizon and the use of the ripple stress tensor
in the limited context of rapidly changing, distant sources.

A question regarding the validity of the short wavelength
approximation near 7t arises due to the understanding that
the physical wavelength will diverge near the future null
infinity thanks to the scale factor a(¢). Let us recall that the
background plus ripple decomposition is premised over
the expectation: 9,9, ~ g,,/L and d,h,, ~ h,, /A In the
cosmological chart, the nonzero coordinate derivatives of
the background are 0,7;; = 2Hg;; ~ g;;/ L. For the retarded
solution we have

= 0ilen(@ (1)) = 2H + 0md, ()
ij
. 8,,£n(;(ij) 1 1
=2H + a(l) Nz+a(t)/l’ (95)
Ohi;
8/(1’”"()(11) - rk(? fn()(l/)
ij
X 7
R =1 0,0n(xi) ~7k. (96)

The first equation shows that the ¢ derivative of the
perturbation does nor satisfy the premise near 7 thanks to
the presence of the scale factor. The second equation
however does not have the scale factor and the ripple
indeed has a short scale of spatial variation. Interestingly, in
the calculation of the fluxes, spatial components of the
ripple stress tensor (and hence the spatial derivatives of the
perturbation) do contribute since all Killing vectors are
spacelike near 7 and the short wavelength approximation
can justifiably be used.

As noted in the Introduction, the cosmological horizon is
unambiguously defined for a spatially compact source. This
follows because worldlines with finite physical separation
at every 5 must converge to i*, the point A of Fig. 1. If A
denotes the physical radial distance corresponding to the

radial coordinate difference &, then A2 = To maintain

H’ 2
A to be finite as 7 — 0_, we must have 5> ~ a2112 +0(|n?)
near i*. This identifies § with —an or @ = Hp. Thus, the
worldlines approach it along the p = constant hyper-
surfaces. The cosmological horizon is then the past light
cone of iT. The same argument also shows that any
observer who remains at finite physical distance away
from the source must remain confined within the cosmo-
logical horizon. Furthermore, neither any such observer nor
the source has any access to energy/momentum which has
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crossed the horizon. Hence the cosmological horizon does
share physically relevant properties with the future infinity.
Incidentally, any future directed causal curve reaching 7+
also registers on H™.

Further support for the role of the cosmological horizon
as future null infinity comes from the computations of the
energy momentum fluxes. For these, we employed the
effective ripple stress tensor and showed that the fluxes
defined at J+ match with those defined at HT.
Furthermore, these fluxes also matched (at a coarse grained
level) with the energy momentum fluxes defined by the
more geometric methods of the covariant phase space
framework. This provides further support to the utility of
the ripple stress tensor. The quadrupole power too matches
likewise. The ripple stress tensor, although limited to short
wavelength regimes (which cover most common sources),
provides a convenient picture of energy momentum flows
much like the flows for matter. There is a shortcoming of
the ripple stress tensor—it does not capture the angular
momentum flux correctly. A clearer understanding of this
failure is lacking at present.

It should be noted that the definition of fluxes is not
necessarily unique. Apart from a definition being well
defined, its correctness should be tested in conjunction with
the definition of the Bondi-type quantities having a loss
formula relating to flux. Recent work within a Bondi-type
framework may be seen in [14—16]. The observation that
the cosmological horizon is a Killing horizon and hence an
isolated horizon should be helpful in this regard.

ACKNOWLEDGMENTS

We would like to thank Béatrice Bonga for discussions
and clarifications regarding [2].

APPENDIX: AN AVERAGING PROCEDURE

In the main body we specified an averaging procedure by
stipulating its properties, namely, (i) the average of the odd
powers of & vanishes and (ii) the average of the space-time
divergence is subleading. This was then used to simplify
the expression for the ripple stress tensor. An averaging
procedure satisfying these properties was indeed given by
Isaacson [8]. We will use the same one and give more
explicit details in the present context.

Isaacson defines the space-time average of a tensor by
using the parallel propagator bitensor, g (x,x"), as

fcelld4/\/|g guxx XX)X//(X)

W) = fon T

(A1)

In the present context, we need the average of the stress
tensor for ripples due to a retarded solution which has a
certain explicit form. We will use this information to choose
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suitable integration variables and a corresponding “cell”
denoting the averaging region. Because of this, we have not
used any weighting function as given by Isaacson [8].

To keep track of the powers of H, we begin by going
from the conformal chart (5, x') to the cosmological chart
(t,x"), n=-H'e M with the spatial coordinates
unchanged. In the cosmological chart,

Metric: ds* = —df* + a*(1)(5;;dx'dx/),  a(r) = e
(A2)

Connection: I'";, =0, TI';=0, TI";
I, =0, 1—‘iij = Héij’

= Ha*(1)5;;

t

Iy =0. (A3)

The parallel propagator is computed in terms of the
parallel transport of an arbitrary cotetrad (or tetrad):
g (x,x) = e,*(x)e,* (x'). The averaging region is small
enough that for a cell around a point P with coordinates x%,
there is a unique geodesic to points P’ with coordinates x'%.
The parallel transported cotetrad is obtained using Taylor
expansions of the cotetrad, the affine connection, and the
coordinates along the geodesic, in terms of its affine
parameter, and eliminating the affine parameter afterwards
in favor of the coordinate differences Ax® :=x'® — x%.
Details may be seen in Appendix B of [3]. There is a
slight difference from [3], since that calculation was given
in the context of Fermi normal coordinates where the
connection is already of order H?, while in the cosmo-
logical chart, the connection is of order H. The final
expressions are

e, (x') = [5 A4 F”,,’le"
+ % @,r,," + f,,,,"fa,j)AxﬂAxﬂ] (A4)
g (6, x') = 8,/ — Tt Axe
- % (0,0 o' =T T ) AP Axe. (AS)

In the above, the hatted quantities are evaluated at x.
The connection dependent terms are linear and quadratic
in HAx. Although the coordinate differences are much
larger than the length scale A, they are much smaller than
H~!'. Hence, these terms can be neglected and effectively
the parallel propagator reduces to just the Kronecker delta.
For purposes of illustration of averaging, this suffices. It
remains to integrate the X,/ over the cell and as noted in
the main text in the paragraph below Eq. (60), the
components of the ripple stress tensor are essentially

Qi (n— .
determined in terms of 8,1)(1 ;= 2?# or alternatively
n—r
TT _ 2n g o= ’).

in terms of J,y;; e
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The angular dependence is introduced due to the tt part,
e.g., as is explicit in the AJf/(7) projector. The (1, r)
dependence has a convenient factorlzed form. It is thus
natural to change the integration variables from (7, r) to
(,p), where 7 is the retarded synchronous time defined
through 5 — r:= —H 'e" and Hp := — 1 defines p. For
definiteness, consider the average,

(O mn O™ (2.7, 7)

fcell dtdrrzdzsa ( ) n)(mn(t)an)(?tm( )
Joon dtdrr*d®sa’ (1) ’

(A6)

Here 7 denotes a point on S? (a spatial direction). We will
specify the cell after changing over to (7, p, 7).

From the definitions, we arrive at the coordinate trans-
formations,

_ 1 : ] P
__ —HT _ —Hi
a(t) = a(t)(1+ Hp), with a(t):=e"". (A7)

a(t.r)

The Jacobian of transformation is ANip) =
{a(f)(1 + Hp)}~'. We choose the cell so that
fe [Eo—é,io—i—a}, pE MO—A,pO—FA], and 7€ Aw.
The coordinate windows &8, A, and Vi2Aw@ are several
times the ripple scale, while (7, py) are the transforms of
(z,7). In terms of these choices, the average becomes

<an)(mnal1)(7tm>(t r, ?)
f;”&d’ s oS dpp? [, dPs[4° 2 wn (D) Q" (7)]
Jop di [0 dpp? [, ds ‘

(A8)

Consider the angular integration. The angular depend-
ence arises in taking the tt part of the solution y;;(#, r). For
illustration purposes, consider r to be sufficiently large so

that we can use the A} (#) projector, giving 9,1} Dt ~
Af]lan)(’/ 8,7)(k1. For large r, the angular coordinate windows

are ~4/r < 1. Using the mean value theorem in the angular
integration in the numerator, we get

fAm dZS(;)./)AfCJZ(?I)
fA(u dzs(?/)

~ AH(F). (A9)

In effect, the A projector comes out of the averaging and the
angular average trivializes. Of the remaining integrations,
the p integration can be done explicitly and is independent
of A to the leading order in A/p,. Thus, in the numerator of
(A8) we get
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fy+6 potA i -
" [ Q00 Qu(h)
fy—0 Po—A
Totd y
~ 8A dia®(1) QY (1) Qy(7)

10—6

s y
= 8A /5 dya*(ty +y) Q7 Qo + )

= 8Ad?(1) /5 dya?(y) QU Qy(ty +y)

s
= (84)a*(7p)(26)(QY Qu)i(io)- (A10)
In the third line, we have used a® being an exponential
function. In the last line we have defined the average over
the retarded time around 7, and put the suffix on the angular
bracket as a reminder.

The (); averaging has the extra factor of a*(y). However,
over the integration domain (-6, ), we can approximate
a*(y)~1+2Hy +--- and neglect o(Hy) terms since
HS ~kA/L ~ ke < 1. The extra factor thus introduces a
small deviation from the usual averaging without the extra
factor. We neglect it henceforth and the reminder suffix 7 is
also suppressed.

In the denominator we get

To+6 +A To+6
" / " dppr m2p3a [ d = (28)(20)02,
P

To—0 \—A 7)—8
(A11)
Combining Eqgs. (A8)—(Al1l), we get
~ a’(1 i\ /= A
(Ot Dmmy (2,7, 7) = 4#@5} i)t 7). (A12)
0

In the last equation, we have combined the averaging
over retarded time and the (trivial) angular average. We
have also inserted the A projector. The averaging over
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a space-time cell has been reduced to averaging over a
three-dimensional cell on a p = constant hypersurface. The
prefactor on the right-hand side of the above equation
exactly equals the last square bracket in the first line of

Eq. (60). In effect, the (r(SZ r))2 factor has come out of the

averaging.

We can also reduce the space-time average to a hyper-
surface average for 9,y 0,y ;. Following the same steps
as from Eq. (A6) onwards, we will arrive at Eq. (A8) with

i — QIT  We cannot do the angular averaging as
before, but we do not need to. Crucially, the p dependence
has factored out exactly as before and the average over p
gives p;? as before. The 7 averaging too gives a”(7,) and we

get the desired result,

a? (%)
o

(O bRy (1,1, 7) = 4 (QIT Q) (70, 7). (A13)

We can relate the averaging over the retarded time 7 to the
averaging over the Killing time 7 along the p = p, curve.
From the coordinate transformation, we have 7 —r =
—H 'e7H7 while along the p = p, Killing trajectory,
n—r=(n, —r)e " =—(H'e7H")e=H*  Hence, 7=
7+ 1, and the temporal averaging is related to averaging
over a Killing time. Note that since the averaging cell is
bounded by two hypersurfaces of constant retarded times,
the temporal averaging may be evaluated along the source
worldline, r = 0, or along the Killing trajectory on J .

We also have mixed and spatial components of the ripple
stress tensor. These involve 0y}, & X000, & =20, -
While taking the average, the X; can be taken out of the
average since the angular coordinate windows are of very
small size ~A/r. This allows us to take &’ across the angular
averages and replace all components of the ripple stress
tensor by f,, in the conformal chart or by 7y, in the
cosmological chart.
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