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Testing general relativity in the nonlinear, dynamical, strong-field regime of gravity is one of the major
goals of gravitational wave astrophysics. Performing precision tests of general relativity (GR) requires
numerical inspiral, merger, and ringdown waveforms for binary black hole (BBH) systems in theories beyond
GR. Currently, GR and scalar-tensor gravity are the only theories amenable to numerical simulations. In this
article, we present a well-posed perturbation scheme for numerically integrating beyond-GR theories that
have a continuous limit to GR.We demonstrate this scheme by simulating BBHmergers in dynamical Chern-
Simons gravity (dCS), to linear order in the perturbation parameter. We present mode waveforms and energy
fluxes of the dCS pseudoscalar field from our numerical simulations. We find good agreement with analytic
predictions at early times, including the absence of pseudoscalar dipole radiation. We discover new
phenomenology only accessible through numerics: a burst of dipole radiation during merger. We also
quantify the self-consistency of the perturbation scheme. Finally, we estimate bounds that GR-consistent
LIGO detections could place on the new dCS length scale, approximately l≲Oð10Þ km.
DOI: 10.1103/PhysRevD.96.044020

I. INTRODUCTION

General relativity has been observationally and experi-
mentally tested for almost a century, and has been found
consistent with all precision tests to date [1]. But no matter
howwell a theory has been tested, it may be invalidated at any
time when pushed to a new regime. Indeed, there are many
theoretical reasons to believe that general relativity (GR)
cannot be the ultimate description of gravity, from non-
renormalizability to the black hole information problem.
Moreover, from the empirical standpoint, all precision

tests of GR to date have been in the slow-motion,
weak-curvature regime. With the Laser Interferometer
Gravitational Wave Observatory (LIGO) now detecting
the coalescence of compact binary systems [2–4], we finally
have direct access to the nonlinear, dynamical, strong-field
regime of gravity. This is an arena where GR lacks precision
tests, and it may give clues to a theory beyond GR. The
LIGO collaboration has already used the detections of
GW150914, GW151226, and GW170104 to perform some
tests of GR [4,5], but these are not yet very precise: a model-
independent test gives 96% agreement with GR.
Both black hole (BH) and neutron star (NS) binaries

probe the strong-field regime. However, NSs have the
added complication that the equation of state of dense
nuclear matter is presently unknown. Until more is known
about the equation of state, we must rely on binary black
holes (BBHs) for precision tests of GR. Yunes, Yagi, and
Pretorius argued [6] that the lack of understanding of BBH
merger in beyond-GR theories severely limits the ability to
constrain gravitational physics using GW150914 and
GW151226. Thus, to perform tests of GR with BBHs,

we require inspiral, merger, and ringdown waveform
predictions for these systems, which can only come from
numerical simulations.
To date, BBH simulations have only been performed in

GR and scalar-tensor gravity [7] (note that BBHs in massless
scalar-tensor gravity will be identical to GR, under ordinary
initial and boundary conditions). There are a huge number of
beyond-GR theories [7], and for the vast majority of them,
there is no knowledge of whether there is a well-posed initial
value formulation, a necessity for numerical simulations.
Indeed, there is evidence that dynamical Chern-Simons
gravity, the beyond-GR theory we use here as an example,
lacks a well-posed initial value formulation [8].
Our goal is to numerically integrate BBH inspiral,

merger, and ringdown in theories beyond GR that are
viable but that do not necessarily have a well-posed initial
value problem. This goal is relevant even for those only
interested in parametric, model-independent tests, because
there is presently no theory guidance for late-inspiral and
merger waveforms in theories beyond GR.
We are only interested in theories that are sufficiently

“close” toGR: for a theory to beviable, it has to be able to pass
all the tests that GR has passed. This motivates an effective
field-theory (EFT) approach. We assume that there is a high-
energy theory whose low-energy limit gives GR plus “small”
corrections. The effective theory of GRwith corrections does
not need to capture arbitrarily short-distance physics. Such a
theory is valid up to some cutoff, and modes shorter than this
distance scale are said to beoutside of the regimeof validity of
the EFT. The EFTonly needs to be well-posed for the modes
within the regime of validity. This can be accomplished with
perturbation theory.
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We present a perturbation scheme for numerically
integrating beyond-GR theories that limit to GR. For such
a theory, we perturb it about GR in powers of the small
coupling parameter. We collect equations of motion at each
order in the coupling, creating a tower of equations, with
each level inheriting the same principal part as the back-
ground GR system. The well-posedness of the initial value
problem in GR [9] thus ensures the well-posedness of this
framework, even if the “full” underlying theory may not
have a well-posed initial value formulation.
In this study, we apply our perturbation framework to

BBH mergers in dynamical Chern-Simons gravity (dCS)
[10], to linear order in perturbation theory. This theory
involves a pseudoscalar field coupled to the parity-odd
Pontryagin curvature invariant with a small coupling
parameter, and at linear order gives a scalar field evolving
on a GR BBH background.
There are a number of theoretical motivations for con-

sidering dynamical Chern-Simons. The dCS interaction
arises when cancelling gravitational anomalies in chiral
theories in curved spacetime [11–13], including the famous
Green-Schwarz anomaly cancellation in string theory [14]
when compactified to four dimensions [10,15,16]. DCS also
arises in loop quantum gravity when the Barbero-Immirzi
parameter is allowed to be a spacetime field [17,18]. From an
EFT standpoint, dCS is the lowest-mass-dimension correc-
tion that has a parity-odd interaction. All other EFTs at the
same mass dimension have parity-even interactions, so the
phenomenology of dCS is distinct [19]. The dCS interaction
was also included in Weinberg’s EFT of inflation [20].
From a practical standpoint, there are already a large

number of dCS results in the literature that we can compare
against [19,21–26], including post-Newtonian (PN) calcu-
lations for theBBHinspiral.Oneof themore important results
is that scalar dipole radiation is highly suppressed in dCS
during the inspiral [19]. Dipole radiation is present in scalar-
tensor theory and Einstein-dilaton-Gauss-Bonnet (EdGB),
and enters with two fewer powers of the orbital velocity (i.e.
1 PN order earlier) than the leading quadrupole radiation of
GR. This leads to gross modifications of the inspiral, but dCS
avoids this problem because the dipole is suppressed. As a
result, the perturbative treatment of dCS will be valid for a
longer period of inspiral than scalar-tensor or EdGB.
The paper is organized as follows. Section II covers the

analytical and numerical formalisms. More specifically, in
Sec. II A we introduce dynamical Chern-Simons, and in
Sec. II B we present the perturbation scheme, which is valid
for any theory with a continuous limit to GR. We discuss
the numerical scheme in Sec. II C (some numerical details
are in the Appendix). We present the results of numerically
implementing this formalism in dCS on three different
binary mergers in Sec. III. Section III A reviews some
previously-known analytic phenomenology of the BBH
inspiral problem in dCS. Section III B presents the wave-
form results, and III C presents the energy fluxes, both
including comparison to PN. In Sec. III D we use the

numerical results to assess the validity of the perturbation
scheme. In Sec. III E we use the numerical results to
estimate the detectability of dCS and the bounds that could
be placed by LIGO detections. We conclude and discuss in
Sec. IV, and lay out plans for future work.

II. FORMALISM

Throughout this paper, we set c ¼ 1 and ℏ ¼ 1 so that
½M� ¼ ½L�−1. Since there will be more than one length scale,
we explicitly include factors of the reduced Planck mass
m−2

pl ¼ 8πG and the “bare” gravitational length GM,
though quantities in our code are nondimensionalized
with GM ¼ 1. Latin letters in the middle of alphabet
fi; j; k; l; m; ng are (3-dimensional) spatial indices, while
Latin letters in the beginning of the alphabet fa; b; c; dg
refer to (4-dimensional) spacetime indices. We follow the
sign conventions of [9], and gab refers to the 4-dimensional
spacetime metric, with signature ð−þþþÞ, and with ∇ its
Levi-Civita connection.

A. Action and equations of motion

The method we present in this paper applies to a large
number of beyond-GR theories that have a continuous limit
to GR, but for concreteness we focus on dCS. We start with
the four-dimensional action

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½LEH þ Lϑ þ Lint þ Lmat þ � � ��; ð1Þ

where the omitted terms ð…Þ are above the cutoff of our
EFT treatment. Here gwithout indices is the determinant of
the metric, LEH is the Einstein-Hilbert Lagrangian, Lϑ is the
Lagrangian of a minimally coupled (pseudo-)scalar field ϑ
(also referred to in the literature as the axion), Lint is a
beyond-GR interaction between ϑ and curvature terms, and
Lmat is the Lagrangian for ordinary matter. In this paper, we
are considering a binary black hole (BBH) merger in dCS,
so we ignore Lmat.
Explicitly, these action terms are given by

LEH ¼ m2
pl

2
R; Lϑ ¼ −

1

2
ð∂ϑÞ2; ð2aÞ

Lint ¼ −
mpl

8
l2ϑ�RR: ð2bÞ

Here the Ricci scalar of gab is R. With our unit system,
½g� ¼ ½L�0, coordinates carry dimensions of length, ½x� ¼
½L�1, and note that the scalar field ϑ has been canonically
normalized, ½ϑ� ¼ ½L�−1. We have omitted any potential
VðϑÞ, so ϑ is massless and long-ranged, as appropriate for a
“gravitational” degree of freedom. In the interaction
Lagrangian Lint, the scalar field ϑ is coupled to the
4-dimensional Pontryagin density (also known as the
Chern-Pontryagin density) �RR,
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�RR≡ �RabcdRabcd ¼
1

2
ϵabefRef

cdRabcd; ð3Þ

where ϵabcd is the fully antisymmetric Levi-Civita tensor.
The coupling strength of this interaction is governed by

the new parameter l with dimensions of length. This
parameter takes on specific values if this EFT arises from
the low-energy limit of certain string theories [14] or to
cancel gravitational anomalies [13,15,16]. However, here
we simply take it as a “small” coupling parameter. In the
limit that l → 0, we recover general relativity with a
massless, minimally coupled scalar field.
The coupling parameter conventions vary throughout the

literature. To enable comparisons, we express the couplings
of a number of works in terms of our conventions. To put
Yagi et al. [19] into our conventions, use

κYSYT ¼ 1

2
m2

pl; αYSYT4 ¼−
mpll2

8
; βYSYT ¼ 1: ð4Þ

To convert Alexander and Yunes [10] into our conventions,

κAY ¼ 1

2
m2

pl; αAY4 ¼ þmpll2

2
; βAY ¼ 1: ð5Þ

To compare with McNees et al. [27], use

κMSY ¼ m−1
pl ; αMSY ¼ þl2

2
: ð6Þ

The conventions of Stein [26] agree with ours (except for an
inconsequential sign change in the definition of �RR, which
is compensated for by an additional sign everywhere �RR
appears).
Below we will perform an expansion in powers of l2. To

simplify matters, we insert a dimensionless formal order-
counting parameter ε that will keep track of powers of l2.
Expanding in a dimensionless parameter ensures that
field quantities at different orders have the same length
dimension.
Specifically, we replace the action in Eq. (1) with

Iε ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½LEH þ Lϑ þ εLint þ Lmat þ � � ��; ð7Þ

a one-parameter family of actions parameterized by ε.
Formally, we recover the action in Eq. (1) when ε ¼ 1.
Varying the action Eq. (7) with respect to the scalar field,

we have the sourced wave equation

□ϑ ¼ ε
mpl

8
l2�RR; ð8Þ

where □ ¼ ∇a∇a is the d’Alembertian operator. Varying
with respect to the metric gives the corrected Einstein field
equations,

m2
plGab þmplεl2Cab ¼ Tϑ

ab þ Tmat
ab ; ð9Þ

where Gab is the Einstein tensor of gab, and the tensor Cab
includes first and second derivatives of ϑ, and second and
third derivatives of the metric,

Cab ≡ ϵcdeða∇dRbÞc∇eϑþ �RcðabÞd∇c∇dϑ: ð10Þ
Since we are focusing on BBH mergers, Tmat

ab ¼ 0. The
scalar field’s stress-energy tensor Tϑ

ab is given by the
expression for a canonical, massless Klein-Gordon field,

Tϑ
ab ¼ ∇aϑ∇bϑ −

1

2
gab∇cϑ∇cϑ: ð11Þ

From here forward we will drop the superscript ϑ.
The “full” system of equations for dCS is thus the pair of

Eqs. (8) and (9).

B. Perturbation scheme

Because Cab in Eq. (9) contains third derivatives of the
metric, the “full” system of equations for dCS likely lacks a
well-posed initial value formulation [8]. In the language of
particle physics, this is equivalent to the appearance of
ghost modes above a certain momentum scale [28].
From the EFT point of view, though, the ghost modes

and ill-posedness are nothing more than the breakdown of
the regime of validity of the theory, which should be valid
for long wavelength modes in the decoupling limit l → 0.
To excise the ghost modes and arrive at a well-posed initial
value formulation, we expand about ε ¼ 0, which is simply
GR coupled to a massless minimally-coupled scalar field
and certainly has a well-posed initial value problem [9].
As a result, all higher orders in ε will inherit the well-
posedness of the zeroth-order theory, by inheriting the
principal parts of the differential equations.
We begin this order-reduction scheme by expanding the

metric and scalar field in power series in ε,1

gab ¼ gð0Þab þ
X∞
k¼1

εkhðkÞab ; ð12aÞ

ϑ ¼
X∞
k¼0

εkϑðkÞ: ð12bÞ

Note that since ε is dimensionless, each ϑðkÞ has the same

units as ϑ, and similarly for hðkÞab . This expansion is now
inserted into the field equations, which are likewise
expanded in powers of ε, and we collect orders homo-
geneous in εk, as below. This results in a “tower” of systems
of equations that must be solved at progressively increasing
orders in ε. This scheme is quite general, and should apply
to any theory that has a continuous limit to GR.

1Note that this is not a Taylor series, since there is no factor of
1=k! in the kth term. These factors must be tracked if using
standard perturbation theory, e.g. with the XPERT package [29,30].
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1. Order ε0

Zeroth order comes from taking ε → 0, which simply
gives the system of GR coupled to a massless, minimally
coupled scalar field,

m2
plGab½gð0Þ� ¼ Tð0Þ

ab ; ð13aÞ

□
ð0Þϑð0Þ ¼ 0; ð13bÞ

where Gab½gð0Þ� is the Einstein tensor of the background
metric gð0Þ, □ð0Þ is the associated d’Alembert operator, and
Tð0Þ is the stress-energy of ϑð0Þ. This system certainly has a
well-posed initial value problem.
Because of the explicit presence of ε in front of Lint in the

action [Eq. (7)], Cab does not appear in the metric
equation (13a), and the Pontryagin source does not appear
on the right-hand side of the scalar equation (13b). These
terms have been pushed to one order higher and will
appear below.
On general grounds, we expect that any initially non-

vanishing scalar field will radiate away within a few
dynamical times. Similarly, if we start with a ϑð0Þ ¼ 0
initial condition and impose purely outgoing boundary
conditions, ϑð0Þ will remain zero throughout the entire
simulation. Therefore, rather than simulating a vanishingly
small ϑð0Þ, we simply analytically assume that ϑð0Þ ¼ 0.
Therefore, at order Oðε0Þ, the system will simply be

Gab½gð0Þ� ¼ 0; ð14Þ

and the solution will be

ðgð0Þ; ϑð0ÞÞ ¼ ðgGR; 0Þ; ð15Þ

where gGR is a GR solution to the BBH inspiral-merger-
ringdown problem.

2. Order ε1

Continuing to linear order in ε, we find the system

m2
plG

ð1Þ
ab ½hð1Þ; gð0Þ� ¼ −mpll2Cð0Þ

ab þ Tð1Þ
ab ; ð16aÞ

□
ð0Þϑð1Þ þ□

ð1Þϑð0Þ ¼ mpl

8
l2½�RR�ð0Þ: ð16bÞ

As noted above, the explicit presence of ε in the action (7)
and equations of motion [(8) and (9)] lead to Cð0Þ and
½�RR�ð0Þ appearing in these ε1 equations strictly as source
terms. By construction, the principal part of this differential
system is the same as the principal part of theOðε0Þ system,
and thus it inherits its well-posedness property. This is true
at all higher orders in perturbation theory.
Here, Gð1Þ½hð1Þ; gð0Þ� is the linearized Einstein operator,

built with the covariant derivative∇ð0Þ compatible with gð0Þ,

acting on the metric deformation hð1Þ. The d’Alembert
operator receives the correction□ð1Þ, which depends on the
metric deformation hð1Þ. The quantity Cð0Þ

ab is the same as
the definition given in Eq. (10), evaluated on the back-
ground quantities ðgð0Þ; ϑð0ÞÞ. Similarly, ½�RR�ð0Þ is the
Pontryagin density evaluated on the background spacetime

metric gð0Þ. Finally, Tð1Þ
ab is the first-order perturbation to the

stress-energy tensor; since Tab is quadratic in ϑ, Tð1Þ
ab has

pieces both linear and quadratic in ϑð0Þ (the quadratic-in-
ϑð0Þ pieces are linear in hð1Þ).
The crucial property at this order is that bothCð0Þ and Tð1Þ

are built from pieces linear and quadratic in ϑð0Þ. At order
Oðε0Þ, we found that ϑð0Þ ¼ 0. Therefore, when evaluated
on the Oðε0Þ solution [Eq. (15)], these both vanish,

Cð0Þ
ab ½ϑð0Þ ¼ 0� ¼ 0; Tð1Þ

ab ½ϑð0Þ ¼ 0� ¼ 0: ð17Þ

Therefore, at orderOðε1Þ in perturbation theory, evaluating
on the background solution, we have the system

m2
plG

ð1Þ
ab ½hð1Þ; gð0Þ� ¼ 0; ð18aÞ

□
ð0Þϑð1Þ ¼ mpl

8
l2½�RR�ð0Þ: ð18bÞ

In the metric perturbation equation (18a), starting with
hð1Þ ¼ 0 initial conditions and imposing purely outgoing
boundary conditions will enforce hð1Þ ¼ 0 throughout the
entire simulation. Similarly, we can argue that small pertur-
bations of hð1Þ would radiate away on a few dynamical times,
since there is no potential to confine the metric perturbations.
Once again, rather than simulating a vanishingly small field,
we will just analytically assume that hð1Þ ¼ 0. Therefore, at
orderOðε1Þ, there is nometric deformation, and the system is
only Eq. (18b), driven by the background system (14) which
generates the source term ½�RR�ð0Þ.

3. Order ε2

This perturbation scheme can be extended to any order
desired. Although this paper reports only on work extend-
ing throughOðε1Þ, we sketch the derivation ofOðε2Þ, since
that is the lowest order where a metric deformation is
sourced.
Schematically, the system at Oðε2Þ, after accounting for

the vanishing of ϑð0Þ and hð1Þ, is

m2
plG

ð1Þ
ab ½hð2Þ� ¼ −mpll2Cð1Þ

ab ½ϑð1Þ� þ Tð2Þ
ab ½ϑð1Þ; ϑð1Þ�; ð19aÞ

□
ð0Þϑð2Þ ¼ 0: ð19bÞ

The operator Cð1Þ½ϑð1Þ� is linear in its argument, and
Tð2Þ½ϑð1Þ; ϑð1Þ� is linear in each slot. Various other
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combinations have vanished. In (19a), vanishing source
terms were quadratic in hð1Þ or built from the product of
hð1Þ × ϑð1Þ. In (19b), l2½�RR�ð1Þ is proportional to hð1Þ and
thus vanishes, as do terms such as □ð1Þϑð1Þ (linear in hð1Þ)
and □

ð2Þϑð0Þ (linear in ϑð0Þ).
We leave detailed discussion of order Oðε2Þ to future

work [31].

4. Summary and scaling

Let us briefly summarize the perturbative order-
reduction scheme and discuss the scaling of different
orders. The system at orders ε0 and ε1 is

Oðε0Þ∶ Gab½gð0Þ� ¼ 0; ϑð0Þ ¼ 0; ð20aÞ

Oðε1Þ∶ □
ð0Þϑð1Þ ¼ mpl

8
l2½�RR�ð0Þ; hð1Þ ¼ 0; ð20bÞ

and if we were to continue to Oðε2Þ,

Oðε2Þ∶ Gð1Þ
ab ½hð2Þ� ¼ m−2

pl T
eff
ab; ϑð2Þ ¼ 0; ð20cÞ

where Teff
ab may be determined from the right-hand side

of Eq. (19a).
Zeroth order (20a) is just vacuum GR, which has no

intrinsic scale. As is very common in numerical relativity
simulations, the coordinates used in the simulation are
dimensionless and in units of the total ADM mass,
Xa ¼ xa=ðGMÞ. This means that ∇ may be nondimension-
alized by pulling out a factor of ðGMÞ−1, Riemann may be
nondimensionalized by pulling out a factor of ðGMÞ−2, etc.
Meanwhile, the new length scale and coupling parameter

l enters at first order. If we nondimensionalize the
derivative operator and curvature tensors in Eq. (20b),
we will find

ðGMÞ−2□ð0Þϑð1Þ ¼ mpl

8
l2ðGMÞ−4½�RR�ð0Þ: ð21Þ

We therefore define the dimensionless scalar field Ψ via

ϑð1Þ ¼ mpl

8

�
l

GM

�
2

Ψ: ð22Þ

Then Ψ will satisfy

□
ð0ÞΨ ¼ ½�RR�ð0Þ: ð23Þ

Thus the analytic dependence of ϑð1Þ on ðl=GMÞ has been
extracted. The solution Ψ can later be scaled to reconstruct
ϑð1Þ for any allowable value of ðl=GMÞ.
All of the results that we present will be given in terms of

powers of the dimensionless coupling ðl=GMÞ. We will
also compare to known post-Newtonian results [24], that

were presented in terms of αYSYT4 . To perform the com-
parison, we use the conversion given in Eq. (4).
Finally, though we do not address Oðε2Þ simulations in

this paper, we should still study how hð2Þ scales with l and
ðGMÞ. Since the perturbative scheme preserves the units of
length of fields, ½hðkÞ� ¼ ½g� ¼ ½L�0 is already dimension-
less; however, it still depends on ðl=GMÞ in a specific way.
When we move to units in which we measure lengths and
times in units of ðGMÞ, we find it is appropriate to define a
scaled metric deformation ϒ via

hð2Þab ≡
�

l
GM

�
4

ϒab: ð24Þ

Then this dimensionless quantityϒ will satisfy an equation
that is schematically

∇2ϒþ L:O:T: ∼ ð∇ΨÞ2 þ ð∇ΨÞð∇RÞ þ ð∇2ΨÞR; ð25Þ

where L.O.T. stands for lower order terms, and all deriv-
atives and curvatures are Oðε0Þ dimensionless quantities.

C. Numerical scheme

For the order ε1 part of the order reduction scheme, our
overall goal is to solve Eq. (23) on a dynamical background
metric. We co-evolve the metric and the scalar field, where
Eq. (23) is driven by Eq. (20a). The whole system is
simulated using the Spectral Einstein Code (SPEC) [32],
which uses the generalized harmonic formulation of gen-
eral relativity in a first-order, constraint-damping system
[33] in order to ensure well-posedness and hence numerical
stability. We have added a scalar field module that is
similarly a first-order, constraint-damping system, follow-
ing [34], as outlined in Appendix A.
The code uses pseudospectral methods on an adaptively-

refined grid [35,36], and thus numerical convergence with
resolution of both the metric variables and the scalar field is
exponential. We demonstrate the numerical convergence of
the scalar field in Appendix A.
The initial data for the binary black hole background is a

superposition of two Kerr-Schild black holes with a
Gaussian roll-off of the conformal factor around each
black hole [37]. The initial data for the scalar field is
similarly given by a superposition of approximate dCS
solutions around isolated black holes, and is given in more
detail in Sec. III B.
The metric equations are evolved in a damped harmonic

gauge [38,39], with excision boundaries just inside the
apparent horizons [40,41], and minimally-reflective,
constraint-preserving boundary conditions on the outer
boundary [42]. The scalar field system, meanwhile, uses
purely outgoing boundary conditions modified to reduce
the influx of constraint violations into the computational
domain [34].
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The Pontryagin density source term �RR is computed
throughout the simulation in a 3þ 1 split from the available
spatial quantities as outlined in Appendix B.

III. RESULTS

A. Background: Phenomenology of binary
black hole inspirals in dCS

To give the proper context for our numerical results, we
first review the previously known phenomenology relevant
to this problem. Analytical and numerical results are known
for isolated black holes in the decoupling limit, and
analytical results are known for the binary black hole
problem in the decoupling limit and at slow velocities
(v=c ≪ 1).
Any spherically-symmetric metric will have vanishing

Pontryagin density.2 Thus the Schwarzschild solution with
vanishing scalar field is already a solution to the “full” dCS
system. An isolated spinning black hole in dCS, however, is
not given by the Kerr solution of GR [21,22,44,45]; the
scalar field is sourced, and the metric acquires corrections.
Analytical results for the leading-order, small-coupling
corrections to the Kerr metric have been found in the
slow-rotation approximation (a ≪ M) [21,22,45,46].
Additionally, numerical results have been found for the
scalar field for general rotation [25,47]. The leading-order
correction to Kerr is dipolar scalar hair, while the scalar
monopole vanishes. This vanishing scalar monopole means
that scalar dipole radiation is heavily suppressed in dCS. At
a large radius away from an isolated black hole labeled by
A, the dipolar scalar field goes as

ϑð1ÞA ¼ μiAn
i
A

R2
A

; ð26Þ

where RA is the distance from black hole A, niA is the spatial
unit vector pointing away from BH A, and μiA is the scalar
dipole moment of the BH. This scalar dipole moment is
given by [19]

μiA ¼ −
5

2

mpll2

8
χiA; ð27Þ

where χiA is the dimensionless spin vector of black hole A,
χiA ¼ JiA=GM

2
A (this factor of G in the denominator arises

from our usage of natural units, where angular momentum
is dimensionless, ½J� ¼ ½L�0, in units of ℏ).
The dCS binary inspiral problem in the post-Newtonian

regime (v ≪ c) was first treated by Yagi et al. [19]. When
two spinning BHs with scalar dipole hair are placed in
proximity with each other, the hair is responsible for a
number of effects. First, there is a correction to the binding
energy due to the dipole-dipole interaction. Second, as the
BHs orbit each other, the net quadrupole of the binary
system has a time derivative on the orbital timescale. The
binary’s combined dipole moment is also time-varying, but
only on the spin-precession timescale, so it is heavily
suppressed. Thus in the far zone of the binary, the scalar
field exhibits predominantly quadrupole and higher radi-
ation, and no l ¼ 0 monopole radiation.
The dominant far-zone multipole moments for the scalar

field have jmj ¼ l − 1 with l ≥ 2 and the l ¼ 1 modes
radiate on the spin-precession timescale. To make compar-
ing to PN simpler, we are simulating aligned-spin systems,
so the l ¼ 1 mode will in fact be non-radiative at early
times. Yagi et al. [19] gave expressions for the scalar field
ϑð1Þ due to spinning and nonspinning binaries, presented in
terms of symmetric tracefree (STF) tensors. In most
numerical relativity work, however, we decompose fields
into spherical harmonics,

ϑð1ÞFZ ¼
X
lm

Ylmðθ;φÞϑð1ÞFZl;m : ð28Þ

Using [48], we convert the STF expressions from [19,49]
into spherical harmonics at extraction radius R for a spin-
aligned binary, when the post-Newtonian approximation is
valid (the early inspiral), giving

ϑð1ÞFZ1;0 ¼
ffiffiffiffiffiffi
4π

3

r
1

R2
ðμ1 þ μ2Þ;

ϑð1ÞFZ2;1 ¼
ffiffiffiffiffiffi
2π

15

r
1

R

�
μ1

m2

M
− μ2

m1

M

�
ωðGMωÞ1=3e−iϕ;

ϑð1ÞFZ3;2 ¼
ffiffiffiffiffiffiffiffi
32π

105

r
1

R

�
μ1

m2
2

M2
þ μ2

m2
1

M2

�
ωðGMωÞ2=3ie−2iϕ:

ð29Þ

Here ϕ ¼ ϕðtÞ is the orbital phase, ω ¼ ωðtÞ ¼ _ϕ is the
orbital frequency, mA is the mass of each black hole,
M ¼ m1 þm2 is the total mass,3 and μA is the z component
(the only component since this calculation is for a spin-
aligned binary) of the scalar dipole moment from
Eq. (27). Note that the (1,0) mode is time-independent

2This is straightforward to verify with a computer algebra
system, using the canonical form for a spherically symmetric
metric, ds2 ¼ −e2αðt;rÞdt2 þ e2βðt;rÞdr2 þ r2dΩ2. Since it is true
in this coordinate system, it is true in general. This is also proven
in Appendix A of [43] following a tensorial approach. Finally,
one can appeal to a symmetry argument. If the metric is invariant
under anOð3Þ isometry, then the curvature tensor and �RR, being
tensorial objects built only from g, must also be invariant under
this symmetry. Therefore �RR must be a constant on each 2-
sphere. The group Oð3Þ also contains the reflection symmetry,
sending points to their antipodes. The metric is invariant under
this reflection, but �RR must flip sign, as it is a pseudoscalar. But
then we must have �RR ¼ −�RR, so �RR ¼ 0.

3In PN literature, m is often used as the total mass. We use M
here in order to be consistent with numerical relativity literature.
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(and hence nonradiative), since we are focusing on spin-
aligned systems.
The behavior of the scalar field during the late inspiral

and merger was previously unknown, and is part of the
motivation for the present numerical study.

B. Scalar field waveforms

We performed three numerical simulations in this for-
malism, each at low, medium, and high numerical reso-
lutions, with parameters given by Table I. We chose three
values for the BHs’ dimensionless spins of 0.0, 0.1, and 0.3,
to qualitatively see the effect of spin on the physics, and to
allow for comparison with analytical calculations. While
SPEC can simulate very high spins [41], the analytics we
compare against use the small-spin expansion and stop at
linear order in spin. Therefore theOðχ2Þ errors should be at
most ∼30% of the OðχÞ effects we compare against.
Similarly, while modeling spin precession is possible
[50], it is not the focus of this study, and thus we have
eliminated this complication by aligning all of the spins
with the orbital angular momentum.
As mentioned in Sec. III A, the scalar field around an

isolated, slowly spinning black hole in dCS is approx-
imately a dipole. We use this analytic approximation as the
basis for our initial data, as mentioned in Sec. II C. The
initial scalar field is a superposition of two slow-rotation
dipole solutions (since all of the dimensionless spins are
≤0.3), one around each black hole. We apply a boost to
account for the initial velocity of each black hole. As our
scalar field evolution system is first-order (see
Appendix A), we also initialize the variables corresponding
to the spatial and time derivatives of Ψ to the analytical
derivatives of the approximate dipole solution. For the
nonspinning simulation, we set the initial value ofΨ and its
derivatives to zero.
We plot mode-decomposed waveforms extracted from

the highest resolution simulations of the three simulations

in Figs. 1, 2, and 3. Each figure shows the ðl ¼ 2; m ¼ 2Þ
mode of the Newman-Penrose quantity Ψ4 decomposed
into spin-weight −2 spherical harmonics, and the dominant
ðl; m ¼ l − 1Þmodes of the scalar ϑð1Þ for l ¼ 1, 2, 3, along
with the PN comparisons from Eq. (29).
We immediately see that at early times, there is good

qualitative agreement between the numerical waveforms
and the PN predictions, with the ðl ¼ 2; m ¼ 1Þ mode
dominating, as expected. In the PN formulas of Eq. (29),
we used the instantaneous coordinate orbital frequency and
phase calculated from the black hole trajectories for ω and
ϕ. Since the starting phase is arbitrary, we perform a phase

TABLE I. Parameters of numerical runs. Each run was per-
formed at low, medium, and high resolutions. We give the mass
ratio m1=m2 where the subscripts label the black holes. All of the
spins are aligned in the z-direction, so we give the ẑ component of
the dimensionless spin vector χ⃗A for each black hole. The initial
orbital frequency is Ω0. Initial orbital parameters were chosen so
that the eccentricity was below 5 × 10−4. The time simulated to
merger is tMerger, and the amount of ringdown simulated there-
after is tRD, both in units of GM. The final mass of the remnant
black hole is mFinal, in units of M. The remnant spins are in the
z-direction, and thus we give the ẑ component χFinal of the
dimensionless spin.

Name
m1

m2
χ1 χ2 Ω0ðGMÞ tMerger

GM
tRD
GM

mFinal
M χFinal

Spin 0.3 3.0 0.30 0.30 0.0163 5841 764 0.96 0.68
Spin 0.1 3.0 0.10 0.10 0.0164 5452 817 0.97 0.59
Spin 0.0 3.0 0.00 0.00 0.0190 3457 697 0.97 0.54

FIG. 1. Waveforms for simulation with spin χ ¼ 0.3ẑ on each
black hole. The top panel shows the real part of the ðl¼ 2;m¼ 2Þ
mode of the spin-weight −2 spherical harmonic decomposition of
the Newman-Penrose scalar Ψ4, extracted at a (large enough)
radius of R ¼ 290GM. This serves as a proxy for the gravitational
waveform. The lower three panels show the (1,0), (2,1) and (3,2)
scalar spherical harmonic modes of the scalar ϑð1Þ at R¼ 300GM.
The numerical values from the simulation are shown by the solid
blue curves, while the PN calculations are shown by the dashed
black curves. The time axis corresponds to the approximate
retarded time (simulation time minus extraction radius) minus the
merger time, which is computed as the time of peak amplitude

of Ψð2;2Þ
4 .
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alignment (by eye) between the numerical results and the
PN waveforms.
As expected, because the spins are not precessing, there

is no dipole radiation at early times. The offset away from
zero seen in the ðl ¼ 1; m ¼ 0Þ panel of Fig. 1 is a real
physical effect: it is due to the combined dipole moments of
the two individual black holes and their orbital angular
momentum. After merger, the l ¼ 1 moment settles down
to a new non-zero value (below the resolution of this figure)
determined by the spin of the final black hole, again via
Eq. (27). In between, there is a burst of scalar dipole
radiation. This is a newly discovered phenomenon that
could not have been computed with analytic post-
Newtonian calculations. Scalar monopole radiation, mean-
while, is consistent with zero within the numerical errors of
the simulation.

C. Energy fluxes

Having solved for the scalar field ϑð1Þ, we can
evaluate physical quantities such as its stress-energy tensor,

Eq. (11). From TðϑÞ
ab , we can compute the energy flux

through some 2-sphere S2R at coordinate radius R via

_EðϑÞ ¼
Z
S2R

TðϑÞ
ab n

adSb: ð30Þ

Here na is the timelike unit normal to the spatial slice, and
dSb is the proper area element of S2R, i.e. dS

b ¼ Nb ffiffiffi
γ

p
dA,

where Nb is the spacelike unit normal to S2R, γ is the
determinant of the induced 2-metric, and dA is the
coordinate area element.
Like the metric and scalar field, we similarly expand TðϑÞ

ab

and _EðϑÞ in powers of ε,

TðϑÞ
ab ¼

X∞
k¼0

εkTðϑ;kÞ
ab ; _EðϑÞ ¼

X∞
k¼0

εk _Eðϑ;kÞ; ð31Þ

where each _Eðϑ;kÞ includes the appropriate orders of both

the scalar field and metric. Since ϑð0Þ ¼ 0 and TðϑÞ
ab is

quadratic in ϑ, we have Tðϑ;0Þ
ab ¼ Tðϑ;1Þ

ab ¼ 0, and similarly
_Eðϑ;0Þ ¼ _Eðϑ;1Þ ¼ 0. The first nonvanishing order is Tðϑ;2Þ

ab ,
which is given by

Tðϑ;2Þ
ab ¼ ∇aϑ

ð1Þ∇bϑ
ð1Þ −

1

2
gab∇cϑ

ð1Þ∇cϑð1Þ: ð32Þ

FIG. 2. Similar to Fig. 1, but with spin χ ¼ 0.1ẑ on each BH. FIG. 3. Similar to Fig. 1, but with no spin on either BH.
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Using the results of the simulations, we compute Tabna,
interpolate it onto surfaces of fixed coordinate radius R,
compute TainaNi by contracting with the normal, and
perform spectral integration with the induced area element
to obtain _Eðϑ;2Þ. That is, we compute

_Eðϑ;2ÞðRÞ ¼
Z
S2R

Tðϑ;2Þ
ai naNi ffiffiffi

γ
p

dA: ð33Þ

We also compute the energy flux at order ðl=GMÞ0,
which for vanishing ϑð0Þ consists purely of the background
gravitational energy flux, as (c.f. [51])

_Eð0Þ ¼ lim
R→∞

R2

16πG

Z
S2R

����
Z

t

−∞
Ψ4dt0

����
2

dΩ; ð34Þ

where numerically we set the lower bound of the time
integral to the start of the simulation, assuming there was
comparatively little radiation before the start.
We plot the numerical values of _Eðϑ;2ÞðRÞ and _Eð0ÞðRÞ in

Fig. 4, keeping (spin-weighted) spherical harmonics up
through l ¼ 8. We check for the convergence of the flux
quantities with increasing extraction radius, and present the
results at R ¼ 300GM, which agree with the results
at R ¼ 200GM.
In Fig. 4 we also plot a post-Newtonian approximation to

_Eðϑ;2Þ. This is computed using the far-zone PN solution for
ϑð1Þ from [19], which only includes the l ¼ 2 quadrupole
radiation. We impose circular orbits and aligned spins,
convert to our conventions via Eq. (4), and reinsert the
appropriate factors of G. The result for at least one nonzero
spin is

_Eðϑ;2Þ
PN ¼ −

5

1536G

�
l

GM

�
4
�
m2

M
χ1 −

m1

M
χ2

�
2

ðGMωÞ14=3;

ð35Þ

and for two nonspinning black holes,

_Eðϑ;2Þ
PN ¼ −

2

15G

�
l

GM

�
4

η2
δm2

M2
ðGMωÞ8: ð36Þ

In these expressions, χA is the dimensionless spin of black
hole A, η ¼ m1m2=M2 is the symmetric mass ratio, and
δm ¼ m1 −m2 is the mass difference.
Although the gravitational flux at order ðl=GMÞ0 is by

far the largest energy flux, the scalar field flux at order
ðl=GMÞ4 sharply increases before merger. The spin con-
tributions are dominant, as the scalar flux for the spin-0
simulation is comparatively small until the merger, when
nonlinearities become very important. At early times, our
fully numerical results qualitatively agree with the PN
results of [19], validating our and their calculations. We
expect the Oð1Þ ratio between PN and full numerics in

Fig. 4 stems from the PN expressions (35), (36) only
including l ¼ 2, whereas our numerics include all modes
up through l ¼ 8.

D. Regime of validity

Since this method is perturbative, we expect that it breaks
down—becomes invalid—at some point. There are two
types of breakdown. First, at every instant of time, there is
the question of whether the series converges. We expect that
the series should only converge when l ≪ GM, and we
assess this in Sec. III D 1. Second, over much longer times,
therewill be a secular drift between the perturbative solution
and the “true” solution, so that the two solutions become out
of phase. We assess the dephasing below in Sec. III D 2.

1. Instantaneous validity

The perturbative scheme is valid pointwise at every
instant in time if the series for the metric (12a) and scalar
(12b) are convergent. Roughly, we can assess this by
comparing the magnitudes of successive terms in the series.
As shown in Sec. II B, up through order ε2, the metric and
scalar are expanded as

gab ¼ gð0Þab þ ε2hð2Þab þOðε3Þ; ð37aÞ

FIG. 4. Order ðl=GMÞ0 and ðl=GMÞ4 energy fluxes, as a

function of time, aligned at the peak of Ψð2;2Þ
4 . We plot the order

ðl=GMÞ4 numerical scalar energy flux extracted at R ¼ 300GM
[colored solid lines; Eq. (33)] and the corresponding post-
Newtonian approximation [dashed lines, Eqs. (35) and (36)],
for the highest resolution of each simulation. We also plot the
energy flux at order ðl=GMÞ0, which consists solely of the
background gravitational radiation [Eq. (34)], for the spin 0.3
simulation (dot-dashed black line); the GW flux is the same order
of magnitude for all three spin configurations. The Oð1Þ ratio
between PN and numerics is likely due to the PN fluxes only
including l ¼ 2, whereas numerical quantities are computed with
all modes up to l ¼ 8.
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ϑ ¼ εϑð1Þ þOðε3Þ: ð37bÞ

Thus we cannot assess the convergence of ϑ without going
to Oðε3Þ, but at Oðε2Þ we can compare the magnitudes of

gð0Þab and hð2Þab . A rough condition for convergence is that

∥hð2Þab ∥≲ ∥gð0Þab ∥; ð38Þ

where ∥ · ∥ is an L2 norm.
The magnitude of hð2Þab depends on the strength of

the coupling parameter l, as discussed in Sec. II B 4, via

hð2Þab ¼ ðl=GMÞ4ϒab, where ϒab is independent of l. Thus
we translate Eq. (38) into a condition on the maximum
allowed value of l=GM,

���� l
GM

����
max

∼ C

�
∥gð0Þab ∥
∥ϒab∥

�1=4

min
; ð39Þ

where C is some factor of order unity, and on the right-hand
side, the ratio is evaluated pointwise, and then the minimum
is taken over the domain outside of the apparent horizons,
at each coordinate time. At values of l=GM larger than this
estimate, we expect the perturbative approach fails to
converge somewhere in the spacetime.
In these order ε1 simulations, we have not simulatedϒab.

We can, however, make scaling estimates from its sche-
matic equation of motion, Eq. (25). The source term

mpll2Cð1Þ
ab should be of the same order of magnitude as

Tð2Þ
ab (which we do compute in the simulations), so to within

an order of magnitude, we estimate

□
ð0Þϒ ∼ Tab½Ψ�; ð40Þ

1

L2
∥ϒð2Þ

ab ∥ ∼ ∥Tab½Ψ�∥: ð41Þ

Here L is a characteristic curvature length scale, and
Tab½Ψ� is shorthand for the “stress-energy” Tab½Ψ� ¼
∇aΨ∇bΨ − 1

2
gabð∇ΨÞ2. Therefore, we estimate the

allowed value for l=GM as

���� l
GM

����
max

∼ CL−1=2
�

∥gð0Þab ∥
∥Tab½Ψ�∥

�1=4

min
: ð42Þ

We plot this estimate in Fig. 5 for each of the spin
configurations considered in this study. During inspiral, the
curvature is highest around the smaller black hole, so we let
L ¼ minðGm1; Gm2Þ. After merger, we let L ¼ GmFinal
(see Table I for values).
We can compare our estimates for the regime of validity

jl=GMjmax to those computed in Stein [26]. Stein com-
puted jl=Gmjmax of a stationary, isolated black hole as a
function of χ of the body, using methods that are

independent of ours. At late times, we find direct agree-
ment, at the 5% level, by setting C ¼ ð32Þ1=4 ≈ 2.38. At
early times, after including a factor of M=m2 to convert
from jl=GMj to jl=Gm2j, we again find agreement. At
early times, the low-spin simulation has a very large
regime of validity, because the Pontryagin density is small,
and hence Chern-Simons effects are also small. However,
approaching the time of merger, orbital motion and non-
linearities source enough energy density in the scalar
field to restrict the regime of validity of jl=GMj to order
unity.

2. Secular validity (dephasing)

The true physical system at ε > 0 radiates energy more
quickly than the GR-only (ε ¼ 0) solution that we are using
as the background for perturbation theory. As a result, the
true solution will inspiral more quickly, so the orbital phase
will have a secularly growing deviation away from the
background. A post-Newtonian scaling estimate (see
below) says that the standard solution will break down
over a secular timescale of order Tsec ∼ TGR

RRðl=GMÞ−2v−2,
where TGR

RR is the radiation-reaction timescale in GR. This
scaling ðl=GMÞ−2 is characteristic of singular perturbation
theory [52–54].
If the length of a detected gravitational waveform is long

compared to the secular breakdown time, then we will need
a method to extend the secular regime of validity of the
calculation—for example, multiple-scale analysis (MSA)
[52] or the dynamical renormalization group [53,54]. We
save this issue for future work. Here, we will estimate the
dephasing time (secular breakdown time).

FIG. 5. Estimate of instantaneous regime of validity of pertur-
bation theory for each of the binary black hole configurations in
this study, as a function of coordinate time relative to merger.
Perturbation theory in powers of jl=GMj is invalid in the shaded
region above each curve. The maximum allowed value of
jl=GMj comes from Eq. (42). The jaggedness at early times
is due to p-refinement of the spectral subdomains causing points
to cross the mask outside of apparent horizons. The jump near
time of merger is due to formation of the common horizon. After
merger, the remnant black hole governs jl=GMjmax. Since all
simulations have comparable remnant spins (see Table I), the
final values of valid jl=GMj are similar.
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Let us focus on quasicircular, adiabatic inspirals.
Similarly to the scalar field and metric variables in
Eqs. (12a) and (12b), we can expand the accumulated
orbital phase ϕðtÞ and the orbital frequency ωðtÞ ¼ _ϕðtÞ of
the binary in powers of ε,

ϕ ¼ ϕð0Þ þ εϕð1Þ þ ε2ϕð2Þ þOðε3Þ; ð43Þ

ω ¼ ωð0Þ þ εωð1Þ þ ε2ωð2Þ þOðε3Þ; ð44Þ

where ϕð0Þ corresponds to the phase of the binary in pure
GR, and ϕð1Þ contains the dCS corrections at order ε1 and
so on. Since the metric deformation at Oðε1Þ vanishes, the
phase correction at Oðε1Þ also vanishes, ϕð1Þ ¼ 0 ¼ ωð1Þ.
The first nonvanishing orbital phase correction is

Δϕ≡ ϕð2Þ: ð45Þ

We can use Δϕ to assess the secular regime of validity, and
in Sec. III E we will also use it to assess the detectability of
dynamical Chern-Simons.
We do not have Δϕ directly from the simulation,

as we do not evolve the ε2 system. However, we can
estimate it from previously known analytical results
combined with numerical quantities available during the
simulation.
Consider the local-in-time expansion of the orbital phase

correction Δϕ around any “alignment time” t0,

ΔϕðtÞ ¼ Δϕðt0Þ þ ðt− t0Þ
dΔϕ
dt

����
t¼t0

þ 1

2
ðt− t0Þ2

d2Δϕ
dt2

����
t¼t0

þOðt− t0Þ3; ð46Þ

ΔϕðtÞ ¼ Δϕðt0Þ þ ðt − t0Þωð2Þðt0Þ þ
1

2
ðt − t0Þ2

dωð2Þ

dt

����
t¼t0

þOðt − t0Þ3: ð47Þ

If our simulation had started at reference time t0, then we
would have Δϕðt0Þ ¼ 0. The linear piece ðt − t0Þωð2Þðt0Þ
corresponds to a perturbative, instantaneous frequency
shift, which is completely degenerate with a renormaliza-
tion of the physical mass MðεÞ in terms of the “bare” mass
Mðε ¼ 0Þ. Therefore, the constant and linear pieces of this
expansion are not observable.
However, the curvature 1

2
ðt − t0Þ2dωð2Þ=dtjt¼t0 cannot be

redefined or scaled away. Therefore, within a sufficiently
short window of time around the alignment time t0, the
deformation to the orbital phase is given by

Δϕ ¼ 1

2
ðt − t0Þ2

dωð2Þ

dt

����
t¼t0

þOððt − t0Þ3Þ: ð48Þ

We use this to define the perturbative secular time Tsecðt0Þ
at any instant t0 via

1 ≈ Δϕ ¼ 1

2
T2
sec

dωð2Þ

dt

����
t¼t0

; ð49Þ

Tsec ≡
�
1

2

dωð2Þ

dt

����
t¼t0

�−1=2
; ð50Þ

roughly the time to dephase by order one radian.
Thus we need to estimate dωð2Þ=dt from our simulation.

Under the assumption of quasicircular, adiabatic orbits,
there is a one-to-one correspondence between the orbital
frequency ω and orbital energy E. In other words, there
exists a function of one variable, EðωÞ or ωðEÞ. Therefore
from the chain rule we can find the time derivative

dω
dt

¼ dω
dE

dE
dt

¼ dE=dt
dE=dω

: ð51Þ

This depends on the conservative sector through the
frequency-dependence of orbital energy, dE=dω, and on
the dissipative sector through the radiated power, dE=dt.
Just as with the frequency, we expand the orbital energy in
powers of ε,

E ¼ Eð0Þ þ εEð1Þ þ ε2Eð2Þ þOðε3Þ: ð52Þ

We can then use this to expand Eq. (51) in powers of ε. The
Oðε2Þ piece is given by

dωð2Þ

dt
¼ dωð0Þ

dt

�
dEð2Þ=dt
dEð0Þ=dt

−
dEð2Þ=dω
dEð0Þ=dω

�
: ð53Þ

The prefactor dωð0Þ=dt is simply the background (GR)
evolution of the orbital frequency. The first term in square
brackets in Eq. (53) comes from the dissipative sector of the
dynamics, since it depends on the radiated power dEð2Þ=dt.
The second term, meanwhile, comes from the conservative
sector, as it depends on the correction to the orbital energy
Eð2ÞðωÞ. Both of the factors in square brackets scale as
ðl=GMÞ4v4 [19,24] for BBHs with spin. Plugging this
scaling into Eq. (50) recovers Tsec ∼ TGR

RRðl=GMÞ−2v−2.
We find it useful to rewrite dEð0Þ=dω in the second term

using the chain rule (51) to give

dωð2Þ

dt
¼ dωð0Þ=dt

dEð0Þ=dt

�
dEð2Þ

dt
−
dωð0Þ

dt
dEð2Þ

dω

�
: ð54Þ

Now we can discuss how to evaluate these factors from our
numerical simulation and previously known analytical
results. The background energy flux dEð0Þ=dt comes
from the numerical simulation via Eq. (34). We also have
the background frequency evolution dωð0Þ=dt from the
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numerical simulation, via a time derivative of the coor-
dinate orbital frequency.
The two Oðε2Þ quantities require approximations. In the

dissipative sector, there are two contributions to dEð2Þ=dt:
the first from scalar radiation, and the second from
gravitational radiation. We expect these to be the same
order of magnitude. Since we do not have access to the
gravitational radiation, we approximate that to within an
order of magnitude,

_Eð2Þ ≈ _Eðϑ;2Þ; ð55Þ

where _Eðϑ;2Þ was given in Eq. (33). This is further justified
during the inspiral, where the Oðε2Þ dissipative correction
due to gravitational waves is higher-PN than the scalar
radiation [19].
In the conservative sector, we can approximate Eð2ÞðωÞ

from a post-Newtonian calculation [24,49]. The (PN-
approximate) correction to the orbital energy Eð2Þ also
has two pieces: the scalar binding energy and the metric-
deformation binding energy. Again we are going to make
an approximation and ignore the metric deformation piece,
approximating

Eð2ÞðωÞ ≈ Eðϑ;2Þ
DD ; ð56Þ

where EðϑÞ
DD is the scalar dipole-dipole interaction. After

accounting for a missing minus sign in [24,49], this is
given by

Eðϑ;2Þ
DD ¼ 4π

3μi1μ
j
2n

12
hiji

r312
ð57Þ

¼ 4π

r312
½3ðμ1 · n12Þðμ2 · n12Þ − ðμ1 · μ2Þ�; ð58Þ

where again μiA is the scalar dipole moment given in
Eq. (27). In our case the spins are in the ẑ direction, so
the ðμA · n12Þ term vanishes. To leading PN order, we use
the Kepler relation ω2 ¼ GM=r312 and obtain

Eðϑ;2Þ
DD ¼ 4πω2ðGMÞ−1μ1μ2 ð59Þ

dEðϑ;2Þ
DD

dω
¼ 8πωðGMÞ−1μ1μ2; ð60Þ

where μA now refers to the ẑ component. For ω we again
use the coordinate orbital frequency from the simulation.
To summarize this calculation: we are approximating the

secular breakdown time Tsec [Eq. (50)] by assuming a
quasi-circular, adiabatic inspiral, and thus we compute
dωð2Þ=dt, Eq. (54). We approximate the dissipation _Eð2Þ

from only the scalar flux, Eq. (55). We approximate the

conservative correction Eð2ÞðωÞ from the post-Newtonian
scalar dipole-dipole interaction, Eq. (56).
In Fig. 6 we plot ðl=GMÞ2Tsecðt0Þ, the time to secularly

dephase by about ∼1 radian, around various alignment
times t0. We have checked that at early times, this
numerical estimate agrees with an analytic PN estimate.
As expected, Tsec is parametrically longer than the GR
radiation-reaction time. The time window for secular
validity shrinks approaching merger, but does not vanish.
The value of Tsec, and hence secular regime of validity, is

smallest near merger. For the spin 0.3 simulation, just before
merger, we find the time to dephase by about 1 radian
from the GR background is Tsec ∼ 15GMðl=GMÞ−2. If
Advanced LIGO detects a gravitational waveform of
length, say, 200GM, then a perturbative calculation without
MSA/renormalization would be valid for ðl=GMÞ ≲ 1=4.
For longer waveforms or larger values of ðl=GMÞ, MSA or
renormalization would be required. However, larger values
of ðl=GMÞ will be very close to the limit on the instanta-
neous regime of validity, Fig. 5.

E. Detectability and bounds estimates

We now turn to the issue of how well Advanced LIGO/
Virgo would be able to detect or bound the effects of
dynamical Chern-Simons gravity from observations of a
binary black hole merger. As we do not yet have metric
waveforms [that arise at Oðε2Þ], we make order-of-magni-
tude projections of detectability and bounds from the
dephasing estimates in the previous section.
Suppose that LIGO detects a gravitational waveform

similar to one of those we have simulated, with approx-
imately 5 cycles of inspiral in band before merger—similar

FIG. 6. Estimate of secular regime of validity from dephasing
time Tsec, Eq. (50). The perturbative scheme is valid within a
sufficiently short time window jt − t0j ≪ Tsec about an alignment
time t0. For longer times, multiple-scale analysis or renormaliza-
tion will be needed to extend the regime of validity. The
dephasing time is parametrically longer than the GR radiation
reaction time, Tsec ∼ TGR

RRðl=GMÞ−2v−2. As expected it shrinks
toward merger, remaining nonzero.
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to GW150914 [2], with a total mass approximately
M ≈ 60 M⊙. Such a detection would come with errors
due to noise and calibration uncertainty; let us define the
overall waveform phase uncertainty σϕ. Let us further
assume that the dCS corrections to the full waveform
are not degenerate with redefining bare binary parameters.
Upon detection there are two distinct possibilities: (i) the
detected waveform is consistent with GR predictions; or
(ii) the detection is inconsistent with any point in the GR
parameter space.
In the case of consistency, we would be able to place

bounds on the size of l. Crudely, we would be able to say

Δϕgw ¼ 2Δϕ≲ σϕ; ð61Þ

where the factor of two comes from the gravitational wave
being at twice the orbital frequency. If we have consistency
with GR, then the quadratic approximation for Δϕ in
Eq. (48) holds.
We plot the quadratic approximation to the orbital phase

difference (relative to GR) in Fig. 7. By taking the
maximum value of Δϕ over the length of the waveform,
and taking into account the scaling with ðl=GMÞ4, we can

derive a projected bound on l. For example, from the spin
0.3 simulation and M ≈ 60 M⊙, we would find�

l
GM

�
≲ 0.13

�
σϕ
0.1

�
1=4

or l≲ 11 km

�
σϕ
0.1

�
1=4

; ð62Þ

and from the spin 0.1 simulation,

�
l

GM

�
≲ 0.2

�
σϕ
0.1

�
1=4

or l≲ 18 km

�
σϕ
0.1

�
1=4

: ð63Þ

The spin 0.0 simulation would only give ðl=GMÞ≲
1.4ðσϕ=0.1Þ1=4. Such a bound would be past the instanta-
neous regime of validity limit during merger for this
simulation (see Fig. 5). It is not internally self-consistent
to use this perturbative result to claim a constraint on the
regime past perturbative validity, so conservatively, no
statement can be made. The higher spin simulations do
not suffer from this problem.
These bounds forecasts can immediately be turned

around into detectability forecasts. We can forecast that
dynamical Chern-Simons corrections would be detectable
in aM ≈ 60 M⊙ binary with parameters consistent with our
spin 0.3 simulation if l≳ 11 km, and similarly for the spin
0.1 simulation if l≳ 18 km.
We can draw three simple lessons on detectability and

bounds from these results. First, better phase sensitivity
(smaller σϕ) is an obvious way to improve the odds of
detectability, or place stronger bounds. This comes from
improved detector sensitivity, but also from higher signal-to-
noise ratio (SNR) events. Second, at fixed phase sensitivity,
lower-mass events would be better than higher mass events,
to a point. Lower mass events obviously have smaller GM,
but they also spend more time in band, and thus have more
time for dephasing. There is a tradeoff, though, because
lower mass events are quieter, and also because most of the
dephasing comes right before merger—so the mass must be
high enough for merger to be in band. Finally, we can easily
see that higher spin systems would lead to stronger con-
straints or a better chance of detecting dCS effects.
Let us compare our projected bounds to those appearing

previously in the literature. Ali-Haïmoud and Chen [55]
used solar system data from Gravity Probe B and the
LAGEOS satellites to constrain the characteristic length
scale to l≲ 108 km. Yagi, Yunes and Tanaka [22] found a
similar bound from table-top experiments. This is compa-
rable to the curvature radius in the solar system.
Yunes and Pretorius [21] applied a precession calculation

from the extreme mass-ratio limit to PSR J0737–3039 to
estimate a constraint of l≲ 104 km. However, this calcu-
lation missed some effects (such as the scalar binding
energy), and the mass ratio of PSR J0737–3039 is very
close to 1. Moreover, the curvature radius at the surface of
one of the NSs in this system should be order ∼10 km,
which means there is room between 10–104 km where l
could be large compared to the curvature length, and thus

FIG. 7. Estimated orbital phase difference (top) for the three
different simulations as a function of time, given by the quadratic
approximation Eq. (48). We choose the alignment time t0 to be
when the common apparent horizon forms, the last time when we
have access to the orbital frequency. From Δϕ we can estimate
how large l must be for a detectable deviation from GR, or
project bounds on l for GR-consistent detections. For reference,
we also plot the gravitational waveform (bottom) from the spin
0.3 simulation, with approximately 5 cycles of inspiral before
merger. This is approximately how many cycles were seen in
GW150914 [2]. The two other simulations’ gravitational wave-
forms are similar.
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the calculation would not be internally self-consistent.
Yagi, Stein, Yunes, and Tanaka [24] performed a more
careful analysis, using post-Newtonian theory for binary
NS systems. They concluded that even PSR J0737–3039,
with its high orbital velocity and exquisite timing, would
not be able to yield a constraint on dCS for the foreseeable
future, and that gravitational wave measurements would be
the best hope.
Yagi, Yunes, and Tanaka [23] used post-Newtonian

calculations to project the level of constraints that might
arise from second and third generation GW detectors. If
next-generation detectors such as Einstein Telescope [56]
were to observe binary black hole inspirals consistent with
GR, then YYT project a bound of l ≲Oð10–100Þ km.
Second-generation ground-based detectors could place a
similar constraint. The only caveat here is that YYT use
post-Newtonian estimates, stopping at the ISCO frequency,
for systems that would be seen not only in the inspiral, but
also in the merger and ringdown, where PN is invalid. The
additional SNR contributed by merger and ringdown will
likely improve constraints.
Stein and Yagi [49] projected a number of constraints on

l based on both pericenter precession in pulsar binaries and
gravitational wave measurements. For a LIGO detection of
a ð10þ 11ÞM⊙ BBH inspiral, consistent with GR, at an
SNR of 30, they projected a bound on the order of
l≲ 10 km. Note that this is the same order of magnitude
as the projected bound we estimate here.
Finally, Stein [26] projected a bound based on the

observations of the black hole candidate GRO J1655–40.
Assuming observations were consistent with GR, Stein
projected a constraint of l≲ 22 km. However, such a
constraint would require (for example) accretion disk
modeling in the presence of the dCS correction, which
has not been simulated.

IV. DISCUSSION AND FUTURE WORK

In this study, we have performed the first fully nonlinear
inspiral, merger, and ringdown numerical simulations of a
binary black hole system in dynamical Chern-Simons
gravity. These are the first BBH simulations in a theory
besides general relativity and standard scalar-tensor gravity.
BBH in scalar-tensor is identical to that in GR, unless one
imposes an external scalar field gradient [57,58]. Therefore
these are also the first numerical simulations in a theory
where the BBH dynamics differ from GR under ordinary
initial and boundary conditions.
The “full” equations of motion for dCS, and many other

corrections to GR, probably lack a well-posed initial value
formulation. This is not an obstacle if the corrections are
treated as being a low-energy effective field theory. In
Sec. II we formulated a perturbation scheme which guar-
antees a well-posed initial value problem. We stress that
this scheme is applicable not just to dCS, but also any

deformation of general relativity which has a continuous
limit to GR.
We performed fully nonlinear numerical simulations

through order Oðε1Þ in the perturbation scheme. We
simulated binaries with mass ratio q ¼ 3 and aligned spins
with equal dimensionless spin parameters χ1 ¼ χ2, taking
on three values, χ ¼ 0.0, 0.1, 0.3. The background (ε0)
metric radiation and perturbative (ε1) scalar radiation
waveforms are presented in Sec. III B. We found good
agreement with PN waveform predictions [19,24] during
the early inspiral.
We have also discovered new phenomenology in dCS. In

agreement with PN predictions, dCS does not suffer from
dipole radiation during the early inspiral. However, during
merger, there is a burst of dipole radiation. This phenome-
non can only be studied with full numerical simulations.
We extracted energy fluxes in Sec. III C, finding good

agreement with PN at early times. We found that the scalar
field’s Oðε2Þ energy flux during the inspiral was approx-
imately 10−6ðl=GMÞ4 times smaller than the correspond-
ingOðε0Þ (GR) energy flux for the highest spin simulation,
rising to a 10−3ðl=GMÞ4 fraction of GR during merger.
This energy flux enters into our detectability estimate.
Since we use a perturbative scheme, it is important to

understand where perturbation theory breaks down. In
Sec. III D 1 we estimated the maximum values of l=GM
for the perturbation theory to be convergent at each time
during the simulation. During the inspiral and ringdown,
the regime of validity agrees with estimates from [26]. The
tightest bound on the instantaneous regime of validity
comes during merger, and is comparable for spinning and
non-spinning black hole mergers, close to l=GM ≲ 1.
The additional radiation in the scalar field ϑð1Þ leads to a

secular drift in orbital phase between the “true” orbital
dynamics and the GR background from which we perturb.
Therefore even if perturbation theory is instantaneously
under control, the perturbative solution will dephase after a
sufficiently long time. We numerically estimated this
dephasing time in Sec. III D 2, and it agrees with post-
Newtonian scaling at early times. At times approaching
merger, the dephasing time becomes shorter, but remains
nonzero.
This dephasing calculation served as the basis for

estimating detectability and predicting bounds that
LIGO would be able to place on l, in Sec. III E. For
q ¼ 3, M ≈ 60 M⊙, and aligned dimensionless spins of
χ1 ¼ χ2 ¼ 0.3, we estimated that a GR-consistent detection
would yield a bound of

l≲ 11 km

�
σϕ
0.1

�
1=4

; ð64Þ

where σϕ is LIGO’s statistical phase uncertainty on the
detected waveform, which depends on the SNR of the
detection. Conversely, an l above this value would be
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detectable by LIGO. Lower spins lead to poorer detect-
ability and/or bounds. Better bounds come from three
places: (i) improved phase sensitivity (higher SNR),
(ii) lower mass events (while keeping merger in band),
and (iii) higher spin systems.

A. Future work

The natural next step in this program is to continue to the
order ε2 system, as outlined in Sec. II B 3. This is the lowest
order where gravitational radiation is modified, and would

involve solving for hð2Þab , which is sourced by gð0Þab and ϑð1Þ.
With the solution for the deformation to the metric hð2Þab ,

we will be able to directly compare dCS predictions against
LIGO data. We will also have a more complete assessment
of the convergence of the perturbation scheme.
Comparing dCS predictions against LIGO data will yield

the first direct bounds on the theory from the strong-field,
dynamical regime of gravity. To do so will involve
extending GR parameter estimation [59] with one addi-
tional parameter, l, which will be simultaneously inferred
or constrained from the data.
A complete analysis would involve thorough exploration

of the 7-dimensional parameter space of quasicircular
BBHs (mass ratio and two spin vectors; the l dependence
is analytic in the perturbative approach). For example, in
this work, we have focused on aligned-spin binaries in
order to simplify comparisons with analytic predictions.
The scalar energy flux in the case of misaligned binaries
may be an order of magnitude larger than in the spin
aligned case (see [19] and the erratum). Building a
surrogate waveform model [60,61] would simultaneously
allow for an efficient exploration of parameter space and
efficient parameter estimation/constraints with LIGO data.
The standard perturbation theory approach we used here

will be sufficient if we find that the dephasing time is long
compared to LIGO signals. However, if we need to extend
the secular regime of validity, some form of multiple-scale
analysis [52] or dynamical renormalization group [53,54]
approach will be required.
Finally, let us emphasize that our approach is not limited

to dynamical Chern-Simons gravity: dCS is a proof of
principle. Any theory with a continuous limit to GR can be
treated with the same scheme, and reusing a large fraction
of the code. In particular, we will consider EdGB and a
class of theories proposed in [62]. Switching from dCS to
another theory will only involve changing source terms that
appear on the right hand sides of the differential equations
we are solving numerically.
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APPENDIX A: SCALAR FIELD
EVOLUTION FORMULATION

In this appendix, we discuss the numerical evolution
scheme for a (massless) Klein-Gordon field, denoted by the
code variable Ψ, in greater detail. This is an update of the
system described in [34], which did not include the “γ1γ2”
constraint-damping term (see below). The basic equation
we are simulating is

□Ψ ¼ S; ðA1Þ

for some prescribed source term S (in this work, the source
term is the Pontryagin density �RR).
We first review the 3þ 1 ADM formalism for the

foliation of a spacetime into spatial slices, as used in
numerical relativity [65]. We decompose the metric as

gab ¼ γab − nanb; ðA2Þ

where gab is the spacetime metric, na is a timelike unit one-
form normal to the spatial slice with nana ¼ −1, and γab is
the induced spatial metric and projector, with naγab ¼ 0. In
ADM variables, the timelike unit normal can be written in
terms of a lapse, α, and shift βi, as na ¼ ðα−1;−α−1βiÞ.
We work with the Spectral Einstein Code (SPEC), which

uses the generalized harmonic formulation of general
relativity, and evolves a symmetric hyperbolic first-order
system of metric variables gab, Φiab ¼ ∂igab and Πab ¼
−nc∂cgab [33].
We similarly define a set of first-order variables for the

scalar field Ψ as

Φi ¼ ∂iΨ; ðA3Þ

Π ¼ −na∂aΨ ¼ −α−1ð∂tΨ − βi∂iΨÞ: ðA4Þ

From these definitions and the equality of mixed partial
derivatives, we can create a system of constraints which
vanish in the continuum limit, and which an accurate
evolution of the system will satisfy to within some
tolerance:
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Cð1Þ
i ¼ ∂iΨ −Φi; ðA5Þ

Cð2Þ
i ¼ ½ijk�∂jΦk: ðA6Þ

In Eq. (A6) the indices j, k are summed and ½ijk� is
the completely antisymmetric Levi-Civita symbol, with
½123� ¼ þ1.
The evolution equation (A1) thus becomes a set of first-

order time evolution equations for fΨ;Φi;Πg. However, in
order to prevent numerical errors in the constraints from
making the evolution unstable, we follow what is done in
the metric system and add specific multiples of the
constraints to the evolution equations. These combinations
of constraints are chosen so as to ensure that the system is
symmetric hyperbolic and that the constraints are damped
out, ensuring a well-posed evolution scheme. The evolution
equation for Ψ is thus

∂tΨ ¼ −αΠþ βm½∂mΨþ γ1ð∂mΨ −ΦmÞ�; ðA7Þ

where the first terms come from the definitions ofΦi andΠ,
and the last term is a constraint damping term with
coefficient γ1. The evolution equation for Φi is

∂tΦk ¼ −α½∂kΠþ γ2ðΦk − ∂kΨÞ�
− Π∂kαþ βm∂mΦk þΦm∂kβ

m; ðA8Þ

where the term with γ2 is a constraint damping term,
and all other terms come from definitions of the first-order
variables and equality of mixed partial derivatives. Finally,
the evolution equation for Π is

∂tΠ ¼ αΠK þ βm∂mΠþ αΦmΓm þ γ1γ2β
mð∂mΨ −ΦmÞ

− αgmn∂nΦm − gmnΦn∂mαþ αS; ðA9Þ

where K is the trace of the extrinsic curvature, Γm ≡
gabΓm

ab is a specific contraction of the Christoffel con-
nection coefficients, S is the source term, and the γ1γ2 term
is the appropriate constraint-damping term to keep the
system symmetric hyperbolic.
This “γ1γ2” term was not included in the previous

description [34], but it is required if both γ1 and γ2 are
nonzero. The parameters γ1 and γ2 play the same role in the
damping and characteristic analysis of this Klein-Gordon
system as they do in the generalized harmonic system [33].

Specifically, in order for the constraint Cð1Þ
i to be damped,

we must have γ2 > 0 (satisfying the constraint Cð1Þ
i implies

satisfaction of the constraint Cð2Þ
i ). The choice γ1 ¼ −1

makes the system linearly degenerate. In practice we set the
values of γ1 and γ2 to match those of the generalized
harmonic evolution of the metric variables, so that the
characteristic speeds of the metric and scalar field sys-
tems agree.

The scalar field variables, like the metric variables, are
represented spectrally. In order to reduce the amount of
numerical noise in the system, we apply the same filters we
use for the metric variables to the scalar field system,
namely filtering the top 4 tensor spherical harmonics and
using an exponential Chebyshev filter for the radial piece.
In order to assess the accuracy of the simulations, we

evaluate the constraints that the generalized harmonic
evolution system must satisfy [33], as well as the
constraints for the first-order scalar field system given
by Eqs. (A5) and (A6). We combine these constraints,
contracting with a Euclidean metric to give a constraint
energy as

C2 ¼ Cð1Þ
i Cð1Þ

i þ Cð2Þ
j Cð2Þ

j : ðA10Þ

Since the code is spectral, we check for exponential
convergence of these constraint energies as we increase
the number of angular and radial basis functions per
subdomain (and hence the resolution). We plot the con-
vergence of the L∞ norm of the constraint energies for the
highest spin simulation of this study, which has the greatest
level of constraint violation, in Fig. 8. We find that the error
decreases exponentially with resolution. The lower spin
simulations have similar qualitative behavior.

APPENDIX B: PONTRYAGIN DENSITY
IN 3+ 1 SPLIT

Since numerical relativity computations are formulated
in a 3þ 1 split, we must compute the scalar field’s source
term—the Pontryagin density—in terms of 3 dimensional
quantities. First, it is straightforward to verify

FIG. 8. Numerical error convergence for the highest spin (0.3 ẑ)
simulation performed in this study, which shows the greatest level
of constraint violation. We plot the L∞ norm of the constraint
energy defined in Eq. (A10) for the low, medium and high
numerical resolutions (adding a constant number of angular and
radial basis functions to increase resolution). Note that these
constraints are not normalized, but the relative error between the
levels shows exponential convergence. The constraint energy
increases at merger, which also happens in the metric evolution
system, and is consistent with other BBH simulations.
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�RR≡ �RabcdRabcd ¼ �CabcdCabcd; ðB1Þ

where Cabcd is the Weyl tensor, and its left dual is
�Cabcd ≡ 1

2
ϵabefCef

cd. Thus we do not need to consider
all of Riemann, but only its trace-free part, Weyl. The
Pontryagin density is completely insensitive to the Ricci
part of curvature.
In a 4-dimensional numerical relativity simulation, it is

especially convenient to decompose Weyl into its electric
and magnetic parts, defined as

Eab ≡þCacbdncnd; ðB2Þ

Bab ≡ −�Cacbdncnd: ðB3Þ

The minus sign in (B3) follows the conventions of [66,67]
and the implementation in SPEC [32], though much of the
literature has a plus sign. From the symmetries of Weyl, the
two tensors Eab and Bab are both symmetric (Eab ¼ EðabÞ
and Bab ¼ BðabÞ), purely spatial (Eabna ¼ 0 ¼ Babna), and
trace-free (Ea

a ¼ 0 ¼ Ba
a). We may also write an inver-

sion formula for Weyl in terms of Eab and Bab (thanks to
Alfonso García-Parrado for bringing this inversion formula
to our attention),

ðB4Þ

where the operator is a projector that imposes the
symmetries of the Riemann tensor (Rabcd ¼ R½ab�½cd� ¼
Rcdab). Here we have the induced 3-dimensional volume
element,

ϵabc ≡ ndϵdabc; ϵabcd ¼ −4n½aϵbcd�: ðB5Þ

For coordinate component calculations, we use the con-
ventions where ϵabcd ¼ þ ffiffiffiffiffiffi−gp ½abcd� where ½abcd� is the

alternating symbol, with ½0123� ¼ þ1 (see e.g. [68]). We
also have ϵabcd ¼ −½abcd�= ffiffiffiffiffiffi−gp

, and similar conventions
for the 3-dimensional volume element: ϵabc ¼ ffiffiffi

γ
p ½abc�

and ϵabc ¼ ½abc�= ffiffiffi
γ

p
(this makes use of the identityffiffiffiffiffiffi−gp ¼ α

ffiffiffi
γ

p
).

With this above decomposition, it is easy to verify that
the Pontryagin density can be expressed simply in terms of
the electric and magnetic parts of Weyl,

�RR ¼ −16EabBab: ðB6Þ

Thus all that remains is to compute Eab and Bab from
other quantities. Finding these expressions for E and B
comes from the standard Gauss-Codazzi-Mainardi (GCM)
equations (see [65] for a didactic explanation). After using
the GCM equations, for the electric Weyl tensor we find

Eab ¼ KabKc
c −Ka

cKbc þ ð3ÞRab

−
1

2
γa

cγb
dð4ÞRcd −

1

2
γabγ

cdð4ÞRcd þ
1

3
γab

ð4ÞR: ðB7Þ

Here ð3ÞRab is the spatial 3-Ricci tensor while ð4ÞRab is the
4-Ricci tensor, and Kab is the extrinsic curvature of the
spacelike hypersurface. The second line of (B7) contains
4-Ricci terms which would vanish if the 4-metric was
Ricci-flat, for example if it solves the Einstein equations in
vacuum. These terms were not included in e.g. [69].
Meanwhile, for the magnetic Weyl tensor we find the

simple expression

Bab ¼ −ϵcdðaDcKbÞd; ðB8Þ

where Da is the covariant derivative induced on the 3-
surface which is compatible with the 3-metric, Daγbc ¼ 0.
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