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In this paper, the linearly charged three-dimensional Einstein’s theory coupled to a dilatonic field has
been considered. It has been shown that the dilatonic potential must be considered in a form of generalized
Liouville-type potential. Two new classes of charged dilatonic black hole solutions, as the exact solutions to
the Einstein-Maxwell-dilaton (EMd) gravity, have been obtained and their properties have been studied.
The conserved charge and mass related to both of the new EMd black holes have been calculated. Through
comparison of the thermodynamical extensive quantities (i.e., temperature and entropy) obtained from
both, the geometrical and the thermodynamical methods, the validity of first law of black hole
thermodynamics has been investigated for both of the new black holes we just obtained. At the final
stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal
stability or phase transition of the new black hole solutions have been analyzed. It has been shown that
there is a specific range for the horizon radius in such a way that the black holes with the horizon radius in
that range are locally stable. Otherwise, they are unstable and may undergo type one or type two phase
transitions to be stabilized.
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I. INTRODUCTION

Although the Einstein tensorial theory of gravitation,
known today as general relativity, was more successful to
pass observational tests and became the standard theory of
gravitation, it seems that this theory may be incomplete
[1–5]. One of the main approaches for explanation of the
related problems is to modify Einstein’s theory of gravity.
In this regard, various modifications were proposed in the
literatures [6–13]. Among them the so-called scalar-tensor
theories [14], as the modification arising from string theory,
have provided interesting results [15]. At the sufficiently high
energy scales, the Einstein’s action is naturally modified by
the scalar-tensor superstring terms. In the low energy limit of
the string theory, the Einstein gravity is recovered with a
dilatonic scalar field which is coupled to the gravity [16].
Black holes with scalar hair are interesting solutions of

Einstein’s theory of gravity and also of certain types of
modified gravity theories. These solutions have been inves-
tigated by theoretical physicists in four and higher dimen-
sional spacetimes for a long time [17]. The first studies on
the three-dimensional black holes, as the interesting pre-
dictions of Einstein’s theory of relativity in lower dimen-
sional spacetimes, have been done originally by Banados,
Teitelboim, and Zanelli (BTZ) [18]. After the discovery of
the BTZ black holes, a large number of studies on different
kinds of black holes in (2þ 1)-dimensional spacetimes have
been done by many authors [19]. Apparently, the first
attempts for investigation of the charged three-dimensional
dilatonic black holes were made by Chan and Mann [20],

in the presence of a minimally coupled logarithmic dilaton
field with an exponentially potential term.
It is a commonly believed that study of the physics of

black holes in lower dimensions is easier and can lead to a
deeper insight into the fundamental ideas in comparison to
higher dimensional black holes. Also, according to (A)dS/
CFT correspondence, there is a dual between quantum
gravity on A(dS) space and a Euclidean conformal field
theory on the lower dimensional spacetimes [21,22]. Thus,
study of physics in (2þ 1)-dimensional spacetimes can be
useful for understanding of quantum field theory on A(dS)
spacetimes. Although this subject area has been considered
extensively, it still has many unknown and interesting parts
to be studied [23].
On the other hand, after the discoveries of Bekenstein,

Bardeen, Carter, and Hawking, it is well known that black
holes can be considered as the thermodynamical systems
with a temperature proportional to the surface gravity and
having pure geometrical entropy equal to one-fourth of
the horizon area [24–26]. When a dilatonic scalar field is
coupled to the three-dimensional Einstein-Maxwell theory,
it is expected to produce new and interesting consequences
for the black hole solutions. Thus, it is worthwhile to find
exact solutions of EMd gravity for an arbitrary coupling
constant, and investigate how the thermodynamical proper-
ties of black holes are modified in the presence of a
dilatonic scalar field. Also it is interesting to investigate the
black holes remnant and find out the impacts of dilaton on
the thermal stability of the black hole solutions.
The main object this paper is to introduce new EMd

black holes as the exact solutions to the coupled scalar,
vector, and tensor field equations and provide a detailed*m.dehghani@ilam.ac.ir
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analysis of the thermodynamical properties of new three-
dimensional electrically charged black holes in the pres-
ence of a dilatonic scalar field.
The paper is organized based on the following order.

In Sec. II the scalar, electromagnetic and gravitational field
equations have been solved and the static spherically
symmetric black hole solutions have been obtained. The
physical properties of the black hole solutions, we obtained
here, have been considered. It has been found that their
asymptotical behaviors are not like anti-de Sitter (AdS) black
holes. Section III is devoted to checking the validity of
the first law of black hole thermodynamics for both of the
EMd black hole solutions obtained in the previous section.
The black holes masses, charges, entropies, temperatures
as well as the electric potentials have been calculated based
on geometrical methods. The black holes masses have been
written as functions of the charge and entropy, as the
complete set of extensive thermodynamical quantities.
Making use of the mass formulas, the temperatures and
electric potentials have been calculated, as the intensive
quantities conjugate to entropy and charge, respectively.
Through comparison of the quantities obtained from both
geometrical and thermodynamical methods, the validity of
the first law of black hole thermodynamics has been
confirmed for both of the EMd black hole solutions intro-
duced here. In Sec. IV, the thermal stability or phase
transition of the obtained black hole solutions has been
analyzed, making use of the canonical ensemble method
and regarding the black hole heat capacity. It has been found
that based on the choice of the dilatonic parameter, it is
possible for the EMd black holes to be locally stable or
undergo phase transition in order to be stabilized. The results
are summarized and discussed in Sec. V.

II. FIELD EQUATIONS AND THE CIRCULARLY
SYMMETRIC SOLUTIONS

The action for three dimensional charged hairy black
holes in the presence of nonlinear electrodynamics can be
written in the following general form [20,27]

I¼−
1

16π

Z ffiffiffiffiffiffi
−g

p
d3x½R−UðϕÞ−2gμν∇μϕ∇νϕ−Fe−2αϕ�:

ð2:1Þ

Here, R is the Recci scalar. ϕ is a scalar field coupled to
itself via the functional form UðϕÞ. The parameter α is the
scalar-electromagnetic coupling constant and F ¼ FμνFμν

being the Maxwell invariant, Fμν ¼ ∂μAν − ∂νAμ and Aμ is
the electromagnetic potential. By varying the action (2.1)
with respect to gravitational, electromagnetic and scalar
fields, we get the related field equations as

Rμν −
1

2
Rgμν þ

1

2
gμνUðϕÞ ¼ TðsÞ

μν þ TðemÞ
μν ; ð2:2Þ

TðsÞ
μν ¼ 2∇μϕ∇νϕ − gμνð∇ϕÞ2;

TðemÞ
μν ¼ −

1

2
Fe−2αϕgμν þ 2e−2αϕFμαFν

α;

∇μ½e−2αϕFμν� ¼ 0; ð2:3Þ

4□ϕ ¼ dUðϕÞ
dϕ

− 2αFe−2αϕ; ϕ ¼ ϕðrÞ: ð2:4Þ

Assuming as a function of r, the only nonvanishing
component of the electromagnetic field is Ftr ¼ −EðrÞ ¼
h0ðrÞ, and we have

F ¼ −2E2ðrÞ ¼ −2ðh0ðrÞÞ2: ð2:5Þ

In overall the paper, prime means derivative with respect to
the argument. The gravitational field Eq. (2.2) can be
rewritten as

Rμν ¼ UðϕÞgμν þ 2∇μϕ∇νϕ − ðFgμν − 2FμαFν
αÞe−2αϕ:

ð2:6Þ

We consider the following ansutz as the three dimensional
spherically symmetric solution to the gravitational field
Eq. (2.6)

ds2 ¼ −ΨðrÞdt2 þ 1

ΨðrÞ dr
2 þ r2RðrÞ2dθ2: ð2:7Þ

It leads to the following independent differential equations

E00 ≡Ψ00 þ
�
1

r
þ R0

R

�
Ψ0 þ 2U ¼ 0; ð2:8Þ

E11 ≡ E00 þ 2Ψ
�
R00

R
þ 2R0

rR
þ 2ϕ02

�
¼ 0; ð2:9Þ

E22 ≡
�
1

r
þ R0

R

�
Ψ0 þ

�
R00

R
þ 2R0

rR

�
ΨþU þ 2F2

tre−2αϕ ¼ 0:

ð2:10Þ

Noting Eqs. (2.8) and (2.9) we obtain

R00

R
þ 2

r
R0

R
þ 2ϕ02 ¼ 0: ð2:11Þ

The differential Eq. (2.11) can be written in the following
form

2

r
d
dr

lnRðrÞ þ d2

dr2
lnRðrÞ þ

�
d
dr

lnRðrÞ
�

2

þ 2ϕ02 ¼ 0:

ð2:12Þ
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From Eq. (2.12), one can argue that RðrÞ must be an
exponential function of ϕðrÞ. Therefore, we can write
RðrÞ ¼ e2αϕ, in Eq. (2.12), and show that ϕ ¼ ϕðrÞ
satisfies the following differential equation

αϕ00 þ ð1þ 2α2Þϕ02 þ 2α

r
ϕ0 ¼ 0: ð2:13Þ

It is easy to write the solution of (2.13) in terms of a positive
constant b as ϕðrÞ ¼ γ lnðbrÞ, with γ ¼ αð1þ 2α2Þ−1.
Similar solutions have been used by Hendi et al. [27].
The authors of Ref. [20], have started with a power law of
the form RðrÞ ∝ rn and ϕðrÞ ∝ ln r, and showed that black
hole solutions can exist if n is restricted in some ranges.
Making use of these solutions together with Eqs. (2.3)

and (2.7), we have

�
hðrÞ ¼ −q ln ðr=lÞ;
Ftr ¼ − q

r ;
ð2:14Þ

where, q is an integration constant related to the total
electric charge on black hole. It will be calculated in
the following section. The specific length l is related to
the three-dimensional cosmological constant Λ through
Λ ¼ −l−2.
Now, Eq. (2.10) can be rewritten as

Ψ0 −
2αγ

r
Ψþ r

1 − 2αγ
½UðϕÞ þ 2F2

tre−2αϕ� ¼ 0: ð2:15Þ

To solve this equation for the metric functionΨðrÞ, we need
to calculate the functional form of UðϕðrÞÞ as the function

of radial coordinate. For this purpose we proceed to solve
the scalar field Eq. (2.4), which can be written as

dUðϕÞ
dϕ

− 4βUðϕÞ − 4αF2
tre−2αϕ ¼ 0: ð2:16Þ

Now, the first order differential (2.16) can be solved as

UðϕÞ ¼
( ðC� 4q2

b2 ϕÞe�4ϕ; for α ¼ �1;

½Cþ 2α2q2

b2ð1−α2Þ e
2
αð1−α2Þϕ�e4αϕ; for α ≠ �1;

ð2:17Þ

where C is an integration constant related to the cosmo-
logical constant Λ. Since, in the absence of the dilaton field
(i.e., ϕ ¼ 0), the action (2.1) reduces to the action of
Einstein-Λ-Maxwell gravity, one can obtain the integration
constant C by imposing the condition Uðϕ ¼ 0Þ ¼ 2Λ.
It leads toC ¼ 2Λ and the solutions (2.17) can be written as
the following versions of the Liouville dilaton potential

UðϕÞ ¼
� ð2Λ� 4q2

b2 ϕÞe�4ϕ; for α ¼ �1;

2Λ0e4α0ϕ þ 2Λe4αϕ; for α ≠ �1;
ð2:18Þ

with

α0 ¼
1þ α2

2α
; and Λ0 ¼

α2q2

b2ð1 − α2Þ : ð2:19Þ

Now, making use of Eqs. (2.15), (2.18), and (2.19) the
metric function ΨðrÞ can be obtained as

ΨðrÞ ¼
(
−mr2=3 − 6ðrbÞ2=3½Λb2 þ q2ð1þ 1

3
ln b2

rlÞ� lnðrlÞ; for α ¼ �1;

−mr2αγ þ ð1þ2α2Þ2
α2−1 ½Λr2ðbrÞ4αγ þ 2q2

1þ2α2
ðbrÞ−2αγ lnðrlÞ�; for α ≠ �1.

ð2:20Þ

In the absence of the coupling constant α (i.e., α ¼ 0) we have

ΨðrÞ ¼ −m − Λr2 − 2q2 ln ðr=lÞ; ð2:21Þ

which is nothing but the metric function of the charged BTZ black hole. All the field equations are satisfied by the solutions
given in this section. Note that m is an integration constant related to the black hole mass.
Now, we look for the curvature singularities. One can show that the Ricci and Kretschmann scalars can be written in the

following forms

R ¼
8<
:

2
9r2 þ ð6Λþ 2q2

b2 ÞðbrÞ4=3 þ 4q2

b2 lnðbrÞ; for α ¼ �1;

6ΛðbrÞ
4α2

1þ2α2 þ 2α2

b2ð1þ2α2Þ2 ðbrÞ2 −
2q2ð1þ2α2Þ
b2ðα2−1Þ ðbrÞ

2ð1þα2Þ
1þ2α2 ; for α ≠ �1;

ð2:22Þ

RμνρλRμνρλ ¼
(
r−8=3½ξ0 þ ξ1 ln rþ ξ2ðln rÞ2 þ ξ3ðln rÞ3�; for α ¼ �1;

r−
4ð1þα2Þ
1þ2α2 ½A0 þ A1r

2ð1−α2Þ
1þ2α2 þ A1r

4ð1−α2Þ
1þ2α2 þ ðA3 þ A4r

2ð1−α2Þ
1þ2α2 Þ ln rþ A5ðln rÞ2�; for α ≠ �1;

ð2:23Þ
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where ξi’s and Ai’s are functions b, Λ, q, m, and α. Noting
Eqs. (2.22) and (2.23) one can argue that Ricci and
Kretschmann scalars are finite for finite values of the
redial component r. There is an essential singularity located
at r ¼ 0. Also the asymptotical behavior of the geometry
under consideration is not A(dS). The plot of metric
functions (2.20) for different values of α, q, m, and b
have been shown in Figs. 1 and 2. It is clear that the EMd
black holes, we obtained here, by suitable choice of the
parameter α can show two horizon, extreme and naked
singularity black holes.
In the following sectionweexplore the thermodynamics of

the new EMd black hole solutions presented in Eq. (2.20).

III. FIRST LAW OF BLACK HOLE
THERMODYNAMICS

In this section, we would like to check the validity of the
first law of black hole thermodynamics for the new EMd
black holes introduced here. At first it must be noted that
the conserved charge of the black hole can be obtained by
calculating the total electric flux measured by an observer
located at infinity with respect to the horizon (i.e., r → ∞)
[28–30], that is

Q ¼ 1

4π

Z ffiffiffiffiffiffi
−g

p
L0ðF ÞFμνnμuνdΩ; ð3:1Þ

where nμ and uν are the unit spacelike and timelike normals
to the hypersurface of radius r defined through the follow-
ing relations

nμ ¼ 1ffiffiffiffiffiffiffiffi−gtt
p ¼ dtffiffiffiffiffiffiffiffiffiffi

ΨðrÞp ; uν ¼ 1ffiffiffiffiffiffi
grr

p ¼
ffiffiffiffiffiffiffiffiffiffi
ΨðrÞ

p
dr:

Making use of Eq. (3.3) after some simple calculations we
arrived at

q ¼ −2Q: ð3:2Þ

The other conserved quantity to be calculated is the black
hole mass. As mentioned before, it can be obtained in
terms of the mass parameter m. The Abbott-Deser total
mass of the EMd black holes introduced here can be
obtained as [27,31]

m ¼
(

24M
b2=3

; for α ¼ �1;
8M

1−2αγ b
−2αγ; for α ≠ �1;

ð3:3Þ

which is compatible with the mass of charged BTZ black
hole when the dilatonic potential disappears.
One can obtain the Hawking temperature associated with

the black hole horizon r ¼ rþ, which is the root(s) of
ΨðrþÞ ¼ 0, in terms of the surface gravity κ as
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FIG. 2. ΨðrÞ versus r for m ¼ 3 and Λ ¼ −1. Left: q ¼ 1, b ¼ 2 and α ¼ 0.15, 0.32, 0.42, 0.48 for black, red, blue and green curves,
respectively. Middle: b ¼ 2, α ¼ 0.3 and q ¼ 0.8, 1.0, 1.2, 1.4 for black, red, blue and green curves, respectively. Right: q ¼ 1, α ¼ 0.3
and b ¼ 2, 3, 5, 8 for black, red, blue and green curves, respectively.
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FIG. 1. ΨðrÞ versus r for α ¼ �1 and Λ ¼ −1. Left: q ¼ 1.5, b ¼ 2 and m ¼ 1, 1.5, 2, 2.5 for black, blue, red and green curves,
respectively. Middle: m ¼ 2, b ¼ 2 and q ¼ 1.2, 1.3, 1.4, 1.5 for black, blue, red and green curves, respectively. Right: q ¼ 1.5, m ¼ 1
and b ¼ 2, 2.1, 2.2, 2.3 for black, blue, red and green curves, respectively.
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T ¼ κ

2π
¼ 1

4π

d
dr

ΨðrÞjr¼rþ ¼
8<
:

3q2

2π ðrþb2Þ−1=3½ð b
qlÞ2 − 1 − 2

3
lnð b

rþ
Þ�; for α ¼ �1;

2α2þ1
2πð1−α2Þ ½

bð1−α2Þ
l2 ð brþÞ

2α2−1
2α2þ1 − q2

b ð brþÞ
1

2α2þ1�; for α ≠ �1;
ð3:4Þ

in which, the mass parameterm has been eliminated by use
of the relation ΨðrþÞ ¼ 0.
In the case α ¼ 0, the black hole temperature coincides

with that of charged BTZ black hole. Since, the terms in
the brackets have opposite sign, from thermodynamical
point of view, the physical (i.e., black holes with positive
temperature) and unphysical black holes (i.e., black holes
with negative temperature) can appear. Also, it must be
noted that extreme black holes occur if q and rþ be chosen
such that T ¼ 0. With this issue in mind, making use of
Eq. (3.4) we have

qext ¼
8<
:

b
l ½1þ 2

3
lnð b

rext
Þ�−1=2; for α ¼ �1;

b
l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
ð b
rext
Þ α2−1
2α2þ1; for − 1 < α < 1.

ð3:5Þ

In order to investigate the effects of scalar hair on the
horizon temperature the plot of black hole temperature

versus horizon radius, for different values of α, has been
shown in Figs. 3 and 4. The physical black holes with
positive temperature are those for which rþ > rext and
unphysical black holes, having negative temperature, occur
if rþ < rext.
Next, we calculate the entropy of the black hole. It can

be obtained from Hawking-Bekenstein entropy-area law,
that is

S ¼ A
4
¼

(
πb
2
ðrþb Þ1=3; for α ¼ �1;

πb
2
ðrþb Þ1−2αγ; for α ≠ �1.

ð3:6Þ

Also, the black hole’s electric potential on the horizon,
measured by an observer at the reference point, can be
obtained in terms of the null generator of the horizon
χμ ¼ C∂μ, as [28,29,30]

Φ ¼ Aμχ
μjreference − Aμχ

μjr¼rþ : ð3:7Þ
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0.4

0.2
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0.1

0.0

0.1

FIG. 3. Assuming α ¼ �1, Λ ¼ −1, q ¼ 1.5 and b ¼ 2, 2.1, 2.2, 2.3, for Black, blue, red, and green curves, respectively. Left: T
versus rþ. Right: 10ð∂2M=∂S2ÞQ versus rþ.

FIG. 4. Assuming Λ ¼ −1, q ¼ 2 and b ¼ 3. Left: T versus rþ. Black, red, blue, and green curves are correspond to α ¼ 0.5, 0.6,
0.66, 0.7, respectively. Right: π2ð∂2M=∂S2ÞQ versus rþ. Black, red, blue, and green curves are correspond to α ¼ 0.4, 0.45, 0.5, 0.55,
respectively.
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Noting Eq. (2.14) we have

Φ ¼ Cq ln ðrþ=lÞ; ð3:8Þ

where C is a constant coefficient.
In order to investigate the consistency of these quantities with the thermodynamical first law, from Eqs. (2.20), (3.2),

(3.3), and (3.6), we can obtain the black hole mass as the function of extensive parameters S and Q that is

MðS;QÞ ¼
8<
:

1
4
½b2l2 − 4Q2ð1þ 1

3
ln b2

lrþðSÞÞ� ln
rþðSÞ
l ; for α ¼ �1;

2α2þ1
8ðα2−1Þ ½Λb2ð b

rþðSÞÞ2ð3αγ−1Þ þ
8Q2

2α2þ1
lnðrþðSÞl Þ�; for α ≠ �1.

ð3:9Þ

Note that, if we set α ¼ 0 the mass of the black hole
reduces to

m ¼ r2þ
l2

− 2q2 ln

�
rþ
l

�
; ð3:10Þ

which is compatible with that of charged BTZ black hole.
Now, we obtain the intensive parameters T and Φ, con-
jugate to the black hole entropy and charge, respectively.
It is a matter of calculation to show that

�∂M
∂S

�
Q
¼ T for both α ¼ �1 and α ≠ �1;

ð3:11Þ

and

�∂M
∂Q

�
S
¼ Φ; ð3:12Þ

provided that C be equal to ð1 − α2Þ−1 in Eq. (3.8) for the
cases α ≠ �1. Also Eq. (3.12) is valid for the case α ¼ �1
if C be chosen equal to one (i.e., C ¼ 1) and the horizon
radius be restricted through the relation b2 ¼ lrþ [32].
Therefore, we proved that the first law of black hole
thermodynamics is valid for both classes of the new
EMd black holes in the following form

dMðS;QÞ ¼
�∂M
∂S

�
Q
dSþ

�∂M
∂Q

�
S
dQ: ð3:13Þ

IV. HEAT CAPACITY AND STABILITY ANALYSIS

In this stage, we would like to study the local stability or
phase transitions of the introduced black holes in the
canonical ensemble method. It is well known that black
holes, as the thermodynamical systems, are locally stable if
their heat capacity is positive. The nonstable black holes
may undergo a phase transition to be stabilized. The phase
transition points are where the heat capacity vanishes or
diverges. In the vanishing points (roots of heat capacity) the

phase transition is named conventionally as the type one
phase transition. The points where the heat capacity
diverges are known as the type two phase transition points.
Therefore, the positivity of heat capacity CQ ¼
Tð∂S=∂TÞQ ¼ T=ð∂2M=∂S2ÞQ or equivalently the posi-
tivity of ð∂S=∂TÞQ or ð∂2M=∂S2ÞQ with T > 0 are
sufficient to ensure the local stability of the black holes.
Here, we analyze the thermal stability or phase transition of
the either of the new EMd black hole solutions, separately.

A. Black holes with α=�1

The denominator of the black hole heat capacity can be
calculated as

�∂2M
∂S2

�
Q
¼ 2q2

π2b2

�
b
rþ

�
2=3

�
2

3
ln

b
rþ

þ 3 −
�

b
ql

�
2
�
: ð4:1Þ

It is understood from Eq. (4.1) that if

rþ≐r0 ¼ b exp

�
3

2

�
3 −

�
b
ql

�
2
��

; ð4:2Þ

the denominator of the black hole heat capacity vanishes
and black holes with the size satisfying this condition
undergo type two phase transition. Note that r0 > rext and
as a result the type two phase transition takes place only for
the physical black holes. In addition, if rþ > r0 the heat
capacity of the physical black holes is negative and they
will be thermodynamically unstable. On the other hand, if
rþ < r0 the denominator of the heat capacity as well as
the heat capacity s positive in the range rext < rþ < r0.
It means that the physical black holes with the horizon
radius in this range are thermodynamically stable. For the
unphysical black holes (rþ < rext), the denominator is
positive, CQ is negative and they will be locally unstable.
The plots of T and ð∂2M=∂S2ÞQ are shown in Fig. 3. The
plots show that there is a minimum rþ ¼ r0 such that
ð∂2M=∂S2ÞQ is positive for rþ < r0. It is evident that the
physical black holes with the horizon radius in the range
rþ < r0 are locally stable. Otherwise they are thermally
unstable and can undergo phase transition to be stabilized.
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B. Black holes with α ≠ �1

First of all, it must be noted that, according to Eq. (3.4), it
is possible for the black hole temperature to vanish at
rþ ¼ rext. Therefore, the black hole heat capacity will
vanish too, and they can undergo type one phase transition
at this point.
It is a matter of calculation to show that

�∂2M
∂S2

�
Q
¼ 1þ 2α2

π2

�
Λð2α2 − 1Þ

�
b
rþ

� 2α2

1þ2α2

−
q2

b2

�
b
rþ

� 2

1þ2α2

�
: ð4:3Þ

The statement given in Eq. (4.3) is the denominator of
the black hole heat capacity. It is consist of two terms
which, apart from scalar hair, show the contributions from
Λ and black hole charge, separately. The charge-term is
negative, while the signature of the Λ-term (Λ < 0)
depends on that of 1 − 2α2. If α be chosen such that
1 − 2α2 > 0, one can show that the heat capacity of the
EMd black holes diverges at

rþ≐r1 ¼ b

�
b2ð1 − 2α2Þ

q2l2

� 1þ2α2

2ðα2−1Þ
; −

1ffiffiffi
2

p < α <
1ffiffiffi
2

p :

ð4:4Þ

Regarding Eq. (3.4), one can show that r1 > rext. It means
that the heat capacity of the physical EMd black holes
diverges and they undergo type one phase transition, while
the unphysical black holes do not. Also, the physical black
holes with the horizon radius in the range rext < rþ < r1
(T > 0 and ð∂2M=∂S2ÞQ < 0), have negative heat capacity
and are unstable. In addition if rþ > r1, both T and
ð∂2M=∂S2ÞQ are positive and physical black holes are
locally stable.
On the other hand if rþ < rext the denominator of theblack

hole heat capacity will be negative and the un-physical black
holes (having negative temperature) are locally stable. The
un-physical black holes do not undergo type two phase
transition. The plot of π2ð∂2M=∂S2ÞQ versus rþ has been
shown in Fig. 4, for some alternative values of α.

V. CONCLUSION

Here, we studied the three-dimensional charged black
holes as the solutions to the Einstein-Maxwell theory
coupled to a dilatonic scalar field. By introducing a
circularly symmetric static geometry, we solved the
coupled scalar, electromagnetic, and gravitational field
equations and obtained two new classes of black hole
solutions. Through the consideration of the physical
properties of the black hole solutions, obtained here, we
found that they do not behave asymptotically as the AdS

black holes do. Also, we found that Ricci and Kretschmann
scalars diverge at r ¼ 0, that means r ¼ 0 is an essential
(not coordinate) singularity for either classes of the EMd
black hole solutions. Furthermore, we showed that one of
the black hole solutions, corresponding to α ¼ �1, presents
extreme and two horizon black holes while the other one
which corresponds to α ≠ �1 presents naked singularity,
extreme and two horizon black holes if the parameter α is
chosen suitably (see Figs. 1 and 2).
Next, we considered the thermodynamical properties of

the new EMd black holes. We calculated the electric charges
and masses of the black holes, as conserved quantities,
making use of Gauss’s law and the Abbott-Deser proposal,
respectively. Also, we calculated the entropy, temperature
and electric potential using the geometrical methods. On the
other hand, through a Smarr-type mass formula, we con-
structed out the black holes masses as functions of both
charge and entropy, as the thermodynamical extensive
quantities, from which we calculated the electric potential
and temperature, as the thermodynamical intensive quan-
tities, for both of the newEMdblack holes.We found that the
thermodynamical quantities obtained from geometrical and
thermodynamical approaches are identical for either of the
black hole classes, confirming the validity of the first law of
black hole thermodynamics in the form of Eq. (3.13).
Finally, we analyzed the local stability of both new EMd

black holes, using the black hole heat capacity with fixed
black hole charge. For the caseα ¼ �1we found that theheat
capacity vanishes at rþ ¼ rext. Thus, physical and unphys-
ical black holes can undergo type one phase transition. Also,
it is possible for the denominator of the heat capacity to
vanish at rþ ¼ r0 > rext for the physical black holes and they
may undergo type two phase transition. The physical black
holes with the horizon radius in the range rext < rþ < r0 are
thermodynamically stable. They are unstable in the range
rþ > r0 too. The denominator of the heat capacity does not
vanish for the unphysical black holes (rþ < rext) and they
do not undergo type two phase transition. The unphysical
black holes are thermodynamically unstable, since they
have negative heat capacity [see Eq. (4.1) and Fig. 3].
Furthermore, in the case α ≠ �1, we showed that type
two phase transition can take place only for the physical
EMd black holes at rþ ¼ r1. There is a point of type one
phase transition, for both physical and unphysical black
holes, located at rþ ¼ rext where the black hole temperature
vanishes. The physical black holes with rþ > r1 are stable,
they are unstable if their horizon radius is in the range
rext < rþ < r1. The heat capacity of the unphysical black
holes does not diverge and they do not undergo type two
phase transition. For the unphysical EMd black holes having
rþ < rext, both T and ð∂2M=∂S2ÞQ are negative and they are
stable. [see Eq. (4.4) and Fig. 4].
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