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We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of
gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion.
Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is
known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We
show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field
background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the
equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski
theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic
in a weak-field background. This includes “k-essence” like theories. However, for more general Horndeski
theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in
a generic weak-field background. Our results show that the standard method used to establish local well-
posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises
the possibility that these theories may not admit a well-posed initial value problem even for weak fields.
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I. INTRODUCTION

Lovelock theories of gravity are the most general diffeo-
morphism-covariant theories involving a metric tensor with
second order equations ofmotion [1]. In four dimensions, the
equation of motion of such a theory reduces to the Einstein
equation. But in higher dimensions extra terms are present,
and these can change significantly the properties of the
equation. For example, it is well known that in these theories,
gravity does not travel at the speed of light; instead the speed
depends on the curvature of spacetime [2,3].
Horndeski theories are the most general four-dimensional

diffeomorphism-covariant theories involving a metric tensor
and a scalar field, with second order equations of motion [4].
Some of these theories can be obtained from Lovelock
theories by dimensional reduction.
Although Lovelock and Horndeski theories have been

discussed extensively, the issue of their mathematical
consistency has not received much attention. A minimal
consistency requirement of a classical theory is that the
initial value problem should be locally well-posed. This
means that, given suitable initial data, there should exist
a unique solution of the equation of motion arising from the
data, and this solution should depend continuously on the
data. “Local” here means that the solution is only required
to exist for some nonzero time, no matter how small.
For analytic initial data, local existence and uniqueness

of solutions can be established straightforwardly—this was
done for Lovelock theories in Ref. [3]. However, this does

not establish continuous dependence of the solution on the
data. Furthermore, the restriction to analytic data is unphys-
ical because it implies that the solution is determined
everywhere by its behavior at a single point. One cannot
discuss causality if one restricts to such data.
Consider the problem of nonlinear perturbations of some

“background” solution of a Lovelock or Horndeski theory.
For the nonlinear initial value problem to be well-posed, it is
necessary that the initial value problem for linearized pertur-
bations should also be locally well-posed, not just around the
background solution but around any solution in a neighbor-
hood of this background solution.
For the linearized initial value problem to be well-posed, the

equation ofmotion should be hyperbolic, i.e., have the character
of a wave equation. Two notions of hyperbolicity can be
distinguished [5,6]. Roughly speaking, an equation is weakly
hyperbolic if it never admits solutions which grow exponen-
tially in time, with the exponent proportional to the magnitude
of a spatial wave vector, i.e., growth which is arbitrarily fast at
arbitrarily short distances. An equation is strongly hyperbolic if
an appropriate norm of the solution at time t can be bounded by
the initial value of the same norm multiplied by a function of
timewhich is independent of the initial data. Such a bound is an
example of an energy estimate. Obtaining such an estimate is
the standard way of proving local well-posedness. Note that
strong hyperbolicity implies weak hyperbolicity.
For a diffeomorphism-covariant theory, the gauge free-

dom implies that the equation of motion will not be hyper-
bolic unless one imposes an appropriate gauge condition.
For the Einstein equation, the simplest choice is harmonic
gauge, which ensures that the equation is strongly hyper-
bolic, and one can establish local well-posedness [7]. Other
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approaches to the Einstein equation, such as the Arnowitt–
Deser–Misner (ADM) formulation [8], give equations
which are weakly but not strongly hyperbolic [9]. This
implies that they cannot be used to establish local well-
posedness.1 It alsomeans that they are unsuitable for solving
the Einstein equation numerically on a computer. For
numerical applications, strong hyperbolicity is regarded
as essential. The first successful binary black hole simu-
lations [11–13] employed numerical codes based on either
harmonic gauge [11] or the Baumgarte–Shapiro–Shibata–
Nakamura formalism [14–16]. The latter is amodification of
the ADM formalism that can be shown to be strongly
hyperbolic [17].
We will start by discussing weak hyperbolicity of

(linearized) Lovelock and Horndeski theories. The results
of previous work shows that weak hyperbolicity can fail if
the background fields become too large. It was shown in
Ref. [18] that weak hyperbolicity fails (in any gauge) for
linear perturbations of “small” black hole solutions of
Lovelock theories. Here “small” refers to the scale set by
the dimensionful coupling constants of such a theory. More
generally, one expects that weak hyperbolicity will fail in a
large class of backgroundswith large curvature. InHorndeski
theories, it has been shown that cosmological solutions can
suffer from “ghost and gradient instabilities”when the fields
become large [19–21]. As we will explain below, these
“instabilities” are not dynamical instabilities but instead
indicate a failure ofweak hyperbolicity in such backgrounds.
These examples show that, for both Lovelock andHorndeski
theories, the equation of motion is not always weakly
hyperbolic. Hence for general initial data one cannot expect
local well-posedness. However, one might hope that if one
restricts the initial data so that the equation of motion is
weakly hyperbolic, then the initial value problem will be
locally well-posed. In particular, one might expect that a
failure of weak hyperbolicity would occur only for large
background fields so that if we restrict to studying back-
grounds involving only weak fields, then there will be no
problem. In this paperwewill investigatewhether this is true.
For weak fields, the equation of motion of a Lovelock or

Horndeski theory appears to be a small perturbation of the
Einstein equation, and therefore one might guess that the
equation of motion will be hyperbolic. However, this is not
obvious because the perturbation to the equation of motion
changes the two-derivative terms.We can illustrate this point
with an example. In two-dimensional (2D) Minkowski
spacetime consider the equations

∂2ϕ ¼ kϵ∂0∂1ψ ; ∂2ψ ¼ −kϵ∂0∂1ϕ: ð1Þ
View this system as analogous to the equations governing
linear perturbations around aweak field background solution

of Lovelock or Horndeski theory. Here k is to be regarded as
analogous to a coupling constant of the theory, with k ¼ 0
analogous to the Einstein equation. The parameter ϵ corre-
sponds to the strength of the background fields, with the
Lorentz symmetry breaking on the right-hand side (RHS)
analogous to the Lorentz symmetry breaking arising from the
nontrivial background fields. For k ¼ 0wehave a hyperbolic
system. However, when k ≠ 0, for any ϵ ≠ 0 it is easy to
check that the above system of equations is elliptic. This
example demonstrates that a small perturbation to the highest
derivative terms in an equation of motion can completely
change the character of the equation.2

We will show that the above problem does not occur for
Lovelock or Horndeski theories. We will prove that these
theories are weakly hyperbolic in any weak field back-
ground. More precisely, we will prove that the linearized
equation of motion is weakly hyperbolic in harmonic gauge
(Lovelock) or a generalized harmonic gauge (Horndeski)
whenever the background fields are sufficiently weak.
Our most important results concern strong hyperbolicity

of Lovelock and Horndeski theories. As discussed above,
strong hyperbolicity is needed in order to establish local
well-posedness of the initial value problem, and in numeri-
cal applications. However, we will prove that, for Lovelock
theories, in harmonic gauge, the linearized equation of
motion is not strongly hyperbolic in a generic weakly
curved background. The word “generic” is important here:
there certainly exist particular backgrounds for which the
linearized equation of motion is strongly hyperbolic (e.g.,
Minkowski spacetime [22]) so the equation of motion for
linear perturbations around such backgrounds is locally
well-posed. However, such backgrounds are nongeneric;
e.g., they always have symmetries. In order to have any
hope of establishing local well-posedness for the nonlinear
theory for weak fields, one would need strong hyperbolicity
for any weakly curved background. This is not the case,
at least not in harmonic gauge. Hence the most straightfor-
ward approach to establishing local well-posedness for
Lovelock theories does not work.3 In the final section of
this paper we will discuss whether any alternative method
could work.
For a particular class of Horndeski theories, we will

prove that there exists a generalized harmonic gauge for
which the linearized equation of motion is strongly
hyperbolic for arbitrary weak background fields. This class
of theories involves no coupling between derivatives of
the scalar field and curvature tensors in the action. This
class includes various models of interest, e.g., “k-essence”

1However, there exist strongly hyperbolic modifications of
these equations which can be used to establish local well-
posedness [10].

2There is, however, an important difference between the system
(1) and a Lovelock or Horndeski theory, which is that (1) is not
obtained from an action principle.

3Note that the recent discussion of local well-posedness
in Ref. [23] simply assumes that the harmonic gauge equation
of motion is suitably hyperbolic. Our result shows that this
assumption is incorrect.
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theories or scalar-tensor theories such as the Brans-Dicke
theory [24]. However, for more general Horndeski theories,
we find that the situation is analogous to the Lovelock case:
there exists no generalized harmonic gauge for which the
linearized theory is strongly hyperbolic in a generic weak
field background.
This result can be strengthened considerably as follows.

Consider a Horndeski theory for which there exists a
generalized harmonic gauge such that the linearized equation
of motion is strongly hyperbolic in a generic weak field
background. We can now ask: does this extend to the
nonlinear theory? In particular, does there exist a generalized
harmonic gauge for the nonlinear theory such that the
nonlinear equation of motion is strongly hyperbolic in a
generic weak-field background? For this to be the case,
the generalized harmonic gauge condition for the nonlinear
theory must, upon linearization, reduce to the generalized
harmonic gauge condition for the linearized theory.
However, this implies that the source function appearing
in the gauge condition of the linearized theory must satisfy a
certain integrability condition. This condition is not satisfied
in general. Using this condition we find that the class of
Horndeski theories for which there exists a generalized
harmonic gauge for which the nonlinear theory is strongly
hyperbolic in a generic weak-field background is simply the
class of k-essence–type theories coupled to Einstein gravity.
See the end of Sec. IV for a precise statement.
This paper is organized as follows: in Sec. II we define

the notions of weak and strong hyperbolicity and discuss
the relevant background material. In Sec. III we discuss
Lovelock theories. We present a proof of weak hyperbolicity
of harmonic gauge Lovelock theories in weak curvature
backgrounds and show that, generically, strong hyperbolicity
does not hold.We then present some examples inwhichweak
hyperbolicity is violated dynamically. These are “collapsing
universe” solutions which start off with small curvature, but
develop large curvature over time. In Sec. IV we discuss
Horndeski theories.We show that, in a generalized harmonic
gauge, Horndeski theories are weakly hyperbolic in weak-
field backgrounds. We then show that, while a subclass of
Horndeski theories is strongly hyperbolic in a particular
generalized harmonic gauge, more general Horndeski the-
ories are not. Section V discusses the implications of our
results.
We adopt the notation that Latin indices a; b; c;… are

abstract indices denoting tensor equations valid in any
basis. Greek indices μ; ν;… refer to a particular basis, e.g.,
a coordinate basis.

II. HYPERBOLICITY

In this section we will review briefly the notions of
weak and strong hyperbolicity. Our discussion is based on
Refs. [5,6]. We will start with first order systems of linear
equations and then discuss second order systems.

A. First order equation

In d spacetime dimensions with coordinates ðt; xiÞ,
consider a first order linear partial differential equation
for a N-dimensional vector u,

Aut þ Pi∂iuþ Cu ¼ 0; ð2Þ

where A, Pi, and C are real constant N × N matrices.
We assume that A is invertible. Taking a spatial Fourier
transform gives

~ut − iMðξiÞ ~u ¼ 0; ð3Þ

where

MðξiÞ ¼ A−1ð−Piξi þ iCÞ: ð4Þ

This has solution

~uðt; ξiÞ ¼ expðiMðξiÞtÞ ~uð0; ξiÞ; ð5Þ

and hence we have the formal solution

uðt; xÞ ¼ 1

ð2πÞd−1
Z

dd−1ξ expð−iξixiÞ

× expðiMðξiÞtÞûð0; ξiÞ: ð6Þ

The problem with this expression is that it may not
converge as jξj → ∞ without imposing unreasonable con-
ditions on the initial data. Here we have defined

jξj ¼
ffiffiffiffiffiffiffi
ξiξi

p
: ð7Þ

To ensure convergence we need the matrixMðξiÞ to satisfy
certain conditions. Convergence is guaranteed if MðξiÞ
satisfies, for all ξi, and all t > 0,

jj expðiMðξiÞtÞjj ≤ fðtÞ ð8Þ

for some continuous function fðtÞ independent of ξi.
This condition implies that the integral converges and
the resulting solution satisfies

jjujjðtÞ ≤ fðtÞjjujjð0Þ; ð9Þ

where jj � � � jj denotes the spatial L2 norm. Using this one
can prove that the initial value problem is locally well-
posed. So we need to determine whether the condition (8) is
satisfied.
The convergence of (6) is a high frequency question, so

we let t ¼ t0=jξj and take jξj → ∞ at fixed t0. Equation (8)
becomes

jj expðiMðξ̂iÞt0Þjj ≤ k; ð10Þ
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where k ¼ fð0Þ,

ξ̂i ¼
ξi
jξj ; ð11Þ

and

MðξiÞ ¼ −A−1Piξi ð12Þ

is the “principal part” of M. Consider an eigenvector v of
Mðξ̂iÞ with eigenvalue λ ¼ λ1 þ iλ2. We have

expðiMðξ̂iÞt0Þv ¼ eiλ1t
0
e−λ2t

0
v: ð13Þ

This is consistent with (10) only if λ2 ≥ 0 for all ξ̂. Now
Mðξ̂iÞ is a real matrix; hence if λ is an eigenvalue, then so is λ̄
so consistency with (10) requires �λ2 ≥ 0, i.e., λ2 ¼ 0. We
deduce that (10) implies that all eigenvalues of Mðξ̂iÞ are
real. This motivates the definition of weak hyperbolicity:
Equation (2) is weakly hyperbolic if, and only if, all
eigenvalues of MðξiÞ are real for any real ξi with ξiξi ¼ 1.
A failure of weak hyperbolicity would be a disaster for

the initial value problem because the integrand in (6) would
grow exponentially with jξj at large jξj so convergence
would require highly fine-tuned initial data.
The matrix Mðξ̂iÞ can be brought to Jordan normal form

by a similarity transformation

Mðξ̂iÞ ¼ Sðξ̂iÞJðξ̂iÞSðξ̂iÞ−1; ð14Þ

so

expðiMðξ̂iÞt0Þ ¼ Sðξ̂iÞ expðiJðξ̂iÞt0ÞSðξ̂iÞ−1: ð15Þ

Assume that M is not diagonalizable; i.e., J contains a n ×
n Jordan block, n ≥ 2, associated with an eigenvalue λ of
Mðξ̂Þ. Then the RHS exhibits polynomial growth with t0.
For example, consider the case of a 2 × 2 block J2 with
eigenvalue λ,

J2 ¼
�
λ 1

0 λ

�
⇒ expðiJ2t0Þ ¼ eiλt

0
�
1 it0

0 1

�
: ð16Þ

If the equation is weakly hyperbolic, then λ is real so there
is no exponential growth in t0. But the presence here of the
term linear in t0 implies that Eq. (10) is not satisfied. More
generally, an n × n Jordan block would lead to terms
involving t0p for p ≤ n. Using t0 ¼ jξjt this gives terms
proportional to jξjp in the integral of (6). The presence of
such terms implies that it is not possible to obtain a bound
of the form (9). The best one could hope for is that it is
possible to modify the RHS to include sufficiently many
spatial derivatives of u. Whether this is possible depends on
the form of the zero derivative term Cu in the equation of

motion [5].4 But even if this is possible, the “loss of
derivatives” in (9) would be worrying if we are considering
an equation obtained by linearizing some nonlinear equa-
tion. This is because the loss of derivatives would be a
serious obstruction to establishing local well-posedness for
the nonlinear equation.
To avoid this problem,Mðξ̂Þmust be diagonalizable; i.e.,

there exists a matrix Sðξ̂iÞ such that M ¼ SDS−1 where
Dðξ̂iÞ is diagonal. Defining a positive definite Hermitian
matrix Kðξ̂iÞ ¼ ðS−1Þ†S−1 we then have

Kðξ̂iÞMðξ̂iÞKðξ̂iÞ−1 ¼ Mðξ̂iÞ†: ð17Þ

This motivates the definition of strong hyperbolicity. With
constant coefficients, Eq. (2) is strongly hyperbolic if, and
only if, there exists a positive definite Hermitian matrix
Kðξ̂iÞ depending smoothly on ξ̂i such that (17) holds.
Note that (17) states thatMðξ̂iÞ is Hermitian with respect

to Kðξ̂iÞ. This implies thatMðξ̂iÞ is diagonalizable with real
eigenvalues. Using K one can define an inner product
between solutions, and the corresponding norm can be
shown to satisfy an inequality of the form (9). This is called
the energy estimate. Using this one can prove that the initial
value problem is locally well-posed independently of the
form of the zero derivative term Cu in (2) [5].
So far the discussion has considered a first order linear

partial differential equation with constant coefficients. We
can now discuss the case of nonconstant coefficients. Let
the matrices A, Pi, and C in (2) depend smoothly on time
and space, with A still invertible. At some point ðt0; xi0Þ we
define the frozen coefficients equation by fixing A, Pi, and
C to their values at ðt0; xi0Þ. It is believed that a necessary
condition for local well-posedness of the varying coeffi-
cients equation near ðt0; xi0Þ is that the frozen coefficients
equation should be locally well-posed. For this to be the
case, the frozen coefficients equation must satisfy the above
definitions of weak and strong hyperbolicity. For the
varying coefficients equation to be locally well-posed,
we need these definitions to be satisfied for all ðt0; xi0Þ.
This motivates extending the definitions of hyperbolicity to
equations with nonconstant coefficients in the obvious way:
we simply allow Mðt; x; ξiÞ and Kðt; x; ξiÞ to depend
smoothly on ðt; xÞ as well as on ξ [5,6].
Definition. Equation (2) is weakly hyperbolic if, and

only if, all eigenvalues of Mðt; x; ξiÞ are real for any real ξi
with ξiξi ¼ 1.
Equation (2) is strongly hyperbolic if, and only if, there

exists a positive definite Hermitian matrix Kðt; x; ξ̂iÞ
depending smoothly on t; x; ξ̂i such that

4There are examples of weakly hyperbolic systems for which
jj expðiMðξiÞtÞjj grows as exp ðc

ffiffiffiffiffijξjp
tÞ for some constant c > 0

[5], in which case one could not even obtain a bound of this
weaker type.
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Kðt; x; ξ̂iÞMðt; x; ξ̂iÞKðt; x; ξ̂iÞ−1 ¼ Mðt; x; ξ̂iÞ† ð18Þ

and a constant C > 0 such that C−1I ≤ Kðt; x; ξ̂iÞ ≤ CI for
all t; x; ξ̂i.
The latter technical condition is required to obtain an

energy estimate—it ensures that K does not behave badly
for large t, x, e.g., it does not become degenerate or blow up
asymptotically.

B. Second order equations

Our treatment of second order equations is based
on [6]. Consider a second order linear equation for an
N-dimensional vector u in d coordinates xμ ¼ ðt; xiÞ,

Pμν∂μ∂νuþQμ∂μuþ Ru ¼ 0; ð19Þ

where Pμν ¼ Pνμ, Qμ and R are N × N real matrices. For a
covector ξ, the principal symbol is the matrix

PðξÞ≡ Pμνξμξν: ð20Þ

As above, we start by considering the constant coefficients
case. Take a spatial Fourier transform to obtain

A ~utt þ iðBðξiÞ þ iQ0Þ ~ut − ðCðξiÞ þ iQiξi þ RÞ ~u ¼ 0;

ð21Þ

where

A ¼ P00; BðξiÞ ¼ 2ξiP0i; CðξiÞ ¼ Pijξiξj; ð22Þ

and we assume that A is invertible, i.e., surfaces of constant
t are noncharacteristic. We write this equation in first order
form by defining a column vector ~w by5

~wT ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jξj2
q

~u;−i ~ut
�
; ð23Þ

where, as above,

jξj ¼
ffiffiffiffiffiffiffi
ξiξi

p
; ð24Þ

giving the equation

~wt ¼ iMðξiÞ ~w; ð25Þ

where we define the 2N × 2N matrix

MðξiÞ ¼
�

0 ð1þ jξj2Þ1=2I
−ð1þ jξj2Þ−1=2A−1ðCðξiÞ þ iQiξi þ RÞ −A−1ðBðξiÞ þ iQ0Þ

�
: ð26Þ

Note that the L2 norm of ŵ is a measure of the energy
of the field u: it is quadratic in u and its first derivatives.
To prove local well-posedness requires that this norm obeys
an energy estimate of the form

jj ~wjjðtÞ ≤ fðtÞjj ~wjjð0Þ ð27Þ

for some continuous function fðtÞ independent of ξi and ~w.
The solution of the first order equation is

~wðt; ξiÞ ¼ expðiMðξiÞtÞ ~wð0; ξiÞ; ð28Þ

so for the energy estimate to hold for any initial data we
need

jj expðiMðξiÞtÞjj ≤ fðtÞ: ð29Þ

If we define t ¼ t0=jξj at take jξj → ∞ at fixed t0, then this
implies

jj expðiMðξ̂iÞt0Þjj ≤ k; ð30Þ

where k ¼ fð0Þ, ξ̂i ¼ ξi=jξj, and

MðξiÞ ¼
�

0 I

−A−1CðξiÞ −A−1BðξiÞ

�
: ð31Þ

We can now repeat the argument we used for a first order
system: if Mðξ̂iÞ had a complex eigenvalue, then we could
violate (30). Hence we define weak hyperbolicity as the
condition that all eigenvalues of Mðξ̂iÞ are real.
Let ξ0 be an eigenvalue of MðξiÞ with eigenvector

ðt; t0ÞT . Writing out the eigenvalue equation gives t0 ¼ ξ0t
and

ðAξ20 þ BðξiÞξ0 þ CðξiÞÞt ¼ 0: ð32Þ

This is a quadratic eigenvalue problem with eigenvector t.
In terms of the principal symbol it is simply

PðξÞt ¼ 0; ð33Þ
where ξμ ¼ ðξ0; ξiÞ. This equation states that the covector ξ
is characteristic. Hence (19) is weakly hyperbolic if, for
any real ξi ≠ 0, a characteristic covector ðξ0; ξiÞ has real ξ0.
As for first order systems, if the Jordan normal form

of M involves nontrivial blocks, then Eq. (30) cannot hold.
5Here we slightly modify the approach of [6] to avoid

singularities at jξj ¼ 0.
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So we define strong hyperbolicity just as we did above:
Equation (19) is strongly hyperbolic if, and only if, there
exists a positive definite Hermitian matrix Kðξ̂iÞ depending
smoothly on ξ̂i such thatMðξ̂iÞ is Hermitian with respect to
K, i.e., satisfies (17). This implies that MðξiÞ ¼ jξj2Mðξ̂iÞ
is diagonalizable with real eigenvalues.
Finally we consider Eq. (19) with coefficients Pμν, Qμ,

and R now depending on ðt; xiÞ. We defineMðt; x; ξiÞ using
(31). As for first order systems, it is believed that local well-
posedness implies local well-posedness for the equation
with frozen coefficients. Hence we define weak and strong
hyperbolicity just as for first order systems.
Definition. Equation (19) is weakly hyperbolic if, and

only if, all eigenvalues of Mðt; x; ξiÞ are real for any real ξi
with ξiξi ¼ 1. Equivalently, if ðξ0; ξiÞ is characteristic and
ξi ≠ 0 is real, then ξ0 is real.
Equation (19) is strongly hyperbolic if, and only if, there

exists a positive definite Hermitian matrix Kðt; x; ξ̂iÞ
depending smoothly on t; x; ξ̂i such that

Kðt; x; ξ̂iÞMðt; x; ξ̂iÞKðt; x; ξ̂iÞ−1 ¼ Mðt; x; ξ̂iÞ† ð34Þ

and a constant C > 0 such that C−1I ≤ Kðt; x; ξ̂iÞ ≤ CI for
all t; x; ξ̂i.
In this paper we will mainly be interested in showing that

certain equations are not strongly hyperbolic. We will do
this by demonstrating that Mðt; x; ξ̂iÞ is not diagonalizable.
Note that M is determined by Pμν, i.e., by the principal
symbol. So hyperbolicity depends only on the nature of
the second derivative terms in the equation. Furthermore, to
demonstrate that M is not diagonalizable it is sufficient to
work at a single point in spacetime.

III. LOVELOCK THEORIES

A. Equation of motion in harmonic gauge

In d > 4 spacetime dimensions, the equation of motion
of a Lovelock theory of gravity is

Aab ¼ 8πTab; ð35Þ

where Tab is the energy momentum tensor of matter and

Aa
b ¼ Ga

b þ Λδab
þ
X
p≥2

kpδ
ac1���c2p
bd1���d2pRc1c2

d1d2 � � �Rc2p−1c2p
d2p−1d2p : ð36Þ

We have assumed that the coefficient of the Einstein term
is nonzero and normalized it in the standard way. kp are
constants and the antisymmetry ensures that the sum is
finite (2pþ 1 ≤ d in d dimensions). We will be consider-
ing the case of vacuum solutions of this theory so we set
Tab ¼ 0 henceforth.

To investigate hyperbolicity we linearize around a back-
ground solution gab; i.e., the metric is gab þ hab, and we
linearize in hab, writing

Aab½gþ h� ¼ Aab½g� þ Að1Þ
ab ½h� þ � � � ð37Þ

so that the linearized equation of motion is

Að1Þ
ab ½h� ¼ 0: ð38Þ

For the Einstein equation (i.e., kp ¼ 0), the resulting
equation is strongly hyperbolic only if we impose a suitable
gauge condition. For the nonlinear equation, one can
choose harmonic coordinates,

0 ¼ gνρ∇ν∇ρxμ ¼
1ffiffiffiffiffiffi−gp ∂νð

ffiffiffiffiffiffi
−g

p
gμνÞ: ð39Þ

Upon linearization this reduces to the Lorenz gauge
condition for the linearized metric perturbation,

Hb ≡∇ahab −
1

2
∇bhaa ¼ 0: ð40Þ

Actually, linearizing the harmonic gauge condition around
a nontrivial background gives a generalized Lorenz gauge
condition with a nonvanishing RHS. But this RHS does not
depend on derivatives of hab which implies that it does not
affect the hyperbolicity analysis. Therefore we will just use
the standard Lorenz gauge.
Although most properly referred to as Lorenz gauge,

henceforth we will refer to (40) as harmonic gauge because
it is inconvenient to use different words for the linear and
nonlinear gauge conditions. Of course, it is well-known that
the gauge condition (40) can always be achieved by a
suitable gauge transformation in the linearized theory.
In harmonic gauge, the Einstein equation is strongly

hyperbolic. We will investigate whether the same is true for
Lovelock theory. We will do this by investigating hyper-
bolicity of the linearized theory. The harmonic gauge
linearized equation of motion is

~Að1Þ
ab ½h� ¼ 0; ð41Þ

where

~Að1Þ
ab ½h�≡ Að1Þ

ab ½h� −∇ðaHbÞ þ
1

2
gab∇cHc: ð42Þ

This is the equation of motion whose hyperbolicity we
will study.
A standard argument shows that the harmonic gauge

condition is propagated by the harmonic gauge equation of
motion [3]. The argument is based on the fact that the tensor
Aab arises from a diffeomorphism covariant action and
therefore satisfies a contracted Bianchi identity ∇bAab ¼ 0.
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Linearizing around a background solution gives, for
any hab,

∇bAð1Þ
ab ½h� ¼ 0; ð43Þ

so, when (41) is satisfied, the divergence of (42) gives

∇b∇bHa þ RabHb ¼ 0: ð44Þ

This is a standard linear wave equation, and so provided
the initial data are chosen such that Ha and its first time
derivative vanish, then the solution will have Ha ≡ 0.
(As for the Einstein equation, vanishing of the first time
derivative of Ha is equivalent, via the equation of motion,
to the condition that the initial data satisfy the constraint
equations [3].) This proves that the gauge condition (40) is
propagated by the equation of motion (41). Hence the
resulting solution will satisfy the original equation of
motion (38).
The harmonic gauge equation of motion (41) takes the

form

Pabcdef∇e∇fhcd þ � � � ¼ 0; ð45Þ

where the ellipsis denotes terms involving fewer than two
derivatives of hab. The coefficient here defines the principal
symbol

PðξÞabcd ≡ Pabcdefξeξf ð46Þ

for an arbitrary covector ξa. The coefficient is symmetric in
ab and in cd. It can be split into the terms coming from the
(harmonic gauge) Einstein tensor, and those coming from
the extra Lovelock terms,

PðξÞabcd ¼ PEinsteinðξÞabcd þ δPabcdðξÞ; ð47Þ

where, for a symmetric tensor tab,

PEinsteinðξÞabcdtcd ¼ −
1

2
ξ2Gabcdtcd ð48Þ

with ξ2 ¼ gabξaξb and

Gabcd ¼ 1

2
ðgacgbd þ gadgbc − gabgcdÞ: ð49Þ

Viewed as a quadratic form on symmetric tensors, Gabcd

has signature ðd; dðd − 1Þ=2Þ, i.e., d negative eigenvalues
and dðd − 1Þ=2 positive eigenvalues.
The Lovelock contribution to the principal symbol is

given by [25]

δPa
b
cdðξÞtcd ≡ δPa

b
cdefξeξftcd

¼ −2
X
p≥2

pkpδ
aceg3g4���g2p−1g2p
bdfh3h4���h2p−1h2ptc

dξeξ
f

× Rg3g4
h3h4 � � �Rg2p−1g2p

h2p−1h2p : ð50Þ

Note that

δPabcdef ¼ δPcdabef ð51Þ

and

δPðajbcdjefÞ ¼ δPaðbcjdejfÞ ¼ 0: ð52Þ

These identities are a consequence of the gauge symmetry
of the theory and the fact that the gauge fixing terms do not
affect δP. We will discuss this in more detail in Sec. IV B.
It follows that

ξaδPabcdðξÞ ¼ ξbξcξfδPabcdef ¼ 0: ð53Þ

B. Setting up the problem

We will investigate whether the harmonic gauge linear-
ized Lovelock equation of motion is hyperbolic when the
curvature of the background spacetime is small. Here,
“small” means small compared to any of the scales defined
by the dimensionful coupling constants kp, so one expects
the Lovelock terms in the equation of motion to be small
compared to the Einstein term.
To relate to the discussion of (2.2) we need to introduce

coordinates xμ ¼ ðt; xiÞ. We assume that these are chosen
so that surfaces of constant t are spacelike, i.e., g00 < 0,
which ensures that the initial value problem for the
harmonic gauge linearized Einstein equation is well-posed.
We want to ask whether the same is true for the harmonic
gauge linearized Lovelock equation when the background
curvature is small. Here, by small, we mean that there exists
an orthonormal basis feaμgwith e0 orthogonal to surfaces of
constant t, for which the magnitude of the largest compo-
nent of the Riemann tensor is L−2 where jkpjL−2p ≪ 1 for
all p ≥ 2. This ensures that the Lovelock terms in the
equation of motion are small compared to the Einstein term.
The principal symbol PðξÞ maps symmetric tensors to

symmetric tensors so we regard it as a N × N matrix where
N ¼ dðdþ 1Þ=2. We defineN × N matrices AðxÞ, Bðx; ξiÞ,
and Cðx; ξiÞ using Eq. (22), i.e.,

A ¼ P00; BðξiÞ ¼ 2ξiP0i; CðξiÞ ¼ ξiξjPij: ð54Þ

Here ξi is real with ξiξi ¼ 1 (since this is what we need in the
definitions of strong and weak hyperbolicity). Throughout
this sectionwewill notwrite explicitly the dependence on the
spacetime coordinates xμ. Note that these matrices are real
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and symmetric: the latter property arises because the equation
ofmotion can be obtained fromaLagrangian (see Sec. IV B).
Our assumption that the surfaces of constant t are

spacelike ensures that A is invertible when the Lovelock
terms are absent. Hence, by continuity, A is also invertible
when the background curvature is small. We can therefore
define MðξiÞ as above, i.e.,

MðξiÞ ¼
�

0 I

−A−1CðξiÞ −A−1BðξiÞ

�
: ð55Þ

Recall that weak hyperbolicity is the requirement that the
eigenvalues of this matrix are real. For strong hyperbolicity
it is necessary that the eigenvalues are real and the matrix
is diagonalizable.
From the discussion of Sec. (II B) we know that ξ0 is

an eigenvalue of MðξiÞ if, and only if, the corresponding
eigenvector v has the form

v ¼
�

t

ξ0t

�
ð56Þ

for some nonzero symmetric tμν such that

PðξÞt ¼ 0; ð57Þ

where ξμ ≡ ðξ0; ξiÞ in the argument of P.
Consider first the case of the linearized Einstein equation.

Since Gabcd is nondegenerate, Eq. (48) implies that ξμ is
characteristic if, and only if, it is null,

PEinsteinðξÞt ¼ 0; t ≠ 0 ⇔ gμνξμξν ¼ 0: ð58Þ

Let ξ�0 denote the two solutions of gμνξμξν ¼ 0 for the given
ξi. Of course, these solutions are real, so the (harmonic
gauge) Einstein equation isweakly hyperbolic.We define the
null covectors

ξ�μ ¼ ðξ�0 ; ξiÞ: ð59Þ

These covectors will play an important role throughout this
paper. By solving explicitly one finds that

ξþ0 þ ξ−0 ¼ −2
g0iξi
g00

⇒ ξ0þ þ ξ0− ¼ 0: ð60Þ

Hence we can adopt the convention ξ0þ < 0, ξ0− > 0.6

We have PEinsteinðξ�Þt ¼ 0 for any tab. Hence for the
Einstein equation, the matrixM has two real eigenvalues ξ�0
and the associated eigenvectors are ðt; ξ�0 tÞT . Each eigen-
value has N eigenvectors associated with it. It follows that

M has 2N linearly independent eigenvectors, and hence M
is diagonalizable, as required by strong hyperbolicity.
We now return to the general case of Lovelock theory.

Define a 2N × 2N real symmetric (and hence Hermitian)
matrix HðξiÞ by

HðξiÞ ¼
�
BðξiÞ A

A 0

�
: ð61Þ

We then have

HðξiÞMðξiÞHðξiÞ−1 ¼ MðξiÞT ð62Þ

so M is real symmetric (and hence Hermitian) with respect
to H. It is easy to see that H is nondegenerate: if v ¼
ðt; t0ÞT , then Hv ¼ 0 implies t ¼ t0 ¼ 0 using the fact that
A is invertible.7 H is Hermitian and nondegenerate so its
eigenvalues are real and nonzero. We can determine the
signature of H by writing the Lovelock couplings as

kp ¼ ϵ~kp; p ≥ 2: ð63Þ

Since the eigenvalues of H are real, nonvanishing, and
depend continuously on ϵ (with ~kp and the background
curvature fixed), the signature of H cannot depend on ϵ.
Hence it can be evaluated at ϵ ¼ 0, i.e., for the linearized
Einstein equation. The result is that H has N positive
eigenvalues and N negative eigenvalues, even for strong
background fields. Thus, although H and M satisfy the
condition (34), this does not imply strong hyperbolicity
because H is not positive definite.8

C. Proof of weak hyperbolicity in a low
curvature background

To proceed, we will use a continuity argument involving
the parameter ϵ defined in (63). Note that taking ϵ small
at fixed ~kp and fixed background curvature is equivalent to
assuming the background curvature to be small at fixed kp.
We will establish weak hyperbolicity for small ϵ, which is
equivalent to establishing it for small background curva-
ture. In what follows we will suppress the dependence ofM
and H on ξi and write simply MðϵÞ and HðϵÞ.
For ϵ ¼ 0 we showed above that ξ�0 are the only

eigenvalues of MðϵÞ, each with degeneracy N. The eigen-
values of MðϵÞ depend continuously on ϵ [27]. Hence,
for small ϵ, they can be split unambiguously into two
sets according to whether they approach ξþ0 or ξ−0 as ϵ → 0.

6We cannot have ξ0� ¼ 0 because that would violate the facts
that ξ�μ is null and e0 is timelike.

7The matrix H is closely related to the symplectic current
density ωμ defined in [26]. Roughly speaking, H is the high
spatial frequency part of the Fourier space analogue of −iω0.

8This is the case even for the Einstein equation (ϵ ¼ 0).
However, for the Einstein equation we have shown that we
can diagonalize M so we can construct a positive definite matrix
K as explained above Eq. (17).
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We will follow [27] and refer to these sets as the ξþ0 -group
and the ξ−0 -group. Each group contains N eigenvalues.
Since we do not know whether the eigenvalues and

eigenvectors of MðϵÞ are real, we will regard MðϵÞ and
HðϵÞ as acting on a complex vector spaceV of dimension2N.
For ϵ ¼ 0, the eigenvalues ξ�0 are degenerate but “semi-

simple”; i.e., Mð0Þ is diagonalizable. However, there is no
reason for this to remain true when ϵ ≠ 0: the Jordan
canonical form of MðϵÞ may involve nontrivial Jordan
blocks. For any eigenvalue ξ0, one can define a generalized
eigenspace as

fv∶ ∃r such that ðM − ξ0IÞrv ¼ 0g: ð64Þ

This is the sum of the vector spaces associated with the
Jordan blocks corresponding to that eigenvalue. We define
the “total generalized eigenspace for the ξ�0 -group” V

�ðϵÞ
as the sum over generalized eigenspaces of the eigenvalues
in the ξ�0 -group. Since any eigenvalue belongs to one of
these groups we have

V ¼ VþðϵÞ ⊕ V−ðϵÞ: ð65Þ

We denote the projection onto V�ðϵÞ as Π�ðϵÞ, i.e.,

V�ðϵÞ ¼ Π�ðϵÞV: ð66Þ

These projection matrices are holomorphic in ϵ for small ϵ;
in fact, there is an explicit formula [27]

Π�ðϵÞ ¼ −
1

2πi

Z
Γ�
ðMðϵÞ − zÞ−1dz; ð67Þ

where Γ� is a simple closed curve in the complex plane
such that ξ�0 lies inside Γ� but ξ∓0 lies outside Γ�. Note that
Γ� does not depend on ϵ. For small nonzero ϵ, the integrand
has poles at the eigenvalues of MðϵÞ but only the eigen-
values that belong to the ξ�0 -group lie inside Γ�.
It can be shown that MðϵÞ and HðϵÞ satisfying (62) can

be brought simultaneously to a block-diagonal canonical
form, where MðϵÞ is in Jordan canonical form and MðϵÞ
and HðϵÞ have the same block structure [28]. Since VþðϵÞ
and V−ðϵÞ contain different Jordan blocks of MðϵÞ it
follows that these subspaces are orthogonal with respect
to HðϵÞ. Consider the restriction of HðϵÞ to these sub-
spaces. Define the projection of HðϵÞ onto V�ðϵÞ,

H�ðϵÞ ¼ Π�ðϵÞ†HðϵÞΠ�ðϵÞ: ð68Þ

This is a Hermitian matrix which depends holomorphically
on ϵ. We will need to determine its signature. Any vector in
V∓ðϵÞ is an eigenvector with eigenvalue 0; hence H�ðϵÞ
has at least N vanishing eigenvalues. The remaining
eigenvalues are associated with eigenvectors living in
V�ðϵÞ. Since the restriction of H�ðϵÞ to V� is the same

as the restriction of HðϵÞ to V�, it follows that this
restriction is nondegenerate; i.e., these remaining eigen-
values are all nonzero. Therefore we can determine the
signs of these eigenvalues by looking at the signs of the
eigenvalues when ϵ ¼ 0, and using continuity. For ϵ ¼ 0,
we know that V�ð0Þ consists of vectors of the form
v ¼ ðt; ξ�0 tÞT . Taking the inner product of two such vectors
with respect to H�ð0Þ gives

v†1H
�ð0Þv2 ¼ t†1Bð0Þt2 þ 2ξ�0 t

†
1Að0Þt2

¼ 2ξ�μ t
†
1P

0μ
Einsteint2 ¼ −ξ0�t†1Gt2; ð69Þ

where G is defined in (49). Hence the signature of H�ð0Þ
restricted to V�ð0Þ is the same as the signature of −ξ0�G.
Recall that ξ0þ < 0, ξ0− > 0. It follows that within V�ð0Þ,
H�ð0Þ has the same signature as �G, i.e., d negative
eigenvalues and dðd − 1Þ=2 positive eigenvalues forHþð0Þ
and vice versa for H−ð0Þ. Hence, by continuity, it follows
that HþðϵÞ has d negative eigenvalues and dðd − 1Þ=2
positive eigenvalues, with eigenvectors in VþðϵÞ, as well as
N ¼ dðdþ 1Þ=2 vanishing eigenvalues with eigenvectors
in V−ðϵÞ. Similarly for H−ðϵÞ with positive and negative
interchanged.
We can identify an important subset of eigenvectors

of MðϵÞ explicitly, for any ϵ. They are associated with a
residual gauge freedom. These “pure gauge” eigenvectors
have v of the form (56) with

ξ0 ¼ ξ�0 ; tμν ¼ ξ�ðμXνÞ ð70Þ

for arbitrary complex Xμ. Of course, a pure gauge eigen-
vector with eigenvalue ξ�0 belongs to V�ðϵÞ. It is interesting
to calculate the inner product of two pure gauge eigen-
vectors, so let t0μν ¼ ξ�ðμX

0
νÞ and consider the associated

vector v0 defined by (56). Since v, v0 are elements of V�ðϵÞ,
their inner product with respect to H�ðϵÞ is the same as
their inner product with respect to HðϵÞ,

v0†HðϵÞv ¼ t0†BðϵÞtþ 2ξ�0 t
0†AðϵÞt ¼ 2ξ�μ t0†P0μðϵÞt

¼ 2ξ�μ ξ�ν ξ�ρ X̄0
σXτPνσρτ0μðϵÞ ¼ 0; ð71Þ

where in the final step we used the second equation in (53),
and the fact that two such pure gauge vectors t, t0 are
orthogonal with respect to Gμνρσ . This result shows that
the pure gauge eigenvectors with eigenvalue ξ�0 form a
d-dimensional subspace N� of V�ðϵÞ that is null with
respect to H�ðϵÞ.
We can now prove that the harmonic gauge linearized

equation of motion of Lovelock theory is weakly hyper-
bolic in a small curvature background. Consider the
possibility of an eigenvalue ξ0 that is complex, with
eigenvector v. For concreteness, assume that ξ0 belongs
to the ξþ0 -group, so v ∈ VþðϵÞ. Equation (62) implies that
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a pair of eigenvectors whose eigenvalues are not complex
conjugates of each other must be orthogonal with respect
to HðϵÞ. This implies that v is orthogonal, with respect
to HþðϵÞ, to the pure gauge eigenvectors in VþðϵÞ.
Furthermore, since ξ0 is complex, the HðϵÞ-norm of v
must vanish, which implies that v is null with respect to
HþðϵÞ. The linear span of v and Nþ now gives a (dþ 1)-
dimensional subspace of VþðϵÞ that is null with respect to
HþðϵÞ. However, this is impossible because we showed
above that for small ϵ, HþðϵÞ has d negative eigenvalues
and dðd − 1Þ=2 positive eigenvalues which implies the
maximal dimension of a null subspace of VþðϵÞ is given by
minðd; dðd − 1Þ=2Þ ¼ d [28]. This proves that complex ξ0
is not possible for small ϵ.
The final step is to note that the above argument assumed

fixed ξi; i.e., for given ξi then complex ξ0 is not possible for
small enough ϵ. But we need our final result to be uniform
in ξi; i.e., we need to show that the upper bound on ϵ does
not depend on ξi. To do this we recall that our definition of
weak hyperbolicity refers only to ξi satisfying the condition
ξiξi ¼ 1, i.e., ξi belonging to a compact set. The spectrum
of a matrix M has uniformly continuous dependence on M
when M is restricted to a bounded set [27]. It follows that
the spectrum of MðϵÞ and HðϵÞ has uniformly continuous
dependence on ϵ and ξi when ϵ is restricted to a bounded
set and ξiξi ¼ 1. Using this it can be shown that our results
above are indeed uniform in ξi. The same argument
establishes that our result is uniform in the spacetime point
xμ provided we restrict to a compact region of spacetime.
The above argument is restricted to a weakly curved

background spacetime. If the curvature is not weak, then
the argument can fail. Imagine increasing ϵ to arbitrarily
large values. There are two things that could go wrong.
First, our assumption that A is invertible may fail; i.e., we
might reach a value of ϵ for which a surface of constant t
becomes characteristic somewhere. Second, it might not be
possible to separate the eigenvalues into the ξþ0 -group and
the ξ−0 -group as we did above. For example, as we increase
ϵ, an eigenvalue from one group might coincide with an
eigenvalue from the other group. At larger ϵ, this eigenvalue
could then split into a pair of complex conjugate eigen-
values, violating weak hyperbolicity.

D. Failure of strong hyperbolicity in a generic
low curvature background

For strong hyperbolicity, M must be diagonalizable.
We will now demonstrate that this is not the case for a
genericweakly curved background spacetime.9 We showed
above that eigenvalues ξ0 are all real in a weakly curved
background. Therefore in this section we will assume that
all vector spaces V�, N�, etc., are real. Note that the

assumption that the background is weakly curved is
required to define these spaces.
As discussed above, M and H satisfying (62) can be

brought simultaneously via a change of basis to a certain
canonical form [28]. We need to discuss this canonical form
in more detail. In the canonical basis,M has Jordan normal
form andH is block diagonal, with the same block structure
as M. By this we mean that a n × n Jordan block in M
corresponds to a n × n block in H. Such a block of H
consists of zeros everywhere except on the diagonal
running from top right to bottom left. Along this diagonal,
the elements are all equal to 1 or all equal to −1. For
example, if M has a 3 × 3 Jordan block, then the corre-
sponding 3 × 3 block in H has the form

0
B@

0 0 �1

0 �1 0

�1 0 0

1
CA: ð72Þ

Each n × n block in H is nondegenerate and has signature
either þ1 or −1 (if n is odd) or 0 (if n is even).
Recall the definition (64) of a generalized eigenspace.

Note that a generalized eigenspace corresponds to a sum of
all Jordanblocks associatedwith thegiven eigenvalue.Hence
V� is a direct sum of the basis vectors associated with Jordan
blocks of eigenvalues in the ξ�0 -group. Hence any Jordan
block is associated either with Vþ or with V−. The canonical
form then implies thatVþ andV− are orthogonalwith respect
to H, as stated above.
Let E� ⊂ V� denote the generalized eigenspace of the

eigenvalue ξ�0 . We have shown thatN� ⊂ E�. Hence, when
restricted to E�, H� must admit a d-dimensional null
subspace. Consider Hþ. From the canonical form we know
that Hþ is nondegenerate when restricted to Eþ. If this
restriction has signature ðr; sÞ, then the dimension of a
maximal null subspace of Eþ is minðr; sÞ [28]; hence, we
have r; s ≥ d. However, we already know that Hþ has
signature ðd; dðd − 1Þ=2Þ within Vþ. The canonical form
for H shows that the signature is equal to the union of the
signatures of each block. Therefore Hþ can have at most d
negative eigenvalues within Eþ; i.e., we must have r ≤ d.
Combining these inequalities we see that r ¼ d and s ≥ d.
Hence Eþ has dimension rþ s ≥ 2d. Similarly E− has
dimension at least 2d.
A necessary condition for strong hyperbolicity is thatM is

diagonalizable; i.e., there should be no nontrivial Jordan
blocks. In other words, strong hyperbolicity requires that all
generalized eigenspaces are simply eigenspaces.Hence if the
theory is stronglyhyperbolic, thenE�must be an eigenspace.
Hence strong hyperbolicity requires thatM admits at least 2d
eigenvectors with eigenvalue ξ�0 . We already know that there
are d such eigenvectors in N�. But for strong hyperbolicity
there must exist at least an extra d eigenvectors beyond
these pure gauge ones. In terms of the principal symbol, this

9In this section, we will not write explicitly the dependence on
the parameter ϵ; e.g., we write M instead of MðϵÞ.
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condition is that there exist at least 2d solutions tab
of Pðξ�Þt ¼ 0 or equivalently [since PEinsteinðξ�Þ ¼ 0]
δPðξ�Þt ¼ 0. In other words, ker δPðξ�Þ should have
dimension at least 2d. Furthermore, for strong hyperbolicity,
this must be true for any ξi and hence for any null ξ�.
In other words,

A necessary condition for strong hyperbolicity is that,
for any null ξ, ker δPðξÞ has dimension at least 2d.

There are certainly examples of background spacetimes
for which this condition is satisfied. An extreme example is
a flat background, for which δP ¼ 0. In this case M is
diagonalizable and the equation of motion is strongly hyper-
bolic. A less trivial example is supplied by the class of Ricci
flat spacetimes with Weyl tensor of type N, which are
solutions of Lovelock theory with Λ ¼ 0. In this case, the
results of Ref. [18] imply that M is diagonalizable so the
equation of motion is strongly hyperbolic in such a back-
ground (even for large curvature). For this class of space-
times, in addition to the pure gauge eigenvectors, generically
there exist d additional eigenvectors in E�. This implies that
ker δPðξ�Þ generically has dimension 2d for these space-
times, in agreement with the above argument.
These background spacetimes are clearly very special

because they have symmetries. In a generic weakly curved
background, with null ξ, there is no reason to expect that
ker δPðξÞ contains any nongauge elements. To explain this,
first note that if we are interested in nongauge elements of
ker δPðξ�Þ, then we can regard δPðξ�Þ as a map from the
quotient space V�=N�, which has dimension dðd − 1Þ=2,
to the space of symmetric tensors which have vanishing
contraction with ξ� [because of (53)]. The latter space also
has dimension dðd − 1Þ=2. There is no reason to expect this
map to have nontrivial kernel.
Perhaps we are overlooking some hidden symmetry of δP

that would guarantee that its kernel is larger than we expect.
To exclude this possibility, we have calculated ker δPðξÞ for
null ξ in a generic background using computer algebra as
follows. We fix a point in spacetime and work at that point.
Note that δP is determined by the Riemann tensor of the
background. For given null ξwe can introduce a null basis for
which ξ is one of the basis vectors. In this basis, we can
generate a randomRiemann tensor satisfying the background
equation of motion. To do this, we generate a random (small)
Weyl tensor and then use the background equation of motion
to determine the Ricci tensor and hence the Riemann tensor.
Since the equation of motion is nonlinear in curvature, there
can be multiple solutions for the Ricci tensor; but typically
only one of these has small components, so this is the one we
use.We thencalculateker δPðξÞ for thisbackgroundRiemann
tensor.The result is that, generically, this kernel hasdimension
d; i.e., it consists only of the pure gauge elements.
In summary, we have shown:M is not diagonalizable for

a generic weak field background. Therefore the harmonic

gauge linearized Lovelock equation of motion is not
strongly hyperbolic in a generic weak field background.
It is interesting to consider the canonical form of M in

more detail. Let us examine the condition for M to have a
n × n Jordan blockwith n ≥ 2. From the canonical form, it is
clear that the eigenvector associated with such a block must
be null.10 Assume that this eigenvector lives in Vþ. If the
eigenvalue is not ξþ0 , then this eigenvector must be Hþ-
orthogonal to Nþ, which implies that we could add this
eigenvector to Nþ to construct a null subspace of dimension
dþ 1, contradicting the fact that Nþ is a maximal null
subspace. Hence the eigenvalue must be ξþ0 . Similarly if the
eigenvector lives in V−, then the eigenvalue is ξ−0 . We
conclude that a nontrivial Jordan blockmust have eigenvalue
ξ�0 , so the basis vectors associated with the block must
lie in E�.
Any such Jordan block admits a vector v ∈ E� such that

ðM − ξ�0 Þ2v ¼ 0 but ðM − ξ�0 Þv ≠ 0 (v is simply the second
basis vector associated with the block); hence ðM − ξ�0 Þv is
an eigenvector of M with eigenvalue ξ�0 . So we must have

ðM − ξ�0 Þv ¼
�

s

ξ�0 s

�
ð73Þ

for some nonzero sμν such that [using PEinsteinðξ�Þ ¼ 0]

δPðξ�Þs ¼ 0: ð74Þ
To examine whether such a block is possible, we need to
determinewhether (73) admits a solution v for some sμν ≠ 0.
If such a solution exists, then M is not diagonalizable.
Writing v ¼ ðt; t0ÞT we find that (73) reduces to

t0 ¼ ξ�0 tþ s ð75Þ
and

δPðξ�Þt ¼ −ð2ξ�0 Aþ BÞs: ð76Þ
The necessary and sufficient condition for this equation to
admit a solution t is for the RHS to have vanishing
contraction with any element of ker δPðξ�Þ. We know this
kernel always contains the pure gauge eigenvectors; i.e.,
it contains N�. So contract with a pure gauge vector of the
form rμν ¼ ξ�ðμYνÞ. The left-hand side (LHS) vanishes, and

we can rewrite the RHS in terms of H to obtain

0 ¼ ðr; ξ�0 rÞH
�

s

ξ�0 s

�
: ð77Þ

Hence ðs; ξ�0 sÞT must be orthogonal (with respect to H) to
all pure gauge eigenvectors in E�, i.e., orthogonal to N�.
Furthermore, Eq. (74) shows that s belongs to the kernel of

10For example, for a 3 × 3 block, in the canonical basis, the
eigenvector is ð1; 0; 0ÞT and evaluating the norm of this using (72)
gives 0.
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δPðξ�Þ so we also need the contraction of s with the RHS
of (76) to vanish. This implies that ðs; ξ�0 sÞT is null with
respect to H. Therefore if this vector is not pure gauge, we
could add it to N� to enlarge our null subspace, contra-
dicting maximality of this null subspace. This proves that s
must be pure gauge, i.e.,

sμν ¼ ξ�ðμXνÞ ð78Þ

for some Xν ≠ 0. Hence, nontrivial Jordan blocks can arise
only from pure gauge eigenvectors. For sμν of this form, the
RHS of (76) has vanishing contraction with any element
of N�.
We argued above that, in a generic weakly curved

background, all elements of ker δPðξ�Þ are pure gauge,
i.e., ker δPðξ�Þ ¼ N�. It follows that in such a background,
Eq. (76) can be solved for any pure gauge sμν; i.e., all pure
gauge eigenvectors belong to nontrivial Jordan blocks
of M. So generically there are d nontrivial Jordan blocks
in each of E� and M has 2d nontrivial blocks in total.
In nongeneric backgrounds, ker δPðξ�Þ may contain non-
gauge elements in which case M may have fewer than 2d
nontrivial blocks.
We have shown that, in a generic weak field background,

every pure gauge eigenvector is associated with a n × n
Jordan block ofMwith n ≥ 2. It is interesting to ask whether
we could have n ≥ 3. If n ≥ 3, then there is a vector v ∈ E�

such that ðM − ξ�0 Þ3v ¼ 0 with ðM − ξ�0 Þ2v ≠ 0. Let
ðM − ξ�0 Þv≡ ðt; t0ÞT , and then ðt; t0Þ must obey Eqs. (75)
and (76). Writing v ¼ ðu; u0ÞT then gives

u0 ¼ ξ�0 uþ t; ð79Þ

δPðξ�Þu ¼ −ð2ξ�0 Aþ BÞt − As: ð80Þ

As with (76), the necessary and sufficient condition
for this equation to admit a solution is that the RHS has
vanishing contraction with any element of ker δPðξ�Þ.
Generically we have ker δPðξ�Þ ¼ N� so we need the
RHS to have vanishing contraction with any pure gauge
vector rμν ¼ ξ�ðμYνÞ. This contraction is just the H-inner

product of ðt; t0Þ with ðr; ξ�0 rÞ, so these vectors must be H-
orthogonal for any pure gauge vector r. But there is no reason
why this should be true. So generically we do not expect
the above equations to admit a solution; i.e., the generic
situation is n ¼ 2.
To summarize, we have shown that, in a generic weak

field background, every pure gauge eigenvector of M
belongs to a Jordan block of size 2 × 2.11 Since nontrivial
Jordan blocks can arise only from pure gauge eigenvectors,
it follows that, generically, V� consists of d 2 × 2 Jordan

blocks, one for each pure gauge eigenvector, and dðd − 3Þ=2
additional nongauge eigenvectors. For a generic Ricci flat–
type N spacetime, it has been shown that these dðd − 3Þ=2
additional eigenvectors have eigenvalues distinct from ξ�0
[18], and so they do not belong toE�; hencewe expect this to
be the behavior in a generic spacetime. Therefore, generi-
cally, E� will have dimension 2d.
Note that the dðd − 3Þ=2 eigenvectors in V� that do not

belong to E� can be regarded as the “physical graviton
polarizations” [18]. To understand why, note that these
eigenvectors have the form (56) where tμν satisfies the
harmonic gauge condition. To prove the latter statement,
simply contract the equation

PðξÞμνρσtρσ ¼ 0 ð81Þ

with ξν and use (53) to obtain

ξ2
�
ξνtμν −

1

2
ξμt

ρ
ρ

�
¼ 0 ⇒ ξνtμν −

1

2
ξμt

ρ
ρ ¼ 0; ð82Þ

where we used the fact that ξ2 ≠ 0 because the eigenvector
is not in E�. Here the LHS is the “high frequency part” of
the harmonic gauge condition. It is easy to check that the
pure gauge eigenvectors in N� also satisfy this condition.
However, there is no reason to expect that the vectors tμν
obtained by solving (76) will satisfy this condition. Hence,
generically, the d “nongauge” vectors in E� are associated
with tμν which violate the harmonic gauge condition. So
generically E� consists only of pure gauge and “gauge
violating” vectors, which is why the dðd − 3Þ=2 elements
of V� that do not belong to E� can be regarded as the
“physical polarizations.”

E. Dynamical violation of weak hyperbolicity

We have shown that the linearized harmonic gauge
equation of motion of Lovelock theory is not strongly
hyperbolic in a generic weak curvature background.
However, as mentioned above, it can be strongly hyper-
bolic in a nongeneric weak curvature background. In this
section, we will discuss a class of such backgrounds,
namely homogeneous, isotropic, cosmological solutions
of Lovelock theory. The aim is to demonstrate that weak
(and hence also strong) hyperbolicity can be violated
dynamically: there are “collapsing universe” solutions that
start with small curvature but develop large curvature over
time, in such a way that weak hyperbolicity is violated.
Once this happens, local well-posedness of the equation of
motion is lost, which implies that generic linear pertur-
bations of the solution can no longer be evolved.
Lovelock theories admit Friedmann–Lemaître–

Robertson–Walker-type solutions [29,30]

g ¼ −dt2 þ aðtÞ2γ; ð83Þ
11More precisely, this is true for a generic point and for generic

ξi, in a generic weakly curved background.
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where γ is the metric of a (d − 1)-dimensional submanifold
of constant curvature K. We denote by D the Levi-Civita
connection associated with γ. The nonvanishing compo-
nents of the Riemann tensor associated with g are

Rij
kl ¼ αðtÞδklij ; R0i

0j ¼ βðtÞδji ; ð84Þ
where, in terms of the Hubble parameter H ¼ _a=a,

α ¼ K
2a2

þH2; β ¼ H2 þ _H: ð85Þ

The nonvanishing components of the Lovelock tensor (36)
are

A0
0 ¼

X
p

k0pαp; ð86Þ

Ai
j ¼ δij

X
p

k0p
ðd − 1Þ α

p−1ð2pβ þ ðd − 2p − 1ÞαÞ; ð87Þ

where, for convenience, we have rescaled the coupling
constants

k0p ¼ 2p
ðd − 1Þ!

ðd − 2p − 1Þ! kp; k0 ¼ Λ; k1 ¼ −1=4:

ð88Þ
Taking our matter source to be a perfect fluid with equation
of state P ¼ ωρ, the equations of motion readX

p

k0pαp ¼ −ρ; ð89Þ

β ¼ −
P

pk
0
pα

p½ðd − 1Þðωþ 1Þ − 2p�P
p2pk

0
pα

p−1 : ð90Þ

To observe how weak hyperbolicity can be violated
dynamically in this setting, it is sufficient to look at the
linearized equations for transverse-traceless tensor pertur-
bations g → gþ δg,

δg0μ ¼ 0; δgij ¼ 2a2hij; hij ¼ hji;

γijhij ¼ 0; Dihij ¼ 0: ð91Þ
These are governed by the equation

−F1ðtÞḧij þ F2ðtÞa−2ðtÞDkDkhij þ � � � ¼ 0; ð92Þ
where the ellipsis denotes terms with fewer than two
derivatives and we have defined

F1ðtÞ ¼
X
p

ðd − 3Þpk0pαp−1; ð93Þ

F2ðtÞ ¼
X
p

pk0p½2ðp − 1Þαp−2β þ ðd − 2p − 1Þαp−1�:

ð94Þ

From this we can read off the principal symbol (restricted to
tensor perturbations) and construct the matrices A, B, and C
described in Sec. II B,

Aijkl ¼ −γiðkγlÞjF1ðtÞ; ð95Þ

Bijkl ¼ 0; ð96Þ

Cijkl ¼ γiðkγlÞja−2ðtÞγmnξmξnF2ðtÞ: ð97Þ

We can then compute the eigenvalues ofM, or equivalently
find the ξ0 that solves ðξ20Aþ CÞt ¼ 0. For F1ðtÞ ≠ 0 we
find

ξ0 ¼ ~ξ�0 ≡� 1

aðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijξiξj

F2ðtÞ
F1ðtÞ

s
: ð98Þ

Since γ is a Riemannian metric (hence it is positive definite),
the hyperbolicity of the theory is determined by the sign of
F2ðtÞ=F1ðtÞ. If the background is weakly curved, then the
Einstein term dominates F1 and F2 and both of these
quantities are negative; so ~ξ�0 are real and the theory is
weakly hyperbolic. However, if the curvature becomes large,
e.g., in a collapsing universe solution, then one of these
quantities might become positive, which makes F2=F1

negative, so the theory is no longer weakly hyperbolic.
In agreement with the comments at the end of Sec. III C,

we see that weak hyperbolicity can fail either when F1

vanishes, i.e., the matrix A becomes singular, or when F2

vanishes, in which case an eigenvalue from the ξþ0 -group
becomes equal to an eigenvalue from the ξ−0 -group; i.e., it is
no longer possible to distinguish these two groups.
If F1 or F2 becomes positive, then ξ0 is imaginary and

there exist linearized solutions which grow exponentially
with time. For this reason, in the cosmology literature, a
change in sign of F1 or F2 is usually referred to as an
“instability” of the background solution. More specifically,
if F1 becomes negative, then the background is said to
suffer a “ghost instability,” and if F2 becomes negative, it is
said to suffer a “gradient instability.”12 However, this
nomenclature is misleading. For the concept of stability
to make sense, one needs the initial value problem for
perturbations to be locally well-posed so that one can ask
what happens when a generic initial perturbation is evolved
in time. But when F1=F2 becomes negative, then the
equation for linear perturbations is not weakly hyperbolic
which implies that the initial value problem is not well-
posed: a generic linear perturbation cannot be evolved in
time so dynamics no longer makes sense.
Further examples of dynamical violation of weak hyper-

bolicity can be obtained by considering the interior of a

12This behavior was first discussed in the context of cosmo-
logical solutions of Horndeski theories [19–21].
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static, spherically symmetric black hole solution of a
Lovelock theory [22,29]. For a large black hole, the
equations for linear perturbations are weakly hyperbolic
outside the event horizon [18].13 However, one can show
that in the interior of such a black hole, the equations of
motion fail to be weakly hyperbolic in a region 0 < r < r�.
Here r is the area radius of the (d − 2)-spheres, orbits of the
symmetry group. Inside the black hole, surfaces of constant
r are spacelike and −∂=∂r provides a time orientation. One
can impose initial data for linear perturbations on a surface
r ¼ r0 > r� inside the black hole. For large enough r0, the
curvature will be small on such a surface. Evolving these
data then leads to a violation of weak hyperbolicity at time
r ¼ r�. Generic linear perturbations cannot be evolved
beyond this time.

IV. HORNDESKI THEORIES

A. Equations of motion

Horndeski theories are the most general diffeomorphism
covariant four-dimensional theories of gravity coupled to a
scalar field, with second order equations of motion [4]. The
fields in such theories are the metric g and a scalar field Φ
and the equations of motion are obtained from an action of
the form

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðL1 þ L2 þ L3 þ L4 þ L5Þ; ð99Þ

where

L1 ¼ Rþ X − VðΦÞ; ð100Þ

L2 ¼ G2ðΦ; XÞ; ð101Þ

L3 ¼ G3ðΦ; XÞ□Φ; ð102Þ

L4¼G4ðΦ;XÞRþ∂XG4ðΦ;XÞδacbd∇a∇bΦ∇c∇dΦ; ð103Þ

L5 ¼ G5ðΦ; XÞGab∇a∇bΦ

−
1

6
∂XG5ðΦ; XÞδacebdf∇a∇bΦ∇c∇dΦ∇e∇fΦ; ð104Þ

and we have defined X ¼ − 1
2
ð∇ΦÞ2.

The term L1 corresponds to Einstein gravity minimally
coupled to a scalar field with potential VðΦÞ. We will refer
to this theory as the Einstein-scalar-field theory. We assume
that the functions G depend smoothly on Φ and X. To
eliminate degeneracies between the various terms [allowing
for field redefinitions Φ → Φ0ðΦÞ] we will impose the
following restrictions on these functions:

G2ðΦ; 0Þ ¼ ð∂XG2ÞðΦ; 0Þ ¼ G3ðΦ; 0Þ ¼ G4ð0; 0Þ
¼ G5ð0; 0Þ ¼ 0: ð105Þ

The equations of motion for Horndeski theory are given by

Eab½g;Φ�≡ −
1ffiffiffiffiffiffi−gp δS

δgab
¼ 0; ð106Þ

EΦ½g;Φ�≡ −
1ffiffiffiffiffiffi−gp δS

δΦ
¼ 0: ð107Þ

To study the hyperbolicity of these equations, we linearize
around a background solution ðg;ΦÞ; i.e., we consider ðgþ
h;Φþ ψÞ and linearize in h and ψ ,

Eab½gþ h;Φþ ψ � ¼ Eab½g;Φ� þ Eð1Þ
ab ½h;ψ � þ � � � ; ð108Þ

EΦ½gþ h;Φþ ψ � ¼ EΦ½g;Φ� þ Eð1Þ
Φ ½h;ψ � þ � � � ; ð109Þ

so the linearized equations of motion are

Eð1Þ
ab ½h;ψ � ¼ Eð1Þ

Φ ½h;ψ � ¼ 0: ð110Þ
Recall that the equations of motion resulting from the
Einstein-scalar-field theory are strongly hyperbolic if we
impose the usual harmonic gauge condition which is14

Gabcd∇bhcd ≡∇bhab −
1

2
∇ahbb ¼ 0; ð111Þ

where Gabcd is defined by (49). Motivated by this, we will
attempt to obtain hyperbolic equations of motion for the
Horndeski theory by imposing a generalized harmonic
gauge condition

Ha ≡ ð1þ fÞGa
bcd∇bhcd −Ha

b∇bψ ¼ 0; ð112Þ

where the scalar f and the tensor Ha
b depend only on

background quantities. The idea is that when we deform the
theory away from the Einstein-scalar-field theory we may
need to deform the gauge condition in order to preserve
hyperbolicity. The quantities f and H describe such a
deformation.15 This gauge condition could be generalized
further by including terms that do not involve derivatives of
hab or ψ. However, such terms do not affect the principal
symbol and therefore do not influence hyperbolicity.
To see that we can impose such a gauge condition, let Ya

be a vector field and consider the infinitesimal diffeo-
morphism generated by Ya,

13We expect that they are also strongly hyperbolic although we
have not checked this.

14More properly we should call this a Lorenz gauge condition,
but we will refer to it as a harmonic gauge condition for the
reasons discussed below Eq. (40).

15Of course, we could divide through by (1þ f) to absorb f
into H. The reason for including f here is that it leads to a more
general class of gauge-fixed equations of motion when we
perform the gauge-fixing procedure described below.
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hab → hab þ∇ðaYbÞ; ψ → ψ þ Y · ∇Φ: ð113Þ

Under such transformation Ha will change as

Ha → Ha þ
1

2
ð1þ fÞð∇b∇bYa þ RabYbÞ

−Ha
b∇bðY · ∇ΦÞ: ð114Þ

Ha can then be set to zero by choosing Ya to solve

∇b∇bYa −
2

1þ f
Ha

b∇bðY · ∇ΦÞ þ RabYb ¼ −
2

1þ f
Ha:

ð115Þ

This is a linear wave equation of a standard type, which
guarantees the existence of such Ya. Note that if we
changed the way that the first derivatives of hab appear
in (112), then this argument would no longer work.
To obtain the equations of motion in the generalized

harmonic gauge, consider expanding the action to quadratic
order in ðh;ψÞ to obtain an action governing the linearized
perturbation. Now to this action we add the gauge-fixing
term16

Sgauge ¼ −
1

2

Z ffiffiffiffiffiffi
−g

p
HaHa: ð116Þ

This will contribute to the equations of motion for the
metric and the scalar field via terms

1ffiffiffiffiffiffi−gp δSgauge
δhab

¼ Gabcd∇cðð1þ fÞHdÞ; ð117Þ

1ffiffiffiffiffiffi−gp δSgauge
δψ

¼ −∇bðHaHa
bÞ; ð118Þ

respectively. We can now write the generalized harmonic
gauge linearized equations as

~Eð1Þ
ab ¼ 0; ~Eð1Þ

Φ ¼ 0; ð119Þ
where

~Eð1Þ
ab ¼ Eð1Þ

ab − Gab
cd∇cðð1þ fÞHdÞ; ð120Þ

~Eð1Þ
Φ ¼ Eð1Þ

Φ þ∇bðHaHa
bÞ: ð121Þ

It remains to show that the generalized harmonic gauge
condition is propagated by the equations of motion. To see
this, recall that the action for Horndeski is diffeomorphism
invariant; thus for the nonlinear theory we have

0 ¼
Z

d4x

�
δS
δgab

∇aYb þ
δS
δΦ

Yb∇bΦ
�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð∇aEab − EΦ∇bΦÞYb: ð122Þ

This holds for arbitrary Ya; hence, independent of any
equation of motion,

∇aEab − EΦ∇bΦ ¼ 0; ð123Þ

and so linearizing around a background solution gives

∇aEð1Þ
ab − Eð1Þ

Φ ∇bΦ ¼ 0: ð124Þ

Taking the divergence of (120) when (119) holds and using
the above we obtain

0 ¼ ∇aEð1Þ
ab þGab

cd∇b∇cðð1þ fÞHdÞ

¼ Eð1Þ
Φ ∇bΦ −

1

2
ð1þ fÞð∇c∇cHb þ RbcHcÞ

−∇bf∇bHa −
1

2
Ha∇b∇bf; ð125Þ

that is,

ð1þ fÞ∇b∇bHa þ 2∇bf∇bHa þ 2∇cðHcdHdÞ∇aΦ

þ ð1þ fÞRabHb þHa∇b∇bf ¼ 0: ð126Þ

This is a linear wave equation of a standard type for Ha.
Thus, provided that Ha and its time derivative both vanish
initially, they will continue to vanish throughout the
evolution; i.e., the gauge condition (112) is propagated
by the equations of motion (119). It then follows that a
solution of the generalized harmonic gauge equations (119)
is also a solution of the original linearized Horndeski
equations of motion (110).
The linearized generalized harmonic gauge equations of

motion (119) take the following form:

Pabcdef
gg ∇e∇fhcd þ Pabef

gΦ ∇e∇fψ þ � � � ¼ 0; ð127Þ

Pcdef
Φg ∇e∇fhcd þ Pef

ΦΦ∇e∇fψ þ � � � ¼ 0; ð128Þ

where the ellipsis denotes terms with fewer than two
derivatives. We can then define the principal symbol for
this system,

PðξÞ ¼
 
Pabcdef
gg ξeξf Pabef

gΦ ξeξf

Pcdef
Φg ξeξf Pef

ΦΦξeξf

!
; ð129Þ

and we think of it as acting on vectors of the form ðtcd; αÞT ,
where tcd is a symmetric 2-tensor and α is a number.

16The reason for implementing the gauge fixing this way is
because obtaining the equation of motion from an action
guarantees symmetry of the principal symbol; see Sec. IV B.
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It is convenient to split the principal symbol in its
Einstein-scalar-field and Horndeski parts

PðξÞ ¼ PEinsteinðξÞ þ δPðξÞ; ð130Þ

where

PEinsteinðξÞ ¼
�− 1

2
ξ2Gabcd 0

0 −ξ2

�
ð131Þ

is the principal symbol for the harmonic gauge Einstein-
scalar-field equations of motion. We write

δPðξÞ ¼ δ ~PðξÞ þ δQðξÞ; ð132Þ

where δ ~P denotes the terms arising from theHorndeski terms
L2, L3, L4, L5 in the action, and δQ denotes the f and H-
dependent parts of thegauge-fixing terms.Explicitlywehave

δQðξÞ ¼
 
−fðf þ 2ÞGabehGh

fcdξeξf ð1þ fÞξeGfhabξhHef

ð1þ fÞξeGfhcdξhHef −Hh
eHhfξeξf

!
: ð133Þ

From the form of PEinstein it is clear that all characteristics
of the harmonic gauge Einstein-scalar-field system are null.
We conclude this section by making precise the notion of

“weak background fields” in the Horndeski setting. We
follow a similar approach to the one used for Lovelock
theories (cf. Sec. III B). Consider an orthonormal basis
feμg (such that e0 is orthogonal to constant t surfaces) and
denote by L−2

R , L−1
1 , and L−2

2 the magnitude of the largest

components in such a basis of the Riemann tensor, ∇Φ and
∇∇Φ, respectively, and define L−2 ¼ maxfL−2

R ; L−2
1 ; L−2

2 g.
We want our definition of “weak fields” to ensure that the
Horndeski terms in the principal symbol are small com-
pared to the Einstein-scalar-field terms; i.e., δP is small
compared to PEinstein. This is achieved by requiring the
background fields to satisfy

j∂k
XG2jL−2kþ2 ≪ 1; k ¼ 1; 2; ð134Þ

j∂k
X∂l

ΦG3jL−2k ≪ 1; k ¼ 0; 1; 2; l ¼ 0; 1; 1 ≤ kþ l ≤ 2; ð135Þ

j∂k
X∂l

ΦG4jL−2k ≪ 1; k ¼ 0; 1; 2; 3; l ¼ 0; 1; 2; kþ l ≤ 3; ð136Þ

j∂k
X∂l

ΦG5jL−2k−2 ≪ 1; k ¼ 0; 1; 2; 3; l ¼ 0; 1; 2; 1 ≤ kþ l ≤ 3: ð137Þ

Wewill also require smallness of the functions appearing in
the gauge condition,

jfj ≪ 1; jHμ
νj ≪ 1: ð138Þ

In practice, we will see that strong hyperbolicity will force
us to take f and Ha

b to be particular functions of the
background fields, and (138) then follows from weakness
of the background fields.

B. Symmetries of the principal symbol

For Lovelock theories, our argument for weak hyper-
bolicity exploited equations (53) following from the iden-
tities (52). Thereforewewill need to determine the analogous
identities for Horndeski theories. This could be done by
explicit computation. Instead we will derive the identities as
a consequence of the gauge symmetry of the theory. We will
appeal to results of Lee and Wald [26] to do this.

Consider some diffeomorphism covariant theory of
gravity, possibly coupled to additional fields, and expand
the action to second order around a background solution,

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
−
1

2
KIJab∇auI∇buJ þ � � �

�
; ð139Þ

where uI denotes the perturbation to the fields (including
the metric perturbation), the ellipsis denotes terms with
fewer than two derivatives, and

KIJabðxÞ ¼ KJIbaðxÞ: ð140Þ
Varying the action gives the (linearized) equation of motion

KIJab∇a∇buJ þ � � � ¼ 0; ð141Þ

where the ellipsis denotes terms with fewer than two
derivatives of uI . From this we read off the principal
symbol
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PIJab ¼ KIJðabÞ; ð142Þ

so from (140) we have

PIJab ¼ PJIab; ð143Þ
hence symmetry of the principal symbol is a consequence
of the variational principle. Varying the action also gives a
total derivative term ∇aθ

a, where

θa ¼ −KIJabδuI∇buJ þ � � � ; ð144Þ

where the ellipsis denotes terms without derivatives. We
then define the symplectic current for two independent
variations δ1uI and δ2uI [26],

ωa ¼ δ1θ
a
2 − δ2θ

a
1 ¼ KIJabδ1uI∇bδ2uJ − ð1 ↔ 2Þ þ � � � :

ð145Þ

Given coordinates ðt; xiÞ where t is a time function, we
define the symplectic form as an integral over a surface Σ
of constant t with unit normal na,

ωðδ1u; δ2uÞ ¼
Z
Σ
ωμnμ ¼

Z
Σ
dd−1x

ffiffiffiffiffiffi
−g

p
ω0: ð146Þ

For a theory with a gauge symmetry, Ref. [26] proves that
this vanishes if δ2u is taken to be an infinitesimal gauge
transformation and δ1u satisfies the (linearized) equation
of motion. In particular, it will vanish if δ1u and δ2u are
both infinitesimal gauge transformations. Taking them to
be compactly supported gauge transformations we can
integrate with respect to t to obtain

0 ¼
Z

ddx
ffiffiffiffiffiffi
−g

p ½KIJ0νδ1uI∇νδ2uJ − ð1 ↔ 2Þ þ � � ��:

ð147Þ

As before, the ellipsis denotes terms without derivatives of
δ1u or δ2u.
Consider first the case of Lovelock theory (without

any gauge fixing), for which uI ¼ hab and we have the
symmetries

Kabcdef ¼ Kbacdef ¼ Kabdcef: ð148Þ
The gauge transformations are infinitesimal diffeomor-
phisms,

δhab ¼ ∇ðaXbÞ; ð149Þ
where Xa is an arbitrary vector field, assumed compactly
supported. Gauge invariance of the action implies, via
integration by parts,

0 ¼
Z

ddx
ffiffiffiffiffiffi
−g

p
Xbð−Kabcdef∇a∇e∇fhcd þ � � �Þ; ð150Þ

where the ellipsis denotes terms with fewer than three
derivatives of hμν. Since Xa is arbitrary, this implies

0 ¼ Kabcdef∇a∇e∇fhcd þ � � � ; ð151Þ
and since hab is arbitrary, terms with different numbers of
derivatives must vanish independently. From the three-
derivative term we obtain

0 ¼ KðajbcdjefÞ; ð152Þ

which implies

PðajbcdjefÞ ¼ 0: ð153Þ
Now we consider the implications of (147). Take the two
gauge transformations to be

δ1hμν ¼ ∇ðμXνÞ; δ2hμν ¼ ∇ðμYνÞ ð154Þ

for arbitrary compactly supported vector fields Xμ, Yμ.
Compact support lets us integrate by parts in (147),

0 ¼
Z

ddx
ffiffiffiffiffiffi
−g

p ½∇μXνKμνρσ0α∇α∇ρYσ − ð1 ↔ 2Þ þ � � ��

¼
Z

ddx
ffiffiffiffiffiffi
−g

p
Xν½−Kμνρσ0α∇μ∇α∇ρYσ

− Kμσρν0α∇α∇ρ∇μYσ þ � � ��; ð155Þ

where the ellipsis denotes terms with fewer than three
derivatives of Yμ. Since Xν is arbitrary, we must have

0 ¼ Kμνρσ0α∇μ∇α∇ρYσ þ Kμσρν0α∇α∇ρ∇μYσ þ � � �
¼ ðKμνρσ0α þ Kμσρν0αÞ∂μ∂ρ∂αYσ þ � � �
¼ ðKμνρσ0α þ Kρνμσα0Þ∂μ∂ρ∂αYσ þ � � � : ð156Þ

Since Yμ is arbitrary, the terms with different numbers of
derivatives of Yμ must vanish independently. Vanishing of
the three-derivative term requires

0 ¼ Kνðμρjσ0jαÞ þ KνðρμjσjαÞ0 ¼ 2Pνðμρjσ0jαÞ: ð157Þ
Since the 0 index refers to an arbitrary time function t, this
equation implies

PaðbcjdejfÞ ¼ 0: ð158Þ
The above argument applies to the theory before fixing
the gauge. Of course, we can do the same for the Einstein
equation. Subtracting the Einstein results from the Lovelock
results gives

δPðajbcdjefÞ ¼ δPaðbcjdejfÞ ¼ 0: ð159Þ
We can now apply this to the harmonic gauge Lovelock
equation of motion because the harmonic gauge condition
does not affect δP. In particular, we have
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δPabcdefξaξeξf ¼ δPabcdefξbξcξf ¼ 0: ð160Þ

Hence we see that the identities (53) are a consequence of
the gauge symmetry.
For a Horndeski theory (before any gauge fixing) we

have uI ¼ ðhab;ψÞ. A gauge transformation is

δhab ¼ ∇ðaXbÞ; δψ ¼ Xa∇aΦ: ð161Þ

Repeating the above argument for gauge invariance of the
action gives

PðajbcdjefÞ
gg ¼ PðajbjcdÞ

gΦ ¼ 0: ð162Þ

The symmetry of the principal symbol (143) then implies
that

PðajbjcdÞ
Φg ¼ PðajbjcdÞ

gΦ ¼ 0: ð163Þ

Repeating the argument based on (147), the highest
derivatives of the gauge transformation parameters Xμ

and Yμ arise only from the transformation of hμν so the
result is essentially the same as for Lovelock theory,

PaðbcjdejfÞ
gg ¼ 0: ð164Þ

These results apply also to the Einstein-scalar-field theory
(before gauge fixing). So subtracting the principal symbols
for these two cases gives

0 ¼ δ ~PðajbcdjefÞ
gg ¼ δ ~PðajbjcdÞ

gΦ ¼ δ ~PðajbjcdÞ
Φg ¼ δ ~PaðbcjdejfÞ

gg :

ð165Þ

Finally, we note that the gauge fixing terms do not affect δ ~P
so these results apply also to the generalized harmonic
gauge equation of motion.

C. Weak hyperbolicity for weak field background

We will now begin our study of the hyperbolicity of the
linearized Horndeski equations in a generalized harmonic
gauge. In this section we will establish weak hyperbolicity
of these equations in a weak field background for any
generalized harmonic gauge. Much of the analysis is similar
to the analysis of the weak hyperbolicity of harmonic gauge
Lovelock theories performed above so we will be briefer
here.
As in Sec. III Bwe introduce coordinates xμ ¼ ðt; xiÞ such

that dt is timelike so surfaces of constant t are noncharac-
teristic for the Einstein-scalar-field theory. Again we will
denote by ξ�0 the two solutions of gμνξμξν ¼ 0 for fixed real
ξi, and we define the null covectors ξ�μ ¼ ðξ�0 ; ξiÞ.
The principal symbol can be regarded as a quadratic

form acting on vectors of the form ðtμν; χÞT , with tμν

symmetric. Such vectors form an 11-dimensional space.
HenceA;BðξiÞ, andCðξiÞ (defined in Sec. III B) are 11 × 11
matrices. Explicitly we have

A ¼
 
Pμνρσ00
gg Pμν00

gΦ

Pρσ00
Φg P00

ΦΦ

!
;

BðξiÞ ¼
 
2Pμνρσð0iÞ

gg ξi 2Pμνð0iÞ
gΦ ξi

2Pρσð0iÞ
Φg ξi 2Pð0iÞ

ΦΦξi

!
;

CðξiÞ ¼
 
Pμνρσij
gg ξiξj Pμνij

gΦ ξiξj

Pρσij
Φg ξiξj Pij

ΦΦξiξj

!
; ð166Þ

where, again, ξi is real and ξiξi ¼ 1. These matrices are all
real and symmetric: the latter property follows from the
fact that the gauge-fixed equations of motion can be
derived from an action so (143) holds.
For the harmonic gauge Einstein-scalar-field equations,

since surfaces of constant t are spacelike, the matrix A is
invertible. By continuity, this will continue to hold for
sufficiently weak background fields, once we include the
Horndeski terms. Hence we can define realMðξiÞ as in (55)
and real symmetric HðξiÞ as in (61). These are 22 × 22
matrices. As for Lovelock, the matrix H is nondegenerate
so its signature can be determined by continuity, i.e., by its
signature for the Einstein-scalar-field equations. The result
is that it has signature (11,11), i.e., 11 positive eigenvalues
and 11 negative eigenvalues. As for Lovelock, M is sym-
metric with respect to H; i.e., Eq. (62) holds here.
We consider these matrices as acting on a complex vector

space V of dimension 22. For the Einstein-scalar-field
theory we know that M is diagonalizable with eigenvalues
ξ�0 , each with degeneracy 11. So, for linearized Horndeski
theory in a weak field background we can proceed as in
Sec. III C and define the 11-dimensional subspaces V� as
the sum over the generalized eigenspaces of the eigenvec-
tors (of M) belonging to the ξ�0 -group, respectively. The
restriction of H to V� is denoted by H�.
Let us summarize the proof of weak hyperbolicity that

we used for Lovelock theories. First we showed that there
exist pure gauge eigenvectors ofM, with eigenvalue ξ�0 . We
then showed that such eigenvectors are null and orthogonal
with respect to H so they form null subspaces N� of V�,
and that these null subspaces have the maximum dimension
consistent with the signature of H�. This then excludes the
possibility of M possessing a complex eigenvalue ξ0 in,
say, the ξþ0 -group, for the corresponding eigenvector would
have to be null and orthogonal to Nþ so we could add it
to Nþ to produce a larger null subspace of Vþ, thereby
violating maximality of Nþ. Hence M cannot have a
complex eigenvalue, which establishes weak hyperbolicity.
All of this extends straightforwardly to Horndeski

theories. First note that, as in Sec. II B, an eigenvector v
of M with eigenvalue ξ0 must have the form
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v ¼
�

T

ξ0T

�
; ð167Þ

where the 11-vector T must satisfy

PðξÞT ¼ 0 ð168Þ

with ξμ ¼ ðξ0; ξiÞ. We can identify a set of pure gauge
eigenvectors, with eigenvalue ξ�0 , given by17

T ¼
�
ξ�ðμXνÞ
0

�
ð169Þ

for some Xμ. That this satisfies (168) (with ξ ¼ ξ�) can be
seen as follows. First PEinsteinðξ�Þ ¼ 0 because ξ�μ is null.
Second, the results in (165) imply

δ ~Pðξ�ÞT ¼ 0: ð170Þ

Finally, it can be checked explicitly that δQðξ�ÞT ¼ 0.
We defineN� to be the four-dimensional subspace of V�

defined by these pure gauge eigenvectors. We now want to
prove thatN� is null with respect toH�. Consider two pure
gauge eigenvectors v; v0 ∈ N� with corresponding T ¼
ðξ�ðμXνÞ; 0ÞT and T 0 ¼ ðξ�ðμX0

ν; 0ÞT . Their inner product with
respect toH� is the same as their inner product with respect
to H; i.e., as in (71), we have

v0†Hv¼ 2ξ�μ T 0†P0μT¼ 2ξ�μ ξ�ν ξ�ρ X̄0
σXτP

νσρτ0μ
gg ¼ 0; ð171Þ

where the final equality follows from PEinsteinðξ�Þ ¼ 0, the
final symmetry in (165), and the fact that

ξ�μ ξ�ν ξ�ρ δQ
νσρτλμ
gg ¼ 0: ð172Þ

It follows that any two elements of N� are orthogonal with
respect to H� and hence N� defines a four-dimensional
H�-null subspace of V�.
SinceH� is the restriction ofH to V�, it follows thatH�

is nondegenerate when restricted to V�. Hence its signature
can be determined by continuity, as we did for Lovelock.
In other words, its signature can be determined using the
Einstein-scalar-field theory. For this theory, consider two
vectors v1 and v2 in V�, and hence of the form (167) with
ξ0 ¼ ξ�0 . Let the corresponding 11-vectors be T1 ¼
ðt1ab; χ1ÞT and T2 ¼ ðt2ab; χ2ÞT . The inner product of v1
and v2 with respect to H� is the same as the inner product
with respect to H,

v†1Hv2 ¼ T†
1BT2 þ 2ξ�0 T

†
1AT2 ¼ 2ξμT

†
1P

0μT2

¼ −ξ0�ðt†1Gt2 þ χ̄1χ2Þ: ð173Þ

The argument following (69) now shows that, when
restricted to Vþ, Hþ has four negative eigenvalues and
6þ 1 ¼ 7 positive eigenvalues (theþ1 coming from χ̄1χ2).
This is similar for H− when restricted to V−, with positive
and negative interchanged. Hence the dimension of a
maximal null subspace of V� is 4 so N� are maximal null
subspaces of V�. The proof of weak hyperbolicity follows
as explained above.

D. Strong hyperbolicity of Horndeski theories

We have shown that, in any generalized harmonic gauge,
linearized Horndeski theory is weakly hyperbolic in a weak
field background. Wewill now investigate whether it is also
strongly hyperbolic. In particular, strong hyperbolicity
requires that M is diagonalizable; i.e., it has no nontrivial
Jordan blocks. We can investigate whether this is true using
the method of Sec. III D.
As in Sec. III D we define E� to be the generalized

eigenspace of the eigenvalue ξ�0 . Since N
� ⊂ E� it follows

as in Sec. III D that E� must have dimension at least 8.
If M is diagonalizable, then E� are genuine eigenspaces
and hence there must exist at least eight eigenvectors with
eigenvalue ξ�0 . So using (168) and PEinsteinðξ�Þ ¼ 0 we
must have eight vectors T satisfying δPðξ�ÞT ¼ 0. So

A necessary condition for strong hyperbolicity is that,
for any null ξ, ker δPðξÞ has dimension at least 8.

Hence strong hyperbolicity implies that, for any null ξ,
ker δPðξÞ must contain at least four linearly independent
“nongauge” elements.
Let us now look at the condition for a nontrivial Jordan

block. As in Sec. III D, one can show that the corresponding
eigenvalue must be ξ�0 so the block must lie in E�. For any
such block, there exists a vectorv ∈ E� such that ðM − ξ�0 Þv
is an eigenvector ofM with eigenvalue ξ�0 so we must have

ðM − ξ�0 Þv ¼
�

S

ξ�0 S

�
ð174Þ

for some nonzero S ¼ ðsμν;ωÞT such that [using
PEinsteinðξ�Þ ¼ 0]

δPðξ�ÞS ¼ 0: ð175Þ

Writing v ¼ ðT; T 0ÞT we find that (174) reduces to equations
analogous to (75) and (76),

T 0 ¼ ξ�0 T þ S ð176Þ

and

17The vanishing of the final component of this vector is related
to the fact that under the gauge transformation (113), the
transformation of ψ does not involve a derivative of Ya.
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δPðξ�ÞT ¼ −ð2ξ�0 Aþ BÞS: ð177Þ

As in Sec. III D we contract this with an arbitrary pure gauge
vector R ¼ ðξ�ðμXνÞ; 0ÞT. The LHS vanishes and the RHS

gives the H�-inner product of ðR; ξ�0 RÞT with ðS; ξ�0 SÞT .
It follows that ðS; ξ�0 SÞT must beH�-orthogonal to any pure
gauge eigenvector. Similarly, contracting this equation with
S and using (175) shows that ðS; ξ�0 SÞT is null with respect to
H�. Hence if this vector were not pure gauge, then we could
add it to N� and violate maximality of this null subspace.
Therefore this vector must be pure gauge; i.e., we have S ¼
ðξ�ðμYνÞ; 0ÞT for some Yμ ≠ 0. So, writing T ¼ ðtμν; χÞT ,
Eq. (177) takes the form

δPðξ�Þ ·
�
tρσ
χ

�
¼ −ð2ξ�0 Aþ BÞ ·

�
ξ�ðρYσÞ
0

�
: ð178Þ

If this equation admits a solution for someYμ ≠ 0, thenM has
a nontrivial Jordan block. So strong hyperbolicity requires
that this equation admits no solution ðtμν; χÞT for any Yμ ≠ 0.

1. Strong hyperbolicity when G4 =G5 = 0

Let us begin by considering the theory with Lagrangian

L ¼ L1 þ L2 þ L3: ð179Þ
The nonlinear equations of motion for this theory are

Eab ≡Gab þ ∂XG3

�
−
1

2
□Φ∇aΦ∇bΦ

þ Gab
ed∇c∇eΦ∇cΦ∇dΦ

�
þ � � � ¼ 0; ð180Þ

EΦ≡−□Φ−∂XG2□Φþ∂2
XG2∇aΦ∇bΦ∇a∇bΦ

−2∂ΦG3□Φ−ð∂XG3þX∂2
XG3Þδc1c2d1d2

∇c1∇d1Φ∇c2∇d2Φ

−
1

2
∂2
XG3δ

c1c2c3
d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φ

−2∂2
XΦG3ðδc1c2d1d2

∇c1∇d1Φ∇c2Φ∇d2ΦþX□ΦÞ
þ∂XG3Rab∇aΦ∇bΦþ���¼0; ð181Þ

where again the ellipsis denotes terms not involving second
derivatives. After determining the linearized equations in
generalized harmonic gauge (119), we compute the prin-
cipal symbol and we find that

δPggðξÞabcd ¼ δQggðξÞabcd; ð182Þ
δPgΦðξÞab ¼ δPΦgðξÞab

¼ −
1

2
∂XG3∇aΦ∇bΦξ2 þ ξcGdeabξeKcd;

ð183Þ

δPΦΦðξÞ ¼ ð−∂XG2 − 2∂ΦG3 þ 2X∂2
XΦG3 − 2∂XG3□Φ

− 2X∂2
XG3□ΦÞξ2 þ 2ð∂XG3 þ X∂2

XG3Þ
× ξcξd∇c∇dΦþ ð2∂2

XΦG3 þ ∂2
XG2Þðξ ·∇ΦÞ2

− ∂2
XG3δ

c1c2c3
d1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ

þ δQΦΦðξÞ; ð184Þ
where

Kab ≡ ð1þ fÞHab þ ∂XG3∇aΦ∇bΦ: ð185Þ

For strong hyperbolicity to hold, Eq. (178) must admit no
solution ðtμν; χÞT when Yμ ≠ 0. Writing out this equation
gives

 
Gμνρσ½−fðf þ 2ÞGρ

λαβξ�σ ξ�λ tαβ þ ξ�λKλρξ
�
σ χ�

ξ�μGνλρσξ�λ tρσKμν þ δPΦΦðξ�Þχ

!

¼
 

ξ0�Gμνρσξ�ρ Yσ

ð∂XG3Þξ0�ðξ� · ∇ΦÞðY ·∇ΦÞ −Kλσξ
�λGμνσ0ξ�μ Yν

!
:

ð186Þ

Looking at the first row of this equation, the nondegeneracy
of Gμνρσ implies that if f ≠ 0, then we can solve for the
“nontransverse” part of tμν,

18

Gμ
νρσξ�ν tρσ ¼

1

fðf þ 2Þ ðξ
�ρKρμχ − ξ0�YμÞ: ð187Þ

This can then be substituted into the second row to obtain
an equation that determines χ. Hence if f ≠ 0, then a
solution of (178) exists for any Yμ ≠ 0. Therefore strong
hyperbolicity requires that f ¼ 0. With f ¼ 0, the first row
of (186) implies

ξ0�Yμ ¼ ξ�ρKρμχ: ð188Þ

Plugging this into the second row of (186) now gives a
linear homogeneous scalar equation for χ and tμν. Since this
is only one equation for 11 unknowns, there exist nontrivial
solutions. We see that we can solve (178) for Yμ of the form
(188). Hence if this Yμ is nonvanishing then the equation is
not strongly hyperbolic. Therefore strong hyperbolicity
requires (188) to vanish for any (null) ξ�μ which implies
(since generically χ ≠ 0) Kμν ¼ 0. Hence strong hyper-
bolicity selects a unique generalized harmonic gauge,

f ¼ 0; Hab ¼ −∂XG3∇aΦ∇bΦ: ð189Þ

18Note that our smallness assumption (138) implies that
f ≠ −2.
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Note that this guarantees that the smallness condition (138)
is satisfied. If our gauge functions f and Hab satisfy this
equation, then M is diagonalizable, as required by strong
hyperbolicity. As explained above (17), diagonalizability
ensures that there exists a positive definite symmetrizer K
satisfying (34). To complete the proof of strong hyper-
bolicity we need to check that K depends smoothly on ξi.
We will do this in a more general setting below [see the
discussion below Eq. (227)].

2. Failure of strong hyperbolicity when
∂XG4 ≠ 0, G5 = 0

The situation is different if we include L4, i.e., we work
with the theory

L ¼ L1 þ L2 þ L3 þ L4: ð190Þ
We will show that if ∂XG4 ≠ 0, then there is no gener-
alized hyperbolic gauge for which this theory is strongly
hyperbolic.

The terms in the equations of motion Ea
b and EΦ arising from L4 are [21,31]

Eað4Þ
b ¼ ðG4 − 2X∂XG4ÞGa

b þ
1

4
∂XG4δ

ac1c2c3
bd1d2d3

Rc1c2
d1d2∇c3Φ∇d3Φþ 1

2
ð∂XG4 þ 2X∂2

XG4Þδac1c2bd1d2
∇c1∇d1Φ∇c2∇d2Φ

þ 1

2
∂2
XG4δ

ac1c2c3
bd1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φþ 2∂2
XΦG4δ

ac1c2
bd1d2

∇c1∇d1Φ∇c2Φ∇d2Φ

þ ð∂ΦG4 þ 2X∂2
XΦG4Þδac1bd1

∇c1∇d1Φ; ð191Þ
Eð4Þ
Φ ¼ −

1

2
ð∂XG4 þ 2X∂2

XG4Þδc1c2c3d1d2d3
∇c1∇d1ΦRc2c3

d2d3 − ð∂ΦG4 þ 2X∂2
XΦG4ÞR

−
1

2
∂2
XG4δ

c1c2c3c4
d1d2d3d4

∇c1∇d1Φ∇c2Φ∇d2ΦRc3c4
d3d4

− ∂2
XΦG4δ

c1c2c3
d1d2d3

∇c1Φ∇d1ΦRc2c3
d2d3

−
�
∂2
XG4 þ

2

3
X∂3

XG4

�
δc1c2c3d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3∇d3Φ

− 2∂3
XΦΦG4δ

c1c2
d1d2

∇c1Φ∇d1Φ∇c2∇d2Φ

− ð2X∂3
XXΦG4 þ 3∂2

XΦG4Þδc1c2d1d2
∇c1∇d1Φ∇c2∇d2Φ

− 2∂3
XXΦG4δ

c1c2c3
d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φ

−
1

3
∂3
XG4δ

c1c2c3c4
d1d2d3d4

∇c1∇d1Φ∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ: ð192Þ
Linearizing these equations, and including the gauge-fixing terms, one can then compute δ ~Pð4Þ, the contribution to δ ~P
arising from L4. It takes the following form:

δ ~Pð4Þ
gg ðξÞabcdtcd ¼ −

1

2
ðG4 − 2X∂XG4Þδac1c2bd1d2

ξc1ξ
d1tc2

d2 −
1

2
∂XG4δ

ac1c2c3
bd1d2d3

ξc1ξ
d1tc2

d2∇c3Φ∇d3Φ; ð193Þ

δ ~Pð4Þ
gΦðξÞab ¼ δ ~Pð4Þ

ΦgðξÞab ¼ ð∂XG4 þ 2X∂2
XG4Þδac1c2bd1d2

ξc1ξ
d1∇c2∇d2Φþ ∂2

XG4δ
ac1c2c3
bd1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ

þ 2∂2
XΦG4δ

ac1c2
bd1d2

ξc1ξ
d1∇c2Φ∇d2Φþ ð∂ΦG4 þ 2X∂2

XΦG4Þδac1bd1
ξc1ξ

d1 ; ð194Þ

δ ~Pð4Þ
ΦΦðξÞ ¼ −

1

2
ð∂XG4 þ 2X∂2

XG4Þδc1c2c3d1d2d3
ξc1ξ

d1Rc2c3
d2d3

−
1

2
∂2
XG4δ

c1c2c3c4
d1d2d3d4

ξc1ξ
d1∇c2Φ∇d2ΦRc3c4

d3d4

− ð3∂2
XG4 þ 2X∂3

XG4Þδc1c2c3d1d2d3
ξc1ξ

d1∇c2∇d2Φ∇c3∇d3Φ

− ∂3
XG4δ

c1c2c3c4
d1d2d3d4

ξc1ξ
d1∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ

− 4∂3
XXΦG4δ

c1c2c3
d1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ

− 2ð2X∂3
XXΦG4 þ 3∂2

XΦG4Þδc1c2d1d2
ξc1ξ

d1∇c2∇d2Φ

− 2∂3
XΦΦG4δ

c1c2
d1d2

ξc1ξ
d1∇c2Φ∇d2Φ: ð195Þ

As discussed above, for the equations to be strongly hyperbolic it is necessary that the kernel of δPðξ�Þ has dimension 8 or
greater. We will now study whether this condition is satisfied. A vector ðtab; χÞT is in ker δPðξ�Þ if, and only if,
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�
δPggðξ�Þabcdtcd þ δPgΦðξ�Þabχ
δPΦgðξ�Þcdtcd þ δPΦΦðξ�Þχ

�
¼ 0: ð196Þ

We now assume that ∂XG4 ≠ 0. In this case we can separate out a term proportional to tab in the first row of (196) and write
this equation as

ðξ� ·∇ΦÞ2tab ¼ −ξ�a ξ�b ð∇cΦ∇dΦtcd þ G4tccÞ

þ 2ξ�ðatbÞc

�
G4

∂XG4

ξ�c þ∇cΦðξ� ·∇ΦÞ
�
− 2ξ�ða∇bÞΦðtccðξ� ·∇ΦÞ − ξ�c∇dΦtcdÞ

− gab

�
2ξ�c∇dΦtcdðξ� ·∇ΦÞ þ G4

∂XG4

ξ�cξ�dtcd − tccðξ� ·∇ΦÞ2
�

−∇ðaΦ∇bÞΦξ�cξ�dtcd −∇ðaΦtbÞcξ�cðξ� ·∇ΦÞ

þ 2

∂XG4

ðδQggðξ�Þabcdtcd þ δPgΦðξ�ÞabχÞ: ð197Þ

Note that for a generic weak-field background, and generic
ξ�, we have ξ� ·∇Φ ≠ 0. From the tensor structure of this
equation, we deduce that tab must take the form

tab ¼ ξ�ðaYbÞ þ λgab þ Zða∇bÞΦþ μ∇a∇bΦ ð198Þ

for some Ya, λ, Za, and μ. The last term in this expression
comes from the fact that δPgΦðξ�Þab contains terms
proportional to ∇a∇bΦ as well as terms of the other three

types. There is some degeneracy in this expression; e.g.,
degeneracy between the first and third terms implies that Za

is defined only up to the addition of a multiple of ξ�a .
That is, the part of Za parallel to ξ�a is pure gauge. For
strong hyperbolicity we need there to exist at least four
linearly independent nongauge elements of ker δPðξ�Þ.
The first term in (198) is pure gauge. The nongauge part is
determined by χ, λ, μ and the nongauge part of Za.
Plugging (198) back into the first row of (196)

we get

0 ¼ δPggðξ�Þabcdtcd þ δPgΦðξ�Þabχ ¼ δac1c2c3bd1d2d3
ξ�c1ξ

�d1∇c2∇d2Φ∇c3Φ∇d3Φ
�
−
1

2
∂XG4μþ ∂2

XG4χ

�

þ δac1c2bd1d2
ξ�c1ξ

�d1

�
∇c2Φ∇d2Φ

�
−
1

2
∂XG4λþ 2∂2

XΦG4χ

�
−
1

4
ðG4 − 2X∂XG4 − fðf þ 2ÞÞðZc2∇d2Φþ∇c2ΦZd2Þ

�

þ δac1c2bd1d2
ξ�c1ξ

�d1∇c2∇d2Φ½ð∂XG4 þ 2X∂2
XG4Þχ −

1

2
μðG4 − 2X∂XG4 − fðf þ 2ÞÞ�

− ½ð∂ΦG4 þ 2X∂2
XΦG4Þχ − λðG4 − 2X∂XG4 − fðf þ 2ÞÞ�ξ�aξ�b þ ξ�cGdea

bξ
�
e Kcdχ; ð199Þ

where Kab is defined in (185). We will now show that
the requirement of strong hyperbolicity fixes our choice of
gauge. Consider first the case

G4 − 2X∂XG4 − fðf þ 2Þ ≠ 0: ð200Þ
In this case, Eq. (199) contains Za-dependent terms
proportional to

δac1c2bd1d2
ξ�c1ξ

�d1ðZc2∇d2Φþ∇c2ΦZd2Þ
¼ 4Ga

b
ceξ�dξ�e Gcd

fhZf∇hΦ: ð201Þ

View the RHS as an operator O acting on Za. Let us
determine the kernel of this operator. Since Gabcd is
nondegenerate, vectors in the kernel must satisfy

ξ�dξ�ðeGcÞdfhZf∇hΦ ¼ 0 ⇒ ξ�dGcd
fhZf∇hΦ ¼ 0:

ð202Þ

However, for generic ∇aΦ, it is easy to show that all
solutions of this equation have Za proportional to ξ�a .
Hence the kernel of O generically contains only vectors
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proportional to ξ�a . This implies that, generically, if
Eq. (199) admits a solution, then Za is determined up
to a multiple of ξ�a , in terms of χ, λ, μ. In other words,
the nongauge part of Za is fixed uniquely by the three
quantities χ, λ, μ. Therefore, there exist at most three
linearly independent nongauge elements of ker δPðξ�Þ,
whereas strong hyperbolicity requires at least four such
elements. So if our gauge condition satisfies (200), then the
equation is not strongly hyperbolic.
We have shown that strong hyperbolicity requires that

our gauge function f obeys

G4 − 2X∂XG4 − fðf þ 2Þ ¼ 0: ð203Þ

We can solve this quadratic equation and choose the root
that satisfies the smallness condition (138) when the
conditions (136) are satisfied,

f ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G4 − 2X∂XG4

p
: ð204Þ

The contraction of (199) with ∇bΦ gives

0 ¼ ξ�cξ�e ∇bΦGdeab ~Kcdχ; ð205Þ

where

~Kcd ≡Kcd − ðαgcd þ β∇c∇dΦÞ ð206Þ

with

α ¼ ∂ΦG4 þ 2X∂2
XΦG4 þ∇a∇aΦð∂XG4 þ 2X∂2

XG4Þ;
β ¼ −2ð∂XG4 þ 2X∂2

XG4Þ: ð207Þ

Consider first the case in which our gauge condition is such
that, generically,

ξ�cξ�e ∇bΦGdeab ~Kcd ≠ 0: ð208Þ

Then, in a generic background, for generic null ξ�a , Eq. (205)
implies that we must have χ ¼ 0 and Eq. (199) then reduces
to

0 ¼ −
1

2
∂XG4μδ

ac1c2c3
bd1d2d3

ξ�c1ξ
�d1∇c2∇d2Φ∇c3Φ∇d3Φ

− ∂XG4λGa
b
ecξ�dξ�e Gcd

fh∇fΦ∇hΦ: ð209Þ

In a generic background this implies λ ¼ μ ¼ 0 (using
∂XG4 ≠ 0). But with χ ¼ λ ¼ μ ¼ 0, the nongauge part of
the vector ðtab; χÞT is determined entirely by Za which has
at most three independent nongauge components. So in
this case we do not have enough nongauge elements of
ker δPðξ�Þ for strong hyperbolicity.
We have shown that strong hyperbolicity requires that,

generically,

ξ�cξ�e ∇bΦGdeab ~Kcd ¼ 0: ð210Þ

For this to be satisfied for generic null ξ� we must have

Gabde∇bΦ ~Kcd ¼ ρaδec ð211Þ

for some vector ρa. Contracting with ∇aΦ we see that

ð∇ΦÞ2 ~Ka
b ¼ 2 ~Kac∇cΦ∇bΦ − 2ðρ ·∇ΦÞδba ð212Þ

from which we deduce that the most general form ~K can
take is

~Kab ¼ κgab þWa∇bΦ ð213Þ

for some scalar κ and vector Wa. Note that we can
determine ρa in terms of these quantities by taking the
trace over the e and c indices in (211)

ρa ¼ 1

4
ð−κ∇aΦþGabcdWc∇dΦ∇bΦÞ: ð214Þ

Plugging these back into (211) we find that the only
solution is given by κ ¼ 0 and Wa ¼ 0, that is,

~Kab ¼ 0: ð215Þ

Hence strong hyperbolicity for a generic weak-field back-
ground forces us to make the gauge choice

f ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G4 − 2X∂XG4

p
;

ð1þ fÞHab ¼ αgab þ β∇a∇bΦ − ∂XG3∇aΦ∇bΦ: ð216Þ

With this choice of gauge, Eq. (199) reduces to

0 ¼ δac1c2c3bd1d2d3
ξ�c1ξ

�d1∇c2∇d2Φ∇c3Φ∇d3Φ

×

�
−
1

2
∂XG4μþ ∂2

XG4χ

�
þ 2Ga

b
ecξ�dξ�e Gcd

fh∇fΦ∇hΦ

×

�
−
1

2
∂XG4λþ 2∂2

XΦG4χ

�
: ð217Þ

For a generic background, this fixes λ and μ in terms of χ,

λ ¼ 4
∂2
XΦG4

∂XG4

χ; μ ¼ 2
∂2
XG4

∂XG4

χ: ð218Þ

We now consider the second row of (196), which takes the
form

Aχ ¼ 0; ð219Þ
where
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A ¼ −
1

2
½∂XG4 þ 2X∂2

XG4�δc1c2c3d1d2d3
ξ�c1ξ

�d1Rc2c3
d2d3

−
1

2
∂2
XG4δ

c1c2c3c4
d1d2d3d4

ξ�c1ξ
�d1∇c2Φ∇d2ΦRc3c4

d3d4

−
�
3∂2

XG4 þ 2X∂3
XG4 þ

2ð∂XG4 þ 2X∂2
XG4Þ2

1þ G4 − 2X∂XG4

�
δc1c2c3d1d2d3

ξ�c1ξ
�d1∇c2∇d2Φ∇c3∇d3Φ

þ ½2ð∂XG4Þ−1ð∂2
XG4Þ2 − ∂3

XG4�δc1c2c3c4d1d2d3d4
ξ�c1ξ

�d1∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ

þ 4

�
∂3
XXΦG4 þ 2

∂2
XG4∂2

XΦG4

∂XG4

−
∂XG3ð∂XG4 þ 2X∂2

XG4Þ
2ð1þ G4 − 2X∂XG4Þ

− ∂2
XG3

�
δc1c2c3d1d2d3

ξ�c1ξ
�d1∇c2∇d2Φ∇c3Φ∇d3Φ

þ 2

�
−8

ð∂2
XΦG4Þ2
∂XG4

þ ∂XG3ð∂ΦG4 þ 2X∂2
XΦG4 þ X∂XG3Þ

ð1þ G4 − 2X∂XG4Þ
þ
�
∂2
XΦG3 þ

1

2
∂2
XG2 þ ∂3

XΦΦG4

��
ðξ� ·∇ΦÞ2

þ 2

�
2
ð∂XG4 þ 2X∂2

XG4Þð∂ΦG4 þ 2X∂2
XΦG4 − X∂XG3Þ

1þ G4 − 2X∂XG4

þ ð∂XG3 þ X∂2
XG3 þ 2X∂3

XXΦG4 þ 3∂2
XΦG4Þ

�
ξ�a ξ�b∇a∇bΦ: ð220Þ

If A ≠ 0, then we must have χ ¼ 0, and hence λ ¼ μ ¼ 0
and Za is arbitrary. Hence, in a generic weak-field back-
ground, ker δPðξ�Þ consists of vectors of the form ðtab; 0ÞT
where tab is given by (198) with λ ¼ μ ¼ 0. Given that one
component of Za is pure gauge [i.e., degenerate with the
first term in (198)], it follows that ker δPðξ�Þ generically
has dimension 7 and hence the equation of motion is not
strongly hyperbolic.
The only way to escape this conclusion is if the theory is

one for whichA ¼ 0 for any background. For this to happen,
terms with different dependence on the Riemann tensor,∇Φ
and ∇∇Φ have to cancel independently in A. However, this
cannot happen in the case we are considering. To see this,
note that vanishing of the terms of the (schematic) form
R∇Φ∇Φ in any background requires ∂2

XG4 ¼ 0. But then
vanishing of the terms proportional to R requires ∂XG4 ¼ 0,
contradicting our assumption ∂XG4 ≠ 0. Hence in a generic
background we have A ≠ 0, and therefore a vector in the
kernel must have χ ¼ 0.

In summary, we have shown that when ∂XG4 ≠ 0, there
does not exist a generalized harmonic gauge for which the
equations of motion are strongly hyperbolic in a generic
weak-field background. The best one can do is to choose
the gauge (216), for which ker δPðξ�Þ has dimension 7 in
a generic weak-field background (i.e., four pure gauge
elements, and three nongauge elements). This implies that,
in such a background, the matrixM will have two nontrivial
Jordan blocks: one in Vþ and one in V−. Generically each
of these will be 2 × 2.

3. Proof of strong hyperbolicity for G4 =G4ðΦÞ, G5 = 0

We continue working with the theory defined by (190),
but now consider the case ∂XG4 ¼ 0, i.e., G4 ¼ G4ðΦÞ.19
We will show that such theories are strongly hyperbolic in a
suitable generalized harmonic gauge. The proof is analo-
gous to that for the theory with G4 ¼ G5 ¼ 0 so we will be
brief. For ∂XG4 ¼ 0, Eq. (178) reduces to

LHS ¼
 
Gμνρσ½ðG4 − fðf þ 2ÞÞξ�σ Gρ

λαβξ�λ tαβ þ ξ�λξ�σ ðKλρ − ∂ΦG4gλρÞ�χ
Gμνρσtμνξ�ρ ξ�λðKλσ − ∂ΦG4gλσÞ þ δPΦΦðξ�Þχ

!
; ð221Þ

RHS ¼
 

ξ0�ð1þ G4ÞGμνρσξ�ρ Yσ

ξ0�½ð∂XG3Þðξ� · ∇ΦÞðY ·∇ΦÞ þ ∂ΦG4ðξ� · YÞ� −Kλσξ
�λGμνσ0ξ�μ Yν

!
: ð222Þ

Recall that for strong hyperbolicity to hold, this equation must have no solution ðtμν; χÞT when Yμ ≠ 0. By the
nondegeneracy of Gμνρσ we see that if

19An example of such a theory is Brans-Dicke theory [24] with positive coupling constant ω. After a redefinition of the scalar field,
this has G2 ¼ G3 ¼ 0 and G4 ¼ Φ=

ffiffiffiffiffiffi
2ω

p þΦ2=ð8ωÞ.
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G4 − fðf þ 2Þ ≠ 0; ð223Þ

then we can use the first row of this equation to solve
uniquely for Gμ

νρσξ�ν tρσ (the nontransverse part of t). This
can then be substituted into the second row of the equation
to give an equation which determines χ. Hence, if
G4 − fðf þ 2Þ ≠ 0, then, for any nonzero Yμ, Eq. (178)
has a solution. Therefore for strong hyperbolicity to hold,
we need

G4 − fðf þ 2Þ ¼ 0 ⇒ f ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G4

p
; ð224Þ

where we have chosen the root that satisfies the smallness
condition (138). With this choice of f, the first row of (178)
implies

ξ0�Yμ ¼
1

1þ G4

ξ�ρ ~Kρμχ; ð225Þ

where

~Kab ¼ Kab − ∂ΦG4gab: ð226Þ

When we plug this into the second row of (178), we obtain
a linear homogeneous scalar equation for χ and tab. This
equation has 11 unknowns and therefore admits a nontrivial
solution, generically with χ ≠ 0. It follows that if Yμ in
(225) is not vanishing, then strong hyperbolicity fails. This
means that strong hyperbolicity requires ξ�ρ ~Kρμχ ¼ 0 for
arbitrary null ξ�. Since generically χ ≠ 0, this implies that
we must choose our gauge such that ~Kμν ¼ 0. Thus we see
that strong hyperbolicity in a generic weak-field back-
ground requires us to make the gauge choice

f ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G4

p
;

ð1þ fÞHab ¼ ∂ΦG4gab − ∂XG3∇aΦ∇bΦ: ð227Þ

In this gauge, Eq. (178) implies Yμ ¼ 0, so M has no
nontrivial Jordan block; i.e.,M is diagonalizable. Note that
when G4 ¼ 0 this reduces to the gauge choice (189).
Diagonalizability of M is a necessary condition for

strong hyperbolicity to hold. It ensures the existence of
a positive definite symmetrizer K satisfying (34). But we
need to check that the remaining conditions in the defi-
nition of strong hyperbolicity are satisfied. In particular, we
need to prove that K depends smoothly on ξi. To do this,
recall that K is constructed from the matrix S which
diagonalizes M, as explained above (17). S is the matrix
whose columns are the eigenvectors of M. Hence if the
eigenvectors of M depend smoothly on ξi, then so does K.
We will explicitly construct the eigenvectors of M to
demonstrate that they depend smoothly on ξi.
Recall that the eigenvectors of M have the form (167)

where T satisfies (168). In the gauge (227), we have

δPggðξ�Þ ¼ δPgΦðξ�Þ ¼ δPΦgðξ�Þ ¼ 0; ð228Þ

which implies that any vector of the form T ¼ ðtab; 0ÞT
satisfies (168) when ξ ¼ ξ�. This proves that the eigen-
values ξ�0 each have degeneracy 10. If we choose a basis of
symmetric tensors tab that is independent of ξi, then the ξi
dependence of these eigenvectors arises only through the ξ0
in (167), which implies that these 20 eigenvectors depend
smoothly on ξi. A calculation reveals that the final two
eigenvectors have T ¼ ðtab; 1ÞT where

tab ¼ −
∂XG3

1þ G4

½∇aΦ∇bΦþ gabX� − ∂Φ logð1þ G4Þgab
ð229Þ

and eigenvalues ξ0 are determined by

0 ¼ fμνξμξν ≡ −PΦΦðξÞ −
1

ð1þ G4Þ
½X2ð∂XG3Þ2

þ 2ð∂ΦG4Þ2�ξ2: ð230Þ

For a weak field background, fμν is close to gμν and is
therefore a Lorentzian metric with f00 ≠ 0. This ensures
that there will be two real eigenvalues ξ0 depending
smoothly on ξi. As before, the eigenvectors depend on
ξi only through ξ0 and are therefore smooth. Hence all
eigenvectors have the required smoothness in ξi so the
symmetrizer is smooth. This establishes strong hyperbol-
icity in the gauge (227).20

4. Failure of strong hyperbolicity if G5 ≠ 0

Finally, we include the term L5 into the Lagrangian. We
refer to Ref. [21] for the explicit form of the equations of
motion. With G5 ≠ 0 we expect to encounter similar issues
as those we encountered in theories with ∂XG4 ≠ 0, G5 ¼ 0.
This can be seen easily if we consider the case G4 ¼ 0 with
∂XG5 ¼ 0, i.e.,

G5 ¼ G5ðΦÞ: ð231Þ

In this case we can write [21,33]

L5 ¼ G5ðΦÞGab∇a∇bΦ

¼ −∂ΦG5XR − ∂ΦG5δ
ac
bd∇a∇bΦ∇c∇dΦ

þ 3∂2
ΦG5X□Φ − 2∂3

ΦG5X2 þ � � � ; ð232Þ

20Actually we should also check the inequality below (34).
This follows trivially if we restrict to a compact region of
spacetime. For the L1 þ L2 theory, a stronger result can be
obtained [32]: this theory is symmetric hyperbolic even outside
of the “weak field” regime provided that 1þ ∂XG2 > 0 and
1þ ∂XG2 þ 2Xð∂2

XG2Þ > 0. In our case, the smallness condition
(134) implies that these conditions are satisfied.
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where the ellipsis denotes a total derivative term which does
not contribute to the equations of motion. Therefore we can
rewrite L5 as a sum of lower order Lagrangians

L5 ¼ ~L4 þ ~L3 þ ~L2; ð233Þ

where

~G4 ¼ −∂ΦG5X; ~G3 ¼ 3∂2
ΦG5X; ~G2 ¼ −2∂3

ΦG5X2:

ð234Þ

Since ∂X
~G4 ≠ 0, our previous results imply that there is

no generalized harmonic gauge for which theory is
strongly hyperbolic in a generic weak-field background.21

Of course, we could cure the above problem by adding a
G4 term to cancel ~G4 but then all we are doing is reducing
the theory to a theory with G4 ¼ G5 ¼ 0. The issue is that
there is degeneracy between the L5 term and the other
terms in the Lagrangian. We can remove this degeneracy
by supplementing the conditions (105) with

G5ðΦ; 0Þ ¼ 0; ð235Þ

which means that nontrivial G5 must depend on X.
Although we have not analyzed it in detail, there seems

very little chance that a theory with ∂XG5 ≠ 0 could be
strongly hyperbolic in some generalized harmonic gauge
for a generic weak-field background. Indeed, we expect
such a theory to exhibit even worse behavior than the
∂XG4 ≠ 0, G5 ¼ 0 case in the following sense. We men-
tioned above that for the latter theory, one can find a
generalized harmonic gauge for which M generically has
just two nontrivial Jordan blocks. We expect a ∂XG5 ≠ 0
theory to be worse in the sense that, generically, for any
generalized harmonic gauge, M will have eight nontrivial
(2 × 2) Jordan blocks, four in each of Vþ and V−. In other
words, for this theory, all pure gauge eigenvectors will be
associated with nontrivial Jordan blocks, just as for
(harmonic gauge) Lovelock theory. This is consistent with
the fact that some theories of this type can be obtained by
dimensional reduction of Lovelock theories.

5. Summary of results for linearized theory

We have proved that, if ∂XG4 ≠ 0 and G5 ¼ 0, then there
exists no generalized harmonic gauge for which linearized
Horndeski theory is strongly hyperbolic in a generic weak-
field background. However, if ∂XG4 ¼ G5 ¼ 0, then there
exists a unique generalized harmonic gauge for which
linearized Horndeski theory is strongly hyperbolic in a
generic weak-field background. We have not analyzed the
case G5 ≠ 0 in detail but we believe that, once degeneracy

with other terms has been eliminated via (235), this case is
not compatible with strong hyperbolicity in a generic weak-
field background either.
This means that any Horndeski theory [satisfying (105)]

for which there exists a generalized harmonic gauge such
that the linearized equation of motion is strongly hyperbolic
around a generic weak-field background can be obtained
from a Lagrangian of the form

L ¼ Rþ X − VðΦÞ þ G2ðΦ; XÞ þ G3ðΦ; XÞ□Φ

þ G4ðΦÞR: ð236Þ
More general Horndeski theories will fail to be strongly
hyperbolic around a generic weak-field background in any
generalized harmonic gauge.
Causal properties of theories of the form (236) have been

discussed in Ref. [34].22 It is interesting to discuss causality
using our results above. We showed above that, in an
appropriate generalized harmonic gauge, a null covector
ξa is characteristic if, and only if, either gabξaξb ¼ 0 or
fabξaξb ¼ 0, where fab is defined by (230). Furthermore, if
ξa satisfies the former condition, then PðξÞ generically has
a ten-dimensional kernel consisting of vectors of the form
ðtab; 0Þ for general tab, whereas if ξa satisfies the latter
condition, then PðξÞ generically has a one-dimensional
kernel consisting of vectors of the form ðtab; 1Þ with tab
given by (229). Hence, roughly speaking, causality for the 10
tensor degrees of freedom is determined by gab, whereas
causality for the 1 scalar degree of freedom is determined by
fab, the inverse of fab. This agrees with Ref. [34]. Of course,
these degrees of freedomare coupled together so causality for
the theory as a whole is determined by both metrics gab and
fab. More precisely, the characteristic surfaces of the theory
are surfaces which are null with respect to either gab or fab.

6. Nonlinear considerations

The above discussion shows that there exists a preferred
generalized harmonic gauge (227) for which a theory of the
form (236) is strongly hyperbolic when linearized around a
generic weak-field background. We can now ask: does this
generalized harmonic gauge condition for the linearized
theory arise by linearizing a generalized harmonic gauge
condition for the nonlinear theory?
Consider a nonlinear generalized harmonic gauge con-

dition of the form

1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
gμνÞ ¼ Jμðg;Φ; ∂ΦÞ: ð237Þ

Note that we would not want Jμ to depend on second or
higher derivatives of Φ because this would give a gauge-
fixed equation of motion involving third derivatives of Φ.

21Note that if ∂ΦG5 ¼ 0, then G5 is a constant, which implies
that L5 is a total derivative.

22Reference [34] assumed G4 ¼ 0 but for a theory of the form
(236) we can always set G4 ¼ 0 using a field redefinition,
specifically a conformal transformation.
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Linearizing around a general background solution gives

∇νhμν −
1

2
∇μhνν þ

∂Jμ
∂ð∂νΦÞ ∂νψ ¼ � � � ; ð238Þ

where the ellipsis denotes terms that do not involve
derivatives of hμν or ψ and therefore do not influence
hyperbolicity. Comparing with (112) we see that the
linearized gauge condition has

Hμν

1þ f
¼ −

∂Jμ
∂ð∂νΦÞ : ð239Þ

It follows that the functions appearing in the linearized
gauge condition must satisfy the integrability condition

∂
∂ð∂ρΦÞ

�
Hμν

1þ f

�
¼ ∂

∂ð∂νΦÞ
�

Hμρ

1þ f

�
: ð240Þ

Plugging in the functions (227), this equation reduces to

∂XG3ðgμν∂ρΦ − gμρ∂νΦÞ ¼ 0: ð241Þ

By contracting this equation it is easy to see that the only
way this can hold in a generic background is if ∂XG3 ¼ 0.
But then G3 is independent of X, so (105) implies G3 ¼ 0.23

If G3 ¼ 0, then we can find a source function Jμ consistent
with Eq. (239),

Jμ ¼ −
∂ΦG4

1þ G4

∂μΦ: ð242Þ

In summary, we have imposed the requirement that the
preferred generalized harmonic gauge condition for the
linearized theory arises by linearizing a generalized har-
monic gauge condition for the nonlinear theory. The result
is that this requirement excludes theories with nontrivial G3.
So demanding that there exists a generalized harmonic
gauge for which the nonlinear theory is strongly hyperbolic
in a generic weak-field background restricts the theory to
one of the form

L ¼ Rþ X − VðΦÞ þ G2ðΦ; XÞ þ G4ðΦÞR: ð243Þ

Since G4 can be eliminated by a field redefinition (footnote
22), this theory is equivalent to Einstein gravity coupled to
a k-essence theory. With the gauge choice (242), this theory
is not just strongly hyperbolic, it is symmetric hyperbolic
(see footnote 20).

V. DISCUSSION

We have shown that, in harmonic gauge, the linearized
equation of motion of a Lovelock theory is always weakly
hyperbolic in a weakly curved background. However, it is
not strongly hyperbolic in a generic weak-field background.
We have shown that, in a generalized harmonic gauge, the
linearized equation ofmotionof aHorndeski theory is always
weakly hyperbolic in a weak-field background. For some
Horndeski theories, a generalized harmonic gauge can be
found for which the linearized equation of motion is also
strongly hyperbolic in aweak-field background. In particular
this is true for theories of the form (236). However, for more
general Horndeski theories, we have shown that there is
no generalized harmonic gauge for which the equation of
motion is strongly hyperbolic in a generic weak-field back-
ground. Furthermore, even for theories of the form (236),
imposing the requirement that the gauge condition for the
linearized theory is the linearization of a generalized har-
monic gauge condition for the nonlinear theory restricts the
theory further, to one of the form (243).
Without strong hyperbolicity, the best one can hope for is

that the linearized equation of motion is locally well-posed
with a “loss of derivatives.” This means that the kth Sobolev
normHk of the fields at time t cannot be bounded in terms of
its initial value but only in terms of the initial value of some
higher Sobolev normHkþl with l > 0.Whether even this can
be done depends on the nature of the terms with fewer than
two derivatives in the equation of motion [5]. But even if
this can be achieved, the loss of derivatives is likely to be
fatal for any attempt to prove that the nonlinear equation is
locally well-posed in some Sobolev space, as is the case for
the Einstein equation.24 This is because establishing well-
posedness for a nonlinear equation usually involves a “boot-
strap” argument inwhich one assumes some boundon theHk

norm and then uses the energy estimate to improve this
bound, thereby closing the bootstrap. This is not possible if
the energy estimate exhibits a loss of derivatives.
Note that our result is a statement about the full equations

of motion. If one restricts the equations of motion by
imposing some symmetry on the solution (e.g., spherical
symmetry), then it is possible that the resulting equations
might be strongly hyperbolic. This is because the resulting
class of background spacetimes would be nongeneric, and,
as we have seen, for nongeneric backgrounds it is possible
for the equation of motion to be strongly hyperbolic even if
it is not strongly hyperbolic for a generic background.
Our results demonstrate that we do not have local well-

posedness for the harmonic gauge Lovelock equation of
motion for general initial data. So the situation is worse
than for the Einstein equation, for which the harmonic
gauge equation of motion is locally well-posed for any

23If G3 is independent of X, then a term in the action of the
form L3 is degenerate with a term of the form L2 and the
conditions (105) were imposed to eliminate this degeneracy.

24It is conceivable that one might have local well-posedness in
some much more restricted function space, such as a Gevrey
space.
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initial data [7]. But in practice we are not interested in
general initial data, but only in initial data satisfying the
harmonic gauge condition. Since the failure of strong
hyperbolicity appears to be associated with modes which
violate the harmonic gauge condition, perhaps we could
restrict to initial data satisfying this condition exactly and
thereby obtain a well-posed problem. One could not do
this numerically on a computer because the gauge con-
dition could never be imposed exactly—there would
always be numerical error. But perhaps this could be done
in principle. One way to proceed would be to consider
sequences of analytic initial data, satisfying the gauge
condition, which approach some specified smooth initial
data. For analytic data one can solve the equation of motion
locally [3]. If one could prove that the resulting analytic
solution satisfies an energy estimate without a loss of
derivatives (because it satisfies the gauge condition), then
perhaps it would be possible to establish local well-
posedness. Having said this, we note that one could make
exactly the same remarks about the Einstein equation written
in a “bad” (not strongly hyperbolic) gauge so it is far from
clear that this method has any chance of succeeding.
If the equation of motion is not strongly hyperbolic in

(generalized) harmonic gauge, then could there be some
other gauge in which it is strongly hyperbolic? For example,
maybe one could modify the (generalized) harmonic gauge
condition to include additional terms involving first deriv-
atives of hab, contracted in some way with the background
curvature tensor (or scalar field). But this raises the question
of whether it is always possible to impose the new gauge
condition via a gauge transformation. This would involve
solving an equation for the gauge parameters. We would
then have to analyze whether this new equation has a well-
posed initial value problem, and whether the resulting gauge
condition is propagated by the gauge-fixed equation of
motion. This may amount to analyzing equations that suffer
from the same kind of problems as the equations we have
discussed in this paper.
In this paper, we have been working with equations of

motion for the metric. An alternative approach would be to
derive an equation of motion for curvature. The Bianchi
identity can be used to write ∇e∇eRabcd in terms of second

derivatives of the Ricci tensor, and terms with fewer than
two derivatives of curvature. For the Einstein equation, one
can eliminate the Ricci tensor to obtain a nonlinear wave
equation for the Weyl tensor. This equation is strongly
hyperbolic and admits a well-posed initial value problem.
For a Lovelock theory one cannot solve explicitly for the
Ricci tensor but one could still replace the Ricci tensor
terms using the expression obtained from the equation of
motion of the theory. This gives an equation of motion
for the Riemann tensor. In contrast with what happens for
the Einstein equation, the resulting equation is subject to a
constraint, which is simply the Lovelock equation of
motion. If this constraint is satisfied by the initial data,
then it will be satisfied by any solution of the equation of
motion for the Riemann tensor. The situation looks analo-
gous to the case of the harmonic gauge equation of motion
for the metric, but with more indices. It seems very likely
that this equation of motion for the Riemann tensor will fail
to be strongly hyperbolic in a generic background.
Another approach would be to investigate equations of

motion based on a space-timedecompositionof themetric, as
in the ADM formalism. It is known that the ADM formu-
lation of the Einstein equation gives equations that are not
strongly hyperbolic [9]. However, suitable modification of
the ADM method gives equations that are strongly hyper-
bolic [9,10]. Perhaps something similar would work for
Lovelock or Horndeski theories. However, it appears that
there is no obvious way of extending the approaches used for
the Einstein equation to Lovelock theories [35].
Of course, there is also the possibility that these theories do

not admit a locally well-posed initial value problem, or that
one only has well-posedness for some highly restricted space
of initial data. This would lead to the satisfying conclusion
that these modifications of the Einstein equation can be
shown to be unviable as physical theories solely on the basis
of the classical initial value problem for weak fields.
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