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In this paper, the four-dimensional nonlinearly charged black hole solutions have been considered in the
presence of the power Maxwell invariant electrodynamics. Two new classes of anti–de Sitter (AdS) black
hole solutions have been introduced according to different amounts of the parameters in the nonlinear
theory of electrodynamics. The conserved and thermodynamical quantities of either of the black hole
classes have been calculated from geometrical and thermodynamical approaches, separately. It has been
shown that the first law of black hole thermodynamics is satisfied for either of the AdS black hole solutions
we just obtained. Through the canonical and grand canonical ensemble methods, the black hole thermal
stability or phase transitions have been analyzed by considering the heat capacities with the fixed black hole
charge and fixed electric potential, respectively. It has been found that the new AdS black holes are stable if
some simple conditions are satisfied.
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I. INTRODUCTION

It is well known that there are many good reasons to
considerMaxwell’s electromagnetic theory as the successful
theory of classical electrodynamics. But regarding the
appearance of the infinite self-energy for the pointlike
charges, it seems that this theory may be incomplete. It is
for this reason that in recent yearsmany authors are interested
in generalizing the standard Maxwell electromagnetic
theory. The initial idea to modifyMaxwell’s electromagnetic
theory was apparently outlined, in order to overcome
the problem of infinite self-energy of the point charges, by
Born and Infeld [1]. Along the same line, the logarithmic,
exponential, and other models of nonlinear electrodynamics
have been introduced by some other authors [2–7]. Among
alternative proposedmodels, the so-called extended theory of
electrodynamics or the nonlinear electromagnetic actions,
the logarithmic, exponential, quadratic, and power-law non-
linear theories of electrodynamics have provided interesting
results [6–10]. Thesemodels are based on the actions that are
constructed by nonlinear combinations of the Maxwell
invariantF ¼ FαβFαβ.Models of nonlinear electrodynamics
can be considered as the effective models with the quantum
corrections taken into account. Maxwell’s theory of electro-
dynamics is a special case of the nonlinear theories of
electrodynamics in the weak fields limit [7,9,11]. In the
case of the high strength electromagnetic fields, when the
self-interaction of the photons is important, the linear model
of electromagnetic theory should be generalized to nonlinear
models [5].
Furthermore, one of the outstanding achievements in the

context of geometrical physics is that black holes are
thermodynamical systems with temperature proportional

to the surface gravity. According to the Hawking-
Bekenstein entropy-area law, they have entropy propor-
tional to the horizon surface area [12–14]. Although
modification of the usual electrodynamics theory itself
originates from the quest of establishing a new theory of
electrodynamics that is able to produce a finite amount
of self-energy for pointlike charges, the modified models of
electrodynamics have extensively been used for character-
izing the physical and thermodynamical properties of the
various kinds of charged black holes [15]. If black holes
have large amounts of electric charge, they can create a
strong enough electric field. In this case, the nonlinear
electrodynamics can lead to a more realistic physical
description. Now, the nonlinear electrodynamics has been
the subject of many interesting works, and a lot of papers
have appeared in which the usual theory of electrodynamics
is modified at the framework of gravitational physics [16].
The main objective here is to provide a detailed analysis

of the thermodynamical properties of new four-dimensional
electrically charged anti–de Sitter (AdS) black holes in the
presence of a power-lawMaxwell invariant. The motivation
for studying black holes with a negative cosmological
constant arises from the correspondence between the
gravitating fields in an AdS spacetime and the conformal
field theory living on the boundary of the AdS spacetime.
It was argued that the thermodynamics of black holes in
AdS spaces can be identified with that of a certain dual
conformal field theory, the AdS=CFT correspondence [17].
This paper is organized based on the following order.

In Sec. II, we obtain the gravitational and nonlinear
electromagnetic field equations by varying the related four-
dimensional action with respect to the metric and the
electromagnetic potential, respectively. Making use of
the power Maxwell invariant, as a model of nonlinear*m.dehghani@ilam.ac.ir

PHYSICAL REVIEW D 96, 044025 (2017)

2470-0010=2017=96(4)=044025(10) 044025-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.044025
https://doi.org/10.1103/PhysRevD.96.044025
https://doi.org/10.1103/PhysRevD.96.044025
https://doi.org/10.1103/PhysRevD.96.044025


electrodynamics, we solve the field equations in a static
spherically symmetric geometry.We consider the properties
of the solutions and introduce two new classes of asymp-
totically AdS black hole solutions, according to the proper
ranges of the allowed parameters. Section III is devoted to
thermodynamics and stability analysis of the various black
hole solutions we just obtained. We calculate the temper-
ature, entropy, electric potential, conserved mass, and
charge of the new asymptotic AdS black holes from both
the geometrical and the thermodynamical approaches sep-
arately. Also we show that the first law of black hole
thermodynamics is satisfied for either of the AdS black
hole solutions. Finally, making use of the canonical and
grand canonical ensemble methods, we study the thermal
stability or phase transition of either of the new AdS black
hole classes. We show that the AdS black hole solutions,
introduced here, are stable if some simple conditions are
satisfied. We summarize and discuss the results in Sec. IV.

II. SOLUTION TO THE FIELD EQUATIONS

Let us start with the following action for a nonlinearly
charged four-dimensional black hole in the presence of the
cosmological constant:

I ¼ −
1

16π

Z ffiffiffiffiffiffi
−g

p
d4x½R − 2Λþ LðF Þ�: ð2:1Þ

Here, R is the Ricci scalar, and Λ ¼ −3l−2 is the AdS
cosmological constant. LðF Þ denotes the electromagnetic
Lagrangian density as a function of Maxwell’s invariant
F ¼ FμνFμν. It is chosen as a power law in the following
form:

LðF Þ ¼ ð−F Þp; ð2:2Þ
where Fμν ¼ ∂μAν − ∂νAμ and Aμ is the electromagnetic
potential. By varying action (2.1) with respect to the
gravitational field we get Einstein’s field equations as

Rμν −
1

2
Rgμν −

3

l2
gμν ¼

1

2
gμνð−F Þp þ 2pð−F Þp−1FμαFα

ν :

ð2:3Þ
Also, varying action (2.1) with respect to the electromag-
netic field yields

∇μ½L0ðF ÞFμν� ¼ 0 or equivalently

∂μ½
ffiffiffiffiffiffi
−g

p
L0ðF ÞFμν� ¼ 0; ð2:4Þ

where the prime denotes the derivative with respect to
the argument. The only nonvanishing component of the
electromagnetic field is that of Ftr. Assuming it is a
function of r, that is Ftr ¼ −EðrÞ ¼ h0ðrÞ, we have

F ¼ −2ðFtrðrÞÞ2 ¼ −2ðh0ðrÞÞ2: ð2:5Þ

We would like to solve the gravitational and electromag-
netic field equations, (2.3) and (2.4), in a one function four-
dimensional spherically symmetric geometry. It can be
written in the following form:

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdφ2Þ: ð2:6Þ

Now, making use of Eqs. (2.5) and (2.6) in the electro-
magnetic field equations (2.4) we have

rðh0ðrÞÞ2p−2½2h0ðrÞ þ ð2p − 1Þrh00ðrÞ� ¼ 0; p ≠
1

2
:

ð2:7Þ

The solution to the differential equation (2.7) can be
obtained as

hðrÞ ¼

8>><
>>:

−q ln
�
r
l

�
for p ¼ 3

2
;

−qr
2p−3
2p−1 for p ≠ 1

2
; 3
2
;

ð2:8Þ

from which we obtain the nonzero component of the
electromagnetic field as

Ftr ¼

8>><
>>:

−
q
r

for p ¼ 3

2
;

q

�
3 − 2p
2p − 1

�
r

−2
2p−1: for p ≠

1

2
;
3

2
:

ð2:9Þ

Note that q is an integration constant related to the black
hole charge. Also, note that Ftr reduces to its Reissner-
Nordström-anti-de Sitter (R-N-AdS) correspondence if we
set p ¼ 1.
To obtain the metric function fðrÞ, we use Eq. (2.6) in

the gravitational field equation (2.3). It leads to the
following differential equations:

ett ¼ err ¼

8>>><
>>>:

f0ðrÞ
r

þ fðrÞ − 1

r2
−

3

l2
− 2

ffiffiffi
2

p q3

r3
¼ 0 for p ¼ 3

2
;

f0ðrÞ
r

þ fðrÞ − 1

r2
−

3

l2
þ ð2p − 1Þ2p−1

�
qð3 − 2pÞ
2p − 1

�
2p
r

−4p
2p−1 ¼ 0 for p ≠

1

2
;
3

2
;

ð2:10Þ
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eθθ ¼ eφφ ¼

8>>><
>>>:

f00ðrÞ þ 2f0ðrÞ
r

−
6

l2
þ 2

ffiffiffi
2

p q3

r3
¼ 0 for p ¼ 3

2
;

f00ðrÞ þ 2f0ðrÞ
r

−
6

l2
− 2p

�
qð3 − 2pÞ
2p − 1

�
2p
r

−4p
2p−1 ¼ 0 for p ≠

1

2
;
3

2
:

ð2:11Þ

Making use of Eqs. (2.10) and (2.11), one can show that

eθθ ¼
�
2þ r

d
dr

�
err; for p ≠

1

2
: ð2:12Þ

It means that Eqs. (2.10) and (2.11) are not independent.
Therefore, we solve the first order differential equa-
tion (2.10) and ensure that the solution satisfies the

second order differential equation (2.11). It must be
noted that, in the case of p ¼ 1

2
, one can obtain the

components of the gravitational field equations similar
to those of Eqs. (2.10) and (2.11), but they are not
compatible for p ¼ 1

2
. Thus the gravitational field equa-

tions do not have solutions in the spacetime geometry
described by metric (2.6).
The solution to the field equations (2.10) and (2.11) are

fðrÞ ¼

8>>><
>>>:

1 −
m
r
þ r2

l2
þ 2

ffiffiffi
2

p
q3

r
ln

�
r
l

�
; for p ¼ 3

2
;

1 −
m
r
þ r2

l2
þ ð2p − 1Þð2Þp−1q2p

�
3 − 2p
2p − 1

�
2p−1

r
−2

2p−1; for
1

2
< p <

3

2
;

ð2:13Þ

where m is the constant of integration related to the
black hole mass. It is notable that in the case of p ¼ 1
the power-law nonlinear electrodynamics (2.2) reduces to
the usual electrodynamics and (2.13) to the R-N-AdS
metric function.
In the following subsection we investigate the math-

ematical and physical properties of the solutions we
obtained here.

A. Properties of the solutions

To study the general structure of the solutions we just
obtained, at first one must notice that, as a physical
condition, the electric potential (2.8) should be finite as
r goes to infinity. Therefore, the p-dependent power of r
(i.e., 2p−3

2p−1) must be negative. It restricts the allowed p values

to the range 1
2
< p < 3

2
.

To investigate the asymptotic behavior of the solutions,
we notice the metric function fðrÞ for the limit of r → ∞.

One can show that the p dependent power of r (i.e., −2
2p−1) is

negative for p > 1
2
, positive for p < 1

2
, and equal to 2 for

p ¼ 0. Thus it can be obtained from (2.13) that

lim
r→∞

fðrÞ ¼ 1þ r2

l2
for

1

2
< p ≤

3

2
; ð2:14Þ

which confirms that the metric function fðrÞ describes an
asymptotically AdS spacetime, depending on the sign of
cosmological parameter Λ, for the mentioned p values.
Also the spacetime is a pure AdS for p ¼ 0 with the
following effective cosmological constant

1

leff
¼ 1

l
þ 1

2
: ð2:15Þ

In the case of p < 1
2
the geometry of the spacetime is not

asymptotically AdS nor asymptotically flat.
Now, we look for the curvature singularities. One can

show that the Ricci and Kretschmann scalars can be written
in the following forms [8]:

R ¼

8>><
>>:

−
12

l2
− 2

ffiffiffi
2

p q3

r3
; for p ¼ 3

2
;

−
12

l2
þ ðp − 1Þð2Þpþ1

�
qð3 − 2pÞ
2p − 1

�
2p
r

−4p
2p−1; for

1

2
< p <

3

2
;

ð2:16Þ

RμνρλRμνρλ¼

8>>><
>>>:

24

l4
þ 8

l2r2
þ8

ffiffiffi
2

p
q3

l2r3
þ 4

r4
þ 8

r5
ð2

ffiffiffi
2

p
q3 lnðr=lÞ−mÞþ12m2

r6
þ8A0q3

r6
; for p¼ 3

2
;

24

l4
þ 8

l2r2
þ 4

r4
þ8m

r5
þ12m2

r6
þA1ðpÞr

−4p
2p−1þA2ðpÞr

3−10p
2p−1 þA3ðpÞr

2−8p
2p−1þA4ðpÞr

−8p
2p−1; for 1

2
<p< 3

2
;

ð2:17Þ

where
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A0 ¼ 5
ffiffiffi
2

p
mþ 13q3

þ 2½6q3 ln ðr=lÞ − 10q3 − 3
ffiffiffi
2

p
m� ln ðr=lÞ;

A1ðpÞ ¼ ð1 − pÞð2Þpþ3
q2p

l2

�
3 − 2p
2p − 1

�
2p
;

A2ðpÞ ¼ mð2Þpþ3q2p
�
3 − 2p
2p − 1

�
2p pð2pþ 1Þ

2p − 3
;

A3ðpÞ ¼ ð2p − 1Þð2Þpþ2q2p
�
3 − 2p
2p − 1

�
2p−1

;

A4ðpÞ ¼
ð2Þ2pþ1q4p

ð3 − 2pÞ2
�
3 − 2p
2p − 1

�
4p

× ð8p4 − 16p3 þ 22p2 − 10pþ 3Þ:

It is easily shown that the Ricci and Kretschmann scalars
reduce to those of the R-N-AdS black hole by setting
p ¼ 1.
Note that the Ricci and Krishmann scalars diverge at

r ¼ 0. There is singularity at r ¼ 0 (i.e., r ¼ 0 is an
essential singularity) for the asymptotically AdS black
holes introduced here. Otherwise (p < 1

2
), r ¼ 0 is not a

singular point. For more clarifying of the properties of the
nonlinearly charged AdS black hole solutions as well as the
effects of nonlinear electrodynamics theory, we have
plotted the metric function fðrÞ versus r in Fig. 1. As is
clear from Fig. 1, the solutions with permitted p values in
the range 1

2
< p < 3

2
cannot present single horizon black

holes. However, they can present two horizon, extreme
black holes, and naked singularity depending on the
parameter p. On the other hand, it shows that in the case
of p ¼ 3

2
only nonextreme black holes with a single horizon

can be presented.

III. THERMODYNAMICS

In this section we explore the thermodynamics properties
of the four-dimensional nonlinearly charged AdS black
hole solutions we just introduced. Also we consider
separately the black hole stability or phase transitions

regarding the black hole heat capacity for either the
p ¼ 3

2
case or the 1

2
< p < 3

2
case.

A. The conserved quantities and first law of
black hole thermodynamics

In this subsection, we seek satisfaction of the first law
of thermodynamics for our four-dimensional AdS black
hole solutions. Let us start with the calculation of the
black hole electric charge Q, as a conserved quantity, in
terms of the integration constant q. Making use of
Gauss’s law, the electric charge can be found by
calculating the flux of the electric field at infinity (i.e.,
r → ∞), that is [7,9,16]

Q ¼ 1

4π

Z ffiffiffiffiffiffi
−g

p
L0ðF ÞFμνnμuνdΩ; ð3:1Þ

where nμ and uν are the unit spacelike and timelike
normals to the hypersurface of radius r defined through
the following relations:

nμ ¼ dtffiffiffiffiffiffiffiffi−gtt
p ¼ dtffiffiffiffiffiffiffiffiffi

fðrÞp ; uν ¼ drffiffiffiffiffiffi
grr

p ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
dr:

Making use of Eq. (2.9) after some simple calculations
we arrived at

Q ¼

8>>><
>>>:

3ffiffiffi
2

p q2 for p ¼ 3

2
;

pð2Þp−1
�
qð3 − 2pÞ
2p − 1

�
2p−1

for
1

2
< p <

3

2
;

ð3:2Þ

from which we can write

q ¼ 2p − 1

3 − 2p

�
Q

pð2Þp−1
�
1=ð2p−1Þ

for
1

2
< p <

3

2
: ð3:3Þ

The black hole charge coincides with that of the R-N-
AdS black hole if one sets p ¼ 1 in Eq. (3.3).

0.0 0.5 1.0 1.5 2.0 2.5

5

0

5

10

15
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FIG. 1. fðrÞ versus r. Left:M ¼ 3,Q ¼ 1, l ¼ 1, and p ¼ 1, 1.28, 1.34, 1.38, from bottom to top. Middle:M ¼ 3,Q ¼ 1, l ¼ 1, and
p ¼ 1, 0.75, 0.65, 0.58, from left to right. They show black holes with two horizon, extreme black hole, and naked singularity. Right:
M ¼ 3, p ¼ 3=2, l ¼ 1, and Q ¼ 5, 10, 15, 20, from bottom to top. All show nonextreme black holes with one horizon. Note that
Eqs. (3.2) and (3.8) have been used.
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The second conserved quantity to be calculated is the
black hole massM, which is related to the other integration
constant m. Since the spacetime under consideration is an
asymptotically AdS one, we can use the counterterm
method [18] to obtain the conserved mass. In the counter-
term method the divergence free stress tensor is written in
the following form:

Tαβ ¼ 1

8π

�
Θαβ − Θγαβ þ 2ffiffiffiffiffiffi−γp δSct

δγαβ

�
; ð3:4Þ

where Θαβ is the extrinsic curvature of the boundary and Θ
is its trace. Sct is the counterterm action that has been added
to obtain a finite stress tensor. It is a local function of
intrinsic geometry, γαβ, of the boundary

SctðγαβÞ ¼
Z
B
d4x

ffiffiffiffiffiffi
−γ

p �
l
2
R −

2

l

�
: ð3:5Þ

The tt component of the stress tensor is written as

8πTtt ¼ −
2r2

l3
þ 2ffiffiffiffiffiffi−γp δSct

δγtt
; ð3:6Þ

and the black hole mass M in terms of the mass parameter
m may be calculated as

M ¼
Z

d2x
r
l
Ttt; for large r: ð3:7Þ

In the present case x1 ¼ lθ and x2 ¼ l sin θdφ. It is matter
of calculation to show that

m ¼ 2M: ð3:8Þ
One can obtain the Hawking temperature associated with

the black hole horizon r ¼ rþ, which is the root(s) of
fðrþÞ ¼ 0, in terms of the surface gravity κ as

T ¼ κ

2π
¼ 1

4π

d
dr

fðrÞjr¼rþ ¼ 1

4πrþ
×

8>>><
>>>:

1þ 3r2þ
l2

þ 2
ffiffiffi
2

p q3

rþ
for p ¼ 3

2
;

1þ 3r2þ
l2

− ð3 − 2pÞð2Þp−1q2p
�
3 − 2p
2p − 1

�
2p−1

r
−2

2p−1
þ for

1

2
< p <

3

2
;

ð3:9Þ

which reduces to the temperature of R-N-AdS in the
case p ¼ 1.
Note that the relation fðrþÞ ¼ 0 has been used to

eliminate the mass parameter m from Eq. (3.9). Extreme
black holes occur if q and rþ are chosen such that T ¼ 0.
With this issue in mind, making use of Eq. (3.9) we have

qext ¼
2p − 1

3 − 2p

�
1þ 3r2ext=l2

ð2p − 1Þð2Þp−1
� 1

2p

r
1

pð2p−1Þ
ext for

1

2
< p <

3

2
:

ð3:10Þ
As shown in Fig. 1, our solutions produce extreme black
holes if q ¼ qext, two horizon black holes for q < qext, and
naked singularities provided q > qext.
Next, we calculate the entropy of the black hole. It

can be obtained from Hawking-Bekenstein entropy-area
law, that is,

S ¼ A
4
¼ πr2þ: ð3:11Þ

Also, the black hole’s electric potential can be obtained in
terms of the null generator of the horizon as [7,9,16]

U ¼ Aμχ
μjreference − Aμχ

μjr¼rþ ; ð3:12Þ

where χμ is the null generator of the horizon [19]. It is the
black hole’s electric potential measured by an observer
located at infinity relative to the horizon. Noting Eq. (2.8),
we have

U ¼

8>><
>>:

q ln

�
rþ
l

�
for p ¼ 3

2
;

qðrþÞ
2p−3
2p−1 for

1

2
< p <

3

2
;

ð3:13Þ

which is consistent with the electric potential of the R-N-
AdS black hole in the case p ¼ 1.
Here, we check the first law of black hole thermody-

namics for the conserved and thermodynamic quantities
obtained from the geometrical methods. At first we obtain
the black hole mass M as a function of the extensive
quantities entropy S and charge Q. For this purpose we use
Eqs. (3.3), (3.8), and (3.12) in the relation fðrþÞ ¼ 0 and
find the following Smarr-type mass formula:

MðQ; SÞ ¼

8>>>><
>>>>:

1

2

�
S
π

�1
2 þ 1

2l2

�
S
π

�3
2 þ 1ffiffiffi

2
p

� ffiffiffi
2

p

3
Q

�3
2

ln

�
S
πl2

�
for p ¼ 3

2
;

1

2

�
S
π

�1
2 þ 1

2l2

�
S
π

�3
2 þ ð2Þp−2 ð2p − 1Þ2

3 − 2p

�
Q

p2p−1

� 2p
2p−1

�
S
π

� 2p−3
2ð2p−1Þ

for
1

2
< p <

3

2
:

ð3:14Þ
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From the thermodynamic point of view, the mass of a black
hole can be interpreted as the internal energy. Therefore,
in the classical black hole thermodynamics, it is necessary
for the physical black holes to have positive mass [20].
Now, the last term in the black hole mass given by the last
line of Eq. (3.14) is negative for p > 3

2
. It can lead to a

negative black hole mass. Therefore, by imposing the
confinement 1

2
< p < 3

2
, the black hole mass is always

positive, which confirms the validity of the range of
allowed p values.
By treating Q and S as a complete set of extensive

parameters for the massMðS;QÞ and defining the intensive
parameters conjugate to them as temperature T and electric
potential U, we obtain

T ¼
�∂M
∂S

�
Q
; U ¼

�∂M
∂Q

�
S
; ð3:15Þ

which are compatible with the temperature and electric
potential given in Eqs. (3.9) and (3.13). It means that the
thermodynamics quantities we obtained in this section satisfy
the first law of black hole thermodynamics in the form

dM ¼ TdSþ UdQ; ð3:16Þ
for either of the black hole solutions we just obtained.

B. Stability analysis in the canonical
ensemble method

In this stage, we study the local stability or phase
transitions of the introduced black holes in the canonical
ensemble method. It is well known that the black hole, as a
thermodynamical system, is locally stable if its heat
capacity is positive. A nonstable black hole may undergo
a phase transition to be stabilized. The phase transition
points are where the heat capacity vanishes or diverges. In
the vanishing points (roots of heat capacity) the phase
transition is named conventionally as the type one phase
transition. The points where the heat capacity diverges
are known as the type two phase transition points.
Therefore, the positivity of heat capacity CQ ¼
Tð∂S=∂TÞQ ¼ T=ð∂2M=∂S2ÞQ or equivalently the posi-
tivity of ð∂S=∂TÞQ or ð∂2M=∂S2ÞQ with T > 0 are
sufficient to ensure the local stability of the black hole.
It is a matter of calculation to show that

�∂2M
∂S2

�
Q
¼ 1

8π2r3þ
×

8>>><
>>>:

3
r2þ
l2

− 4
ffiffiffi
2

p q3

rþ
− 1 for p ¼ 3

2
;

ð2Þp−1ð2pþ 1Þq2p
�
3 − 2p
2p − 1

�
2p
ðrþÞ−

2
2p−1 − 1þ 3r2þ

l2
for

1

2
< p <

3

2
:

ð3:17Þ

It is obvious from Eq. (3.8) that for the case of
p ¼ 3=2 the black hole temperature is positive (i.e.,
T > 0), and no type one phase transition takes place.
For discussing the type two phase transition we must
consider the real roots of the denominator in the heat
capacity. That is,

3r3þ − l2rþ − 4
ffiffiffi
2

p
q3l2 ¼ 0: ð3:18Þ

It has a real root of the form

rþ ≡ r0 ¼
1

3

�
Γþ l2

Γ

�
; with

Γ ¼ q
h
18

ffiffiffi
2

p
l2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2=ð648q6Þ

q �i1
3

; ð3:19Þ

if the condition l ≤ 18
ffiffiffi
2

p
q3 is satisfied. With this

condition the heat capacity diverges and the black hole
undergoes a type two phase transition to be stabilized.
The heat capacity of the black hole is positive for
rþ > r0 and negative for rþ < r0. Thus the black hole is
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FIG. 2. (Left) T versus rþ and (right) 8π2ð∂2M=∂S2ÞQ versus rþ for p ¼ 3=2 and l ¼ 1. Black, red, blue, and green curves
correspond to Q ¼ 1, 2, 4, 7, respectively.
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thermodynamically stable if its horizon radius is greater
than r0. The plots of T and ð∂2M=∂S2ÞQ versus rþ are
shown in Fig. 2.
For the range 1

2
< p < 3

2
the black hole temperature can

be written as

T¼ 1

4πrþ

�
1þ3

r2þ
l2

− ð2p−1Þð2Þp−1q2p
�
3−2p
2p−1

�
2p
r

−2
2p−1
þ

�
:

ð3:20Þ

It is evident that for a nonextreme black hole to be
physically reasonable the temperature must be positive.
That is,

1þ 3
r2þ
l2

> ð2p − 1Þð2Þp−1q2p
�
3 − 2p
2p − 1

�
2p
r

−2
2p−1
þ : ð3:21Þ

It must be noted that the inequality (3.21) restricts the black
hole charge and size to some allowed ranges. The plot of
4πTðrþÞ versus rþ, for different allowed p values, has been
shown in Fig. 3. It is clear from Fig. 3 that there is a
minimum horizon radius r1 ¼ rext, such that the black hole
temperature is positive for rþ > r1.
Now we investigate the divergent points of the black hole

heat capacity. From Eq. (3.17), one can say that the black
holes are stable if

DðrþÞ≡ ð2Þp−1ð2pþ 1Þq2p
�
3 − 2p
2p − 1

�
2p
ðrþÞ−

2
2p−1

− 1þ 3r2þ
l2

> 0: ð3:22Þ

It is a matter of calculation to combine inequalities (3.21)
and (3.22) and show that

ð2pþ 1Þð1þ 3r2þ=l2Þ > ð2p − 1Þð1 − 3r2þ=l2Þ: ð3:23Þ

The inequality (3.23) is always fulfilled. It means that the
denominator of the black hole heat capacity is positive and
does not vanish. Therefore, the AdS black holes are
thermally stable for rþ > r1. For more clarifying, we have

plotted DðrþÞ versus rþ for different allowed p values in
Fig. 3. It shows that the denominator of the black hole heat
capacity is always positive. The plots of Fig. 3 confirm that
the black holes with the horizon radius greater than rext are
thermodynamically stable.

C. Stability analysis in the grand canonical
ensemble method

In the grand canonical ensemble method the black hole,
as the thermodynamical system, is locally stable provided
that the Hessian matrixHM

S;Q is positive definite [21]. It can
be written as

HM
S;Q ¼

�
MQQ MQS

MSQ MSS

�
; ð3:24Þ

where MXY ¼ ∂2M
∂X∂Y and the explicit form of MðS;QÞ has

been given in Eq. (3.14). The Hessian matrix HM
S;Q is

positive definite provided that all its pivots are positive
[21]. The pivots are

MQQ ¼ ∂U
∂Q and

detðHM
S;QÞ

MQQ
: ð3:25Þ

Making use of Eqs. (3.3) and (3.13) one can show that

MQQ ¼

8>>>><
>>>>:

� ffiffiffi
2

p

12Q

�1
2

ln

�
rþ
l

�
for p ¼ 3

2
;

ðrþÞ
2p−3
2p−1

Qð3 − 2pÞ
�

Q
pð2Þp−1

�
1=ð2p−1Þ

for
1

2
< p <

3

2
;

ð3:26Þ

which is clearly positive, and the first condition of thermal
stability is always fulfilled. Therefore, the positivity of
detðHM

S;QÞ=MQQ ensures the black hole thermal stability.
Now, we proceed to examine the second condition of the
black hole local stability. Following the work of Peca and
Lemos [21] we have
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FIG. 3. (Left) 4πT versus rþ and (right) DðrþÞ versus rþ for Q ¼ 1 and l ¼ 1. Red, blue, black, brown, and green curves correspond
to p ¼ 1.488, 1.2, 1, 0.8, 0.7, respectively.
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detðHM
S;QÞ

MQQ
¼ 1

CU
; ð3:27Þ

where CU ¼ Tð∂S∂TÞU is the black hole heat capacity at the constant electric potential. It can be calculated as follows:

CU ¼ T

� ∂S
∂rþ

�
U

� ∂T
∂rþ

�
−1

U
¼ 8π2l2r4þT

8>>><
>>>:

�
ð3r3þ − l2rþ − 4

ffiffiffi
2

p
q3l2Þ ln

�
rþ
l

�
− 6

ffiffiffi
2

p
q3l2

�
−1

ln

�
rþ
l

�
; for p ¼ 3

2
;

�
3r3þ − l2rþ þ ð2Þp−1q2p

�
3 − 2p
2p − 1

�
2p
ð2p − 1Þ2r

2p−3
2p−1
þ

�
−1

for
1

2
< p <

3

2
:

ð3:28Þ

In the case of p ¼ 3
2
, T is positive (see Fig. 2). Therefore,

positivity of the denominator of CU guarantees the black
hole to be locally stable. That is, the black hole is locally
stable if

MðrþÞ ¼ ð3r3þ − l2rþ − 4
ffiffiffi
2

p
q3l2Þ ln

�
rþ
l

�

− 6
ffiffiffi
2

p
q3l2 > 0: ð3:29Þ

The plot of MðrþÞ versus rþ has been shown in Fig. 4
(left). It shows that there is a minimum value for the horizon
radius such that the black holes with the horizon radius
greater than this minimum value are thermodynamically
stable. A similar result has been obtained when the
canonical ensemble method was used.
Since the black holes with p in the range 1

2
< p < 3

2
have

a positive temperature for rþ > rext (Fig. 3, left), one can
argue from Eq. (3.28) that they have a positive heat capacity
and are thermodynamically stable if the denominator is
positive. That is,

MðpÞðrþÞ ¼ 3r3þ − l2rþ þ ð2Þp−1q2p
�
3 − 2p
2p − 1

�
2p

× ð2p − 1Þ2r
2p−3
2p−1
þ > 0: ð3:30Þ

As is shown in Fig. 4(right), the inequality (3.30) is always
fulfilled. Therefore, the heat capacity is positive definite

and AdS black holes with a horizon radius greater than rext
are locally stable. It means that the results of canonical and
grand canonical ensemble methods are compatible and the
new AdS black holes, introduced in this work, are stable.

IV. CONCLUSION

Here, we studied the four-dimensional charged black hole
solutions within the nonlinear electrodynamics. Making use
of the power Maxwell invariant, as the generalization of the
usual classical theory of electrodynamics, we solved the
coupled electromagnetic and gravitational equations and
obtained two new classes of black hole solutions. Through
consideration of the physical properties of the black hole
solutions we just obtained, we found that they behave
asymptotically like the AdS black holes if we fix the power
of the Maxwell invariant in the nonlinear theory of the
electrodynamics to the range 1

2
< p ≤ 3

2
. Also we found that

Ricci and Kretschmann scalars diverge at r ¼ 0. It means
that r ¼ 0 is an essential (not coordinate) singularity for
either of the AdS black hole solutions. Furthermore, we
showed that one of the solutions corresponding to p ¼ 3

2

presents black holes with only a single horizon, while the
other that corresponds to 1

2
< p < 3

2
presents naked singu-

larity, extreme, and two horizon black holes if the parameter
p is chosen properly (see Fig. 1).
Next, we proceed to explore the thermodynamical

properties of the new AdS black hole solutions. At first
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FIG. 4. Left: MðrþÞ versus rþ for p ¼ 3=2 and l ¼ 1. Black, red, blue, and green curves correspond to Q ¼ 1, 2, 4, 7, respectively.
Right: MðpÞðrþÞ versus rþ for Q ¼ 1 and l ¼ 1. Red, blue, black, brown, and green curves correspond to p ¼ 1.488, 1.2, 1, 0.8, 0.7,
respectively.
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we obtained the electric charge and mass of the black hole,
as the conserved quantities, making use of Gauss’s law and
counterterm method, respectively. Also, we calculated the
entropy, temperature, and electric potential by using the
geometrical methods. On the other hand, through a Smarr-
type mass formula, we constructed the black hole mass as a
function of both the charge and the entropy, as the thermo-
dynamical extensive quantities, from which we calculated
the electric potential and temperature, as the thermodynam-
ical intensive quantities, for either of the asymptotic
AdS black holes. We found that the thermodynamical
quantities obtained from geometrical and thermodynamical
approaches are identical for either of the black hole classes.
It confirms the validity of the first law of black hole
thermodynamics in the form of Eq. (3.16).
Finally, we analyzed the local stability of either of the

new asymptotic AdS black holes, making use of the black
hole heat capacity with the fixed black hole charge. For the
case p ¼ 3

2
we found that no type one phase transition takes

place. The black hole undergoes a type two phase transition

to be stabilized if the condition l ≤ 18
ffiffiffi
2

p
q3 is satisfied. A

black hole with a horizon radius greater than r0, identified
in Eq. (3.19), is thermodynamically stable (see Fig. 2).
Furthermore, in the case 1

2
< p < 3

2
, we found that no type

two phase transition takes place. There is a point of type
one phase transition located at r1 ¼ rext, where the black
hole temperature vanishes. Since ð∂2M=∂S2ÞQ is positive
everywhere, the two horizon AdS black holes with the outer
horizon radius greater than the minimum value, rext, are
thermodynamically stable (see Fig. 3). Also, we studied the
thermal stability of the new AdS black holes, making use of
the grand canonical ensemble method and regarding the
black hole heat capacity with the fixed electric potential.
We found that the results of these two alternative
approaches are compatible [Eq. (3.28) and Fig. 4].
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