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Birefringent light propagation on anisotropic cosmological backgrounds
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Exact electromagnetic wave solutions to Maxwell equations on anisotropic Bianchi I cosmological
spacetime backgrounds are studied. The waves evolving on Bianchi I spacetimes exhibit birefringence
(associated with linear polarization) and dispersion. The particular case of a vacuum-dominated anisotropic
Universe, which reproduces a Friedmann-Robertson-Walker Universe (for late times)—while, for earlier
times, it matches a Kasner Universe—is studied. The electromagnetic waves do not, in general, follow null
geodesics. This produces a modification of the cosmological redshift, which is then dependent on light
polarization, its dispersion, and its non-null geodesic behavior. New results presented here may help to

tackle some issues related to the “horizon” problem.
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I. INTRODUCTION

Cosmology has been able to successfully pass the most
demanding observational tests. However, there still are
many deep open problems which remain to be solved [1].
Several of them are related to the early Universe and to the
inflation era [2]. For such problems, and for cosmology in
general, it is customary to assume that light propagates in
null geodesics, implying a constant speed for the photon
propagation. In fact, it is very well known that a plane
electromagnetic (EM) wave propagating in any curved
spacetime background follows exactly a null geodesic in
the high-frequency limit [3,4]. This limit, also known as the
eikonal or geometrical optic limit, is valid when the wave-
length of the EM wave is much less than both the inverse of
the square root of the typical component of the Riemann
tensor measured by an observer in a local Lorentz frame and
the typical length over which the wave features vary [3,5].
This analysis and description for EM plane waves, widely
used in problems concerning light propagation in any curved
space, seems to be satisfactory. Surprisingly, it is not. This
work explore some unsatisfactory issues concerning the
modification of the geodesics behavior of light propagating
on anisotropic gravitational backgrounds.

Several problems related with the geodesic behavior of
an EM wave arise when they are studied beyond the
geometric optical limit. Different works through the years
have shown that the null geodesic behavior of light on
curved spacetimes is not valid, in general. In 1960, DeWitt
and Brehme [6] proved that electromagnetic waves in a
curved spacetime background have a “tail” radiation field
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inside the light cone, indicating a non-null path for the
propagation of light. This has been also shown valid for the
wave propagation of massless scalar fields in curved
spacetimes [6,7]. On the other hand, a geometrical optics
approximation of Maxwell equations is sometimes super-
fluous, while, in other instances, it may plainly be inad-
equate for waves whose frequencies do not satisfy the
eikonal approximation assumptions, as is the case for plane
waves that are exact solutions of Maxwell equations for
certain specific metrics [8]. These solutions do not impose
any approximation on the scales of the wavelengths
compared to the components of the Riemann tensor or
the length over which the wave features vary. Specifically,
EM plane waves are exact solutions on a flat Friedmann-
Robertson-Walker (FRW) background (see below).

Furthermore, a non-null geodesic wave propagation
seems to be a sufficiently robust phenomenon to appear
in the quantum realm for massless neutrinos in curved
spacetimes [9] and for Rarita-Schwinger waves in an
external electromagnetic potential [10]. In addition to the
above, it has been well known for quite some time that if
vacuum quantum effects (in the QED regime) are consid-
ered in the geometrical optics approximation of Maxwell
equations in curved spacetime, the speed of light is also
modified, producing a superluminal propagation of an
electromagnetic wave [11-18], showing birefringence
[19] and problems associated with the nonconservation
of the helicity of quantum electromagnetic fields [20]. On
the other hand, in the classical regime, it has been shown
that different models which describe the dynamics of
relativistic spinning bodies also give rise to nongeodesic
equations of motion [21-26].

That light, and other massless objects, can move along
paths which are not null geodesics (therefore, at a speed
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which is not the speed of light) seems to be shocking, as
they apparently violate the equivalence principle (EP) of
general relativity. However, they do not. It is, of course,
correct to state that point particles (without any additional
structures) follow geodesics when they move in the
presence of gravitational forces only. Nevertheless, if
one deals with extended (not pointlike) objects, or with
objects with additional structures such as spin, for instance,
the geodesic path does not make sense. Several geodesic
curves go across a sufficiently extended body, which is
therefore subject to tidal forces. Waves are extended
physical objects, and thus they do not have to always
propagate along null geodesics [6]. In addition, EM waves
have spin, and wave polarization can also affect its
propagation [8,27,28]. It is important to emphasize that
the EP cannot be used to fully understand the EM wave
dynamics. If the EM wave scales are comparable to those of
the gravitational fields, the wave does not travel along null
geodesics. The EP is valid only in the high-frequency limit,
where the EM wave is described as a classical massless
particle that always travels along null geodesics [29].

The above realization leads us to think that the EM wave
propagation in curved spacetime beyond the geometrical
optics limit is worth exploring, understanding (in general)
that any curved spacetime acts as an effective material
medium where light propagates [8,29-34].

It is the purpose of this work to study the behavior of
light propagating on anisotropic cosmological back-
grounds. The effects of spacetime anisotropy have been
explored in the geometrical optics limit previously [35,36],
where it was found that the anisotropy will induce rotations
on the plane of polarization of the EM wave. The
generation of linear polarization due to photon quantum
effects in these metrics has also been studied [37]. By
contrast, here we study the problem of the behavior of
solutions of Maxwell equations, without any kind of
quantum effects or different relativistic coupling formal-
isms. We show that solutions of the usual Maxwell
equations on anisotropic cosmological backgrounds
beyond the geometrical optics limit exhibit birefringence
and dispersion. Specificallyy, EM wave solutions to
Maxwell equations on gravitational anisotropic Kasner
backgrounds [38] and on an anisotropic vacuum-dominated
universe [39] metric exhibit the same features which appear
on rotating backgrounds [8], i.e., birefringence, dispersion,
and non-null geodesic propagation. All of these effects are
due to the coupling of curvature to the polarization of the
EM waves. We believe that the conclusions of this work
provide new approaches to old problems.

II. MAXWELL EQUATIONS ON
CURVED SPACETIME

The dynamics of an EM field immersed in a gravitational
background field is described by the Maxwell equations
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V,FP =0,  V,F =0, (1)

written in terms of the antisymmetric electromagnetic field
tensor F* (whose dual is F*%), where V,, stands for the
covariant derivative defined for a metric g,,. The previous
equations can be studied in terms of the EM fields or by
using the EM potentials. In the following we will describe
both of them, as the former scheme is useful for identifying
the gravitational field as an effective medium, where the
latter is better suited to solving the wave equations.

In terms of electromagnetic fields, we can rewrite Eq. (1)
by defining

E; = Fy, D' = /=gF",
Bi — £0iijjk7 £0iijk — \/—_gFij, (2)
where €%* is the Levi-Civita symbol and ¢ the

metric determinant (latin indices are used to denote space
coordinates). Then, Eq. (1) can be written simply as

aiDi - 0,
OyD' = e%Uk0, H,,

01'Bi - 0,
8oBi == —SOijkajEk, (3)

where 0 stands for the time derivative. These equations
mimic the flat spacetime Maxwell equations for EM fields
in a medium where [34]

D' = eVE; — e%ky Hy,
B' = €H; + %k, Ey, (4)

with

ij .
=y, == ()

900 900
where ¢* is the inverse metric. It is straightforward to realize
that any gravitational field acts in the same way as a medium
for EM wave propagation, with its corresponding permit-
tivity and permeability. This can produce rotation of the
polarization state of light [40]. Specifically, for an anisotropic
cosmology, ; = 0, but the ¢/ eigenvalues (which may be
functions of spacetime) are, in general, different in the three

spatial directions (implying birefringence).

The study of EM waves using Eq. (3) requires us to
increase the derivative order of the Maxwell equations. To
avoid that, it is more useful to express the electromagnetic
field in terms of the four-vector potentials A,, such that
F¥ = g g/"F . and

F,=V,A -VA,=0,A,-0A, (6)

where 8ﬂ is a partial derivative. Hence, from (1), we see that
the equations V,F*%# = 0 are identically satisfied, whereas
the only equations which remain to be solved are
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Eq. (7) are the ones to be solved in this work, as they show
below in a clear fashion the birefringence produced by
anisotropic spacetimes.

In general, there are several exact solutions to Maxwell
equations [8,31-34,41-44]. One of the most interesting
solutions of Eq. (7) involves EM plane waves [3,45] that
can be represented by

A, =&, (8)

where £, and S represent the amplitude and the phase of the
wave. We can choose both quantities to be real functions of
space and time. The wave vector of the wave is defined by

K,=V,S=09,8. ©)

where K is the frequency of the wave and K; represents the
components of the (three-dimensional) wave vector.

The nature of the propagation of an EM wave lies in the
values of the scalar K, K*. This scalar is known to yield the
dispersion relation of the wave, and every EM wave that
follows null geodesics must satisfy K,K* = 0. In a vacuum
flat spacetime, Eq. (7) is solved with a constant amplitude
and K,K* = 0, implying that all EM plane waves in flat
spacetime evolve along null geodesics, traveling at the
speed of light. In this case, we can see from (5) that €/ =
n" and p; = 0 (with " being the flat spacetime metric)
and, thus, there is no effective medium. On the other hand,
on curved spacetimes, it is customary to solve the general
Maxwell equations (7) using the geometrical optics
approximation [3,31,34,45,46], through a WKB-like
scheme. Under this approximation, the scales of variations
of the amplitude and of the gravitational field are neglected,
and Eq. (7) will always describe transversal EM plane
waves following null geodesics. This approximated sol-
ution is usually invoked to claim that all EM waves travel in
null geodesics in any arbitrary gravitational background.
As we prove here, that fact does not hold for general
spacetimes.

In general, without any approximation, Eq. (7) can be
cast in a set of covariant equations that explicitly describe
the non-null behavior of an EM plane wave. If the wave is
transversal, the condition

K, =0 (10)

must hold. Moreover, by choosing the Lorentz gauge
V,A* =0, we also conclude that

Vv, =0, (11)
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for the particular solution of these EM plane waves with
real amplitude and phase.

In this way, using (8) for the electromagnetic vector
potential, Eq. (7) becomes

(mﬁwzv%@N%WWWﬁf@ML(m
and
0 = 9,[v=99" " (K,E, — K,E,)]
+ \/—_gK”Qﬁ”(aﬂfy - al/éﬂ)’ (13)

where the transversality condition (10) has been used.
Equation (12) gives the origin to the dispersion relation

K'K, = ¥, (14)
where (with £ = /£,&")
X = fl;ézaa[\/__ggaﬂgﬂy(auéu - ay&y)] (15)

does not vanish, in general. It is straightforward to verify
that, in the flat spacetime limit, the constant amplitude
ansatz produces null geodesics K¥K, = 0. Also, in the
geometrical optics limit, the right-hand side is neglected,
again modeling light propagation in null geodesics.
However, beyond that limit, it is very unlikely that the
right-hand side vanishes, as the constant amplitude
assumption is incompatible with Eq. (13), in general.
This means that the wave does not follow null geodesics,
as, from Eq. (14), we obtain that

1
KVDK;,ZE(?,,)(, (16)
where we have used V,K, =V, K,. Equation (16) is a
consequence of the spreading (not the pointlike character)
of the wave.

On the other hand, Eq. (13) can be exactly rewritten as

2KV, & + (V,K")E =0 (17)

for the Lorentz gauge. This equation can also be derived in
the geometrical optics limit [3]. However, here we show
that this equation is exact for transverse waves on any
curved spacetime. A remarkable and important feature can
also be obtained from Eq. (17). Contracting it with &g, it
implies the conservation of photon number in general
(without using the WKB approximation),

V,(£2K*") = 0. (18)

This result holds for Maxwell equations on any curved
spacetime beyond any approximation on the scales of the
wavelength, contrary to what is usually invoked [3].
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Finally, by using Egs. (17) and (18), we can show that the
polarization vector f* = & /& follows

K*V,ff =0 (19)

in the Lorentz gauge. Using the above equation and
Eq. (16), we can also find that

1

If the right-hand side vanishes, this equation predicts that
the polarization vector of the wave is parallel propagated
along the rays [3]. Otherwise, it is not. For example, for the
propagation in an anisotropic cosmological background,
the EM waves fulfill f/”8ﬁ;(EO (see below), and the
polarization of the waves is parallel propagated along
the rays for those solutions.

Thereby, Eqs. (12) and (17) allow us to calculate the
plane wave solution of Maxwell equation in general.
Equations (18) and (19) provide assurances that they
correspond to physical waves propagating on a general
background spacetime.

III. PROPAGATION OF LIGHT IN
ANISOTROPIC UNIVERSES

Consider the Bianchi I spacetime interval in Cartesian
coordinates [39]

ds* = —di* + a(t)*dx* + b(1)?dy* + c(t)*dz?,  (21)

where a, b, and c, are three arbitrary functions of time.
Maxwell equations then have time-dependent permittivity
and permeability coefficients e'! = bc/a, €* = ac/b,
e =ab/c, and pu; = 0. It is straightforward to realize
that EM wave propagation depends on the direction, as
e'l # €22 # ¢33 +# €', in general. Therefore, the anisotropic
cosmological background behaves as an effective aniso-
tropic birefringent medium for EM plane waves. For every
direction of propagation, there are two polarizations that
propagate differently. For simplicity, from now on, we
consider EM vector potentials which depend on time and
on spatial coordinate only.

Let us start with an EM wave propagating in the x
direction. We consider an EM potential A,(z,x) with
neither y nor z dependence. That spatial coordinate
indicates the direction of propagation of the EM wave.
Maxwell equations (7) become

_80 [abcgﬂy(a()Au - aDA())] + %ax [gm/(axAu - aqu)] =0.
(22)

We write Maxwell equations for y = 0,1,2,3(= v). For
u=v=0and g =v =1, the equations are
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0, {% (0,49 — GOAX)] =0, (23)
o {% (0,49 — 00Ax)} =0, (24)

implying that the longitudinal component of the electric
field

Ca

0, Ay — OpA, = —
x40 04y be

(25)
is given in terms of an arbitrary constant . Consequently,
the longitudinal electric field may vanish by choosing
¢ = 0. The simplest solution for the longitudinal fields is to
choose A, = 0 = A. This choice assures us that the wave
to be described fulfills the transversality condition and that
the wave always moves in a parallel-propagated manner
along the rays. Furthermore, these choices imply that the
electromagnetic potential vector satisfies the Lorenz gauge
identically.

Moreover, the equations for y =v =2 and y =v =3,
which determine A,(z, x) and A, (¢, x), are uncoupled from
the previous ones. They are, respectively,

—%ao (% 80Ay) + 024, =0, (26)

- %ao (? 80AZ> + 024, = 0. (27)

Equations (26) and (27) do not coincide, in general. Using
the previous choices, they represent EM plane waves
propagating in the x direction in our coordinates. From
these equations, it is straightforward to notice that the wave
propagations for the polarizations A (#, x) and A,(, x) are
refracted differently, and birefringence is thus exhibited in a
general anisotropic cosmology.

Similar equations for the transverse components of the
Maxwell equations (7) can be straightforwardly found for
the wave propagation along the y direction (with either x or
z polarization) or along the z direction (with x or y
polarization) when the longitudinal vector potentials are
chosen to vanish. We can write a general expression for the
six plane waves propagating in any direction for every
polarization as

aay ., (a;a . OPA; (1, x5)
o 50( OpA;(t, x )) + peE 0, (28)

1

withi, j,k=1,2,3andi # j# k#i,ay = a,a, = b,and
as = c, x! :x,xzzy, and x° = 2.

The wave equations (28) are not the same, in general.
Different polarizations propagating in different directions

behave differently, thus producing birefringence. This
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strongly suggests that a fully or partially anisotropic
spacetime induces birefringence for the different polari-
zations of the wave and for different directions where it
propagates.

The solutions to Eq. (28) are EM waves such their plane
of oscillation is always perpendicular to the direction of
propagation, as in the case of the vacuum flat spacetime.
Solutions to Eq. (28) for particular anisotropic spacetimes
are discussed in Sec. V. Nonetheless, before proceeding
with the analysis of the solutions, several features of these
equations deserve to be discussed in detail.

A. Isotropic limit

When a = b = ¢, the spacetime becomes isotropic. In
this case, all equations describing transverse modes of
Eq. (28) coincide in any generic direction 8,

—ady(adyA) + 93A = 0. (29)

All polarizations propagate in the same fashion and no
birefringence is displayed. Every solution has the form of
plane waves exp(iS), with constant amplitude and phase,

S = k(9 £ trrw). (30)
where k is a constant and

dt

P (31)

TFRW —

is the FRW time [8]. From the phase we can calculate the
frequency and wave vector [8],

K() - (905 - S, K«S - 6195 - k (32)
These two quantities allow us to obtain that, in a flat FRW
universe, light propagates along the null geodesics defined
by K,K* = 0.

Notice that this is an exact solution of Maxwell equations
for a flat FRW spacetime. In fact, plane EM waves are an
exact solution of Maxwell equations for conformally flat
spacetimes [47]. No assumptions on the scale of the wave
are needed to obtain this solution.

B. Impossibility of getting exact solutions which follow
null geodesics for anisotropic spacetimes

In general, an exact EM plane wave solution to Maxwell
equations on an anisotropic background cannot follow null
geodesics (this can occur only in the high-frequency limit;
see the next section). This can be directly proved by using
the wave equations (28). These equations share the same
structure for EM wave propagation in a generic direction 9,
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0 = —phd, <% 80A) + 324, (33)

where p and & are functions of time.

Let us assume a plane wave solution A(t,a) =
E(t) exp[iS(t, 9)], with S(7,9) = s(r) + k9, where k is a
constant, and £ and s are real functions. In order for this
expression to be a plane wave solution, the functions must
satisfy

P*(0ps)* =k = p?hao (p?l%t)’ do <%§2805> =0,

(34)

where the first equation is the dispersion relation of the
wave (14) and the second one is the conservation of
photons (18). The null geodesic condition for the wave is

K,K* = —(9ys)* + K*/p* =0, (35)

where Ky = 0,5 =0ys, K,=k and ¢ =p~2.
Therefore, if we demand that the plane wave travels in
null geodesics, then Jys = k/p, and the amplitude & must
satisfy both parts of Eq. (34), which forces the condition

P

e Ooh = constant. (36)

Obviously, this condition does not hold for a general p and
h, and null geodesic behavior is thus not a general solution
of wave equations (28). A trivial solution of (36) occurs
when h is equal to a constant that corresponds to the
isotropic flat FRW case.

C. High-frequency limit

As was mentioned before, the geometrical optics (or
eikonal limit) [3] implies that light always propagates along
null geodesics, traveling at the speed of light. The geo-
metrical optics regime corresponds to the high-frequency
limit of the wave equations (28). This limit occurs when the
variation of the amplitude of the wave is small compared to
the variation scales of the phase. For example, the plane
wave solutions of Egs. (26) and (27), in the x propagation,
are simply

Ayt x) \/éexp (iS,),
A (t,x) x \/gexp(in), (37)

where S, =k(z, £x), and 7, = [dt/a is a “FRW
time variable” along the x direction. The high-frequency
limit is achieved under the assumption that ampli-
tude variations are negligible compared to the wave frequ-
ency, (ab/c)d,[(ac/b)d,é, ]/¢, . < (8,S,)*. Defining the
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frequency K, =0,S, =k/a and the wave vector
K, = 0,S, = %k, then, along the x direction, K,K* =0
is fulfilled. Even though the wave propagates along null
geodesics, the amplitude of each polarization is different
and time dependent. Thereby, the electric and magnetic
fields associated with the above potentials have different
time-dependent amplitudes [35,36], and the polarization of
the EM wave can rotate.

Similar solutions in the high—frequency limit can be
found for other directions of propagation of the EM waves,
with similar conclusions.

In the high-frequency limit, the EM wave travels along
null geodesics in any direction, but with different ampli-
tudes and time variables for different polarizations. The
“speed of light” propagation result for EM waves is
achieved at the price of defining different time variables
in different space directions.

The importance of the results presented in this section,
for instance solutions (37), is that they can be obtained as
limits of the general solutions in the following section, as
we will show.

IV. A SIMPLE THEORETICAL EXAMPLE

Let us consider a general simple case to exemplify the
differences that emerges in anisotropic universes compared
to isotropic ones. Assume that the metric is in the form
a(t) = c(1), and b(t) = a(r)[1 + €(t)], where ¢ < 1. Thus,
the spacetime has a small anisotropy in one direction.

We can study the propagation of light in any direction.
We can start with the propagation in the y direction such
that the wave amplitude is polarized in the x direction &, (¢)
and depends on time only. The nonzero four-wave-vector
components are K(¢) and K, = k, where k is a constant.
These conditions preserve transversality. The wave equa-
tion for describing this propagation is contained in Eq. (28).
However, from the conservation of photons (18), we can
directly obtain that

o §0x
fx - \/m’ (38)

where &, is a constant. It is not difficult to prove that this is
also a solution of Eq. (17). Using this amplitude, we can
now obtain the dispersion relation from (12) as

—K2+K2/p> 1 { < 1 ﬂ
TR0 T 9y b0y ——])|. (39
bK, b |7\ \/PK, (39)

From here, it is clear that the simplest solution is bK = k,
which makes both sides of the equation vanish identically.
This solution implies that the propagation in this direction
follows null geodesics K,K* = —K3 + k*/b* = 0, with
constant amplitude waves. The polarization in the z
direction has the same dynamics for its propagation.

PHYSICAL REVIEW D 96, 044021 (2017)

A different story is what happens for waves propagating
in the x direction, with nonzero four-wave-vector compo-
nents K(7) and K, = k (with a constant k). First, assume a
z-polarized wave with amplitude &,, such that, from
Eq. (18), we find

§0z
VbK,’

where &, is again a constant. This solution also solves
Eq. (17). The amplitude now depends on time. With this
amplitude, from the dispersion relation (12), we get

&= (40)

If these waves move along null geodesics, then K, = k/a
should be a solution of the previous equation. However, it is
not, and the waves do not move in such a way. An
approximate solution can be found if we assume that

Ko="(1+n.), 2)

where 7, < 1 is the correction due to spacetime anisotropy.
Using (42) in (41), we find that

©0%e(7)

1
= —cos(2kr) [
cos(2kr) | o

n.(z, k) %

sin(2kt)d7

1 . 1 Pe(7) N
—ﬂsm@kr)l Wcos(Zkr)dr, (43)

with 7 = [dt/a. Importantly, as e # 0 represents the
anisotropy, n # 0, in general. Thus, the wave follows a
non-null path described by

2k?
K”K” ~ —7112, (44)

which could be either timelike or spacelike. Besides, the
wave now is dispersive, as its dispersion relation depends
on k. Notice that if the Universe isotropizes, then the
frequency (42) approaches its value in the high-frequency
limit (Sec. III C) when € — 0, as the oscillating function
(43) averages to zero. Besides, the amplitude (40) behaves
as \/c¢/b(1 —n_/2), which approaches the wave amplitude
(37) in the high-frequency limit.

Now, let us study the y-polarized wave with amplitude
&,. By using Eq. (18), we obtain that

b
&y = Soy aZ—KO’ (45)

where &, is again a constant. The y-polarized wave has a
different amplitude than the z-polarized one. Both of them

044021-6
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depend on time, and therefore the plane of polarization
rotates. With the above amplitude, from (12) we get

_K(2)+ —

’;—2 ‘/Wao {‘;2 ao<\/azzKO>]. (46)

2

The null geodesic path K, = k/a is not a solution again.
Assuming the approximated solution

k

Ky :E(l +’7y)’ (47)

with , <1, then using (46) we find

1 9%e(7) .
ny(z. k) = —ﬁcos&kr) | o sin(2k7’)d7

RN,
+ L in(2ke) A 0 ;(g)cos(Zkr’)dT’, (48)

2k T

and the wave does not follow null geodesics as

2
K,Kr = =20, 20 (49)
Anew, if the Universe isotropizes, the frequency (47)
approaches its value in the high-frequency limit when
€ — 0 (Sec. Il C). Also, the amplitude (45) is proportional
0 /b/c(1—n,/2), approaching the wave amplitude (37)
in the high-frequency (isotropic) limit.

From (43) and (48), we can also see that these two linear
polarizations fulfill n, = —n,, and therefore

KﬂKﬂ |z—polarized = _KMK” |y—polarized' (50)

Therefore, for the case of a small anisotropy, while one
polarization moves along timelike curves, the other one will
follow spacelike ones.

V. ANISOTROPIC VACUUM-DOMINATED
UNIVERSE

As we previously discussed, the Maxwell equations (28)
can be studied and solved for arbitrary frequencies (not
only in the geometrical optics limit). In principle, these
solutions of Eq. (28) show that plane waves do not
propagate along null geodesics. For the sake of clarity,
let us explore the consequences of Eq. (28) in a specific
anisotropic cosmological model for a universe filled with a
perfect fluid whose energy density corresponds to a
positive cosmological constant A. In this solution, the
spacetime metric (21) has the components [48]

a(t) = [B(1)]'3[O(r)[Feos@+a/3),
b(t) = w(t)]1/3[@(,)]%cos ~1/3).
c(1) = [B(0))3[O(1)] 5@ (51)

where f(t) = sinh(v/3At), O(r) = tanh(v/3Az/2), and
¢ is a constant. This model asymptotically gives rise to
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isotropization of the Universe, reproducing for large times a
FRW cosmology with a constant Hubble parameter (mean-
ing that the Universe was more anisotropic at earlier times).

The model (51) can be fully anisotropic for arbitrary
values of ¢. To show, in the simplest way, how anisotropy
modifies light propagation, we choose ¢ = z/3. In this
case, the model is simplified as ¢ = ¢ # b, and the metric is
now anisotropic in the y direction. Therefore, we expect
that the EM waves propagating in x and z directions behave
in the same form, but differently from those which
propagate in the y direction. This is similar to the case
that we studied in the previous section, as

b
—=0#1.

y (52

A. Propagation in the y direction

The two polarizations A,(z,y) and A_(z,y) [collectively
denoted by A,(z,y)] of an EM wave propagating along the
y direction, described by Eq. (28), now fulfill the same
equation,

—p'3@30,(p2030pA,) + A, = 0. (53)
The solution of the above equation is a plane wave with the
form A, (z,y) = explik(y £ 7,)], with a constant k, and

7, = / p13073d1.

Consequently, these waves move along null geodesics with
K,K* = —K§ + ¢”K3 =0, and

(54)

Ko = kdyz, = kp~'70@73, K, =k  (55)

The null geodesic behavior of this mode can be mathe-
matically understood, considering the time definition (54).
This time, allow us to put the Eq. (53) in a flat spacetime-
like form. Whenever this is not possible, the propagation of

light does not take place along null geodesics.

B. Propagation in the x direction

Waves propagating in the x direction can have two
different linear polarizations. We study each case in the
limit of very early and large times. The wave propagation in
the z direction behaves analogously.

1. z-polarized EM wave

A different behavior is exhibited by a z-polarized EM
wave which propagates in the x direction, described by
Eq. (27). In this case, the wave equation is

7@, (5030, )

+ 024, =0. (56)

044021-7



FELIPE A. ASENJO and SERGIO A. HOJMAN

For this wave, the null geodesics propagation is not an
exact solution. The most interesting limiting cases of the
previous equation are late times (where this cosmology
approaches an isotropic FRW model with exponential
expansion) and very early times (where the model
approaches an anisotropic Kasner vacuum Universe).

First, for late times t — oo, ﬁNexp(\/ﬁt)ﬂ and
0O ~ 1-2exp(—v3At). In this case, b~ a(l + ¢), where
from Eq. (52) we obtain

€~ —2e" VN, (57)

Thereby, this case can be treated as the model of Sec. IV,
where A, = £, exp(iS). The new time for this case is

wdt . [3 1
_ _ 913 ~VEA3 (1 _ L —V3Ae
T [ p 2 \/;e (1 ¢ ), (58)

which approaches tprw as r — oo. In this limit, we can

write (57) as
A\ 3/2
ER — <§> T3. (59)

This allows us to find the correction to the frequency due to
curvature (43),

A\ 3/2 A\ 3/2 k215
~ (= o) — 60

which, in turn, allows us to find the amplitude (40) and the
frequency (42),

501 A3 I
RN+ () =
21 (3) 1ol
A\ 3/2
KO:aOSzE{H(E) 13}, (61)

a

where the wave vector is K, = 0,.S = k. With these results,
we can obtain the behavior of this wave,

2 A 3/2
K”K” ~ ) (g) k2T3 < 0. (62)
a

This solution has a timelike nature, implying that a z-
polarized EM plane wave propagating in the x direction in
this anisotropic cosmology behaves as massive particles
traveling at a speed lower than the speed of light. Notice
that the wave disperses, as its frequency depends on the
wave vector. As ¢t — oo (7,77, — 0), corresponding to the
isotropic FRW limit, the EM plane wave approaches a null
geodesic behavior K,K* = 0.

Now one can wonder what happens in the very early time

case, when t— 0. In this case, fS(f)~+3Az, and
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O(t) ~ v/3At/2. This metric corresponds to the Kasner
vacuum cosmology which describes an anisotropic
Universe with a vanishing energy-momentum matter tensor
[38]. The z-polarized EM wave propagating in the x
direction, depicted by Eq. (56), now satisfies

2/3
—Tao(taoAz) + 8%AZ — O, (63)

which has the exact solution
A, (t.x) = A H (2713 kt) ek, (64)

where A is an arbitrary constant, H(g” =Jy+ iY is the
Hankel function of zeroth order, and J, and Y, are the
zeroth order Bessel functions of the first and second kinds,
respectively. Similar results were found in Ref. [36].

For very small times k¢ < 1, solution (64) has the appro-
ximated form of a plane wave A_(t,x) = A o&(t)e’S),
where the amplitude and the phase are, respectively,

(1) my/ 1+ @*[In(t/19)]2,

S(t,x) ~ arctan[g In(2/1y)] £ kx, (65)

where ¢, ¢, and 7, are integration constants. This can be
checked by inspection. In this case, the frequency is
o
KO - 80»5 - 15_2’ (66)

and the wave vector K, = 0,5 = k. At very early times, the
waves propagate along timelike curves

QZ 2

KﬂKﬂ:_@+W<O’ (67)

as t > 0. The EM wave is dispersive, as the dispersion
relation depends on the wavelength 1/k > t.

2. y-polarized EM wave

A similar approach can be taken to study the y-polarized
EM wave in the x direction. In this case the Eq. (26)
becomes

—pRO0,(1207500A,) + 02A, = 0. (68)

This equation can also be studied in the aforementioned
two limits. For very late times, we can again use the
formalism developed in Sec. IV. Using the same approx-
imations as before, from (48) we find that

A\ 3/2 AN 3/2 25
Ny & — <§> o+ (g) 5 (69)
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and this wave has an amplitude and frequency given by

/
a=Bl+(3))
Ko zg [1 - <‘3\> 3/213} . (70)

Thereby, this wave does not follow null geodesics, but

2 /A\3/2
KMK! z? <§> k273 > 0. (71)

The EM plane wave has a spacelike nature, approaching
null geodesic behavior as t — oo. It is very important to
notice that the behavior (71) of the y-polarized wave is
different from that of the z-polarized wave (62). This
is a consequence of the anisotropy, and it produces
birefringence.

For very early times, similar results can be found for the
EM y-polarized wave along the x direction. Equation (68)
becomes

1
—22/3f(90 (; 80Ay> + 8§Ay - 0, (72)
which has the exact solution

A1, x) = AyotHS) (271 3ks) eikr, (73)

with an arbitrary constant A, and the Hankel function of

first order H (11). This wave presents different behavior than
is described in (64), and therefore, at early times, the
cosmological system is birefringent. For very small times
kt < 1, solution (73) has the approximated form of a plane
wave A, (1,x) = Ay &()eS), with the amplitude and
phase given by

2

£(r) = ﬁ+7:2—ﬂ[1 —In (2/8)] ~ .

S(t,x) = —arctan <z_/l}22> + kx, (74)

where f is an integration constant and the other constants
are as previously defined. As the time approaches zero, the
phase can be rewritten as S = —z/2 + o>/ (2?), and the
frequency, when ¢t — 0, can be calculated as

(75)

while the wave vector is K, = k. Thereby, at very early
times, the waves propagate along spacelike curves,

PHYSICAL REVIEW D 96, 044021 (2017)

22 2
K"Kﬂz—gﬁ—‘t—i—ﬁ >0, (76)
as kt = 0.

The previous solutions show how anisotropy can modify
the behavior of light, implying that EM waves move along
timelike or spacelike curves as the Universe approaches
isotropization. Also, for very early times, the large non-null
geodesic behavior is due to the extreme anisotropy that
exists for very early times of the Universe. Both of these
results show that there is a profound interplay between light
propagation and gravity.

VI. REDSHIFT

The non-null geodesic propagation of light seems to be a
robust effect for anisotropic cosmologies. With the previous
solutions for the four-wave vector K, we can also calculate
the cosmological redshifts measured by different comoving
observers who follow geodesics with a four-velocity
U* =(1,0,0,0). To perform this, we generalize the
procedure presented in Ref. [49].

Let us consider the following Killing tensor:

]C[HJ = h(g;w + U/lUl/) + E‘a’CzK:g
+ B KLKE + B S, (77)

which satisfies the equation V,K,,+V,K,,+V K, =0,
and where

1
h= 3 (a> + b* + ¢?), (78)

depends on time only. Also, the Killing tensor (77) requires
three time-dependent functions,

2/ (b2 + ?)a — (bb + ¢é)a
dt - ,

a
- _g/dt(a2+cz)l5—(aéz+cé)b
3 b3 ’
2 2 A . :
EC:§/dl‘(a +b%)c B(aa—i-bb)c’ (79)
c

that accompany the three Killing vectors for an anisotropic
cosmology,

Ky = (0,a%,0,0),

IC,‘j = (0,0, 5%,0),

K = (0,0,0,c?). (80)
Notice that in the isotropic limit, 4 = a’>, 2, =0=

E, = B3, and the Killing tensor (77) coincides with the
one for the flat FRW cosmology [49].
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As we showed in previous sections, we can find the
solution for three different four-wave vectors, with each
one describing the wave propagation on each direction.

These can be depicted as K,(,l) = (Kél),k, 0,0), K,(,z) =

(K'P,0.k.0), and K = (K§.0.0,k), where k is the
constant associated with the spatial derivative of the phase.

Here, K(()j ) are three different frequencies, which differ due
to the spacetime anisotropy (j = 1, 2, 3 for propagation in
the x, y, and z directions, respectively). Using Eq. (15),

each propagation defines y; = g"”K,(,j)K,(,J ),

The Killing tensor (77) can be used to construct a scalar
associated with the propagation of the wave. Thereby, the
three different scalars can be obtained with

K; = ¢g"K,, KK} (81)

for the three different directions of propagation. These
scalars have a property whereby they are constants on the
propagation along Kj,

P KDV = 0,0, KV K = Dy KK = 0. (82)

This result holds because, from Eq. (15) and Secs. [Vand V,
we realize that y depends only on time for this anisotropic
model. Also, X% = 0, which can be proved directly from
Eq. (77). Therefore, each scalar K is a constant that can
be used to calculate the redshift for EM plane waves [49].
Moreover, as the constant scalar (81) depends on spacetime
anisotropy (by the Killing vectors), it will depend on the
direction of propagation of the wave.

Now, let us assume a wave propagating in some j
direction. By defining the frequency of the wave propa-
gating in the j direction and measured by the comoving

observer as w; = -U'K ,(,j ), then any of the three constants
(81) can be explicitly written as

For any direction of propagation, Eq. (83) allows us to find
the relation between an EM wave emitted with frequency
w;(t;) in a time #, and the observed wave frequency w;(t)
measured in a time 1,,

_ h(n) h(t;)
)P = S oy (P + () =) )
+ i B ~ ) (84

This is the general redshift measured in an anisotropic
spacetime for an EM plane wave beyond the geometrical
optic limit. In general, there are three different redshifts for
each direction of propagation of the wave. Also, the redshift
depends on the wave polarization through y and Z. These
results are in agreement with the coupling between the
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polarization, the direction of propagation, and the gravita-
tional field manifested in the previous sections. We can use
any solution from the previous section to calculate the
redshift (84) for any direction of propagation.

Lastly, in the isotropic limit, we recover the usual
redshift for FRW cosmologies [49],

_a(tl)

) = )

for light moving in null geodesics.

o(ty), (85)

VII. DISCUSSION

The previous solutions show that the anisotropic space-
time acts as a fully birefringent medium. EM waves
traveling in different directions have different propagations.
It can also been shown that the direction of flux of energy of
these waves behaves similarly to waves in flat spacetime.
The energy-momentum tensor of the EM field [3],

1
TH = FF g =2 g"FoF,  (86)

is divergenceless, i.e., V, T = 0, from where the flux of
energy, described by the Poynting vector, can be calculated.

First, for any direction of propagation of our solutions for
EM waves, we can calculate the energy density of the wave,

1 .
(T%) = (K& +5 0 &idsi + 58 (87)

where we have used the notation of Sec. II. Here, the
energy-momentum tensor has been averaged over a wave-
length. The last two terms represent corrections due to the
non-null geodesic behavior of light. Because of the explicit
time dependence of the metric, this energy density is not a
conserved quantity.

On the other hand, for any direction of propagation, we
can define the Poynting vector S’ as

Si = (T%) = KO2K'. (88)

The Poynting vector points along the same directions as the
spatial wave vectors for any of the three different kinds of
propagation. Therefore, in our previous solutions, the flux
of energy travels with the EM plane wave in the anisotropic
cosmology, in an analogue fashion to what occurs on flat
spacetime.

Therefore, we have shown that the EM plane waves
discussed in this work represent physical solutions to
Maxwell equations that can be tested using the cosmo-
logical redshift (84). These results may be useful for giving
a new perspective on some outstanding problems in early-
Universe and inflationary cosmology [50-52]. There are
several approaches aiming to explain open inflationary
questions using variable speed of light (VSL) theories
[53-59]. To the best of our knowledge, no convincing
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mechanisms have been proposed to explain the VSL
behavior. However, in an anisotropic cosmology, we have
shown that light wave solutions with spacelike propagation
naturally exist (Sec. V B 2). Thus, the velocity of those EM
waves at early times can be very high in such a way that
there is no need for extra (scalar) fields to solve the so-
called horizon problem [60]. For later times, in addition to
the already known isotropization of the background, the
geodesic behavior and speed of light can reach the current
values, thus solving one of the outstanding inflation
problems within the realm of unmodified general relativity.
This can be related with symmetry properties of the
equations in Sec. III, which are discussed in the Appendix.

We believe that this work can shed some new light on
these old problems.
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APPENDIX: ANISOTROPIC SYMMETRIES OF
MAXWELL EQUATIONS

The transverse components of the Maxwell equa-
tions (28) may be written in the generic fashion (for
propagation in any direction) as

PHYSICAL REVIEW D 96, 044021 (2017)

FGAy = 02A5,  GFA, =824, (Al

with the operators F = f(1)0y, and G = g(t)0,.
Equation (A1) exhibits a new kind of symmetry which
is reminiscent of (but not equivalent to) supersymmetry in
the sense of one-dimensional quantum mechanics, as

realized by Darboux [61] and Witten [62]. In fact, multi-
plying Eq. (Al) by G and F, respectively, we get

GFGAy = G32A;,  FGFA, = FO2A,. (A2)

It is straightforward to realize that GAg and FA, satisfy the
corresponding equations in (Al) because F and G com-
mute with 9. Let us simply consider Eqgs. (26) and (27) for
propagation of an EM wave in the x direction. The

relations between the different types of polarization
states are

ac ab
AZ - ?aoAy, Ay — 780141.

(A3)
Therefore, solving the equation for one polarization state
allows us to determine the behavior of the other one.
Similar symmetry relations apply to the other directions of
propagation defined by Eq. (28).
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