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I propose an alternative fðRÞ theory of gravity constructed by applying the function f directly to the
Ricci tensor instead of the Ricci scalar. The main goal of this study is to derive the resulting modified
Einstein equations for the metric case with the Levi-Cività connection, as well as for the general nonmetric
connection with torsion. The modification is then applied to the Robertson-Walker metric so that the
cosmological evolution corresponding to the standard model can be studied. An appealing feature is that
even in the vacuum case, scenarios without initial singularity and exponential expansion can be recovered.
Finally, formulas for possible observational tests are given.
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I. INTRODUCTION

The foundation of the present work is to consider a
modified Lagrangian (density), which depends function-
ally on the full Ricci tensor Rab, not just on its trace R as
is the case in the so-called fðRÞ theories of gravity. The
principles of relativity require that this modification be
obtained covariantly, and not component-wise, so writing
fðRabÞ could be misleading. Since f will be a tensor-
valued function, for the sake of distinction from the
usual fðRÞ theory, the extension will be referred to as
tensor fðRÞ.
The motivation in both cases is the same—the inclusion

of higher-order-of-curvature effects which can classically
be ignored, but which lead to important modifications in
other regimes. Most notably, the Starobinsky inflation
model [1] induced by quadratic terms is a particularly
important result in this spirit. Although initially intro-
duced on quantum gravity grounds, with corrections built
from various contractions of the Ricci tensor, it is now
often considered in the language of quadratic fðRÞ
theories [2].
Despite the initial similarity, the tensor fðRÞ gravity

presented here differs considerably from the usual one, and
the goal of this article is to focus first on the development of
this new theory, with a comparative study left for future
work. Accordingly, the notation and mathematical setting
will be given as well as the modified Einstein equations.
Not to stop at the abstract level, I will also consider possible
applications to cosmology, with a view to nonsingular
evolution, and provide basic formulas to be used in
observational cosmology.
Notable differences and similarities with the ordinary

fðRÞ theory will be pointed out throughout the derivations
in Secs. II, IV, and V, but for a more complete, general

review of the standard approach, the reader might want to
consult Refs. [3,4], or [5] and references therein.

II. CONSTRUCTION OF THE
MODIFIED ACTION

In the usual fðRÞ theories, one postulates the Lagrangian

L0 ¼ fðtr½R�Þ ¼ fðRacgcaÞ; ð1Þ

with the summation convention used, and the covariant
metric tensor denoted by gac. On purely abstract grounds, the
order in which f and trace appear is not fixed, so instead of
the above I will consider the Lagrangian to be

Lg ¼ tr½fðRÞ� ¼ ½fðRÞ�acgca; ð2Þ

where the square brackets are used to indicate elements of a
matrix, and the bare symbol R has to refer to the tensor, not
the scalar, as explained below.
A similar idea has been studied before by Borowiec

[6,7], but it differed from the present work in two ways.
First, it used a torsionless metric, and second, the
Lagrangian depended on polynomial invariants of the
Ricci tensor tr½Rk�. Such scalars formed with powers k
higher than the space-time dimension can be reduced to the
lower ones by using the characteristic polynomial.
However, this cannot, in general, be done explicitly for
transcendental functions—i.e., when one needs to use an
infinite series of powers of R. What is more, the coefficients
of the characteristic polynomial themselves depend on the
components of R, leading to an unwieldy expression of an
original function of R in terms of a function of the
invariants tr½Rk�. The present work aims at overcoming
this problem, and also at including connections with the
most general torsion and nonmetricity.
To proceed with the general treatment, the first thing to

settle is what tensors and operators to use, and in particular*tomasz@amp.i.kyoto‑u.ac.jp
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how to interpret fðRÞ. Power series immediately come to
mind, so what is needed is a representation of R such that it
can be composed with itself by matrix multiplication
consistent with relativistic index contraction. In other
words, R should be an endomorphism, for instance on
the tangent bundle over the space-time.
To treat R as such an endomorphism, mixed indices have

to be used so that the result composition Ra
bRb

c is again a
mixed-indices tensor of the same valence. Ra

b would do as
well, but with the former choice, the eigenvalue problem
can be written as

Ra
bvb ¼ λva; ð3Þ

i.e., for eigenvectors rather than eigenforms, which seems
more natural. The two are still equivalent through the
musical isomorphism, and such an R is a self-adjoint
operator with regard to the metric

hu; RðvÞi ¼ uagabRb
cvc ¼ uaRcavc

¼ Rb
auagbcvc ¼ hRðuÞ; vi; ð4Þ

provided that Rab is symmetric, which is the case for the
Levi-Cività connection. When one allows for the torsion to
be nonzero, the above requires a generalization given
in Sec. IV.
In the bracket-component notation, f should act on R

considered as a linear operator with matrix elements ½R�ab,
and should also give as the result an operator, whose
elements are denoted by ½fðRÞ�ab. For example, for
the composition with itself it is convenient to write
½R · R�ab ¼ ½R2�ab, so the superscript 2 refers to the
operator power, not a component. Accordingly, R will
signify the (1, 1) valence tensor, and for the Ricci scalar
the contraction Ra

a or R will be used. After “bracketing,”
the index notation is recovered, which allows for raising
and lowering; for brevity, the brackets will be omitted in the
simplest cases such as ½R�ab ¼ Rab.
For any analytic f∶R → R, the following definition of

the matrix function f�∶Rn2 → Rn2 can be used1:

½f�ðRÞ�ab ≔
X∞
n¼0

fn½Rn�ab

¼ f01ab þ f1Ra
b þ f2Ra

sRs
b

þ f3Ra
sRs

tRt
b þ � � � ; ð5Þ

where

fðξÞ ¼
X∞
n¼0

fnξn; ð6Þ

and the sums are written explicitly, as they are not
tensor contractions (Rn is an operator power as explained
above). The above requires that the spectral radius of
ρðRÞ ¼ limn→∞∥Rn∥1=n be less than the radius of con-
vergence of the series fðξÞ.
For example, when f ¼ exp, the above two Lagrangians

are

L0 ¼ expðRÞ ¼ 1þRþ 1

2!
R2 þ 1

3!
R3 þ � � �

¼ 1þ Ra
a þ

1

2!
ðRa

aÞ2 þ
1

3!
ðRa

aÞ3 þ � � � ;

Lg ¼ tr

�
1þ Rþ 1

2!
R2 þ 1

3!
R3 þ � � �

�

¼ dþ Ra
a þ

1

2!
Ra

bRb
a þ

1

3!
Ra

bRb
cRc

a þ � � � ; ð7Þ

where d is the dimension of the space-time. Thus, the first
essential deviation appears at the quadratic level and is
proportional to f2ðRa

bRb
a − ðRa

aÞ2Þ if the same f is used
in both approaches. The difference is also evident when the
Lagrangians are written in terms of the eigenvalues of R:

L0 ¼ f

�X
i

λi

�
vs Lg ¼

X
i

fðλiÞ: ð8Þ

A degeneracy in λi might then lead to the same theories,
e.g., when the traceless Ricci tensor vanishes: R̂a

b ≔
Ra

b − 1
dR1ab ¼ 0. The Ricci tensor is then proportional

to the identity matrix and ½fðRÞ�aa ¼ dfðR=dÞ, which, up
to a simple rescaling of f, is the same as the Lagrangian L0.
However, one has to be careful when making such sub-
stitutions directly in the action, because R is determined
only after having solved the Einstein equations. If the
assumption R̂ ¼ 0 is justified from the beginning, the two
theories coincide. We shall see in the examples below that
even in an empty universe this condition might not hold
generally but just for isolated solutions.
Note also that if f is determined, there is no freedom of

choice for its constant term f0, which naturally corresponds
to the cosmological constant. In other words, in such a
nonperturbative interpretation, its value is tied to the whole
expansion and cannot be adjusted independently. The
expansion around R ¼ 0 also shows that when f is almost
linear, then higher-order terms can be ignored in the weak
field limit, leading to the Einstein-Hilbert action and a small
perturbation of general relativity.
Although intuitive, the above definition is not very

convenient when a function is real analytic but has complex
singularities like tanhðξÞ. A definition better suited for the

1As with R, it will be convenient to sometimes write the
identity operator without indices, so in order to avoid confusion
with the variation δ, I will use 1ac instead of the Kronecker
symbol δac.
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situation at hand is an elegant generalization of Cauchy’s
formula2

fðRÞ ≔ 1

2πi

Z
C
ðξ1 − RÞ−1fðξÞdξ ð9Þ

for a contour C which encloses the spectrum of R but not
the singularities of fðξÞ. The two definitions agree for fairly
general assumptions, and for a function that is real on the
real axis, the matrix fðRÞ will also be real [8].
The dimension of fðRÞ affects how the function is given,

because R has the units of curvature, and so should the
Lagrangian. At first, it seems two constants are necessary to
give fðRÞ ¼ C0

~fðR=C1Þ in terms of a function ~f which
only contains dimensionless parameters, but this can be
rewritten as

fðRÞ ¼ C0
~f

�
C0

C1

R
C0

�
→ C0

~fðR=C0Þ; ð10Þ

with a redefined dimensionless ~f. The remaining constant
C0 can then be further rescaled using the cosmological or
the Hubble constant depending on context—this is done
in Sec. V.
Having defined tr½fðRÞ�, the total action, including the

matter Lagrangian LM, is taken to be

S ¼
Z �

1

16πG
Lg þ LM

� ffiffiffiffiffiffi
−g

p
d4x; ð11Þ

where G is the gravitational constant, and the modified
Einstein equations can then be obtained in one of the two
standard ways. One is to assume the Levi-Cività connection
and take the metric as the dynamical variable; the other is to
consider both the metric and the connection as dynamical.
The former is called the metric and the latter the Palatini
formulation (or, more generally, metric-affine).
In both cases, the variation of the fðRÞ term is needed,

and the second definition of a tensor function allows us to
easily calculate it as

δtr½fðRÞ� ¼ tr

�
1

2πi

Z
C
ðξ1−RÞ−1δRðξ1−RÞ−1fðξÞdξ

�

¼ tr

�
1

2πi

Z
C
ðξ1−RÞ−2fðξÞδRdξ

�

¼ tr

�
1

2πi

Z
C
ðξ1−RÞ−1f0ðξÞdξδR

�
¼ tr½f0ðRÞδR�;

ð12Þ

where the cyclic property of trace

tr½X1X2…Xk� ¼ tr½XkX1X2…Xk−1� ð13Þ

was used in the first line, and integration by parts was used
in the second. Reexpressing δR with δg and δΓ to arrive at
the modified Einstein equation is the subject of the next two
sections.

A. Definitions and notation

To shortly review the conventions used, the covariant
derivative and the connection coefficients in a basis feag
are related through

∇eaeb ¼ Γc
baec; ð14Þ

so that for a coordinate basis ea ¼ ∂a, one has

∇aXb ¼ ∂aXb þ Γb
caXc: ð15Þ

As Γ will not in general be symmetric in the lower indices,
care needs to be taken regarding their order. The antisym-
metric part of the connection defines the torsion as

TðX; YÞ ≔ ∇XY −∇YX − ½X; Y� ¼ eaTa
bcXbYc; ð16Þ

and in a coordinate basis, where ½∂a; ∂b� ¼ 0, it follows that

Ta
bc ¼ Γa

cb − Γa
bc: ð17Þ

The Riemann tensor is given by3

RðX; YÞZ ≔ ∇½X∇Y�Z −∇½X;Y�Z ¼ edRd
abcZaXbYc; ð18Þ

or, in term of components in a coordinate basis,

Rd
abc ¼ ∂bΓd

ac − ∂cΓd
ab þ Γd

sbΓs
ac − Γd

scΓs
ab; ð19Þ

and the Ricci tensor is the contraction

Rab ≔ Rc
acb: ð20Þ

Note, then, that although Rab is constructed solely with the
connection (curvature), for the operator Ra

b ¼ gacRcb the
metric is necessary. Finally, the signature will be taken to be
ð−;þ;þ;þÞ, and the speed of light equal to unity, so that
coordinates have the dimension of length, and the metric
itself is dimensionless.

III. THE METRIC APPROACH

The natural connection solely determined by the metric
through ∇agbc ¼ 0 and Ta

bc ¼ 0 is the Levi-Cività con-
nection. Its variation, as expressed by δg, is

δΓc
ba ¼

1

2
gcdð∇bδgad þ∇aδgdb −∇dδgbaÞ; ð21Þ

2In what follows, f and f� can safely be treated as the same
object, so the star will be dropped.

3The brackets involving vectors denote commutation, not
antisymmetrization—i.e., there is no prefactor of 1

2
.
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and in turn for the covariant Ricci tensor, one has

δRab ¼ ∇cðδΓc
abÞ −∇bðδΓc

acÞ; ð22Þ

which accordingly gives

δRab¼
1

2
ð∇d∇bδgadþ∇d∇aδgdb−∇d∇dδgbaÞ

þ−
1

2
ðgcd∇b∇aδgdcþ∇b∇dδgad−∇b∇dgcdδgcaÞ

¼1

2
ð∇d∇bδgadþ∇d∇aδgbd−□δgab−gcd∇b∇aδgcdÞ:

ð23Þ

Next, by observing that

0 ¼ δð1acÞ ¼ gbcδgab þ gabδgbc; ð24Þ

the variation of the operator R becomes

δRa
b ¼ gacðδRcb − Rs

bδgcsÞ; ð25Þ

leading to

δðtr½fðRÞ� ffiffiffiffiffiffi−g
p Þ

¼
�
½f0ðRÞ�abδRb

a þ
1

2
tr½fðRÞ�gbdδgbd

� ffiffiffiffiffiffi
−g

p

¼
�
½f0ðRÞ�acδRca − ½Rf0ðRÞ�cdδgdc

þ 1

2
tr½fðRÞ�gbdδgbd

� ffiffiffiffiffiffi
−g

p
: ð26Þ

The variation δRab of (23) can be substituted into the
above, and due to

ffiffiffiffiffiffi−gp ∇aXa ¼ ∂að ffiffiffiffiffiffi−gp
XaÞ, each term

containing the covariant derivative can be integrated by
parts, provided that the variations vanish at the boundary or
that the boundary is empty. The result is

δðtr½fðRÞ� ffiffiffiffiffiffi−g
p Þ

¼ ð∇c∇d½f0ðRÞ�cb − 1

2
□½f0ðRÞ�bd − 1

2
∇a∇c½f0ðRÞ�acgbd

−½Rf0ðRÞ�bd þ 1

2
½fðRÞ�aagbdÞ

ffiffiffiffiffiffi
−g

p
δgbd: ð27Þ

Finally, defining the stress-energy tensor T by

δð ffiffiffiffiffiffi−gp
LMÞ

δgbd
≕

1

2
T bd ffiffiffiffiffiffi

−g
p

; ð28Þ

the condition δS ¼ 0 gives the following modified Einstein
equations:

1

2
□½f0ðRÞ�bd −∇c∇b½f0ðRÞ�cd þ

1

2
∇a∇c½f0ðRÞ�acgbd þ ½Rf0ðRÞ�bd −

1

2
tr½fðRÞ�gbd ¼ 8πGT bd: ð29Þ

As can be seen, the last two terms on the left-hand side
reduce to the standard Einstein tensor for f ¼ Id, whereas
the other terms are zero, since f0 ¼ 1.

IV. THE PALATINI APPROACH

In the more general case, the connection is independent
of the metric, and there are two assumptions that can
be relaxed here: vanishing torsion and metric compatibility.
In general, the connection can be decomposed into the
sum

Γa
bc ¼ ~Γa

bc þ Ka
bc − Ca

bc;

Kabc ≔ −
1

2
ðTabc þ Tbca − TcabÞ; ð30Þ

where ~Γ is the Levi-Cività connection for g, K is called the
contorsion tensor, and C describes the nonmetricity

Cabc ≔
1

2
ð∇cgab þ∇bgca −∇agbcÞ: ð31Þ

Accordingly, the variation of the Ricci tensor is now

δRab ¼ ∇cðδΓc
abÞ −∇bðδΓc

acÞ − Td
bcδΓc

ad; ð32Þ

and neither the connection coefficients nor the Ricci tensor
are symmetric in the lower indices. The eigenvalues of R
might not be real anymore, in which case they appear in
conjugate pairs. This means that the trace of fðRÞ will still
be real, for real analytic f.
There is, however, a possible natural generalization,

because of the following identity4:

Rab ¼ Rba þ∇aTc
cb þ Tc

cdTd
ab; ð33Þ

4The underline denotes the sum over cyclic permutations.
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which leads to the introduction of a new tensor, which is the
symmetric part of R,

Sab ≔ Rab −
1

2
ð∇aTc

cb þ Tc
cdTd

abÞ: ð34Þ

These tensors have the same trace, so there is no need for
Sab in the standard fðRÞ theories—the trace cancels the
imaginary parts of the conjugate pairs of the eigenvalues.
Here, the situation is different, because the function f is
applied to the eigenvalues of R before the trace is taken, so
although the final result is real, it also depends on the

imaginary parts. The other reasons and equations for the
fðSÞ variant are given following the fðRÞ derivation below.
In contrast to the preceding section, only first derivatives

are present in the action, and the integration by parts
requires an additional term, because the torsion affects the
expression for covariant divergence:

ffiffiffiffiffiffi
−g

p ∇aðXaÞ ¼ ∂að
ffiffiffiffiffiffi
−g

p
XaÞ þ ffiffiffiffiffiffi

−g
p ðTb

ba − Cb
baÞXa:

ð35Þ

The total variation of the Lagrangian then becomes

δðtr½fðRÞ� ffiffiffiffiffiffi−g
p Þ ¼

�
PbaδRab − ½Rf0ðRÞ�dbδgbd þ

1

2
½fðRÞ�aagbdδgbd

� ffiffiffiffiffiffi
−g

p

¼
�
1

2
tr½fðRÞ�gbd − ½Rf0ðRÞ�db

�
δgbd

ffiffiffiffiffiffi
−g

p þ ð∇bPba1dc −∇cPda − Td
bcPba

þðCs
sb − Ts

sbÞPba1dc − ðCs
sc − Ts

scÞPdaÞδΓc
ad

ffiffiffiffiffiffi
−g

p
; ð36Þ

where the derivative tensor is denoted by Pab ≔ ½f0ðRÞ�ab for brevity.
In addition to the stress-energy tensor T , a new quantity is necessary to reflect the fact that matter fields can, in general,

depend on the connection—if only through the covariant derivative. The hyper-momentum tensor is defined thus:

ffiffiffiffiffiffi
−g

p
Qa

bc ≔
δð ffiffiffiffiffiffi−gp

LMÞ
δΓa

bc
; ð37Þ

and the modified Einstein equations can now be written as

8πGT bd ¼ ½Rf0ðRÞ�ðdbÞ −
1

2
tr½fðRÞ�gbd; 8πGQc

ad ¼ ∇bð1½bcPd�aÞ − ðT − CÞssb1½bcPd�a −
1

2
Td

cbPba; ð38Þ

where the symmetrization is necessary, because the varia-
tion δgbd is symmetric, even though Rbd is not.
The second set of equations can be simplified if an

auxiliary connection is defined to be

Γ̂a
bc ≔ Γa

bc −
1

2
1abðT − CÞssc; ð39Þ

and using the associated covariant derivative ∇̂, the second
set of Einstein equations reads

8πGQc
ad ¼ ∇̂bð1½bcPd�aÞ − 1

2
Td

cbPba: ð40Þ

Additionally, contraction over the pair of indices fcdg
leads to

3∇̂bPba þ Ts
sbPba þ 16πGQs

as ¼ 0; ð41Þ

which allows us to rewrite the main equations as

½Rf0ðRÞ�ðdbÞ −
1

2
tr½fðRÞ�gbd

¼ 8πGT bd;

∇̂cPda −
�
Td

cb −
1

3
Ts

sb1dc

�
Pba

¼ 16πG
�
Qc

ad −
1

3
Qs

as1dc

�
: ð42Þ

As in the ordinary fðRÞ formulation, the torsion
equations become algebraic for the Einstein-Hilbert case
fðRÞ ¼ R because Pab ¼ ½f0ðRÞ�ab ¼ gab, so that deriva-
tives of Γ only appear in R. Further, if the matter fields are
such that Qabc ≡ 0, contractions of the torsion equations
give

3Cs
sa ¼ −6Cas

s ¼ 2Ts
sa;

2CðadÞc ¼ Tdac þ
2

3
Ts

sðagcÞd: ð43Þ
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This means that if Ts
sa ¼ 0, then 2CðadÞc ¼ Tdac, and it

follows immediately from (30) that Kabc ¼ Cabc. But that,
by definition, means the connection must be the Levi-
Cività one.
In other words, for fðRÞ ¼ R, zero hyper-momentum

and totally antisymmetric torsion, the theory becomes
standard general relativity. Note that for this to happen,
it is not necessary to assume zero torsion from the
beginning, just that all its traces vanish.
Since the Ricci tensor is, in general, no longer sym-

metric, the tensor P cannot be used directly to define a new
metric for which Eq. (42) would define a metric connec-
tion. In the standard fðRÞ theories, the tensor that enters is
R itself, and it can be decomposed into (anti)symmetric
parts at the level of the Einstein equations, as the function f
is applied only to its trace, and all fðRa

aÞ terms are just
scalars.
Here, the situation is different, in that even in the first

set of equations the symmetrization is applied to Rf0ðRÞ,
not to R, and the second set of equations contains fðRÞ, not
f0ðRÞ. Because even for the second power one has
gbcXcðdXaÞb ≠ XðabÞgbcXðcdÞ, symmetrizing the equations
would not lead to a single distinguished tensor to be used as
the new metric. Moreover, even though the components of
R are real, it seems natural to consider a self-adjoint matrix,
for which the action is directly related to the eigenvalues as
in (8).
These problems could be overcome by constructing the

action with the symmetric tensor S, introduced before,
whose variation is simply δSab ¼ 1

2
ðδRab þ δRbaÞ. The

derivation is essentially the same as in (36), and the
difference is that the tensor contracted with δg is already
symmetric, so the Einstein equations are

8πGT bd ¼ ½Sf0ðSÞ�db −
1

2
tr½fðSÞ�gbd;

8πGQc
ad ¼ ∇̂bð1½bcPd�aÞ − 1

2
Td

cbPba; ð44Þ

where now, by a slight abuse of notation, Pab ¼ ½f0ðSÞ�ab,
and the auxiliary covariant derivative is the one given
by Eq. (39).
As before, the trace can be used to rewrite the second

equation as (42), and following the same reasoning as for
the standard fðRÞ derivation, the torsionless connection
with no hyper-momentum yields

∇̂cPda ¼ 0: ð45Þ

This would indicate that Γ̂ is the Levi-Cività connection for
the metric Pda, but the situation is complicated by the fact
that the tensor P ¼ f0ðRÞ is not conformally related to the
original metric g, so the signature might not be the same,
and the determinant of g is not directly proportional to that
of P; also, the raising of indices in P does not amount to

matrix inversion. It should also be kept in mind that with
the standard extension of covariant derivative to tensor
densities, which uses

ffiffiffiffiffijgjp
to cancel the weight, the above

equation can be rewritten as

1ffiffiffiffiffijgjp ∇̂cð
ffiffiffiffiffi
jgj

p
PdaÞ ¼ 0; ð46Þ

but this is not equivalent to

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detPjp ∇̂cð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detPj

p
PdaÞ ¼ 0; ð47Þ

unless
ffiffiffiffiffiffiffiffiffiffi
detP

p
is used to extend ∇̂ to densities. Without

specifying which extension is used, the condition
∇cð

ffiffiffiffiffijgjp
gabÞ ¼ 0 does not necessarily indicate metricity,

contrary to what can sometimes be found in the literature.
Because of this freedom, and given the problems with
inverting P, the more fundamental Eq. (45) is better as an
indication of a metric connection in the present case.
With some effort, the Christoffel formula can be used to

express Γ̂ as a function of derivatives of P, but the
derivatives of the connection coefficients are still involved
in the nonlinear term f0ðSÞ. The question is then whether
they can be eliminated with the help of the remaining
equations.
In the standard approach, the first set of the Einstein

equations (44) can, in principle, be used to solve for the
Ricci scalar and accordingly simplify the second set by
using the Ricci tensor associated with the new metric and
its Levi-Cività connection [3]. Here, one would have to
solve nonlinear equations for the whole tensor S in order to
eliminate the connection in the same manner. At present, it
appears that this path of investigation is not applicable,
because the equations involve full tensors R or S, not just
their traces.

V. FRW DYNAMICS

The standard cosmological model is the basic example
that needs to be considered in order to gain insight into
the applicability of the proposed modification. The model
assumes spatial homogeneity and isotropy, requiring the
Robertson-Walker geometry, which in spherical coordi-
nates ft; r; θ;φg has the metric

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2dΩ2

�
¼ gabdxadxb;

ð48Þ
where dΩ2 ¼ dθ2 þ sin2 θdφ is the standard metric on the
unit sphere. The final assumption in this first attempt at
modified cosmology will be that the RW metric provides
the only dynamical variable—the scale factor aðtÞ—the
connection is that of Levi-Cività, and the metric formalism
can be used.
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Accordingly, the matter source will be taken to be a
homogeneous perfect fluid with density ρ and pressure p,
so that the stress energy tensor is

T ab ¼ pgab þ ðpþ ρÞuaub; ð49Þ
where the four-velocity in these coordinates is just u ¼ ∂t.

There are then effectively only two modified Einstein
equations, one of third order and one of fourth correspond-
ing to the T 00 and T 11 components of (29), respectively.
However, the latter follows from the derivative of the
former, which is the generalization of the Friedmann
equation

Hð3f00ðλ0Þ þ f00ðλ1ÞÞ
dλ0
dt

¼ 16πGρþ 6H2ððλ1 − λ0Þf00ðλ1Þ þ f0ðλ1Þ − f0ðλ0ÞÞ þ λ0ðf0ðλ0Þ þ f0ðλ1ÞÞ − fðλ0Þ − 3fðλ1Þ;

ð50Þ

where λ are the eigenvalues of R

λ0 ¼ 3
ä
a
; λ1 ¼ 2H2 þ 2k

a2
þ ä
a
; ð51Þ

H is the Hubble “constant” H ¼ _a=a, and an overdot
denotes the time derivative.
The present value of the constant, H0 ≔ Hð0Þ, is

customarily used to obtain dimensionless quantities and,
as discussed in Sec. II, there is still an unspecified constant
in the function f. Although H2

0 has the suitable dimension,
it will not do as C0, because the function f should be a
fundamental quantity valid for all gravitational actions,
not just the FRW cosmology, and thus cannot be defined
with such specific constants. Instead, C0 will become a
physical parameter of the new theory, and the Hubble
constant H0 will serve to provide the dimensionless
counterpart c0 ≔ C0H−2

0 .
Of course, the roles could be reversed, with C0 used

instead of H0, but for initial clarity it is better to keep with
the convention of rescaling densities, time, etc., with H0.
The dimensionless eigenvalues are then

α ≔ λ0H−2
0 ; β ≔ λ1H−2

0 ; ð52Þ

which gives e.g. fðλ0Þ ¼ fðαH−2
0 Þ and leads to further

simplification,

H−2
0 fðλ0Þ ¼ c0 ~fðα=c0Þ ≕ FðαÞ; ð53Þ

and similarly for β. The main equation can then be rewritten
as

hð3F00ðαÞ þ F00ðβÞÞ dα
dτ

¼ 6Ωþ 6h2ððβ − αÞF00ðβÞ þ F0ðβÞ − F0ðαÞÞ
þ αðF0ðαÞ þ F0ðβÞÞ − FðαÞ − 3FðβÞ; ð54Þ

where h, the density parameter, and dimensionless time are
defined by

h ≔
H
H0

; Ω ≔
8πGρ
3H2

0

; and τ ≔ H0t: ð55Þ

The function F can then be specified with any suitable
number of dimensionless parameters including c0. It could
be considered to be given a priori by some elementary
function like A sinðBξÞ, or defined by infinitely many
expansion coefficients as the series (6). Yet to consider
such coefficients as independent parameters would be to
multiply entities beyond necessity, so I will adopt the
former approach here.
A quantitative reason can also be given for this, in

anticipation of the observational analysis. Finding the
coefficients from the data would undoubtedly lead to better
and better fits as the number of coefficients increases, but
such a fit would come with a huge cost as measured by the
Akaike or Bayesian information criteria, which are now
standard tools of observational cosmology [9,10].
As for the nature of parameters in the present case, some

more information can be gleaned from the zeroth- and first-
order expansions of F, as they reproduce the standard
model with the cosmological constant. The general form5 is
FðξÞ ¼ F0 þ F1ξ, but the overall rescaling of the
Lagrangian is not important, and taking F1 ¼ 1 gives
the ordinary Friedmann equation

H2 ¼ 8πGρ
3

−
k
a2

−
2

3
H2

0F0 ð56Þ

upon identifying the cosmological constant Λ ¼ −2H2
0F0.

In terms of the original function f, this means that
f0 ¼ −Λ=2, and it suggests that the cosmological constant
itself could be used as a fundamental dimensional
quantity by

fðξÞ ¼ Λ
2
~f

�
2ξ

Λ

�
; ð57Þ

5As before, ξ is just an auxiliary independent variable used to
define functions and their rescalings.
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with ~f carrying no other free parameters. Using the
respective density parameter ΩΛ ≔ Λ=3, this means that

FðαÞ ¼ 1

H2
0

fðλ0Þ ¼
3ΩΛ

2
~f

�
2α

3ΩΛ

�
; ð58Þ

where the expansion of ~f is then necessarily restricted to

~fðξÞ ¼ −1þ ξþOðξ2Þ: ð59Þ

Turning now to the dynamics of this model, a minimal
set of variables yielding a closed system can be built from
the derivatives of aðtÞ, or rather their rescaled versions h
and α, which are identically related by α ¼ 3ð _hþ h2Þ.
Also, the other of the eigenvalues can be eliminated
through

β ¼ 2h2 þ 2Ωk

a2
þ α

3
; with Ωk ≔

k
H2

0

; ð60Þ

although for shorter notation it will be better to keep the
symbol β and understand it as a function of a, h and α,
which will be the replacements for _a, ä and a⃛.
Because the conservation law ∇aT ab ¼ 0 still holds, the

matter-energy density ρ is expressible in terms of a if one
assumes an equation of state

p ¼ ðγ − 1Þρ ⇒ ρðtÞ ¼ ρ0aðtÞ−3γ ⇒ Ω ¼
X
j

Ωja−3γj :

ð61Þ

Finally, introducing

W ≔ 6h2ððβ − αÞF00ðβÞ þ F0ðβÞ − F0ðαÞÞ þ αðF0ðαÞ
þ F0ðβÞÞ − FðαÞ − 3FðβÞ; ð62Þ

for the sake of brevity, a dynamical system with three
degrees of freedom described by the variables fα; h; ag is
obtained:

8>>><
>>>:

_α ¼ 6ΩþWðα;β;h;aÞ
ð3F00ðαÞþF00ðβÞÞh ≕ v1ðα; h; aÞ;

_h ¼ 1
3
α − h2 ≕ v2ðα; h; aÞ;

_a ¼ ah ≕ v3ðα; h; aÞ;
ð63Þ

where the dot now refers to the new time τ. Note that the
denominator of v1 would only be identically zero for the
purely linear F, which is the standard general relativity.
The form of v2 and v3 is dictated by the definition of h, and
the essential dynamics lies with v1. This is also where we
find the difference in complexity between the new theory
and fðRÞ, for which v2 and v3 are the same, but the first
equation would read

_α¼3ðβ−αÞhþ6Ω−Fð3βþαÞþ2αF0ð3βþαÞ
12hF00ð3βþαÞ : ð64Þ

The difference between the two equations in the simplest
quadratic case FðξÞ ¼ − 3

2
ΩΛ þ ξþ F2ξ

2 is just ðΩΛþ
Ω − h2Þ=ð2F2hÞ, which is nonzero exactly when the
evolution deviates from the Friedmann equation. As was
mentioned in Sec. II, if R̂ vanishes, then a simple rescaling
of F also leads to the same equations, but in this particular
geometry the condition is very restrictive. For flat universes
(as in the examples below), the only solutions with this
property are the de Sitter ones, h ¼ const, which do not
exhaust all possible solutions, even when Ω ¼ 0. On the
other hand, the difference disappears completely if we take
different functions: FðξÞ ¼ F1 þ ξþ F2ξ

2 for fðRÞ and
~FðξÞ ¼ 4F1 þ ξþ 3F2ξ

2 for fðRÞ; the theories are equiv-
alent for the Robertson-Walker geometry at the quadratic
level, even when R̂ ≠ 0. However, no such simple relation
could be found for cubic terms.
A general feature of the main system (63) is that if the

geometry is flat, i.e., k ¼ 0 and the density does not depend
on the scale factor, like for the cosmological constant, then
the first two equations decouple and give a planar system.
In fact, one could simply assume that no ordinary matter
enters the equations as Ω, but instead consider the higher-
order terms of F as some sort of field imitating matter. For
example, if FðξÞ ¼ − 3

2
Ωf þ ξþ 1

2
F2ξ

2, the main equa-
tion (54) becomes

h2 ¼ Ωf þ F2

�
_h2 − 2hḧ −

14

3
h2 _hþ 16

9
h4
�
; ð65Þ

so that Ωf acts as dark energy and the F2 term acts as
effective material content.
Another general, and problematic, feature of the _α

equation is the singularity at h ¼ 0, i.e., when expansion
changes to contraction and vice versa. This is not a
singularity of Eq. (54) and can lead to a valid solution
provided that the numerator of v1 vanishes as well. Thus,
care has to be taken when using the dynamical system form,
because the singularities might simply signify that the left-
hand side of the original equation is zero, and vice versa: a
zero of v1 might in fact be a singularity of the original
equation (63).

A. Examples of cosmological models

Avery basic example illustrating these features is to take
a flat, empty universe and assume the exponential function

FðξÞ ¼ Ωfe
ξ
Ωf − 1 ¼ ξþ ξ2

2Ωf
þOðξ3Þ; ð66Þ

which includes the linear action, but no cosmological
constant in the usual sense. The specific form of v1 is then
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v1

�
3Ωfα;

ffiffiffiffiffiffiffiffiffi
1

2
Ωf

r
h; a

�
¼ 4e−α þ e2αð3α − 3h2 − 1Þ þ 3eh

2ðh4 þ ð1 − 2αÞh2 þ α − 1Þffiffiffiffiffiffiffiffiffi
2Ω3

f

q
ð3e2α þ eh

2Þh
; ð67Þ

where the additional factors in the arguments are only
introduced to shorten the formula. It is still essentially
transcendental, so one has to resort to qualitative analysis
first to locate the points and regions of interest. This can be
done with the help of Fig. 1, which shows the planar vector
field ðv1; v2Þ together with the locations of singular lines
and zeros of the right-hand side v (left panel), and the phase
portrait constructed from typical trajectories (right panel);
the particular value of Ωf ¼ 3=2 was chosen.
The left and right saddle points A1 and A2 correspond to

time-reversed de Sitter and standard de Sitter solutions,
respectively, and their positions ðh0; 3h20Þ are given by
h0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ωfw=3
p

, where w is the positive solution of
e−2w þ w ¼ 1.
The singular critical point B1 could be considered as a

static solution, because it lies on the singular line h ¼ 0, but
also on the W ¼ 0 line, so in fact Eq. (54) is satisfied. For
the vector field, on the other hand, the limit at B1 is not well
defined, as it depends on the path.
Importantly, there are no periodic orbits on either side of

B1, as the line h ¼ 0 separates the neighborhood of B1 into
two elliptic sectors of opening π. The “closed” trajectories
haveB1 as their limit point, so they are asymptotically static
both in the past and in the future.

More physically realistic evolutions here seem to consist
of trajectories that are attracted by A2 and subsequently
scattered along the unstable direction towards infinity.
These are expanding universes with ever increasing accel-
eration, and also with initial singularity, which can be read
from the phase portrait: going back in time, the trajectory
has increasingly negative α, and discarding the exponen-
tially small terms for large h and α, the right-hand side is
approximately

_α ¼ 12h3; _h ¼ −h2; ð68Þ
making α and h diverge in finite (negative) time.
There are also two mixed cases—i.e., trajectories going

from a big bang becoming asymptotically static as they
tend to B1 and vice versa: asymptotically static in the past,
but then getting scattered by A2 into accelerated expansion.
These exemplary behaviors of the scale factor and the
Hubble constant are plotted in Fig. 2. Note that the time
integration constant τ0 such that aðτ0Þ ¼ 1 cannot always
be chosen to make hðτ0Þ ¼ 1, so it is adjusted for each
trajectory for better visibility in this and subsequent graphs.
It is probably more instructive to consider a more

intricate model, which is furnished by taking a rational
function

FIG. 1. The vector field (63) and its phase space diagram for a flat, empty universe with exponential Lagrangian function (66) and
Ωf ¼ 3=2. The green and red lines represent zero sets of the numerator and denominator of v1, respectively. The blue parabola
corresponds to v2 ¼ 0. Because of huge variation, the vector lengths are not drawn to scale to better show the discontinuity of direction
at the singular line.
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~f ¼ −1þ ξ

1 − ξ2
⇒ FðξÞ ¼ −

3ΩΛ

2
þ ξþ 4ξ3

9Ω2
Λ
þOðξ5Þ;

ð69Þ

which includes the constant term, so it can be identified with
the cosmological constant as in Eq. (58). Note that if the series
were to be used, different expansions in different regions
would be required. The reduction of the resulting powers ofR
with the characteristic polynomialwouldhave tobe carriedout
separately, which would lead to cumbersome expressions—if
it were possible to obtain closed ones at all.
Direct substitution of thisF into (63) produces a v1 which

is several lines long, so it is perhaps best to skip its specific
form and, similarly to before, view the vector field and the
various singular lines of the phase space; they are shown in
the left panel of Fig. 3. The picture is now considerablymore
complex, with many more singular points of type B, for
which both the numerator and denominator in _α vanish.
These points signify a possible crossings through the
otherwise impassable barriers indicated by the red lines.
There are still only two critical points A1, A2 located at�
∓

ffiffiffiffiffiffiffiffiffi
1
2
ΩΛ

q
; 3
2
ΩΛ

�
, which are asymptotic equilibria, and as

before, they correspond to time-reversed de Sitter and
standard de Sitter solutions, respectively. However, as the
phase diagram of Fig. 3 shows, there are now two
heteroclinic trajectories connecting them, one through B1

at ð0; 9
2
ΩΛÞ and the other through B2 at ð0; 3

2
ΩΛÞ.

There is a complication here, not present in the previous
example, though. The horizontal green lines at � 3

2
ΩΛ are

singularities of F, and so also of the Friedmann equation,
but they cancel out in v1, resulting in the straight-line
trajectories. These are not singularities of curvature either,
because α and h remain finite, so if one considers the action
principle as purely formal to obtain the dynamical equa-
tions, these solutions could have some physical meaning.
A similar situation is found for the pair B3 and B4 located

at ð� ffiffiffiffiffiffiffi
ΩΛ

p
;− 3

2
ΩΛÞ, except that the whole line can be

thought of as just one trajectory for which h goes from ∞
to −∞ in finite time. On both lines, the second equation
_h ¼ v2 can be integrated to give

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2
ΩΛ

r
tanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2
ΩΛ

r
ðτ − τ0Þ

!

⇒ a ¼ cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2
ΩΛ

r
ðτ − τ0Þ

�
; ð70Þ

where the integration constant τ0 can be complex, giving in
effect three types of functions: tangent for the trajectory on
the lower line, hyperbolic tangent for the A1A2 segment,
and hyperbolic cotangent for the trajectories on the upper
line that escape to �∞. The dependence of the scale factor
and h on time for these cases is shown in Figure 4.
Additionally, the trajectories coming from infinity quali-
tatively reflect the behavior of the generic trajectories in the
respective region in Fig. 3; in particular, the past singularity
is reached in finite time.
Outside the singular lines, there are the two special

heteroclinic orbits: from A1 through B1 to A2 and from B4

to A2. The first is possible, because the equation can be
regularized by considering α as a function of h so that
α0ðhÞ ¼ v1=v2, which leads to a local expansion at B1,

α ¼ 9

2
ΩΛ − 6h2 þOðh4Þ: ð71Þ

This trajectory is similar to the one through B2 but avoids
the problem of singular action. The second case, upon
closer inspection, also admits continuation through B4, as is
revealed by switching again to h1 ≔ h −

ffiffiffiffiffiffiffi
ΩΛ

p
as the

independent variable. The series for α can then be found:

α ¼ −
3

2
ΩΛ − 12

ffiffiffi
3

p
h1 þOðh21Þ: ð72Þ

Both of these solutions are shown in Fig. 5: the first is
probably the best candidate for a “bounce” universe, and
the second has a big-bang singularity.

FIG. 2. Behavior of a and h for typical flat, empty universes corresponding to Eq. (66). Blue and orange curves are trajectories which
have infinite h in the past, but the former escapes to infinite hwhile the latter is trapped by B1. Green and red curves both start at B1 in the
infinite past, but the former escapes while the latter is recaptured.
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Looking more closely at the behavior at infinity also
reveals an asymptotic relation of the form α ∼ −6h2, which,
together with the two previous expansions, suggests look-
ing for the equation of the extended separatrix involving
αþ 6h2. Indeed, it turns out that there is a parabola through
B3, A1, B1, A2, B4 given by

U ≔ αþ 6h2 −
9

2
ΩΛ ¼ 0; ð73Þ

which is an invariant set, i.e.

dU
dτ

				
U¼0

¼ 0; ð74Þ

as can be checked by direct substitution.

Eliminating α from U ¼ 0 leaves a simple Riccati
equation 2_h ¼ 3ΩΛ − 6h2, which again gives trigonomet-
ric solutions for h and a akin to Eq. (70)—in particular, for
the big-bang type

a ¼ sinh

� ffiffiffiffiffiffiffiffiffiffi
9

2
ΩΛ

r
ðτ − τ0Þ

�1=3

∼ ðτ − τ0Þ1=3; ð75Þ

which is the behavior of the standard Friedmann cosmol-
ogy with the so-called stiff matter characterized by p ¼ ρ.
The same equation of state holds also for a minimally
coupled massless scalar field ϕ, for which the energy
density is just the kinetic term ρ ¼ 1

2
_ϕ2, or approximately

when the potential term can be neglected: 1
2
_ϕ2 ≫ VðϕÞ.

This suggests a correspondence analogous to that of

FIG. 3. The vector field (63) and its phase portrait for a flat, empty universe with rational F given by Eq. (69) and with ΩΛ ¼ 3. The
field is singular on the red curves. The green curves represent a vanishing numerator of v1, and the blue parabola corresponds to _h ¼ 0.
Because of huge variation, the vector lengths are not drawn to scale, to better show the discontinuity of direction at the singular lines.

FIG. 4. Behavior of a and h for the singular lines α ¼ � 3
2
ΩΛ of Fig. 3. The blue trajectory goes through B4B6B3, the orange one

connects A1 to A2, and the green one has A1 and A2 as limit points.
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standard R2 theories, which are conformally equivalent to
scalar field cosmologies [11].
The introduction of matter through a nonzero Ω term

means that the system (63) can no longer be simply
visualized on a plane, but particular solutions can still
easily be obtained numerically. The most important ingre-
dient would be dust matter (γ ¼ 1), and following that,
radiation (γ ¼ 4

3
), but since the latter constitutes a tiny

fraction of Ω in the standard ΛCDM model, Ω ¼ Ωma−3 is
assumed in the numerical integration. Thus, this particular
model will depart from reality close to the big bang by
ignoring the radiation-dominated GUT era and the infla-
tionary phase, when the value of Λ is much larger than the
ΛCDM one used below.
A surprising property to notice is that the parabola (73) is

still an invariant set, and accordingly Eq. (75) gives a big-
bang solution also with dust. This is due to the singular
nature of the denominator in theΩ=F00 term in v1. Although
this means that the stiff matter component dominates in the
earliest epochs, the “effective equation of state” p=ρ
changes with time as the de Sitter state is reached. By
analogy with the standard Friedmann cosmology, one can
eliminate p from the second Einstein equation to obtain the
time-dependent adiabatic index as

γτ ¼
2

3

�
1 −

aä
_a2

�
¼ 2

3

�
1 −

α

3h2

�
: ð76Þ

This function can be used to compare the behavior of the
density for the present model and the corresponding
Friedmann equation including the stiff matter term, i.e.,

h2 ¼ ΩΛ þΩma−3 þΩsa−6; ΩΛ þΩm þΩs ¼ 1:

ð77Þ

The comparison is shown in Fig. 6.
In the present case, there is no constraint on the sum of

all the Ω terms, and ΩΛ and Ωm need not be the same as in
the ΛCDM model, because the Einstein equations are

different. The parameter values are both subject to estima-
tion from observations, but for the present qualitative
comparison, one can use the asymptotic behavior of
(75): a ∼ expð ffiffiffiffiffiffiffiffiffiffiffi

ΩΛ=2
p

τÞ, which should correspond to the
relevant asymptotics of ΛCDM, i.e., a ∼ expð ffiffiffiffiffiffiffi

0.7
p

τÞ, so
that ΩΛ ¼ 1.4 is chosen for the fðRÞ equations.
At any rate, the comparison shows that the universe

whose trajectory lies in the first quadrant (Fig. 3) and tends
to the de Sitter attractor A2 has γ ¼ 2=3 during the big bang
(red in Fig. 6), so it corresponds to cosmic strings [12,13].
This is peculiar, because it means that the matter term (a−3)
must be canceled close to the initial singularity, so that only
the a−2 term matters instead. It happens due to the
trajectory approaching the horizontal singular line of
α ¼ 3ΩΛ=2, so asymptotically the solution (70) holds
and a ∼ ðτ − τ0Þ. The transition from cosmic strings
directly to exponential expansion makes this class of
trajectories unlikely as physical models.

FIG. 5. The nontrivial heteroclinic trajectories of Fig. 3: the blue line corresponds to the one connecting A1 and A2 through B1, and the
orange line to the one coming from infinity to A2 through B4.

FIG. 6. The time-dependent index of the equation of state
p ¼ ðγ − 1Þρ. The orange line corresponds to the ΛCDM model
(77) with ΩΛ ¼ 0.69 and Ωm ¼ 0.31; the blue line is almost the
same scenario, but with Ωm ¼ 0.3 and the addition of Ωs ¼ 0.01.
The green and red lines are big-bang solutions for a flat universe
with dust and rational F given by Eq. (69), ΩΛ ¼ 1.4 and
Ωm ¼ 0.6. They both tend to A2: the former through B4 and the
latter from the right of the first quadrant (see Fig. 3).
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The heteroclinic trajectory (green in Fig. 6) is unchanged
by dust with γ ≈ 2 stationary at first, then decaying to
the “dark energy” level. This decrease is faster than for the
corresponding ΛCDM with stiff matter (blue), but
the agreement is much better than in the previous scenario.
The shape resembles more that of the standard ΛCDM
(orange) in that there is no cusp, although different types of
matter dominate initially. This in itself is not an obstacle, as
it is unlikely that classical GR and dustlike matter deter-
mine the initial singularity anyway, and in the bouncing
scenarios a00ð0Þ ¼ 0, so that γ could even tend to infinity.
An interesting analogy here is that the heteroclinic

trajectory is unchanged by the addition of dust, so that it
can be thought of as defined purely by the geometry and the
function fðRÞ—quite as the cosmological constant can
be thought of as a geometric term rather than an actual
material component. In both cases, such content-
independent gravity only makes sense as a model for the
late homogeneous universe, not at smaller scales like black
holes. Note also that this particular example (69) was
deliberately chosen with a singularity so that it cannot be
treated perturbatively. By itself, it may not be a replacement
for ΛCDM, but its most prominent feature, the invariant
manifold U ¼ 0, appears as a guidepost in further gener-
alizations, partly because it effectively reduces the fourth-
order Einstein equations to an analogue of the Friedmann
equation, which is easily solvable. One goal of future
investigations will thus be to find models where such
invariant curves exist and are nontrivially perturbed by
matter.
Coming back to the general dynamics, an undesirable

global feature of dynamics with a singular FðξÞ is that the
phase space is cut into several regions by the red lines, and
the trajectories cannot be continued through them even with
local analysis, because the vector field’s directions are
opposite on each side. Nevertheless, A2 is a steady state
attractor for almost the whole first quadrant, and there are
two heteroclinic scenarios without singularities.
This behavior is more pronounced when one considers

more peculiar setups—for example, with the periodic
Lagrangian

FðξÞ ¼ ΩΛ

�
−
3

2
þ tan

�
ξ

ΩΛ

��
: ð78Þ

Because F enters the equations with the rescaled eigen-
values α and β as its arguments, it is more convenient to
eliminate h and use the eigenvalues as the dependent
variables. In order to do that, a rescaled time dσ ≔ dτ=h
can be used, giving for the flat case

8<
:

dα
dσ ¼ 6ΩþW

3F00ðαÞþF00ðβÞ ;
dβ
dσ ¼ 6ΩþW

9F00ðαÞþ3F00ðβÞ − ðα − βÞð1
3
α − βÞ:

ð79Þ

This setup gives rise to a period cell structure of the
phase space, as seen in Fig. 7, and there are infinitely
many critical points and heteroclinic orbits to choose
from.
At present, this cannot be considered to be more than a

toy model, but it hints at the possibility of constructing a
phase space with compartments for different epochs of
evolution separated by the singular lines and transitions
taking place through the critical points. The behaviors of h
and a would need to be recovered from that of α and β in
order to give physical interpretation, and at first glance, it is
hard to judge whether the complexity comes from the
choice of dependent variables, or is an intrinsic feature of
the tensor fðRÞ theory.
The determination of the actual (real, if one can

call it that) FðξÞ, or f, is a question in itself, and at
present it is hard to imagine what other fundamental
theory could provide it. At the very least, it should be
constrained by observations, but some new approach will
be required not to merely fit subsequent polynomial
approximations of a series if one wants to recover the
complete function.

VI. OBSERVATIONAL FORMULAS

In order to assess the applicability of the proposed
construction, one must turn to observational cosmology.
The detailed numerical analysis is outside the scope of this
article and will be deferred to future work. Nevertheless,
some preparatory analysis is straightforward and can be
given here.

FIG. 7. The vector field and the singular lines for the system of
Eq. (79) with trigonometric FðξÞ of (78) and ΩΛ ¼ 1.
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The standard cosmological test relies on the supernova Ia
data and the relationship between the redshift and lumi-
nosity. In the Friedmann case, there is a direct relation
between H2 and the redshift, so the integration of time and
distance is straightforward. Here, the equations involve up
to the third derivative of the scale factor, so another route
needs to be taken: for small redshifts, a series formula
binding various expansion coefficients can be given, while
in the general case, the dynamical system has to be
integrated.
Recall first that the redshift is linked to the scale factor by

zþ 1 ¼ a−1, for að0Þ ¼ 1 at present, and that the lumi-
nosity distance to an object at comoving distance r is
dL ¼ rð1þ zÞ. Provided, then, that r can be expressed by z,
this will allow us to calculate the apparent luminosity and
relate to observations [14].
The required expression follows from the condition of

the null geodesic: ds2 ¼ 0, which for the metric (48) gives
directly

r ¼ 1ffiffiffi
k

p sin

� ffiffiffi
k

p Z
dt
a

�
; ð80Þ

where a limit is understood for k ¼ 0. Assuming that a or z
are monotonic functions of t that can be used for para-
metrization of the light path, the above can be rewritten as

dL ¼ 1þ z
H0

ffiffiffiffiffiffi
Ωk

p sin

� ffiffiffiffiffiffi
Ωk

p Z
z

0

dz
h

�
: ð81Þ

In the standard model,H is simply given as a function of
z by the Friedmann equation, and the integral can even be
explicitly calculated by means of elliptic functions [12]. As
mentioned above, this cannot be done here, but following
Ref. [12], the main equation can be used to give constraints
of the higher characteristics—the deceleration parameter q
and the jerk j:

q ≔ −
äa
_a2

¼ −
α

3h2
; j ≔

äa2

_a3
¼ _α

3h3
− q: ð82Þ

A change of the independent variable from t (or τ) to z
immediately gives

dh
dz

¼ 1þ q
1þ z

h;
dq
dz

¼ j − 2q2 − q
1þ z

; ð83Þ

which then allows us to expand h in the integral (81) in
powers of z, so that the whole expression can be expanded
as

dL¼
z
H0

�
1þ1−q0

2
z−

1þj0−3q20−q0þΩk

6
z2þOðz3Þ

�
:

ð84Þ

For small z, this provides a means to finding H0, q0 and j0
from the luminosity data, but one also has to take into
account that these parameters are not independent. In the
standard model, q can be eliminated because h0ðzÞ is an
explicit function of z and the density parameters Ω.
Similarly here, the jerk is constrained by the main equation,
which for this purpose becomes

jþ q ¼ 6ΩþWðα; β; h; aÞ
3ð3F00ðαÞ þ F00ðβÞÞh4 ; ð85Þ

with

α ¼ −3h2q; β ¼ h2ð2 − qÞ þ Ωkð1þ zÞ2: ð86Þ

So, given the function F, the constraint on j0 is

j0 þ q0 ¼
6Ω0 þWð−3q0; 2 − q0 þΩk; 1; 1Þ
3ð3F00ð−3q0Þ þ F00ð2 − q0 þ ΩkÞÞ

: ð87Þ

Finally, to obtain the luminosity distance for larger
redshifts, where a series expansion is not practicable, an
augmented dynamical system is a straightforward solution.
Assuming again that z can be used as the independent
variable, as is the case in exponential expansion, a
dynamical equation for dL is necessary instead of the
integral (81).
The null geodesic condition gives

dr
dz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

H
; ð88Þ

and denoting the dimensionless distance by l ¼ H0dL leads
to

dl
dz

¼ l
1þ z

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ zÞ2 −Ωkl2

p
h

; ð89Þ

while the basic system now reads

8<
:

dα
dz ¼ − 6ΩþWðα;β;h;ð1þzÞ−1Þ

ð1þzÞð3F00ðαÞþF00ðβÞÞh2 ;

dh
dz ¼ 3h2−α

3ð1þzÞh :
ð90Þ

Because z has become the independent variable, this
system is non-autonomous and only two-dimensional
(regardless of k and Ω). Even in the Friedmann case, for
more complex HðzÞ, the integral (81) has to be obtained
numerically. The only complication here is that three
ordinary differential equations need to be integrated; their
initial conditions follow from the definitions
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lð0Þ ¼ 0; αð0Þ ¼ −3q0; hð0Þ ¼ 1: ð91Þ

VII. CONCLUSIONS

The main modification of the gravitational action pro-
posed here is to include terms nonlinear in curvature, but
going further than polynomials, so that rational functions
with a finite radius of convergence or even transcendental
functions can be used. Additionally, instead of considering
just a function of the Ricci scalar fðtr½R�Þ, the whole tensor
can be treated as an argument, and the trace taken at the
very end to produce a scalar Lagrangian density tr½fðRÞ�. In
the case of transcendental functions, this considerably
changes the results, when compared to the ordinary
fðRÞ theories.
With a view to fully general treatment, such as including

spin, the presented derivation is valid for affine connections
with nonvanishing torsion and without the assumption of
metricity. An important consequence is that for nonsym-
metric Ricci tensors, one can no longer introduce an
obvious metric conformal to the original gab. This stems
from the nonlinear functions of the Ricci tensor entering the
equations, instead of just functions of the Ricci scalar
multiplying Rab or gab.
Despite the difficulties, workable equations can be

derived and applied to the Robertson-Walker geometry
so that the analogue of the standard cosmological model
may be studied. As is generally the case, the modified
Einstein equations are of higher order, and instead of one
Friedmann equation, one has a three-dimensional dynami-
cal system.
An obvious complication is that the dynamical variables

enter the equations both inside and outside the transcen-
dental functions, which leaves little hope for explicit
solutions. Nevertheless, these models are within reach,
and if the function f is determined from other fundamental
principles, the dynamics and observational consequences
can still be effectively analyzed, as shown here.
The analysis of phase portraits for both rational and

transcendental f reveals critical points which are attractors
and which correspond to de Sitter solutions. More impor-
tantly, there also exist non-singular “big bounce” evolu-
tions, which are heteroclinic trajectories, and explicit
solutions for them can be given. For the dynamical systems
to be two-dimensional, it was assumed that the curvature
was zero and no ordinary matter was present. On the one
hand, this allows for a complete visualization of the phase
diagram, but on the other, it limits the physical applicabil-
ity. Still, the late or present Universe with accelerated
expansion can be modeled as the de Sitter attractor, while
for the big bounce solutions the scale factor does not
approach zero, so that matter density never dominates, and
neglecting it is justifiable.
If dustlike matter is included, the separatrix of the above

simplified rational model survives and the same explicit

solutions hold. One still has both big bounce and big bang
solutions, not unlike those of ΛCDM with stiff matter. In
general, matter changes the early evolution around the
separatrix but not on it. Thus, the next possible step in
constructing a viable model seems to be identifying fðRÞ
such that it also has an invariant submanifold, but which
depends on Ωm, not just on the geometry and Λ.
In any case, the elegant feature here is that the cosmo-

logical constant can appear naturally because of how the
theory is constructed—it is identified with the constant
term of fðRÞ. Yet, even when this term was zero
(f ¼ exp−1), the same sort of accelerated expansion
appeared.
A more detailed study of the initial singularity in the

presence of matter and curvature index k could lead to more
interesting results still. For example, seeing how one of the
scenarios imitates stiff matter, it will be interesting to ask if
such cosmologies can be equivalent to standard general
relativity with a scalar field, similarly to the ordinary R2

case. It is also the quadratic fðRÞ case for the Robertson-
Walker geometry, when there is an equivalence with the
ordinary fðRÞ, although it does not seem to extend to
higher orders. Another convergence is found when the
traceless Ricci tensor vanishes, so that Rab is proportional
to gab and the Einstein equations for both theories coincide.
However, as the examples show, even for an empty universe
this might correspond only to fixed points, not to general
solutions of the full theory.
With a view to future work, some observational formulas

are also given, so that the basic cosmological tests can be
applied. A comparison to the standard model is in order to
help guide the subsequent theoretical developments.
Specifically, some constraints on the function f should
be obtained. The crudest way would be to fit the first
coefficients of its expansion, but of course there is no hope
in recovering the whole series this way.
Rather, one might want to approach the problem

by trying to fit a differential equation satisfied by f.
Already for linear differential equations with rational
coefficients this would reduce the number of parameters
to finite, while at the same time allowing for a the vast
family of (confluent) hypergeometric functions and their
generalizations.
Future investigations could also address the question of

reduction of the order of the dynamical system (63). For the
Einstein-Hilbert action, the third derivative of the scale
factor does not enter, and only the Friedmann equation,
which is a relation between H and a, is left. Here, the
equation involving the third derivative of the scale factor, or
_α, would be reduced if 3F00ðαÞ þ F00ðβÞ ¼ 0. For indepen-
dent α and β this happens only if F is linear, so that GR is
recovered.
If, on the other hand, there is a relation β ¼ ψðαÞ, then a

nontrivial solution to the functional equation 3JðαÞ þ
JðψðαÞÞ ¼ 0 could potentially be found. Such a relation
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is in itself a second-order differential equation for the scale
factor, so the dynamics is simplified, but it then also means
that the function F is determined by F00ðξÞ ¼ JðξÞ.
Ideally, however, the function f should be mainly

constrained by experiment, not just the simplicity of the
resulting equations. If this theory passes the basic cosmo-
logical tests, analyzing it in a wider context of gravitational
physics will help address this issue. Questions of insta-
bilities will have to be answered, although as suggested by

Ref. [3], the Palatini approach, applicable here, provides a
setting to avoid at least the Ostrogradski instability. In
general, issues such as ghost fields, semiclassical stability
and post-Newtonian (Solar System) tests will be required,
and hopefully undertaken, to ascertain the overall viability
of the presented extension.
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