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We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of
gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion.
Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is
known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We
show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field
background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the
equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski
theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic
in a weak-field background. This includes “k-essence’ like theories. However, for more general Horndeski
theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in
a generic weak-field background. Our results show that the standard method used to establish local well-
posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises
the possibility that these theories may not admit a well-posed initial value problem even for weak fields.
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I. INTRODUCTION

Lovelock theories of gravity are the most general diffeo-
morphism-covariant theories involving a metric tensor with
second order equations of motion [1]. In four dimensions, the
equation of motion of such a theory reduces to the Einstein
equation. But in higher dimensions extra terms are present,
and these can change significantly the properties of the
equation. For example, it is well known that in these theories,
gravity does not travel at the speed of light; instead the speed
depends on the curvature of spacetime [2,3].

Horndeski theories are the most general four-dimensional
diffeomorphism-covariant theories involving a metric tensor
and a scalar field, with second order equations of motion [4].
Some of these theories can be obtained from Lovelock
theories by dimensional reduction.

Although Lovelock and Horndeski theories have been
discussed extensively, the issue of their mathematical
consistency has not received much attention. A minimal
consistency requirement of a classical theory is that the
initial value problem should be locally well-posed. This
means that, given suitable initial data, there should exist
a unique solution of the equation of motion arising from the
data, and this solution should depend continuously on the
data. “Local” here means that the solution is only required
to exist for some nonzero time, no matter how small.

For analytic initial data, local existence and uniqueness
of solutions can be established straightforwardly—this was
done for Lovelock theories in Ref. [3]. However, this does
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not establish continuous dependence of the solution on the
data. Furthermore, the restriction to analytic data is unphys-
ical because it implies that the solution is determined
everywhere by its behavior at a single point. One cannot
discuss causality if one restricts to such data.

Consider the problem of nonlinear perturbations of some
“background” solution of a Lovelock or Horndeski theory.
For the nonlinear initial value problem to be well-posed, it is
necessary that the initial value problem for linearized pertur-
bations should also be locally well-posed, not just around the
background solution but around any solution in a neighbor-
hood of this background solution.

For the linearized initial value problem to be well-posed, the
equation of motion should be hyperbolic, i.e., have the character
of a wave equation. Two notions of hyperbolicity can be
distinguished [5,6]. Roughly speaking, an equation is weakly
hyperbolic if it never admits solutions which grow exponen-
tially in time, with the exponent proportional to the magnitude
of a spatial wave vector, i.e., growth which is arbitrarily fast at
arbitrarily short distances. An equation is strongly hyperbolic if
an appropriate norm of the solution at time ¢ can be bounded by
the initial value of the same norm multiplied by a function of
time which is independent of the initial data. Such a bound is an
example of an energy estimate. Obtaining such an estimate is
the standard way of proving local well-posedness. Note that
strong hyperbolicity implies weak hyperbolicity.

For a diffeomorphism-covariant theory, the gauge free-
dom implies that the equation of motion will not be hyper-
bolic unless one imposes an appropriate gauge condition.
For the Einstein equation, the simplest choice is harmonic
gauge, which ensures that the equation is strongly hyper-
bolic, and one can establish local well-posedness [7]. Other
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approaches to the Einstein equation, such as the Arnowitt—
Deser—Misner (ADM) formulation [8], give equations
which are weakly but not strongly hyperbolic [9]. This
implies that they cannot be used to establish local well-
posedness.1 It also means that they are unsuitable for solving
the Finstein equation numerically on a computer. For
numerical applications, strong hyperbolicity is regarded
as essential. The first successful binary black hole simu-
lations [11-13] employed numerical codes based on either
harmonic gauge [11] or the Baumgarte—Shapiro—Shibata—
Nakamura formalism [ 14—16]. The latter is a modification of
the ADM formalism that can be shown to be strongly
hyperbolic [17].

We will start by discussing weak hyperbolicity of
(linearized) Lovelock and Horndeski theories. The results
of previous work shows that weak hyperbolicity can fail if
the background fields become too large. It was shown in
Ref. [18] that weak hyperbolicity fails (in any gauge) for
linear perturbations of “small” black hole solutions of
Lovelock theories. Here “small” refers to the scale set by
the dimensionful coupling constants of such a theory. More
generally, one expects that weak hyperbolicity will fail in a
large class of backgrounds with large curvature. In Horndeski
theories, it has been shown that cosmological solutions can
suffer from “ghost and gradient instabilities” when the fields
become large [19-21]. As we will explain below, these
“instabilities” are not dynamical instabilities but instead
indicate a failure of weak hyperbolicity in such backgrounds.
These examples show that, for both Lovelock and Horndeski
theories, the equation of motion is not always weakly
hyperbolic. Hence for general initial data one cannot expect
local well-posedness. However, one might hope that if one
restricts the initial data so that the equation of motion is
weakly hyperbolic, then the initial value problem will be
locally well-posed. In particular, one might expect that a
failure of weak hyperbolicity would occur only for large
background fields so that if we restrict to studying back-
grounds involving only weak fields, then there will be no
problem. In this paper we will investigate whether this is true.

For weak fields, the equation of motion of a Lovelock or
Horndeski theory appears to be a small perturbation of the
Einstein equation, and therefore one might guess that the
equation of motion will be hyperbolic. However, this is not
obvious because the perturbation to the equation of motion
changes the two-derivative terms. We can illustrate this point
with an example. In two-dimensional (2D) Minkowski
spacetime consider the equations

PP = kedyo,v, 0Py = —kedy0, . (1)

View this system as analogous to the equations governing
linear perturbations around a weak field background solution

'However, there exist strongly hyperbolic modifications of
these equations which can be used to establish local well-
posedness [10].

PHYSICAL REVIEW D 96, 044019 (2017)

of Lovelock or Horndeski theory. Here £ is to be regarded as
analogous to a coupling constant of the theory, with k = 0
analogous to the Einstein equation. The parameter e corre-
sponds to the strength of the background fields, with the
Lorentz symmetry breaking on the right-hand side (RHS)
analogous to the Lorentz symmetry breaking arising from the
nontrivial background fields. For k = 0 we have a hyperbolic
system. However, when k # 0, for any € # 0 it is easy to
check that the above system of equations is elliptic. This
example demonstrates that a small perturbation to the highest
derivative terms in an equation of motion can completely
change the character of the equation.”

We will show that the above problem does not occur for
Lovelock or Horndeski theories. We will prove that these
theories are weakly hyperbolic in any weak field back-
ground. More precisely, we will prove that the linearized
equation of motion is weakly hyperbolic in harmonic gauge
(Lovelock) or a generalized harmonic gauge (Horndeski)
whenever the background fields are sufficiently weak.

Our most important results concern strong hyperbolicity
of Lovelock and Horndeski theories. As discussed above,
strong hyperbolicity is needed in order to establish local
well-posedness of the initial value problem, and in numeri-
cal applications. However, we will prove that, for Lovelock
theories, in harmonic gauge, the linearized equation of
motion is not strongly hyperbolic in a generic weakly
curved background. The word “generic” is important here:
there certainly exist particular backgrounds for which the
linearized equation of motion is strongly hyperbolic (e.g.,
Minkowski spacetime [22]) so the equation of motion for
linear perturbations around such backgrounds is locally
well-posed. However, such backgrounds are nongeneric;
e.g., they always have symmetries. In order to have any
hope of establishing local well-posedness for the nonlinear
theory for weak fields, one would need strong hyperbolicity
for any weakly curved background. This is not the case,
at least not in harmonic gauge. Hence the most straightfor-
ward approach to establishing local well-posedness for
Lovelock theories does not work.” In the final section of
this paper we will discuss whether any alternative method
could work.

For a particular class of Horndeski theories, we will
prove that there exists a generalized harmonic gauge for
which the linearized equation of motion is strongly
hyperbolic for arbitrary weak background fields. This class
of theories involves no coupling between derivatives of
the scalar field and curvature tensors in the action. This
class includes various models of interest, e.g., “k-essence”

*There is, however, an important difference between the system
(1) and a Lovelock or Horndeski theory, which is that (1) is not
obtained from an action principle.

Note that the recent discussion of local well-posedness
in Ref. [23] simply assumes that the harmonic gauge equation
of motion is suitably hyperbolic. Our result shows that this
assumption is incorrect.
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theories or scalar-tensor theories such as the Brans-Dicke
theory [24]. However, for more general Horndeski theories,
we find that the situation is analogous to the Lovelock case:
there exists no generalized harmonic gauge for which the
linearized theory is strongly hyperbolic in a generic weak
field background.

This result can be strengthened considerably as follows.
Consider a Horndeski theory for which there exists a
generalized harmonic gauge such that the linearized equation
of motion is strongly hyperbolic in a generic weak field
background. We can now ask: does this extend to the
nonlinear theory? In particular, does there exist a generalized
harmonic gauge for the nonlinear theory such that the
nonlinear equation of motion is strongly hyperbolic in a
generic weak-field background? For this to be the case,
the generalized harmonic gauge condition for the nonlinear
theory must, upon linearization, reduce to the generalized
harmonic gauge condition for the linearized theory.
However, this implies that the source function appearing
in the gauge condition of the linearized theory must satisfy a
certain integrability condition. This condition is not satisfied
in general. Using this condition we find that the class of
Horndeski theories for which there exists a generalized
harmonic gauge for which the nonlinear theory is strongly
hyperbolic in a generic weak-field background is simply the
class of k-essence—type theories coupled to Einstein gravity.
See the end of Sec. IV for a precise statement.

This paper is organized as follows: in Sec. II we define
the notions of weak and strong hyperbolicity and discuss
the relevant background material. In Sec. III we discuss
Lovelock theories. We present a proof of weak hyperbolicity
of harmonic gauge Lovelock theories in weak curvature
backgrounds and show that, generically, strong hyperbolicity
does not hold. We then present some examples in which weak
hyperbolicity is violated dynamically. These are “collapsing
universe” solutions which start off with small curvature, but
develop large curvature over time. In Sec. IV we discuss
Horndeski theories. We show that, in a generalized harmonic
gauge, Horndeski theories are weakly hyperbolic in weak-
field backgrounds. We then show that, while a subclass of
Horndeski theories is strongly hyperbolic in a particular
generalized harmonic gauge, more general Horndeski the-
ories are not. Section V discusses the implications of our
results.

We adopt the notation that Latin indices a, b, c, ... are
abstract indices denoting tensor equations valid in any
basis. Greek indices y, v, ... refer to a particular basis, e.g.,
a coordinate basis.

II. HYPERBOLICITY

In this section we will review briefly the notions of
weak and strong hyperbolicity. Our discussion is based on
Refs. [5,6]. We will start with first order systems of linear
equations and then discuss second order systems.

PHYSICAL REVIEW D 96, 044019 (2017)

A. First order equation

In d spacetime dimensions with coordinates (¢, x'),
consider a first order linear partial differential equation
for a N-dimensional vector u,

Au, + P'O;u + Cu = 0, (2)
where A, P!, and C are real constant N x N matrices.

We assume that A is invertible. Taking a spatial Fourier
transform gives

it, — iM(&)i = 0, (3)
where
M(&) = AN (=P +iC). (4)
This has solution
u(t, &) = exp(iM(&)1)u(0, &), (5)

and hence we have the formal solution

1 .
u(t,x) = —(2ﬂ)d_l /dd_lfeXP(_ifixl)
x exp(iM(&;)1)i(0,¢;). (6)

The problem with this expression is that it may not
converge as || — oo without imposing unreasonable con-
ditions on the initial data. Here we have defined

€l = Ve (7)

To ensure convergence we need the matrix M (&;) to satisfy
certain conditions. Convergence is guaranteed if M(¢;)
satisfies, for all &;, and all ¢ > 0,

[lexp(iM(&)D)l| < £ (1) (8)

for some continuous function f(z) independent of ¢&;.
This condition implies that the integral converges and
the resulting solution satisfies

[|ul|(£) < (2)1]u][0). ©)

where || - - - || denotes the spatial L? norm. Using this one
can prove that the initial value problem is locally well-
posed. So we need to determine whether the condition (8) is
satisfied.

The convergence of (6) is a high frequency question, so
we let 1 = ¢//|£] and take |é| — oo at fixed #. Equation (8)
becomes

[l exp(iM(&)1)]| < &, (10)
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where k = f(0),

Si

g =2, 11
i E (11)

and
M(&) = AP (12)

is the “principal part” of M. Consider an eigenvector v of
M(&) with eigenvalue A = 4, + id,. We have

exp(iM (&)1 v = e’ ey, (13)

This is consistent with (10) only if 4, > 0 for all & Now

M(&;) is a real matrix; hence if 1 is an eigenvalue, then so is 1
so consistency with (10) requires £4, > 0, i.e., 1, = 0. We
deduce that (10) implies that all eigenvalues of M(&;) are
real. This motivates the definition of weak hyperbolicity:
Equation (2) is weakly hyperbolic if, and only if, all
eigenvalues of M(&;) are real for any real &; with &;&; = 1.

A failure of weak hyperbolicity would be a disaster for
the initial value problem because the integrand in (6) would
grow exponentially with |£| at large |£| so convergence
would require highly fine-tuned initial data.

The matrix M(Z;) can be brought to Jordan normal form
by a similarity transformation

M(&) = S(&)T(E)S(E)™, (14)

exp(iM(Z‘i)t’) = S(Z:i)eXP<iJ(Ei>t/)S(§i)_l- (15)

Assume that M is not diagonalizable; i.e., J contains a n X
n Jordan block, n > 2, associated with an eigenvalue 4 of

M(). Then the RHS exhibits polynomial growth with ¢
For example, consider the case of a 2 x 2 block J, with
eigenvalue 4,

Al (1t
Jy = = exp(iyt') = ™ . (16
2 <0 /1) exp(ifrt') = e (0 1) (16)

If the equation is weakly hyperbolic, then 4 is real so there
is no exponential growth in . But the presence here of the
term linear in # implies that Eq. (10) is not satisfied. More
generally, an n x n Jordan block would lead to terms
involving 77 for p < n. Using ¢ = || this gives terms
proportional to |£|? in the integral of (6). The presence of
such terms implies that it is not possible to obtain a bound
of the form (9). The best one could hope for is that it is
possible to modify the RHS to include sufficiently many
spatial derivatives of u. Whether this is possible depends on
the form of the zero derivative term Cu in the equation of
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motion [5].4 But even if this is possible, the “loss of
derivatives” in (9) would be worrying if we are considering
an equation obtained by linearizing some nonlinear equa-
tion. This is because the loss of derivatives would be a
serious obstruction to establishing local well-posedness for
the nonlinear equation.

To avoid this problem, M (Z’) must be diagonalizable; i.e.,
there exists a matrix S(;) such that M = SDS~! where
D(&,) is diagonal. Defining a positive definite Hermitian
matrix K (&) = (S7')"S~! we then have

A

K(gi)M(%i)K(Ei)_l =M(&)" (17)

This motivates the definition of strong hyperbolicity. With
constant coefficients, Eq. (2) is strongly hyperbolic if, and
only if, there exists a positive definite Hermitian matrix
K (%l) depending smoothly on Zji such that (17) holds.

Note that (17) states that M (E,) is Hermitian with respect
to K (&;). This implies that M () is diagonalizable with real
eigenvalues. Using K one can define an inner product
between solutions, and the corresponding norm can be
shown to satisfy an inequality of the form (9). This is called
the energy estimate. Using this one can prove that the initial
value problem is locally well-posed independently of the
form of the zero derivative term Cu in (2) [5].

So far the discussion has considered a first order linear
partial differential equation with constant coefficients. We
can now discuss the case of nonconstant coefficients. Let
the matrices A, P’, and C in (2) depend smoothly on time
and space, with A still invertible. At some point (7o, x},) we
define the frozen coefficients equation by fixing A, P', and
C to their values at (7o, x})). It is believed that a necessary
condition for local well-posedness of the varying coeffi-
cients equation near (7o, x}) is that the frozen coefficients
equation should be locally well-posed. For this to be the
case, the frozen coefficients equation must satisfy the above
definitions of weak and strong hyperbolicity. For the
varying coefficients equation to be locally well-posed,
we need these definitions to be satisfied for all (7o, x}).
This motivates extending the definitions of hyperbolicity to
equations with nonconstant coefficients in the obvious way:
we simply allow M(t,x,&;) and K(z,x,&;) to depend
smoothly on (z,x) as well as on & [5,6].

Definition. Equation (2) is weakly hyperbolic if, and
only if, all eigenvalues of M(z, x, ;) are real for any real &;
with &;&; = 1.

Equation (2) is strongly hyperbolic if, and only if, there
exists a positive definite Hermitian matrix K(z,x, ;)
depending smoothly on ¢, x, 3,» such that

“There are examples of weakly hyperbolic systems for which
|| exp(iM(&;)1)|| grows as exp (c+/|€]f) for some constant ¢ > 0
[5], in which case one could not even obtain a bound of this
weaker type.
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K(t,x,;&,»)M(t,x, &)K(Lx’gi)_l = M(t, x, Ei)T (18)

and a constant C > 0 such that C~'1 < K(1,x,&;) < CI for
all 7, x, ;E,-.

The latter technical condition is required to obtain an
energy estimate—it ensures that K does not behave badly
for large ¢, x, e.g., it does not become degenerate or blow up
asymptotically.

B. Second order equations

Our treatment of second order equations is based
on [6]. Consider a second order linear equation for an
N-dimensional vector u in d coordinates x* = (,x'),

P*0,0,u + Q*0,u + Ru =0, (19)

where P = P*#, Q* and R are N x N real matrices. For a
covector &, the principal symbol is the matrix

P(&) = PEL,. (20)

As above, we start by considering the constant coefficients
case. Take a spatial Fourier transform to obtain

M) = ( 0

Note that the L? norm of 7 is a measure of the energy
of the field u: it is quadratic in u and its first derivatives.
To prove local well-posedness requires that this norm obeys
an energy estimate of the form

[1(r) < £ (0)1[w]|(0) (27)

for some continuous function f(#) independent of &; and w.
The solution of the first order equation is

w(t, &) = exp(iM(&;)t)w(0,&;), (28)

so for the energy estimate to hold for any initial data we
need

lexp(iM(&)D)l| < £ (). (29)

If we define r = 7'/ |£] at take |£| — oo at fixed 7, then this
implies

| exp(iM(E)1)]] < k, (30)

*Here we slightly modify the approach of [6] to avoid
singularities at |&| = 0.

—(1+[§P)72A7N(C(&) +iQ'¢; + R)

PHYSICAL REVIEW D 96, 044019 (2017)
Aty +i(B(&) +1Q%)i1, = (C(&) +iQ'& + R)it = 0,
@)
where
A=P%

B(&;) =25P%,  C(&) =PU8g,  (22)

and we assume that A is invertible, i.e., surfaces of constant

t are noncharacteristic. We write this equation in first order
form by defining a column vector W by’

W= <mu —iﬁ,), (23)

where, as above,
&l = V&, (24)
giving the equation
w, = IM(E)w, (25)

where we define the 2N x 2N matrix

(1+[&»)V2r
. 26
—A‘I(B(fi)+iQ°)> 20
[
where k = £(0), & = /¢, and
0 1
M&) = (—A-lc@,-) —AﬁB(@-))' Gl

We can now repeat the argument we used for a first order
system: if M (2,) had a complex eigenvalue, then we could
violate (30). Hence we define weak hyperbolicity as the
condition that all eigenvalues of M(&;) are real.

Let & be an eigenvalue of M(&;) with eigenvector
(¢t,7)T. Writing out the eigenvalue equation gives ¢’ = &yt
and

(A& + B(&)& + C(&))t = 0. (32)

This is a quadratic eigenvalue problem with eigenvector t.
In terms of the principal symbol it is simply

P(¢)t =0, (33)

where &, = (&. &;). This equation states that the covector &
is characteristic. Hence (19) is weakly hyperbolic if, for
any real &; # 0, a characteristic covector (&, &;) has real &,.

As for first order systems, if the Jordan normal form
of M involves nontrivial blocks, then Eq. (30) cannot hold.

044019-5



GIUSEPPE PAPALLO and HARVEY S. REALL

So we define strong hyperbolicity just as we did above:
Equation (19) is strongly hyperbolic if, and only if, there
exists a positive definite Hermitian matrix K (&;) depending
smoothly on &; such that M(Z;) is Hermitian with respect to
K, i.e., satisfies (17). This implies that M(&;) = |E]2M(&;)
is diagonalizable with real eigenvalues.

Finally we consider Eq. (19) with coefficients P**, Q*,
and R now depending on (7, x). We define M(t, x, £;) using
(31). As for first order systems, it is believed that local well-
posedness implies local well-posedness for the equation
with frozen coefficients. Hence we define weak and strong
hyperbolicity just as for first order systems.

Definition. Equation (19) is weakly hyperbolic if, and
only if, all eigenvalues of M (¢, x, &;) are real for any real &;
with &;¢& = 1. Equivalently, if (&, &;) is characteristic and
&; # 0 is real, then & is real.

Equation (19) is strongly hyperbolic if, and only if, there
exists a positive definite Hermitian matrix K(, x, E,)
depending smoothly on t,x, & such that

K(t.x, E)M(t. x,E)K (1, x,E) = M(1.x,&)T  (34)

and a constant C > 0 such that C~'1 < K(1, x, %,) < CI for
all 7,x, &,

In this paper we will mainly be interested in showing that
certain equations are not strongly hyperbolic. We will do
this by demonstrating that M(z, x, &) is not diagonalizable.
Note that M is determined by P**, i.e., by the principal
symbol. So hyperbolicity depends only on the nature of
the second derivative terms in the equation. Furthermore, to
demonstrate that M is not diagonalizable it is sufficient to
work at a single point in spacetime.

III. LOVELOCK THEORIES

A. Equation of motion in harmonic gauge

In d > 4 spacetime dimensions, the equation of motion
of a Lovelock theory of gravity is

Aab = 877:Tab7 (35)
where T, is the energy momentum tensor of matter and
Ay = G + A6,

+ kaéii;‘,ll'.ZZ,Rclc;" d . .Rczp_lczpdzp_ldzp, (36)
p=2

We have assumed that the coefficient of the Einstein term
is nonzero and normalized it in the standard way. k, are
constants and the antisymmetry ensures that the sum is
finite (2p + 1 < d in d dimensions). We will be consider-
ing the case of vacuum solutions of this theory so we set
T, = 0 henceforth.

PHYSICAL REVIEW D 96, 044019 (2017)

To investigate hyperbolicity we linearize around a back-
ground solution g,;; i.e., the metric is g, + h,p, and we
linearize in h,,,, writing

Awlg+h) = Awlg + AR+ (37)
so that the linearized equation of motion is
Al =o. (38)

For the Einstein equation (i.e., k, =0), the resulting
equation is strongly hyperbolic only if we impose a suitable
gauge condition. For the nonlinear equation, one can
choose harmonic coordinates,

1
0= "V, = —=0=a). (39

Upon linearization this reduces to the Lorenz gauge
condition for the linearized metric perturbation,

1
Hb = V“hab - Evbhz = 0 (40)

Actually, linearizing the harmonic gauge condition around
a nontrivial background gives a generalized Lorenz gauge
condition with a nonvanishing RHS. But this RHS does not
depend on derivatives of &, which implies that it does not
affect the hyperbolicity analysis. Therefore we will just use
the standard Lorenz gauge.

Although most properly referred to as Lorenz gauge,
henceforth we will refer to (40) as harmonic gauge because
it is inconvenient to use different words for the linear and
nonlinear gauge conditions. Of course, it is well-known that
the gauge condition (40) can always be achieved by a
suitable gauge transformation in the linearized theory.

In harmonic gauge, the Einstein equation is strongly
hyperbolic. We will investigate whether the same is true for
Lovelock theory. We will do this by investigating hyper-
bolicity of the linearized theory. The harmonic gauge
linearized equation of motion is

Al =o, (41)
where
T(W1 4 1 o
Aah [h] = Aab [h} - v(aHb) + Egabv Hc‘ (42)

This is the equation of motion whose hyperbolicity we
will study.

A standard argument shows that the harmonic gauge
condition is propagated by the harmonic gauge equation of
motion [3]. The argument is based on the fact that the tensor
A, arises from a diffeomorphism covariant action and
therefore satisfies a contracted Bianchi identity VA, = 0.
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Linearizing around a background solution gives, for
any hyy,

VoAl [n] = o, (43)
so, when (41) is satisfied, the divergence of (42) gives
vbvaa + Rabe — O (44)

This is a standard linear wave equation, and so provided
the initial data are chosen such that H, and its first time
derivative vanish, then the solution will have H, = 0.
(As for the Einstein equation, vanishing of the first time
derivative of H, is equivalent, via the equation of motion,
to the condition that the initial data satisfy the constraint
equations [3].) This proves that the gauge condition (40) is
propagated by the equation of motion (41). Hence the
resulting solution will satisfy the original equation of
motion (38).

The harmonic gauge equation of motion (41) takes the
form

Padeefvevfhcd + ... = 0’ (45)

where the ellipsis denotes terms involving fewer than two
derivatives of h,;,. The coefficient here defines the principal
symbol

P(é:)abcd = Padeeffgff (46)

for an arbitrary covector &,. The coefficient is symmetric in
ab and in cd. It can be split into the terms coming from the
(harmonic gauge) Einstein tensor, and those coming from
the extra Lovelock terms,

P(&)*" = Pringiein (§) ! + 6P<4(8), (47)
where, for a symmetric tensor 7,
Peinstein ()" “ca = —%sz”Mfcd (48)
with & = g &£, and

Gabcd — (gacgbd + gadgbc _ gabgcd). (49)

N[ =

Viewed as a quadratic form on symmetric tensors, G*<?
has signature (d,d(d —1)/2), i.e., d negative eigenvalues
and d(d — 1)/2 positive eigenvalues.

The Lovelock contribution to the principal symbol is
given by [25]
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8P (E)1eg = 5Pab0def§e§ftcd

_ acegsga-9op-192p d f
= 2§ :pkp5bdfh3h4mhz,,_lhz,,tc S

p>2
X Ry /51 Ry, o ooy, (50)
Note that
§pabedef _ spedabef (51)
and
splalbedlef) — spalbeldelf) — ¢ (52)

These identities are a consequence of the gauge symmetry
of the theory and the fact that the gauge fixing terms do not
affect 6P. We will discuss this in more detail in Sec. IV B.
It follows that

E,OPU(E) = &€ 80P = 0. (53)

B. Setting up the problem

We will investigate whether the harmonic gauge linear-
ized Lovelock equation of motion is hyperbolic when the
curvature of the background spacetime is small. Here,
“small” means small compared to any of the scales defined
by the dimensionful coupling constants &, so one expects
the Lovelock terms in the equation of motion to be small
compared to the Einstein term.

To relate to the discussion of (2.2) we need to introduce
coordinates x* = (¢,x'). We assume that these are chosen
so that surfaces of constant ¢ are spacelike, i.e., g% <0,
which ensures that the initial value problem for the
harmonic gauge linearized Einstein equation is well-posed.
We want to ask whether the same is true for the harmonic
gauge linearized Lovelock equation when the background
curvature is small. Here, by small, we mean that there exists
an orthonormal basis {ej; } with e, orthogonal to surfaces of
constant ¢, for which the magnitude of the largest compo-
nent of the Riemann tensor is L™ where |k,|L™2" < 1 for
all p > 2. This ensures that the Lovelock terms in the
equation of motion are small compared to the Einstein term.

The principal symbol P(&) maps symmetric tensors to
symmetric tensors so we regard it as a N X N matrix where
N =d(d + 1)/2. We define N x N matrices A(x), B(x, &;),
and C(x,¢&;) using Eq. (22), i.e.,

A= POO’ B(fz‘) = Zéeip()iv C(fi) = fi‘-fjpij- (54)
Here ¢; is real with &;&; = 1 (since this is what we need in the
definitions of strong and weak hyperbolicity). Throughout
this section we will not write explicitly the dependence on the
spacetime coordinates x*. Note that these matrices are real
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and symmetric: the latter property arises because the equation
of motion can be obtained from a Lagrangian (see Sec. [V B).

Our assumption that the surfaces of constant ¢ are
spacelike ensures that A is invertible when the Lovelock
terms are absent. Hence, by continuity, A is also invertible
when the background curvature is small. We can therefore
define M(&;) as above, i.e.,

0 1 ) (55)
—AT'C(&) -AT'B(g) )

M(&) = <
Recall that weak hyperbolicity is the requirement that the
eigenvalues of this matrix are real. For strong hyperbolicity
it is necessary that the eigenvalues are real and the matrix
is diagonalizable.
From the discussion of Sec. (Il B) we know that &; is
an eigenvalue of M(&;) if, and only if, the corresponding
eigenvector v has the form

o (&t)t> (56)

for some nonzero symmetric ¢, such that

P()t =0, (57)

where &, = (). ¢;) in the argument of P.

Consider first the case of the linearized Einstein equation.
Since G**? is nondegenerate, Eq. (48) implies that &, is
characteristic if, and only if, it is null,

PEinstein(f)[ =0, 1#0 < gﬂbéygu =0. (58)
Let (E(T denote the two solutions of ¢#*£,&, = 0 for the given
&;. Of course, these solutions are real, so the (harmonic

gauge) Einstein equation is weakly hyperbolic. We define the
null covectors

& = (&5.%0)- (59)

These covectors will play an important role throughout this
paper. By solving explicitly one finds that

0i
_ g'&
& +& =2 400

= O+ =0.  (60)

Hence we can adopt the convention &+ < 0, £~ > 0.°
We have Pgiygein(E7)t = 0 for any t,,. Hence for the
Einstein equation, the matrix M has two real eigenvalues &
and the associated eigenvectors are (,&51)7. Each eigen-
value has N eigenvectors associated with it. It follows that

®We cannot have £0% = ( because that would violate the facts
that & is null and €° is timelike.
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M has 2N linearly independent eigenvectors, and hence M
is diagonalizable, as required by strong hyperbolicity.

We now return to the general case of Lovelock theory.
Define a 2N x 2N real symmetric (and hence Hermitian)
matrix H(&;) by

we) - ("5 7). o1
We then have
H(&)M(E)H(E)™ = M(&)" (62)

so M is real symmetric (and hence Hermitian) with respect
to H. It is easy to see that H is nondegenerate: if v =
(t,7)7, then Hv = 0 implies t = ¢ = 0 using the fact that
A is invertible.” H is Hermitian and nondegenerate so its
eigenvalues are real and nonzero. We can determine the
signature of H by writing the Lovelock couplings as

k,=¢ek,,  p=2. (63)

Since the eigenvalues of H are real, nonvanishing, and
depend continuously on e (with l~<,, and the background
curvature fixed), the signature of H cannot depend on e.
Hence it can be evaluated at ¢ = O, i.e., for the linearized
Einstein equation. The result is that H has N positive
eigenvalues and N negative eigenvalues, even for strong
background fields. Thus, although H and M satisfy the
condition (34), this does not imply strong hyperbolicity
because H is not positive definite.

C. Proof of weak hyperbolicity in a low
curvature background

To proceed, we will use a continuity argument involving
the parameter € defined in (63). Note that taking ¢ small
at fixed I~cp and fixed background curvature is equivalent to
assuming the background curvature to be small at fixed k.
We will establish weak hyperbolicity for small e, which is
equivalent to establishing it for small background curva-
ture. In what follows we will suppress the dependence of M
and H on &; and write simply M(¢) and H(e).

For ¢ =0 we showed above that £ are the only
eigenvalues of M(¢), each with degeneracy N. The eigen-
values of M(e) depend continuously on e [27]. Hence,
for small e, they can be split unambiguously into two
sets according to whether they approach &} or &; as € — 0.

"The matrix H is closely related to the symplectic current
density @* defined in [26]. Roughly speaking, H is the high
spatial frequency part of the Fourier space analogue of —ie°.

This is the case even for the Einstein equation (¢ = 0).
However, for the Einstein equation we have shown that we
can diagonalize M so we can construct a positive definite matrix
K as explained above Eq. (17).
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We will follow [27] and refer to these sets as the & -group
and the &;-group. Each group contains N eigenvalues.

Since we do not know whether the eigenvalues and
eigenvectors of M(e) are real, we will regard M(e) and
H (¢) as acting on a complex vector space V of dimension 2N.

For € = 0, the eigenvalues £ are degenerate but “semi-
simple”; i.e., M(0) is diagonalizable. However, there is no
reason for this to remain true when ¢ # 0: the Jordan
canonical form of M(e) may involve nontrivial Jordan
blocks. For any eigenvalue &, one can define a generalized
eigenspace as

{v: Jrsuch that (M — &yI)"v = 0}. (64)

This is the sum of the vector spaces associated with the
Jordan blocks corresponding to that eigenvalue. We define
the “total generalized eigenspace for the &&-group” V*(e)
as the sum over generalized eigenspaces of the eigenvalues
in the & -group. Since any eigenvalue belongs to one of
these groups we have

V= Vte) ® V(). (65)
We denote the projection onto V*(e) as IT*(e), i.e.,
VE(e) = T (e) V. (66)

These projection matrices are holomorphic in e for small €;
in fact, there is an explicit formula [27]

1% (e) = —% . (M(e) — z)7dz, (67)

where I't is a simple closed curve in the complex plane
such that & lies inside I'* but & lies outside I'*. Note that
I'* does not depend on €. For small nonzero ¢, the integrand
has poles at the eigenvalues of M(¢) but only the eigen-
values that belong to the f(jf—group lie inside T'*.

It can be shown that M(e) and H(¢) satisfying (62) can
be brought simultaneously to a block-diagonal canonical
form, where M(e) is in Jordan canonical form and M(e)
and H (e) have the same block structure [28]. Since V7 (¢)
and V~(e) contain different Jordan blocks of M(e) it
follows that these subspaces are orthogonal with respect
to H(e). Consider the restriction of H(e) to these sub-
spaces. Define the projection of H(e) onto V*(e),

H*(e) = IT*(e)TH ()T (e). (68)

This is a Hermitian matrix which depends holomorphically
on €. We will need to determine its signature. Any vector in
VF(e) is an eigenvector with eigenvalue 0; hence H*(e)
has at least N vanishing eigenvalues. The remaining
eigenvalues are associated with eigenvectors living in
V£ (e). Since the restriction of H*(¢) to V* is the same
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as the restriction of H(e) to V&, it follows that this
restriction is nondegenerate; i.e., these remaining eigen-
values are all nonzero. Therefore we can determine the
signs of these eigenvalues by looking at the signs of the
eigenvalues when ¢ = 0, and using continuity. For € = 0,
we know that V*(0) consists of vectors of the form
v = (t,&51)T. Taking the inner product of two such vectors
with respect to H*(0) gives

Vi HE(0)vy = t]B(0)t, + 25511 A(0)1,
= 2§;IIPOM 1 = —§Oil'{Gt2, (69)

Einstein

where G is defined in (49). Hence the signature of H*(0)
restricted to V*(0) is the same as the signature of —£°*G.
Recall that £ < 0, £~ > 0. It follows that within V*(0),
H*(0) has the same signature as +G, i.e., d negative
eigenvalues and d(d — 1) /2 positive eigenvalues for H*(0)
and vice versa for H~(0). Hence, by continuity, it follows
that H" (e) has d negative eigenvalues and d(d —1)/2
positive eigenvalues, with eigenvectors in V' (¢), as well as
N = d(d + 1)/2 vanishing eigenvalues with eigenvectors
in V~(e). Similarly for H~(e) with positive and negative
interchanged.

We can identify an important subset of eigenvectors
of M(e) explicitly, for any e. They are associated with a
residual gauge freedom. These “pure gauge” eigenvectors
have v of the form (56) with

& =&, Lw = faxu) (70)
for arbitrary complex X,. Of course, a pure gauge eigen-
vector with eigenvalue & belongs to V*(e). It is interesting
to calculate the inner product of two pure gauge eigen-
vectors, so let t;/w = é(iﬂX’D ) and consider the associated

vector v’ defined by (56). Since v, v/ are elements of V=(e),
their inner product with respect to H*(e) is the same as
their inner product with respect to H(e),

vTH(e)v = "B(e)t 4 2&5 1T A(e)r = 26517 PY% (€)1
=28, &5 XoX PP (e) = 0, (71)

where in the final step we used the second equation in (53),
and the fact that two such pure gauge vectors 7, 1’ are
orthogonal with respect to G**°. This result shows that
the pure gauge eigenvectors with eigenvalue & form a
d-dimensional subspace N* of V*(e) that is null with
respect to H=(e).

We can now prove that the harmonic gauge linearized
equation of motion of Lovelock theory is weakly hyper-
bolic in a small curvature background. Consider the
possibility of an eigenvalue &, that is complex, with
eigenvector v. For concreteness, assume that &, belongs
to the &J-group, so v € V' (e). Equation (62) implies that

044019-9



GIUSEPPE PAPALLO and HARVEY S. REALL

a pair of eigenvectors whose eigenvalues are not complex
conjugates of each other must be orthogonal with respect
to H(e). This implies that v is orthogonal, with respect
to H"(e), to the pure gauge eigenvectors in V7 (e).
Furthermore, since &, is complex, the H(e)-norm of v
must vanish, which implies that v is null with respect to
H™ (¢). The linear span of v and N* now gives a (d + 1)-
dimensional subspace of V7 (¢) that is null with respect to
H*(e). However, this is impossible because we showed
above that for small ¢, H" (¢) has d negative eigenvalues
and d(d —1)/2 positive eigenvalues which implies the
maximal dimension of a null subspace of V™ (¢) is given by
min(d, d(d — 1)/2) = d [28]. This proves that complex &,
is not possible for small e.

The final step is to note that the above argument assumed
fixed &;; i.e., for given &; then complex & is not possible for
small enough e. But we need our final result to be uniform
in &;; i.e., we need to show that the upper bound on ¢ does
not depend on &;. To do this we recall that our definition of
weak hyperbolicity refers only to ¢; satisfying the condition
&&= 1,1.e., & belonging to a compact set. The spectrum
of a matrix M has uniformly continuous dependence on M
when M is restricted to a bounded set [27]. It follows that
the spectrum of M(e) and H(e) has uniformly continuous
dependence on € and &; when e is restricted to a bounded
set and &;&; = 1. Using this it can be shown that our results
above are indeed uniform in &;. The same argument
establishes that our result is uniform in the spacetime point
x* provided we restrict to a compact region of spacetime.

The above argument is restricted to a weakly curved
background spacetime. If the curvature is not weak, then
the argument can fail. Imagine increasing e to arbitrarily
large values. There are two things that could go wrong.
First, our assumption that A is invertible may fail; i.e., we
might reach a value of ¢ for which a surface of constant ¢
becomes characteristic somewhere. Second, it might not be
possible to separate the eigenvalues into the & -group and
the &;-group as we did above. For example, as we increase
€, an eigenvalue from one group might coincide with an
eigenvalue from the other group. At larger ¢, this eigenvalue
could then split into a pair of complex conjugate eigen-
values, violating weak hyperbolicity.

D. Failure of strong hyperbolicity in a generic
low curvature background

For strong hyperbolicity, M must be diagonalizable.
We will now demonstrate that this is not the case for a
generic weakly curved background spacetime.9 We showed
above that eigenvalues &, are all real in a weakly curved
background. Therefore in this section we will assume that
all vector spaces V*, N¥, etc., are real. Note that the

°In this section, we will not write explicitly the dependence on
the parameter ¢; e.g., we write M instead of M(e).
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assumption that the background is weakly curved is
required to define these spaces.

As discussed above, M and H satisfying (62) can be
brought simultaneously via a change of basis to a certain
canonical form [28]. We need to discuss this canonical form
in more detail. In the canonical basis, M has Jordan normal
form and H is block diagonal, with the same block structure
as M. By this we mean that a n x n Jordan block in M
corresponds to a n x n block in H. Such a block of H
consists of zeros everywhere except on the diagonal
running from top right to bottom left. Along this diagonal,
the elements are all equal to 1 or all equal to —1. For
example, if M has a 3 x 3 Jordan block, then the corre-
sponding 3 x 3 block in H has the form

0 0 =l
0 +1 0 |. (72)
+1 0 0

Each n x n block in H is nondegenerate and has signature
either +1 or —1 (if n is odd) or O (if n is even).

Recall the definition (64) of a generalized eigenspace.
Note that a generalized eigenspace corresponds to a sum of
all Jordan blocks associated with the given eigenvalue. Hence
V* is a direct sum of the basis vectors associated with Jordan
blocks of eigenvalues in the & -group. Hence any Jordan
block is associated either with V* or with V~. The canonical
form then implies that VT and V™~ are orthogonal with respect
to H, as stated above.

Let E* C V* denote the generalized eigenspace of the
eigenvalue & . We have shown that N* C E*. Hence, when
restricted to E*, H* must admit a d-dimensional null
subspace. Consider H™". From the canonical form we know
that H* is nondegenerate when restricted to E*. If this
restriction has signature (r,s), then the dimension of a
maximal null subspace of E* is min(r, s) [28]; hence, we
have r,s > d. However, we already know that H' has
signature (d, d(d —1)/2) within V*. The canonical form
for H shows that the signature is equal to the union of the
signatures of each block. Therefore H' can have at most d
negative eigenvalues within E*; i.e., we must have r < d.
Combining these inequalities we see that r = d and s > d.
Hence E' has dimension r+ s > 2d. Similarly E~ has
dimension at least 2d.

A necessary condition for strong hyperbolicity is that M is
diagonalizable; i.e., there should be no nontrivial Jordan
blocks. In other words, strong hyperbolicity requires that all
generalized eigenspaces are simply eigenspaces. Hence if the
theory is strongly hyperbolic, then E* must be an eigenspace.
Hence strong hyperbolicity requires that M admits at least 2d
eigenvectors with eigenvalue £ . We already know that there
are d such eigenvectors in N*. But for strong hyperbolicity
there must exist at least an extra d eigenvectors beyond
these pure gauge ones. In terms of the principal symbol, this
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condition is that there exist at least 2d solutions ¢,
of P(£*)t =0 or equivalently [since Pgipgein(E) = 0]
SP(£X)t=0. In other words, ker6P(£%) should have
dimension at least 2d. Furthermore, for strong hyperbolicity,
this must be true for any & and hence for any null £*.
In other words,

A necessary condition for strong hyperbolicity is that,
Sfor any null & ker 6P (&) has dimension at least 2d.

There are certainly examples of background spacetimes
for which this condition is satisfied. An extreme example is
a flat background, for which 6P = 0. In this case M is
diagonalizable and the equation of motion is strongly hyper-
bolic. A less trivial example is supplied by the class of Ricci
flat spacetimes with Weyl tensor of type N, which are
solutions of Lovelock theory with A = 0. In this case, the
results of Ref. [18] imply that M is diagonalizable so the
equation of motion is strongly hyperbolic in such a back-
ground (even for large curvature). For this class of space-
times, in addition to the pure gauge eigenvectors, generically
there exist d additional eigenvectors in E*. This implies that
ker SP(£%) generically has dimension 2d for these space-
times, in agreement with the above argument.

These background spacetimes are clearly very special
because they have symmetries. In a generic weakly curved
background, with null &, there is no reason to expect that
ker 6P (&) contains any nongauge elements. To explain this,
first note that if we are interested in nongauge elements of
ker SP(£*), then we can regard SP(EF) as a map from the
quotient space V*/N*, which has dimension d(d —1)/2,
to the space of symmetric tensors which have vanishing
contraction with £* [because of (53)]. The latter space also
has dimension d(d — 1)/2. There is no reason to expect this
map to have nontrivial kernel.

Perhaps we are overlooking some hidden symmetry of 6P
that would guarantee that its kernel is larger than we expect.
To exclude this possibility, we have calculated ker 6P (&) for
null £ in a generic background using computer algebra as
follows. We fix a point in spacetime and work at that point.
Note that 6P is determined by the Riemann tensor of the
background. For given null £ we can introduce a null basis for
which & is one of the basis vectors. In this basis, we can
generate a random Riemann tensor satisfying the background
equation of motion. To do this, we generate a random (small)
Weyl tensor and then use the background equation of motion
to determine the Ricci tensor and hence the Riemann tensor.
Since the equation of motion is nonlinear in curvature, there
can be multiple solutions for the Ricci tensor; but typically
only one of these has small components, so this is the one we
use. We then calculate ker 5P (&) for this background Riemann
tensor. Theresultis that, generically, this kernel has dimension
d; i.e., it consists only of the pure gauge elements.

In summary, we have shown: M is not diagonalizable for
a generic weak field background. Therefore the harmonic
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gauge linearized Lovelock equation of motion is not
strongly hyperbolic in a generic weak field background.

It is interesting to consider the canonical form of M in
more detail. Let us examine the condition for M to have a
n x n Jordan block with n > 2. From the canonical form, it is
clear that the eigenvector associated with such a block must
be null.'"’ Assume that this eigenvector lives in V. If the
eigenvalue is not &, then this eigenvector must be H'-
orthogonal to N*, which implies that we could add this
eigenvector to N to construct a null subspace of dimension
d + 1, contradicting the fact that N* is a maximal null
subspace. Hence the eigenvalue must be &; . Similarly if the
eigenvector lives in V7, then the eigenvalue is &;. We
conclude that a nontrivial Jordan block must have eigenvalue
&=, so the basis vectors associated with the block must
lie in E*.

Any such Jordan block admits a vector v € E* such that
(M — £F)?v = 0but (M — & )v # 0 (v is simply the second
basis vector associated with the block); hence (M — & )v is
an eigenvector of M with eigenvalue £F. So we must have

o=z = (1) 73

for some nonzero s, such that [using Prjgein(E5) = 0]
SP(&%)s = 0. (74)

To examine whether such a block is possible, we need to

determine whether (73) admits a solution v for some s, # 0.

If such a solution exists, then M is not diagonalizable.
Writing v = (¢,#)7 we find that (73) reduces to

! =¢Et+s (75)
and
SP(E5)t = —(2EEA + B)s. (76)

The necessary and sufficient condition for this equation to
admit a solution ¢ is for the RHS to have vanishing
contraction with any element of ker SP(&%). We know this
kernel always contains the pure gauge eigenvectors; i.e.,
it contains N*. So contract with a pure gauge vector of the
form r,, = f(iﬂ Y,). The left-hand side (LHS) vanishes, and

we can rewrite the RHS in terms of H to obtain

0=(r 5@)}1(50;). (77)

Hence (s, &s)T must be orthogonal (with respect to H) to
all pure gauge eigenvectors in E*, i.e., orthogonal to N*.
Furthermore, Eq. (74) shows that s belongs to the kernel of

"For example, for a 3 x 3 block, in the canonical basis, the
eigenvector is (1,0,0)7 and evaluating the norm of this using (72)
gives 0.
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SP(£*) so we also need the contraction of s with the RHS
of (76) to vanish. This implies that (s, s)” is null with
respect to H. Therefore if this vector is not pure gauge, we
could add it to N* to enlarge our null subspace, contra-
dicting maximality of this null subspace. This proves that s
must be pure gauge, i.e.,

Sm, = af?;XD) (78)

for some X, # 0. Hence, nontrivial Jordan blocks can arise
only from pure gauge eigenvectors. For s, of this form, the
RHS of (76) has vanishing contraction with any element
of N*.

We argued above that, in a generic weakly curved
background, all elements of ker SP(£*) are pure gauge,
i.e., ker 5P(£F) = N*. It follows that in such a background,
Eg. (76) can be solved for any pure gauge s,,; i.e., all pure
gauge eigenvectors belong to nontrivial Jordan blocks
of M. So generically there are d nontrivial Jordan blocks
in each of E¥ and M has 2d nontrivial blocks in total.
In nongeneric backgrounds, ker SP(£*) may contain non-
gauge elements in which case M may have fewer than 2d
nontrivial blocks.

We have shown that, in a generic weak field background,
every pure gauge eigenvector is associated with a n x n
Jordan block of M with n > 2. Itis interesting to ask whether
we could have n > 3. If n > 3, then there is a vector v € E*
such that (M —¢&5)3v =0 with (M —E&F)*v #0. Let
(M =& )v=(1,7)", and then (z,7) must obey Egs. (75)
and (76). Writing v = (u,u’)" then gives

u=Eu+1, (79)
SP(EX)u = —(2EEA + B)i — As. (80)

As with (76), the necessary and sufficient condition
for this equation to admit a solution is that the RHS has
vanishing contraction with any element of ker SP(&%).
Generically we have ker SP(&5) = N* so we need the
RHS to have vanishing contraction with any pure gauge

vector r,, = é(iﬂYy). This contraction is just the H-inner

product of (7, 7) with (r, & r), so these vectors must be H-
orthogonal for any pure gauge vector r. But there is no reason
why this should be true. So generically we do not expect
the above equations to admit a solution; i.e., the generic
situation is n = 2.

To summarize, we have shown that, in a generic weak
field background, every pure gauge eigenvector of M
belongs to a Jordan block of size 2 x 2."" Since nontrivial
Jordan blocks can arise only from pure gauge eigenvectors,
it follows that, generically, V= consists of d 2 x 2 Jordan

"More precisely, this is true for a generic point and for generic
&;, in a generic weakly curved background.

PHYSICAL REVIEW D 96, 044019 (2017)

blocks, one for each pure gauge eigenvector, and d(d — 3)/2
additional nongauge eigenvectors. For a generic Ricci flat—
type N spacetime, it has been shown that these d(d — 3)/2
additional eigenvectors have eigenvalues distinct from &
[18], and so they do not belong to E*; hence we expect this to
be the behavior in a generic spacetime. Therefore, generi-
cally, E* will have dimension 2d.

Note that the d(d — 3)/2 eigenvectors in V= that do not
belong to E* can be regarded as the “physical graviton
polarizations” [18]. To understand why, note that these
eigenvectors have the form (56) where 7, satisfies the
harmonic gauge condition. To prove the latter statement,
simply contract the equation

P&y, = 0 (81)

with £, and use (53) to obtain

1 1
52 (éyt/w - 55/41,/;) =0 = {Syt}w - Eéurg =0, (82)

where we used the fact that £ # 0 because the eigenvector
is not in E*. Here the LHS is the “high frequency part” of
the harmonic gauge condition. It is easy to check that the
pure gauge eigenvectors in N* also satisfy this condition.
However, there is no reason to expect that the vectors 7,,
obtained by solving (76) will satisfy this condition. Hence,
generically, the d “nongauge” vectors in E* are associated
with 7, which violate the harmonic gauge condition. So
generically E* consists only of pure gauge and “gauge
violating” vectors, which is why the d(d — 3)/2 elements
of V* that do not belong to E* can be regarded as the
“physical polarizations.”

E. Dynamical violation of weak hyperbolicity

We have shown that the linearized harmonic gauge
equation of motion of Lovelock theory is not strongly
hyperbolic in a generic weak curvature background.
However, as mentioned above, it can be strongly hyper-
bolic in a nongeneric weak curvature background. In this
section, we will discuss a class of such backgrounds,
namely homogeneous, isotropic, cosmological solutions
of Lovelock theory. The aim is to demonstrate that weak
(and hence also strong) hyperbolicity can be violated
dynamically: there are “collapsing universe” solutions that
start with small curvature but develop large curvature over
time, in such a way that weak hyperbolicity is violated.
Once this happens, local well-posedness of the equation of
motion is lost, which implies that generic linear pertur-
bations of the solution can no longer be evolved.

Lovelock  theories admit Friedmann-Lemaitre—
Robertson—Walker-type solutions [29,30]

g = —d* +a(t)%y, (83)
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where y is the metric of a (d — 1)-dimensional submanifold
of constant curvature K. We denote by D the Levi-Civita
connection associated with y. The nonvanishing compo-
nents of the Riemann tensor associated with g are

R =a(nd, Ry = p(1)d, (84)

ij?
where, in terms of the Hubble parameter H = a/a,
K
242

The nonvanishing components of the Lovelock tensor (36)
are

A% =Y Ko, (86)
p

a +H?,  p=H*+H. (85)

/

Al = 5;’217: (dk_p D a’~'(2pp+(d=2p - Da). (87)

where, for convenience, we have rescaled the coupling
constants

(d-1)!
K, =2r—————k ko=A, ki =-1/4
P d=2p-1)1 " 0o ! /
(88)

Taking our matter source to be a perfect fluid with equation
of state P = wp, the equations of motion read

> kya? = —p. (89)
p

S R@ld= 1w+ 1) 25
> 2pk,ar!

To observe how weak hyperbolicity can be violated
dynamically in this setting, it is sufficient to look at the
linearized equations for transverse-traceless tensor pertur-
bations g — g + dg,

p= . (90)

690, = 0, 89 = 2a*hy;, hij = hji,
;/Uh,-j =0, Dihij =0. (91)
These are governed by the equation
—F\()h;; + Fy(t)a™(t)DyD*hy; + -~ = 0, (92)

where the ellipsis denotes terms with fewer than two
derivatives and we have defined

Fi(t)=> (d-3)pkjar, (93)
Fy(t) =Y pk,[2(p = a2+ (d = 2p — 1)ar™].

(94)
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From this we can read off the principal symbol (restricted to
tensor perturbations) and construct the matrices A, B, and C
described in Sec. II B,

AUK = _yilkyDi (1), (95)
B =0, (96)
Cll =y Uy Dia= 1)y &, & Fa (1) ©7)

We can then compute the eigenvalues of M, or equivalently
find the &, that solves (£3A + C)t = 0. For F(1) # 0 we
find

Vijfifj

&=& = iﬁ i?gg (98)

Since y is a Riemannian metric (hence it is positive definite),
the hyperbolicity of the theory is determined by the sign of
F,(t)/F(¢). If the background is weakly curved, then the
Einstein term dominates F; and F, and both of these

quantities are negative; so E(jf are real and the theory is
weakly hyperbolic. However, if the curvature becomes large,
e.g., in a collapsing universe solution, then one of these
quantities might become positive, which makes F,/F,
negative, so the theory is no longer weakly hyperbolic.

In agreement with the comments at the end of Sec. III C,
we see that weak hyperbolicity can fail either when F,
vanishes, i.e., the matrix A becomes singular, or when F,
vanishes, in which case an eigenvalue from the & -group
becomes equal to an eigenvalue from the &;-group; i.e., itis
no longer possible to distinguish these two groups.

If F| or F, becomes positive, then &, is imaginary and
there exist linearized solutions which grow exponentially
with time. For this reason, in the cosmology literature, a
change in sign of F| or F, is usually referred to as an
“instability”” of the background solution. More specifically,
if F| becomes negative, then the background is said to
suffer a “ghost instability,” and if ', becomes negative, it is
said to suffer a ‘“gradient instability.”12 However, this
nomenclature is misleading. For the concept of stability
to make sense, one needs the initial value problem for
perturbations to be locally well-posed so that one can ask
what happens when a generic initial perturbation is evolved
in time. But when F,/F, becomes negative, then the
equation for linear perturbations is not weakly hyperbolic
which implies that the initial value problem is not well-
posed: a generic linear perturbation cannot be evolved in
time so dynamics no longer makes sense.

Further examples of dynamical violation of weak hyper-
bolicity can be obtained by considering the interior of a

>This behavior was first discussed in the context of cosmo-
logical solutions of Horndeski theories [19-21].
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static, spherically symmetric black hole solution of a
Lovelock theory [22,29]. For a large black hole, the
equations for linear perturbations are weakly hyperbolic
outside the event horizon [18].13 However, one can show
that in the interior of such a black hole, the equations of
motion fail to be weakly hyperbolic in aregion 0 < r < r,.
Here r is the area radius of the (d — 2)-spheres, orbits of the
symmetry group. Inside the black hole, surfaces of constant
r are spacelike and —09/0r provides a time orientation. One
can impose initial data for linear perturbations on a surface
r = ry > r, inside the black hole. For large enough r, the
curvature will be small on such a surface. Evolving these
data then leads to a violation of weak hyperbolicity at time
r =r,. Generic linear perturbations cannot be evolved
beyond this time.

IV. HORNDESKI THEORIES

A. Equations of motion

Horndeski theories are the most general diffeomorphism
covariant four-dimensional theories of gravity coupled to a
scalar field, with second order equations of motion [4]. The
fields in such theories are the metric g and a scalar field ®
and the equations of motion are obtained from an action of
the form

S = 162(; / d*xy/=g(Ly+ Ly + L3+ L4+ Ls),  (99)
where
L =R+X-V(®), (100)
Ly = Gy(P, X), (101)
Ly = G4(®, X)), (102)
L4 =G4(®,X)R+0xG4(®,X)5i5V, VPOV VID,  (103)
Ls = Gs(®,X)G,, ViVl

- éaxgs(cp, X)B5eV, VOV, VIOV, Vi0,  (104)

and we have defined X = —1(V®)%.

The term £, corresponds to Einstein gravity minimally
coupled to a scalar field with potential V(®). We will refer
to this theory as the Einstein-scalar-field theory. We assume
that the functions G depend smoothly on @ and X. To
eliminate degeneracies between the various terms [allowing
for field redefinitions ® — @®'(®)] we will impose the
following restrictions on these functions:

Bwe expect that they are also strongly hyperbolic although we
have not checked this.
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G2(@,0) = (9xG,) (P, 0) = G3(P,0) = G4(0,0)

= G5(0,0) = 0. (105)

The equations of motion for Horndeski theory are given by

I oS
Eab[g, q)] = _—_959 , = O, (106)
1
Eg[g, @] E——%zo. (107)
Vau!)

To study the hyperbolicity of these equations, we linearize
around a background solution (g, ®); i.e., we consider (g +
h,® + ) and linearize in & and y,

Euplg +h.® +y] = Eplg. @] + Ey) Iyl +---. (108)
Eolg+h.® +y] = Eolg.®] + Eg/[hy] +---.  (109)
so the linearized equations of motion are

E)[hy) = Eg [h.y] = 0. (110)

Recall that the equations of motion resulting from the
Einstein-scalar-field theory are strongly hyperbolic if we
impose the usual harmonic gauge condition which is"
G*¢dN yhy =V h* — %V“hz =0, (111)
where G*“? is defined by (49). Motivated by this, we will
attempt to obtain hyperbolic equations of motion for the
Horndeski theory by imposing a generalized harmonic
gauge condition
Ha = (1 + f)Gadevbhcd - Hahvbl// = 0’ (1 12)
where the scalar f and the tensor H,” depend only on
background quantities. The idea is that when we deform the
theory away from the Einstein-scalar-field theory we may
need to deform the gauge condition in order to preserve
hyperbolicity. The quantities f and H describe such a
deformation. = This gauge condition could be generalized
further by including terms that do not involve derivatives of
h,;, or w. However, such terms do not affect the principal
symbol and therefore do not influence hyperbolicity.
To see that we can impose such a gauge condition, let Y

be a vector field and consider the infinitesimal diffeo-
morphism generated by Y¢,

“More properly we should call this a Lorenz gauge condition,
but we will refer to it as a harmonic gauge condition for the
reasons discussed below Eq. (40).

Of course, we could divide through by (1 + f) to absorb f
into ‘H. The reason for including f here is that it leads to a more
general class of gauge-fixed equations of motion when we
perform the gauge-fixing procedure described below.
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hap = hap + V(Y wow+Y-Vo. (113)
Under such transformation H, will change as
H,— H, + % (1+ f)(VOV,Y, + R, Y?)

—HLV (Y - V). (114)

H, can then be set to zero by choosing Y, to solve
2 H
1+f ¢
(115)

VbV, Y, — H,LV, (Y -V®) + R, Y = —

2
I+ f

This is a linear wave equation of a standard type, which
guarantees the existence of such Y,. Note that if we
changed the way that the first derivatives of h,, appear
in (112), then this argument would no longer work.

To obtain the equations of motion in the generalized
harmonic gauge, consider expanding the action to quadratic
order in (h,y) to obtain an action governing the linearized
pertull;bation. Now to this action we add the gauge-fixing
term

S (116)

1
gauge — _5/\/ —gH H".

This will contribute to the equations of motion for the
metric and the scalar field via terms

1 6Sguge
:Gabcdvc 1+ AH,), 117
=5 oha, (I+f)Hay.  (117)
58
L Dwuse _ g, (pop, ), (118)

Na

respectively. We can now write the generalized harmonic
gauge linearized equations as

1 ~(1
EV =0, EJ =o0, (119)
where
EW — W _G ey ((1+ f)H 120
ab ab ab c(( +f) d)’ ( )
(1) _ (1) \V4 a b
EY = EY) + V,(HHD). (121)

It remains to show that the generalized harmonic gauge
condition is propagated by the equations of motion. To see
this, recall that the action for Horndeski is diffeomorphism
invariant; thus for the nonlinear theory we have

"“The reason for implementing the gauge fixing this way is
because obtaining the equation of motion from an action
guarantees symmetry of the principal symbol; see Sec. IV B.
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5 58
0= [ d*x|—V, Y, +—Y"'V,®
/ x<5gab arh * 5(1) b )

= / d*x\/=g(VUE,, — EoV,®)Y" (122)

This holds for arbitrary Y“; hence, independent of any
equation of motion,

VeE,, — E;V,® =0, (123)

and so linearizing around a background solution gives

a 1 J—
VeEY) — EVV,® = 0. (124)
Taking the divergence of (120) when (119) holds and using

the above we obtain

0= VEY) + G, VPV (1 + f)H,)
1
= EqVy® = (1+ [)(VV.H), + Ry H)

- V?fV,H, - %Havbvbf, (125)

that is,

(] +f)vbvhHa + 2vhfvhHa + Zvc(HCde)vaq)

+ (1 + f)RpH? + H, VPV, f = 0. (126)
This is a linear wave equation of a standard type for H,,.
Thus, provided that H, and its time derivative both vanish
initially, they will continue to vanish throughout the
evolution; i.e., the gauge condition (112) is propagated
by the equations of motion (119). It then follows that a
solution of the generalized harmonic gauge equations (119)
is also a solution of the original linearized Horndeski
equations of motion (110).

The linearized generalized harmonic gauge equations of
motion (119) take the following form:

abcdefv vthd + Pabefv vfl// +...=0, (127)
P o+ P =0, (128)

where the ellipsis denotes terms with fewer than two
derivatives. We can then define the principal symbol for
this system,

abcdef abef

Sl Pup Eel

P(g)_< » / ! ) (129)
Py, Sl z1>q> Sy

and we think of it as acting on vectors of the form (.4, a)7,
where ., 1S a symmetric 2-tensor and « is a number.
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It is convenient to split the principal symbol in its
Einstein-scalar-field and Horndeski parts

PHYSICAL REVIEW D 96, 044019 (2017)

is the principal symbol for the harmonic gauge Einstein-
scalar-field equations of motion. We write

P(f) = PEinstein (é) + 5P(§)’ (130) -
6P(&) = 6P(&) +60Q(8). (132)
where
—lggabed where 5P denotes the terms arising from the Horndeski terms
Priinseein (&) = < 2 2) (131) Ly, L3, L4, L5 in the action, and 6Q denotes the f and H-
0 =< dependent parts of the gauge-fixing terms. Explicitly we have
|
s — [T HICUIC L (1 DEGTE M, (133)
(1+ &G g ., ~HeH S )

From the form of Pg;,q, it is clear that all characteristics
of the harmonic gauge Einstein-scalar-field system are null.

We conclude this section by making precise the notion of
“weak background fields” in the Horndeski setting. We
follow a similar approach to the one used for Lovelock
theories (cf. Sec. III B). Consider an orthonormal basis
{e,} (such that e is orthogonal to constant ¢ surfaces) and
denote by Lz?, L7!, and L;? the magnitude of the largest
|

components in such a basis of the Riemann tensor, V® and
VV, respectively, and define L= = max{Lz?, L2, L;}.
We want our definition of “weak fields” to ensure that the
Horndeski terms in the principal symbol are small com-
pared to the Einstein-scalar-field terms; i.e., P is small
compared to Pgjpein- Lhis is achieved by requiring the
background fields to satisty

|0%G, |L73# 2 <« 1, k=1,2, (134)
|0%0LGs|IL7* <1,  k=0,1,2, 1=0,1, 1<k+1<2, (135)
%040, IL* <1,  k=0,1,2,3, [=0,1,2, k+1<3, (136)
0%0LGs|IL"*? <1, k=0,1,2,3, [=0,1,2, 1<k+1<3. (137)

We will also require smallness of the functions appearing in
the gauge condition,

Ifl < 1, 'H,"| < 1. (138)

In practice, we will see that strong hyperbolicity will force
us to take f and H,” to be particular functions of the
background fields, and (138) then follows from weakness
of the background fields.

B. Symmetries of the principal symbol

For Lovelock theories, our argument for weak hyper-
bolicity exploited equations (53) following from the iden-
tities (52). Therefore we will need to determine the analogous
identities for Horndeski theories. This could be done by
explicit computation. Instead we will derive the identities as
a consequence of the gauge symmetry of the theory. We will
appeal to results of Lee and Wald [26] to do this.

Consider some diffeomorphism covariant theory of
gravity, possibly coupled to additional fields, and expand
the action to second order around a background solution,

S:/ddx\/—g(—%l(”“bvaulvbu,+~~-), (139)

where u; denotes the perturbation to the fields (including
the metric perturbation), the ellipsis denotes terms with

fewer than two derivatives, and
K”“”(x) = Kf”’a(x). (140)

Varying the action gives the (linearized) equation of motion

KN Nyu; + - =0, (141)
where the ellipsis denotes terms with fewer than two
derivatives of u;. From this we read off the principal
symbol
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pllab — KIJ(ab)’ (142)
so from (140) we have
plab — leab; (143)

hence symmetry of the principal symbol is a consequence
of the variational principle. Varying the action also gives a
total derivative term V0%, where

(9“ = —K]Jabél/llvbuj + LN (144)
where the ellipsis denotes terms without derivatives. We

then define the symplectic current for two independent
variations &,u; and S,u; [26],

¢ = 5103 — 626‘11 = K”“bélulvbézuj - (1 <> 2) + -
(145)

Given coordinates (z,x') where ¢ is a time function, we
define the symplectic form as an integral over a surface X
of constant ¢ with unit normal n,,

(8 1u, b,u) :La}”nﬂ :/Edd_lx —ga®.  (146)

For a theory with a gauge symmetry, Ref. [26] proves that
this vanishes if d,u is taken to be an infinitesimal gauge
transformation and &,u satisfies the (linearized) equation
of motion. In particular, it will vanish if 6,u and d,u are
both infinitesimal gauge transformations. Taking them to
be compactly supported gauge transformations we can
integrate with respect to ¢ to obtain

O = /ddx\/:g{KI‘lOyé] ulv,ﬁzuj - (1 <> 2) —|— . }
(147)

As before, the ellipsis denotes terms without derivatives of
511/! or 5214.

Consider first the case of Lovelock theory (without
any gauge fixing), for which u; = h,, and we have the
symmetries

Kabcdef — gbacdef _ pabdcef (148)

The gauge transformations are infinitesimal diffeomor-
phisms,
5hab — V(aXb), (149)

where X, is an arbitrary vector field, assumed compactly
supported. Gauge invariance of the action implies, via
integration by parts,

0= / /5Ky (—KPeAeY TV hog + ). (150)
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where the ellipsis denotes terms with fewer than three
derivatives of h,,. Since X, is arbitrary, this implies

O:Kadeefvavevfh(jd—"_.'.? (151)

and since h,, is arbitrary, terms with different numbers of
derivatives must vanish independently. From the three-
derivative term we obtain

0 = Klalbedlef) (152)

which implies

plalbedief) — q). (153)

Now we consider the implications of (147). Take the two
gauge transformations to be
O1hy, =V, X,),

Sy = VY, (154)

"
for arbitrary compactly supported vector fields X*, Y*.
Compact support lets us integrate by parts in (147),

0= /ddx /—_g[VMXDKMupaoavavpya —(1e2)+--]

- / dix\/=gX,[—K"r0Y Y VY,

- K”"/’”OQVO,VPV”YG + -, (155)
where the ellipsis denotes terms with fewer than three
derivatives of Y*. Since X, is arbitrary, we must have

0= Kﬂy/)o'O(lvﬂvuvl) Yo’ + Kllf)'/)lfoavuv/)vﬂ Yn' + ..
— ( K/UJ[)ITO(X + K;m/wOa) 0.0 3{1Y(; + ...

uYp

= (Kmroda 4 Kowoa)) 5 0¥, + -+

up

(156)

Since Y, is arbitrary, the terms with different numbers of
derivatives of ¥, must vanish independently. Vanishing of
the three-derivative term requires

0 = KV(urloOla) o gvlpulola)0 — o priuploOla) (157)
Since the 0 index refers to an arbitrary time function ¢, this
equation implies

patbeldelf) — (158)
The above argument applies to the theory before fixing
the gauge. Of course, we can do the same for the Einstein
equation. Subtracting the Einstein results from the Lovelock
results gives

splalbedlef) — spalbeldelf) — (. (159)

We can now apply this to the harmonic gauge Lovelock
equation of motion because the harmonic gauge condition
does not affect 5P. In particular, we have
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5Pabcdef§a§e§f — 5Pab6def§b§c§f =0. (160)
Hence we see that the identities (53) are a consequence of
the gauge symmetry.

For a Horndeski theory (before any gauge fixing) we
have u; = (hy,,w). A gauge transformation is

Ohgy = V(aXp)s Sy = XV ,®. (161)

Repeating the above argument for gauge invariance of the
action gives

bedlef bled
plalbeder)  plapled) _ g,

(162)

The symmetry of the principal symbol (143) then implies
that
P((If\bkd)

alb|cd
= Plg’D = . (163)

g .
Repeating the argument based on (147), the highest
derivatives of the gauge transformation parameters X,
and Y, arise only from the transformation of 4, so the
result is essentially the same as for Lovelock theory,
bcld

PaLeen) — o, (164)
These results apply also to the Einstein-scalar-field theory
(before gauge fixing). So subtracting the principal symbols
for these two cases gives

_ 5ﬁgzg\b\cd) _ 5P‘gl_z(/bc‘d€|f)-

(165)

0— 5P(gt!1/\bcd|ef) _ 5i,éizllb|cd)

Finally, we note that the gauge fixing terms do not affect 5P
so these results apply also to the generalized harmonic
gauge equation of motion.

C. Weak hyperbolicity for weak field background

We will now begin our study of the hyperbolicity of the
linearized Horndeski equations in a generalized harmonic
gauge. In this section we will establish weak hyperbolicity
of these equations in a weak field background for any
generalized harmonic gauge. Much of the analysis is similar
to the analysis of the weak hyperbolicity of harmonic gauge
Lovelock theories performed above so we will be briefer
here.

Asin Sec. III B we introduce coordinates x# = (¢, x') such
that dt is timelike so surfaces of constant ¢ are noncharac-
teristic for the Einstein-scalar-field theory. Again we will
denote by & the two solutions of g*&,&, = 0 for fixed real
&;, and we define the null covectors & = (&5, &;).

The principal symbol can be regarded as a quadratic
form acting on vectors of the form (z,,,x)", with 7,
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symmetric. Such vectors form an 11-dimensional space.
Hence A, B(¢;), and C(&;) (defined in Sec. Il B) are 11 x 11
matrices. Explicitly we have

1vpc00 100
A Pyg P g®
o PpaOO poo ’
g oD

Zpggpo(()i)gi ZP”fp(Oi)éi
B(&) = ( o |

2P e, 2P0,

cz) = (P’g‘;”””éiéj P§$f§i§j>
Poy'6i€) Powlié

where, again, &; is real and £;£; = 1. These matrices are all
real and symmetric: the latter property follows from the
fact that the gauge-fixed equations of motion can be
derived from an action so (143) holds.

For the harmonic gauge Einstein-scalar-field equations,
since surfaces of constant ¢ are spacelike, the matrix A is
invertible. By continuity, this will continue to hold for
sufficiently weak background fields, once we include the
Horndeski terms. Hence we can define real M (¢&;) as in (55)
and real symmetric H(&;) as in (61). These are 22 x 22
matrices. As for Lovelock, the matrix H is nondegenerate
so its signature can be determined by continuity, i.e., by its
signature for the Einstein-scalar-field equations. The result
is that it has signature (11,11), i.e., 11 positive eigenvalues
and 11 negative eigenvalues. As for Lovelock, M is sym-
metric with respect to H; i.e., Eq. (62) holds here.

We consider these matrices as acting on a complex vector
space V of dimension 22. For the Einstein-scalar-field
theory we know that M is diagonalizable with eigenvalues
&=, each with degeneracy 11. So, for linearized Horndeski
theory in a weak field background we can proceed as in
Sec. II C and define the 11-dimensional subspaces V* as
the sum over the generalized eigenspaces of the eigenvec-
tors (of M) belonging to the & -group, respectively. The
restriction of H to V* is denoted by H*.

Let us summarize the proof of weak hyperbolicity that
we used for Lovelock theories. First we showed that there
exist pure gauge eigenvectors of M, with eigenvalue &5. We
then showed that such eigenvectors are null and orthogonal
with respect to H so they form null subspaces N* of V*,
and that these null subspaces have the maximum dimension
consistent with the signature of H*. This then excludes the
possibility of M possessing a complex eigenvalue &, in,
say, the & -group, for the corresponding eigenvector would
have to be null and orthogonal to N* so we could add it
to N to produce a larger null subspace of V7, thereby
violating maximality of N*. Hence M cannot have a
complex eigenvalue, which establishes weak hyperbolicity.

All of this extends straightforwardly to Horndeski
theories. First note that, as in Sec. II B, an eigenvector v
of M with eigenvalue &, must have the form

(166)
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(o) (167
v = ,
T
where the 11-vector 7" must satisfy
P(ET =0 (168)

with &, = (&.¢&;). We can identify a set of pure gauge
eigenvectors, with eigenvalue &, given by17

+
T = ( (HX”)>
0

for some X,,. That this satisfies (168) (with & = &%) can be
seen as follows. First Ppgein (67) = 0 because & is null.
Second, the results in (165) imply

(169)

SP(E5)T = 0. (170)
Finally, it can be checked explicitly that §Q(&5)T = 0.

We define N* to be the four-dimensional subspace of V*
defined by these pure gauge eigenvectors. We now want to
prove that N* is null with respect to H*. Consider two pure
gauge eigenvectors v,v’ € N* with corresponding 7 =
(£, X,),0)" and T" = (&, X}, 0)". Their inner product with
respect to H is the same as their inner product with respect
to H; i.e., as in (71), we have
VT H =285 PUT =266 EX XX Pog™ =0, (171)
where the final equality follows from Ppgiygein(£5) = 0, the
final symmetry in (165), and the fact that

ErErE 805 ™ = 0. (172)
It follows that any two elements of N* are orthogonal with
respect to H* and hence N* defines a four-dimensional
H*-null subspace of V*.

Since H* is the restriction of H to V=, it follows that H*
is nondegenerate when restricted to V*. Hence its signature
can be determined by continuity, as we did for Lovelock.
In other words, its signature can be determined using the
Einstein-scalar-field theory. For this theory, consider two
vectors v; and v, in V¥, and hence of the form (167) with
& =& . Let the corresponding 11-vectors be T =
(tiapsx1)T and T, = (taap»x2)". The inner product of v,

and v, with respect to H* is the same as the inner product
with respect to H,

""The vanishing of the final component of this vector is related
to the fact that under the gauge transformation (113), the
transformation of y does not involve a derivative of Y.
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v{Hvy = T{BT, + 255 T1AT, = 2£,T | P*T,

= —&*([Gt, + jixa)- (173)
The argument following (69) now shows that, when
restricted to V', HT has four negative eigenvalues and
6 4+ 1 = 7 positive eigenvalues (the 41 coming from j ;).
This is similar for H~ when restricted to V~, with positive
and negative interchanged. Hence the dimension of a
maximal null subspace of V= is 4 so N* are maximal null
subspaces of V*. The proof of weak hyperbolicity follows
as explained above.

D. Strong hyperbolicity of Horndeski theories

We have shown that, in any generalized harmonic gauge,
linearized Horndeski theory is weakly hyperbolic in a weak
field background. We will now investigate whether it is also
strongly hyperbolic. In particular, strong hyperbolicity
requires that M is diagonalizable; i.e., it has no nontrivial
Jordan blocks. We can investigate whether this is true using
the method of Sec. III D.

As in Sec. IlID we define E* to be the generalized
eigenspace of the eigenvalue £F. Since N* C E* it follows
as in Sec. I D that E* must have dimension at least 8.
If M is diagonalizable, then E* are genuine eigenspaces
and hence there must exist at least eight eigenvectors with
eigenvalue &&. So using (168) and Pgjgein(E5) =0 we
must have eight vectors T satisfying §P(&5)T = 0. So

A necessary condition for strong hyperbolicity is that,
for any null & ker 6P () has dimension at least 8.

Hence strong hyperbolicity implies that, for any null &,
ker 5P (&) must contain at least four linearly independent
“nongauge” elements.

Let us now look at the condition for a nontrivial Jordan
block. As in Sec. III D, one can show that the corresponding
eigenvalue must be &5 so the block must lie in E<. For any
such block, there exists a vector v € E* such that (M — & )v
is an eigenvector of M with eigenvalue £ so we must have

S
(M —&Hv = ( . ) (174)
0 S
for some nonzero S = (s,.w)" such that [using
PEinstein(§i> =0]
SP(EX)S = 0. (175)

Writing v = (7, T')T we find that (174) reduces to equations
analogous to (75) and (76),
T =ET+S (176)

and
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SP(E5)T = —(2££A + B)S. (177)

Asin Sec. III D we contract this with an arbitrary pure gauge
vector R = (f(iﬂXU), 0)”. The LHS vanishes and the RHS
gives the H*-inner product of (R,&ER)T with (S, &5S)T.
It follows that (S, &£S)” must be H*-orthogonal to any pure
gauge eigenvector. Similarly, contracting this equation with
S and using (175) shows that (S, £ S)7 is null with respect to
H*. Hence if this vector were not pure gauge, then we could
add it to N* and violate maximality of this null subspace.
Therefore this vector must be pure gauge; i.e., we have § =

(cf?;Yy),O)T for some Y, # 0. So, writing T = (1,,.x)",
Eq. (177) takes the form
+

6H&w(%)=—@%A+m-(ﬁf

X

")>. (178)

If this equation admits a solution for some Y, # 0, then M has
a nontrivial Jordan block. So strong hyperbolicity requires
that this equation admits no solution (z,,,, y)” forany Y, # 0.

1. Strong hyperbolicity when G4=G5=0

Let us begin by considering the theory with Lagrangian
L=L+Ly+ L5 (179)

The nonlinear equations of motion for this theory are
1
Eah = Guh + an3 [—EDQ)VHCDV,,(I)

+ Gabedvcveq)ch)vdq)] +-- = 0, (180)

Ep=-U0-0xG,10+ 3G,V @V’ OV,V, 0
—200G;0® - (0xG3 +X03G3)8 iV, VI dV, VL0
—%c‘%gg Spia Ve, VIOV, VLDV, oVEd
~20%40G+(853 V., V4 OV, 0VED+ XCI0)
+3Xg3RabV“(I>VhCI)+...:()’ (181)

where again the ellipsis denotes terms not involving second
derivatives. After determining the linearized equations in
generalized harmonic gauge (119), we compute the prin-
cipal symbol and we find that

Py (§)*7°! = Q,y(£)*, (182)
6Py (8)" = 6Pg,(£)™
== % OxGiVIDVPDE? + £ Geb¢E .y,
(183)

PHYSICAL REVIEW D 96, 044019 (2017)
(=0xGs — 20055 + 2X0%4G — 205G 0@
—2X0%G,00)& + 2(9xGs + X0%G3)

x IV V@ + (203903 + 0%G,) (& - VO)?
— 03G38, 75 £, &V, VLDV, OVED
+ 0000 (£).

5P<1><1>(f) -

(184)

where

Kap = 1+ f)Hap + 0xG3V, OV, @ (185)
For strong hyperbolicity to hold, Eq. (178) must admit no
solution (1,,,x)" when Y, # 0. Writing out this equation
gives

(Gﬂ”f’”[—f(f + G, P 1y + EHK )
EH G ER K, + 5Poo(E5)1

50& GHvpo 5} Ya
- ((@Qg)é(’i(fi VO)(Y - V) — K, £ G0gLY, ) |
(186)

Looking at the first row of this equation, the nondegeneracy
of G"*° implies that if f # 0, then we can solve for the
“nontransverse” part of Luys

G, &L, = (I, — %Y ). (187)

f(f +2)

This can then be substituted into the second row to obtain
an equation that determines y. Hence if f # 0, then a
solution of (178) exists for any Y, # 0. Therefore strong
hyperbolicity requires that f = 0. With f = 0, the first row
of (186) implies
By, = EK 0 (188)
Plugging this into the second row of (186) now gives a
linear homogeneous scalar equation for y and . Since this
is only one equation for 11 unknowns, there exist nontrivial
solutions. We see that we can solve (178) for Y, of the form
(188). Hence if this Y, is nonvanishing then the equation is
not strongly hyperbolic. Therefore strong hyperbolicity
requires (188) to vanish for any (null) cff which implies
(since generically y # 0) K, = 0. Hence strong hyper-
bolicity selects a unique generalized harmonic gauge,
f=0.

Hab - _8Xg3vaq)qu) (189)

"Note that our smallness assumption (138) implies that

f#-2.
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Note that this guarantees that the smallness condition (138) 2. Failure of strong hyperbolicity when
is satisfied. If our gauge functions f and H,, satisfy this O0xGy #0, Gs=0
equation, then M is diagonalizable, as required by strong The situation is different if we include Ly, i.e., we work

hyperbolicity. As explained above (17), diagonalizability with the theory

ensures that there exists a positive definite symmetrizer K

satisfying (34). To complete the proof of strong hyper- L=L+Ly+ Ly + Ly (190)
bolicity we need to check that K depends smoothly on &;.  We will show that if 9xG, # 0, then there is no gener-
We will do this in a more general setting below [see the  alized hyperbolic gauge for which this theory is strongly

discussion below Eq. (227)]. hyperbolic.
|

The terms in the equations of motion E“, and Eg arising from £, are [21,31]

a 1 ac,cyc 1 acic,
E b(4) = (G4 — 2X0xG4)G) + Zan45bd1,d22d33 Re e,V VLD + 3 (0xGa + 2X03G4)8y ¢ Ve, VIOV, VD

1 :
+3 %648, 42 Ve, VIOV, VROV, OVED + 2034646, Ve, VIOV, OV- O
+ (00Ga + 2X0%0G4) 8 Vo, VI @, (191)

Ey) =~ (0xGy +2X3G4)65 55 V., VIR, 24 — (9pGy + 2X Py Gs)R

1
2
1
- §a§g45;1 it Ve, VoV, oVEOR,, .
~ 0 0a8 i, Ve, DV DR,
2
- (a%% + §X0§g4) 8o Ve, VIOV, VLoV, V4D
— 20%009464 3. Vo, @VI OV, VL0
— (2X0%x0Ga + 30%094)84,3 V, VIOV, VL0
— 203500484 30 Ve, VIOV, VEOV, OVED

1 C1CC3C
—3 %9404 4,0,d Vo VIOV, VEOV, VEOV, 0V, (192)

Linearizing these equations, and including the gauge-fixing terms, one can then compute SP™W, the contribution to 5P
arising from L. It takes the following form:

D . 1 acyc 1 acycyc
SPy (€)Mt oq = —5(Ga = 2X0xGa)8yq, e, 6 10, " — 58Xg45bd11d22dz§cl§dl t,, 2V, @VE0, (193)
SPU(E), = 5P ()%, = (0xGy + 2XORG, )55 £, £V, Vo + D3G5 55 £, E1V VOV, OV H )
+ 203994044 . £, £V, OVED + (09 Gy + 2X030G4) 8. Ec, £, (194)
54 1 C1CyC3
5P (&) = ) (0xGa + 2X03G4)84, .. 5e, S Ry, 5
1 C1CHCaC,
- E a%(g45dl] d22d33d44 fc] gdl vcz (I)vdz q)RL'3c'4 dady
— (3RGy + 2X03G4)84 35 £, EMV VLDV, VED
— 0%Gaby ad £, ENV VDV, VLDV, VD
_ 48§(X¢g452‘]2,222 &, gh VCZ VdZQ)VQCDVth)
—2(2X03x T4 + 3a§(®g4)5311222501§d1 V., V:o
— 203009404 4,60, ENV ., @V D. (195)

As discussed above, for the equations to be strongly hyperbolic it is necessary that the kernel of 5P(£%) has dimension 8 or
greater. We will now study whether this condition is satisfied. A vector (t,,, )7 is in ker SP(£*) if, and only if,
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<5ng(§i)ab6dtcd + 5Pg®(fi)ab)() —0
8Py (E5) 1oy + 6Ppar (E5 )y

PHYSICAL REVIEW D 96, 044019 (2017)

(196)

We now assume that 0xG, # 0. In this case we can separate out a term proportional to 7, in the first row of (196) and write

this equation as

(gi : vq))ztab = —ffff?f (ch)vdq)tcd + g4tcc)
g

F 2t (5 VO V0) ) 25,0 (6 V) - £V,
xYs

~ Yab <2§icvdq)tcd(§i : V(I)) +

ok £y = 6 VoP )

- v(aq)vb)q)gicgidtcd - v(aq)tb)cgic (fi ' VCD)

2

+o (5Qgg(§i)ab6dtcd + 5Pyd>(§i)ab)()'

x4

Note that for a generic weak-field background, and generic
£+, we have £ - V@ = 0. From the tensor structure of this
equation, we deduce that 7,, must take the form

Lyp = ‘fﬁyb) + lgab + Z(avh)q) + Mvaqu) (198)
for some Y, 4, Z,, and u. The last term in this expression

comes from the fact that 6P,q(£%),, contains terms
proportional to V,V,® as well as terms of the other three

(197)

types. There is some degeneracy in this expression; e.g.,
degeneracy between the first and third terms implies that Z,,
is defined only up to the addition of a multiple of &F.
That is, the part of Z, parallel to & is pure gauge. For
strong hyperbolicity we need there to exist at least four
linearly independent nongauge elements of ker 6P(&%).
The first term in (198) is pure gauge. The nongauge part is
determined by y, 4, ¢ and the nongauge part of Z,,.

Plugging (198) back into the first row of (196)
we get

(AC1CHC ]
0= 0P, ()1 e + 0P &) = O 565,649, V09, 090 (104G + B30

1 1
PO V0V (100G + 203000 )~ (G = 2X0,Ge = 1/ + 2))(Z V40 + V,,02%)]

(ACC 1
+ G 86,67V, V@[ (0x Gy + 2X03G )y — 5#@4 —2X0xGy — f(f +2))]

— (09G4 + 2X0%0Ga)x — A(Gy — 2X0xGy — f(f + 2))|EXEL 4+ EEG*EF K car,

where IC,, is defined in (185). We will now show that
the requirement of strong hyperbolicity fixes our choice of
gauge. Consider first the case

G4 —2X0xGy — f(f +2) #0.

In this case, Eq. (199) contains Z,-dependent terms
proportional to

(200)

5;,’;1 ‘;,22 EEEEN(Z NED +V, DZ%)

- 4Gabce§:|:d§:el:chfhzfvhq)' (201)

(199)

View the RHS as an operator O acting on Z,. Let us
determine the kernel of this operator. Since G is
nondegenerate, vectors in the kernel must satisfy

EMELGo"Z V@ =0 = &GNV, =0.
(202)
However, for generic V,®, it is easy to show that all

solutions of this equation have Z, proportional to &F.
Hence the kernel of O generically contains only vectors
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proportional to &F. This implies that, generically, if
Eq. (199) admits a solution, then Z, is determined up
to a multiple of &%, in terms of y, A, u. In other words,
the nongauge part of Z, is fixed uniquely by the three
quantities y, 4, u. Therefore, there exist at most three
linearly independent nongauge elements of ker SP(£%),
whereas strong hyperbolicity requires at least four such
elements. So if our gauge condition satisfies (200), then the
equation is not strongly hyperbolic.

We have shown that strong hyperbolicity requires that
our gauge function f obeys
We can solve this quadratic equation and choose the root
that satisfies the smallness condition (138) when the
conditions (136) are satisfied,

f=-1++/1+G,—2X0xG,. (204)
The contraction of (199) with V?® gives
0 = E*EV, DG K ., (205)
where
Kot = Kea = (@gea + BV @) (206)
with

a = 0pGs + 2X030Gs + V'V, D(0xGy + 2X05Gs).

B = —2(05G4 + 2XG). (207)
Consider first the case in which our gauge condition is such
that, generically,

EEEV, DG, # 0. (208)
Then, in a generic background, for generic null ££, Eq. (205)

implies that we must have y = 0 and Eq. (199) then reduces
to

1 ac|CHC
0= —Eaxgﬂ“‘éhd]ldzzdz a& IV, Veov, ovho

- 8XQ4/1G“b“fidcfchdthfGJVh(D. (209)
In a generic background this implies A = u = 0 (using
0xG4 # 0). But with y = A = u = 0, the nongauge part of
the vector (z,,,x)" is determined entirely by Z, which has
at most three independent nongauge components. So in
this case we do not have enough nongauge elements of
ker 5P (&%) for strong hyperbolicity.

We have shown that strong hyperbolicity requires that,
generically,

PHYSICAL REVIEW D 96, 044019 (2017)
EECEEV, DGl K, = 0. (210)

For this to be satisfied for generic null & we must have

G4, DK,y = p5¢ (211)

for some vector p®. Contracting with V,® we see that

(VO)2K," = 2K, VOVD —2(p- VD)2 (212)
from which we deduce that the most general form K can
take is

,%ab = KGab + Wavhq) (213)
for some scalar x and vector W, Note that we can
determine p* in terms of these quantities by taking the
trace over the ¢ and ¢ indices in (211)

P4 =~ (=kVID + Gebed W V, 0V, ).  (214)

FNy-

Plugging these back into (211) we find that the only
solution is given by x = 0 and W, = 0, that is,

K, = 0. (215)

Hence strong hyperbolicity for a generic weak-field back-
ground forces us to make the gauge choice

f=-14+/14G,—2X0xG,,

(] +f)Hab = YGap +ﬂvavb¢) - 8Xg3vuq)vhq)' (216)

With this choice of gauge, Eq. (199) reduces to

0= 0101 8,64V, V0V, 0V 0

1
X <— Eaxgétﬂ + 3%%()
+ 2G4, EHEEG /M OV, D

1

For a generic background, this fixes 4 and y in terms of y,

%G,
=2 X7,

)= 48§((Dg4

218
9.6, © (218)

We now consider the second row of (196), which takes the
form

(219)

where
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1 e
A= _5 [an4 + 2X8§(g4]621];‘22 ifilec'QC3d2d3

1 -
2 C1C203C4 g+ g+d d dsyd
_zaxg45d|d2d3d4 015 vazq)v ZCDRC3C4 o

— |30%G, + 2X0%G, +

1 + g4 - 2X6Xg4

2(8Xg4 +2X8§(g4)2 C1CaC3 g+
5d|d2d3 €

PHYSICAL REVIEW D 96, 044019 (2017)

gV, VROV, VED

+ [2(0xGs) " (BGa)? — Gl 255 £2 850V, VLDV, VEBY, OV

0%G40%0 4 _ 0xG3(9xGs + 2X0%G4)

+4|0xxe¥s +2

(0%004)*

OxGs

+21-8

2(1 + Gy — 2X0xGy)
OxG3(00Gs + 2X0%5Gs + X0xGs3)

- 0, |5 5 VLT 4OV, 0T

0xG4 (14 G4 —2X0xGy)

+2 2(

OxGy + 2X0%G,) (09G4 + 2X 0% 04 — X0xG3)

14+ Gy —2X0xGs

+ (0xG3 + X0%G3 + 2X O3y 04 + 38§@g4)} EEEVVP O,

If A # 0, then we must have y = 0, and hence A = =0
and Z, is arbitrary. Hence, in a generic weak-field back-
ground, ker 5P (&%) consists of vectors of the form (z,;, 0)7
where 7, is given by (198) with A = py = 0. Given that one
component of Z, is pure gauge [i.e., degenerate with the
first term in (198)], it follows that ker SP(&*) generically
has dimension 7 and hence the equation of motion is not
strongly hyperbolic.

The only way to escape this conclusion is if the theory is
one for which A = 0 for any background. For this to happen,
terms with different dependence on the Riemann tensor, V@
and VV® have to cancel independently in A. However, this
cannot happen in the case we are considering. To see this,
note that vanishing of the terms of the (schematic) form
RV®V® in any background requires 9%G, = 0. But then
vanishing of the terms proportional to R requires dxG, = 0,
contradicting our assumption dxG, # 0. Hence in a generic
background we have A # 0, and therefore a vector in the
kernel must have y = 0.

1
+ (2Ra0i + 580 + 0ane ) |- VOP

(220)

In summary, we have shown that when 0xG, # 0, there
does not exist a generalized harmonic gauge for which the
equations of motion are strongly hyperbolic in a generic
weak-field background. The best one can do is to choose
the gauge (216), for which ker 5P(£*) has dimension 7 in
a generic weak-field background (i.e., four pure gauge
elements, and three nongauge elements). This implies that,
in such a background, the matrix M will have two nontrivial
Jordan blocks: one in V* and one in V~. Generically each
of these will be 2 x 2.

3. Proof of strong hyperbolicity for G4=G,(®), Gs=0

We continue working with the theory defined by (190),
but now consider the case dyGy = 0, i.e., Gy = Gy(P)."”
We will show that such theories are strongly hyperbolic in a
suitable generalized harmonic gauge. The proof is analo-
gous to that for the theory with G, = Gs = 0 so we will be
brief. For 0yG, = 0, Eq. (178) reduces to

Lpis — (GG = U+ EG ey + EHE (K, = 0oGagip )\ (221)
G171, &5 EH K — 00Gabs0) + 6Poo(E5)x
(1 + )Gy,
RHS — . 222
<§Oi[(6xg3>(§i VO)(Y - VO) + 0504 (£ - V)] - K, £GHEEY, )

Recall that for strong hyperbolicity to hold, this equation must have no solution (t,,.x)" when Y, #0. By the

nondegeneracy of G*° we see that if

' An example of such a theory is Brans-Dicke theory [24] with positive coupling constant . After a redefinition of the scalar field,

this has G, = Gy = 0 and G, = ®/\2w + ®*/(8w).
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Gi—f(f+2) #0, (223)

then we can use the first row of this equation to solve
uniquely for GM’“/"’ﬁ,j—Ltpg (the nontransverse part of 7). This
can then be substituted into the second row of the equation
to give an equation which determines y. Hence, if
Gy — f(f +2) #0, then, for any nonzero Y,, Eq. (178)
has a solution. Therefore for strong hyperbolicity to hold,
we need

G -f(f+2)=0=f=-1++/1+G,,

where we have chosen the root that satisfies the smallness
condition (138). With this choice of f, the first row of (178)
implies

(224)

1 ~
éoiY” = —‘Siplcpﬂ)(a

o (225)

where

Kap = Kap = 00G4Gap- (226)
When we plug this into the second row of (178), we obtain
a linear homogeneous scalar equation for y and 7,,. This
equation has 11 unknowns and therefore admits a nontrivial
solution, generically with y # 0. It follows that if ¥, in
(225) is not vanishing, then strong hyperbolicity fails. This
means that strong hyperbolicity requires 5*”/%,,,,;( =0 for
arbitrary null £*. Since generically y # 0, this implies that
we must choose our gauge such that I~CW = 0. Thus we see

that strong hyperbolicity in a generic weak-field back-
ground requires us to make the gauge choice

f:—1+ \/1+g4’

(1 + f)Hap = 00Gsgap — 0xG3 V. PV, D. (227)
In this gauge, Eq. (178) implies ¥, =0, so M has no
nontrivial Jordan block; i.e., M is diagonalizable. Note that
when G, = 0 this reduces to the gauge choice (189).

Diagonalizability of M is a necessary condition for
strong hyperbolicity to hold. It ensures the existence of
a positive definite symmetrizer K satisfying (34). But we
need to check that the remaining conditions in the defi-
nition of strong hyperbolicity are satisfied. In particular, we
need to prove that K depends smoothly on ¢;. To do this,
recall that K is constructed from the matrix S which
diagonalizes M, as explained above (17). S is the matrix
whose columns are the eigenvectors of M. Hence if the
eigenvectors of M depend smoothly on ¢;, then so does K.
We will explicitly construct the eigenvectors of M to
demonstrate that they depend smoothly on ¢&;.

Recall that the eigenvectors of M have the form (167)
where T satisfies (168). In the gauge (227), we have

PHYSICAL REVIEW D 96, 044019 (2017)
8P gy(E5) = 6Py (&) = 6Pgy(&7) =0,  (228)

which implies that any vector of the form T = (t,,,0)”
satisfies (168) when & = £*. This proves that the eigen-
values &F each have degeneracy 10. If we choose a basis of
symmetric tensors ?,;, that is independent of &;, then the &;
dependence of these eigenvectors arises only through the &,
in (167), which implies that these 20 eigenvectors depend
smoothly on &;. A calculation reveals that the final two
eigenvectors have T = (1, 1)T where

15)
typ = — x03 [V, @V, ® + g,,X] — Op log(1 + G4)gas
1+G,

(229)
and eigenvalues &, are determined by

1

(B [X?(0xG3)?

0= fﬂyfﬂéu = _PCDCI)(f) -

+ 200041, (230)
For a weak field background, f** is close to ¢** and is
therefore a Lorentzian metric with f%° # 0. This ensures
that there will be two real eigenvalues &, depending
smoothly on &;. As before, the eigenvectors depend on
&; only through &, and are therefore smooth. Hence all
eigenvectors have the required smoothness in &; so the
symmetrizer is smooth. This establishes strong hyperbol-
icity in the gauge (227).%

4. Failure of strong hyperbolicity if G5 # 0

Finally, we include the term L5 into the Lagrangian. We
refer to Ref. [21] for the explicit form of the equations of
motion. With G5 # 0 we expect to encounter similar issues
as those we encountered in theories with 0xyG, # 0, G5 = 0.
This can be seen easily if we consider the case G, = 0 with
axgs = O, i.e.,

Gs = Gs(®). (231)
In this case we can write [21,33]
ES — QS (q))GabV”Vhtb
— —aq>g5XR - 8q)g5522vavh(bvcvdq)
+ 38§,QSXD<D — 28fbg5X2 + e (232)

20Ac‘[ually we should also check the inequality below (34).
This follows trivially if we restrict to a compact region of
spacetime. For the £; + £, theory, a stronger result can be
obtained [32]: this theory is symmetric hyperbolic even outside
of the “weak field” regime provided that 1+ 0yG, > 0 and
1+ 0xG, +2X(0%G,) > 0. In our case, the smallness condition
(134) implies that these conditions are satisfied.
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where the ellipsis denotes a total derivative term which does
not contribute to the equations of motion. Therefore we can
rewrite L5 as a sum of lower order Lagrangians

£5 == 24 + 23 + 2:2, (233)

where

G4 = —00YsX,

gz — —28§Dg5X2
(234)

Gy = 303GsX,

Since 0xG4 # 0, our previous results imply that there is
no generalized harmonic gauge for which theory is
strongly hyperbolic in a generic weak-field background.”'
Of course, we could cure the above problem by adding a

G, term to cancel G, but then all we are doing is reducing
the theory to a theory with G, = G5 = 0. The issue is that
there is degeneracy between the L5 term and the other
terms in the Lagrangian. We can remove this degeneracy
by supplementing the conditions (105) with
Gs(®.0) =0. (235)
which means that nontrivial G5 must depend on X.
Although we have not analyzed it in detail, there seems
very little chance that a theory with 0yGs # 0 could be
strongly hyperbolic in some generalized harmonic gauge
for a generic weak-field background. Indeed, we expect
such a theory to exhibit even worse behavior than the
0xGs # 0, Gs = 0 case in the following sense. We men-
tioned above that for the latter theory, one can find a
generalized harmonic gauge for which M generically has
just two nontrivial Jordan blocks. We expect a dyGs # 0
theory to be worse in the sense that, generically, for any
generalized harmonic gauge, M will have eight nontrivial
(2 x 2) Jordan blocks, four in each of V™ and V. In other
words, for this theory, all pure gauge eigenvectors will be
associated with nontrivial Jordan blocks, just as for
(harmonic gauge) Lovelock theory. This is consistent with
the fact that some theories of this type can be obtained by
dimensional reduction of Lovelock theories.

5. Summary of results for linearized theory

We have proved that, if 0yG, # 0 and G5 = 0, then there
exists no generalized harmonic gauge for which linearized
Horndeski theory is strongly hyperbolic in a generic weak-
field background. However, if 0yG, = G5 = 0, then there
exists a unique generalized harmonic gauge for which
linearized Horndeski theory is strongly hyperbolic in a
generic weak-field background. We have not analyzed the
case Gs # 0 in detail but we believe that, once degeneracy

2'Note that if 09Gs = 0, then Gs is a constant, which implies
that Ls is a total derivative.

PHYSICAL REVIEW D 96, 044019 (2017)

with other terms has been eliminated via (235), this case is
not compatible with strong hyperbolicity in a generic weak-
field background either.

This means that any Horndeski theory [satisfying (105)]
for which there exists a generalized harmonic gauge such
that the linearized equation of motion is strongly hyperbolic
around a generic weak-field background can be obtained
from a Lagrangian of the form

L=R+X=V(®)+G(®,X)+ Gy(®,X) D
+ Gy(D)R. (236)

More general Horndeski theories will fail to be strongly
hyperbolic around a generic weak-field background in any
generalized harmonic gauge.

Causal properties of theories of the form (236) have been
discussed in Ref. [34].2 It is interesting to discuss causality
using our results above. We showed above that, in an
appropriate generalized harmonic gauge, a null covector
&, is characteristic if, and only if, either ¢g*?£,&, = 0 or
fPE &, = 0, where £ is defined by (230). Furthermore, if
&, satisfies the former condition, then P(£) generically has
a ten-dimensional kernel consisting of vectors of the form
(t4,0) for general t,,, whereas if &, satisfies the latter
condition, then P(&) generically has a one-dimensional
kernel consisting of vectors of the form (z,,, 1) with ¢,,
given by (229). Hence, roughly speaking, causality for the 10
tensor degrees of freedom is determined by g,, whereas
causality for the 1 scalar degree of freedom is determined by
fap» the inverse of £?°. This agrees with Ref. [34]. Of course,
these degrees of freedom are coupled together so causality for
the theory as a whole is determined by both metrics g,;, and
fap- More precisely, the characteristic surfaces of the theory
are surfaces which are null with respect to either g, or f -

6. Nonlinear considerations

The above discussion shows that there exists a preferred
generalized harmonic gauge (227) for which a theory of the
form (236) is strongly hyperbolic when linearized around a
generic weak-field background. We can now ask: does this
generalized harmonic gauge condition for the linearized
theory arise by linearizing a generalized harmonic gauge
condition for the nonlinear theory?

Consider a nonlinear generalized harmonic gauge con-
dition of the form

1
au''}
Note that we would not want J# to depend on second or

higher derivatives of @ because this would give a gauge-
fixed equation of motion involving third derivatives of ®.

9,(v=g9") = J*(g. @, 0®). (237)

“Reference [34] assumed G4 = O but for a theory of the form
(236) we can always set G, =0 using a field redefinition,
specifically a conformal transformation.
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Linearizing around a general background solution gives

oJH
9(0,®)

1
Vo =2 O =--. (238)

where the ellipsis denotes terms that do not involve
derivatives of h,, or y and therefore do not influence
hyperbolicity. Comparing with (112) we see that the
linearized gauge condition has

He A
1+f  0(0,®)°

(239)

It follows that the functions appearing in the linearized
gauge condition must satisfy the integrability condition

a(aicp) (171f> B a(@i@) (171f> (240)

Plugging in the functions (227), this equation reduces to

0xG3 (g P ® — g? @) = 0. (241)
By contracting this equation it is easy to see that the only
way this can hold in a generic background is if 0yG; = 0.
But then G; is independent of X, so (105) implies G; = 0.7
If G; = 0, then we can find a source function J# consistent
with Eq. (239),

0G4
H— _ u

J ) o'o. (242)
In summary, we have imposed the requirement that the
preferred generalized harmonic gauge condition for the
linearized theory arises by linearizing a generalized har-
monic gauge condition for the nonlinear theory. The result
is that this requirement excludes theories with nontrivial Gs.
So demanding that there exists a generalized harmonic
gauge for which the nonlinear theory is strongly hyperbolic
in a generic weak-field background restricts the theory to
one of the form

L=R+X-V(®D)+ G(P,X) + G4(P)R. (243)
Since G, can be eliminated by a field redefinition (footnote
22), this theory is equivalent to Einstein gravity coupled to
a k-essence theory. With the gauge choice (242), this theory
is not just strongly hyperbolic, it is symmetric hyperbolic
(see footnote 20).

B1f Gs is independent of X, then a term in the action of the
form L3 is degenerate with a term of the form £, and the
conditions (105) were imposed to eliminate this degeneracy.
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V. DISCUSSION

We have shown that, in harmonic gauge, the linearized
equation of motion of a Lovelock theory is always weakly
hyperbolic in a weakly curved background. However, it is
not strongly hyperbolic in a generic weak-field background.
We have shown that, in a generalized harmonic gauge, the
linearized equation of motion of a Horndeski theory is always
weakly hyperbolic in a weak-field background. For some
Horndeski theories, a generalized harmonic gauge can be
found for which the linearized equation of motion is also
strongly hyperbolic in a weak-field background. In particular
this is true for theories of the form (236). However, for more
general Horndeski theories, we have shown that there is
no generalized harmonic gauge for which the equation of
motion is strongly hyperbolic in a generic weak-field back-
ground. Furthermore, even for theories of the form (236),
imposing the requirement that the gauge condition for the
linearized theory is the linearization of a generalized har-
monic gauge condition for the nonlinear theory restricts the
theory further, to one of the form (243).

Without strong hyperbolicity, the best one can hope for is
that the linearized equation of motion is locally well-posed
with a “loss of derivatives.” This means that the kth Sobolev
norm H* of the fields at time ¢ cannot be bounded in terms of
its initial value but only in terms of the initial value of some
higher Sobolev norm H**! with [ > 0. Whether even this can
be done depends on the nature of the terms with fewer than
two derivatives in the equation of motion [5]. But even if
this can be achieved, the loss of derivatives is likely to be
fatal for any attempt to prove that the nonlinear equation is
locally well-posed in some Sobolev space, as is the case for
the Einstein equation.”* This is because establishing well-
posedness for a nonlinear equation usually involves a “boot-
strap” argument in which one assumes some bound on the H*
norm and then uses the energy estimate to improve this
bound, thereby closing the bootstrap. This is not possible if
the energy estimate exhibits a loss of derivatives.

Note that our result is a statement about the full equations
of motion. If one restricts the equations of motion by
imposing some symmetry on the solution (e.g., spherical
symmetry), then it is possible that the resulting equations
might be strongly hyperbolic. This is because the resulting
class of background spacetimes would be nongeneric, and,
as we have seen, for nongeneric backgrounds it is possible
for the equation of motion to be strongly hyperbolic even if
it is not strongly hyperbolic for a generic background.

Our results demonstrate that we do not have local well-
posedness for the harmonic gauge Lovelock equation of
motion for general initial data. So the situation is worse
than for the Einstein equation, for which the harmonic
gauge equation of motion is locally well-posed for any

It is conceivable that one might have local well-posedness in
some much more restricted function space, such as a Gevrey
space.
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initial data [7]. But in practice we are not interested in
general initial data, but only in initial data satisfying the
harmonic gauge condition. Since the failure of strong
hyperbolicity appears to be associated with modes which
violate the harmonic gauge condition, perhaps we could
restrict to initial data satisfying this condition exactly and
thereby obtain a well-posed problem. One could not do
this numerically on a computer because the gauge con-
dition could never be imposed exactly—there would
always be numerical error. But perhaps this could be done
in principle. One way to proceed would be to consider
sequences of analytic initial data, satisfying the gauge
condition, which approach some specified smooth initial
data. For analytic data one can solve the equation of motion
locally [3]. If one could prove that the resulting analytic
solution satisfies an energy estimate without a loss of
derivatives (because it satisfies the gauge condition), then
perhaps it would be possible to establish local well-
posedness. Having said this, we note that one could make
exactly the same remarks about the Einstein equation written
in a “bad” (not strongly hyperbolic) gauge so it is far from
clear that this method has any chance of succeeding.

If the equation of motion is not strongly hyperbolic in
(generalized) harmonic gauge, then could there be some
other gauge in which it is strongly hyperbolic? For example,
maybe one could modify the (generalized) harmonic gauge
condition to include additional terms involving first deriv-
atives of A, contracted in some way with the background
curvature tensor (or scalar field). But this raises the question
of whether it is always possible to impose the new gauge
condition via a gauge transformation. This would involve
solving an equation for the gauge parameters. We would
then have to analyze whether this new equation has a well-
posed initial value problem, and whether the resulting gauge
condition is propagated by the gauge-fixed equation of
motion. This may amount to analyzing equations that suffer
from the same kind of problems as the equations we have
discussed in this paper.

In this paper, we have been working with equations of
motion for the metric. An alternative approach would be to
derive an equation of motion for curvature. The Bianchi
identity can be used to write V¢V, R ;.. in terms of second

PHYSICAL REVIEW D 96, 044019 (2017)

derivatives of the Ricci tensor, and terms with fewer than
two derivatives of curvature. For the Einstein equation, one
can eliminate the Ricci tensor to obtain a nonlinear wave
equation for the Weyl tensor. This equation is strongly
hyperbolic and admits a well-posed initial value problem.
For a Lovelock theory one cannot solve explicitly for the
Ricci tensor but one could still replace the Ricci tensor
terms using the expression obtained from the equation of
motion of the theory. This gives an equation of motion
for the Riemann tensor. In contrast with what happens for
the Einstein equation, the resulting equation is subject to a
constraint, which is simply the Lovelock equation of
motion. If this constraint is satisfied by the initial data,
then it will be satisfied by any solution of the equation of
motion for the Riemann tensor. The situation looks analo-
gous to the case of the harmonic gauge equation of motion
for the metric, but with more indices. It seems very likely
that this equation of motion for the Riemann tensor will fail
to be strongly hyperbolic in a generic background.

Another approach would be to investigate equations of
motion based on a space-time decomposition of the metric, as
in the ADM formalism. It is known that the ADM formu-
lation of the Einstein equation gives equations that are not
strongly hyperbolic [9]. However, suitable modification of
the ADM method gives equations that are strongly hyper-
bolic [9,10]. Perhaps something similar would work for
Lovelock or Horndeski theories. However, it appears that
there is no obvious way of extending the approaches used for
the Einstein equation to Lovelock theories [35].

Of course, there is also the possibility that these theories do
not admit a locally well-posed initial value problem, or that
one only has well-posedness for some highly restricted space
of initial data. This would lead to the satisfying conclusion
that these modifications of the Einstein equation can be
shown to be unviable as physical theories solely on the basis
of the classical initial value problem for weak fields.
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