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We provide an elegant way of solving analytically the third post-Newtonian (3PN) accurate Kepler
equation, associated with the 3PN-accurate generalized quasi-Keplerian parametrization for compact
binaries in eccentric orbits. An additional analytic solution is presented to check the correctness of our
compact solution and we perform comparisons between our PN-accurate analytic solution and a very
accurate numerical solution of the PN-accurate Kepler equation. We adapt our approach to compute crucial
3PN-accurate inputs that will be required to compute analytically both the time and frequency domain
ready-to-use amplitude-corrected PN-accurate search templates for compact binaries in inspiralling

eccentric orbits.
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I. INTRODUCTION

The emerging field of gravitational wave (GW)
astronomy is expected to mature in the coming years
and decades. This expectation is mainly due to the direct
detection of GW signals, labeled GWI150914 and
GW151226 [1,2], from the coalescence of two distinct
binary black hole (BH) systems during the first observing
run (O1) of the advanced LIGO interferometer [3]. The
astounding success of LISA pathfinder and maturing pulsar
timing arrays ensure that multiwavelength GW astronomy
will be achieved in the coming decades [4,5]. Additionally,
the coming years are expected to witness a substantial
number of GW events due to the maturing of a network of
ground-based GW observatories [6,7]. Coalescing BH
binaries in quasicircular orbits should be the dominant
GW sources for these observatories [6—8]. Preliminary
investigations associated with the GW150914 event sug-
gested that residual eccentricities <0.1 at 10 Hz would not
introduce measurable deviations from the observed GW
signal, modeled to be from a coalescing BH binary
inspiralling along quasicircular orbits [9]. Indeed, a recent
effort shows that BH binaries associated with the transient
GW events GW150914 and GW 151226 are likely to have
orbital eccentricities below 0.15 and 0.1 at the GW
frequency of 14 Hz [10]. However, there exist a number
of astrophysically feasible scenarios in which binary BH
systems can have moderate values of orbital eccentricities
when their GWs enter observatories like alLIGO, as noted in
Refs. [10,11].

There are ongoing efforts to model GWs associated
with eccentric binary BH mergers [10,12,13]. It is custom-
ary to employ the phasing prescription, developed in
Refs. [14,15], for describing the inspiral part of eccentric
binary coalescence. This approach extends the early
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computations of Refs. [16,17] by incorporating in an
efficient manner the effects of three time scales that are
crucial to describe GWs from eccentric inspirals. The
presence of three distinct time scales are essentially due
to the use of the post-Newtonian (PN) approximation to
describe the dynamics of these binaries. In the PN
approximation, one invokes a certain gauge-invariant
dimensionless parameter, namely x = (%)2/ 3. where m
is the total binary mass while @ stands for the orbital
(angular) frequency, as the expansion parameter. The use of
x is predominant while expressing the frequency and phase
evolution of GWs from compact binaries as well as the
amplitudes of their two polarization states 4, and A, [18].
Let us recall that these three distinct time scales are
associated with that of the orbital motion, periastron
precession and radiation-reaction effects. In the GW phas-
ing formalism of Refs. [14,15], one models temporal
variations in h, and h, that occur at the orbital and
periastron precession time scales in a semianalytical
manner. This is possible due to the availability of a
Keplerian-type parametric solution to the PN-accurate
orbital dynamics of compact binaries. This solution pro-
vides a semianalytical description of the precessing eccen-
tric orbits that are associated with the PN-accurate
dynamics of compact binaries in noncircular orbits [19].
The present paper provides an elegant analytical solution
to the PN-accurate Kepler equation associated with the 3PN
accurate generalized quasi-Keplerian parametrization,
available in Ref. [19]. Specifically, we derive analytical
3PN-accurate infinite series expression for the eccentric
anomaly u in terms of the mean anomaly /. This solution
requires us to derive compact PN-accurate infinite series
expressions for certain trigonometric functions of the
true anomaly v in terms of u. We manipulate complex
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exponential representations of various trigonometric func-
tions of v and u for these derivations. Another analytical
solution to the 3PN-accurate Kepler equation is also
provided to check the correctness of our solution. We
invoke an improved version of Mikkola’s method, detailed
in Refs. [20,21], to compare the accuracy of our analytical
solution for various values of the orbital eccentricity. Our
PN-accurate analytic solution shows excellent agreement
with its numerical counterpart for moderate values of
eccentricity.

We adapt the above computations to derive 3PN-accurate
relations between various trigonometric functions of v and
u in terms of /. These relations will be required to compute
analytically the time-domain response function of GW
observatories to eccentric inspirals. One requires PN-
accurate amplitude-corrected A, (7) and h_ () expressions
to obtain such ready-to-use response functions, namely
h(t) = Fyh, (1) + F_h,(t), where F and F are the so-
called beam pattern functions of GW observatories. It is the
practice of expressing &, (¢) and h_ () as sums over various
harmonics in [, as evident from Egs. (3.3)-(3.10) in
Ref. [22], that demands PN-accurate trigonometric func-
tions of v and u in terms of the mean anomaly /. Note that
the equations of Ref. [22] provide quadrupolar order GW
polarization states associated with compact binaries mov-
ing along typical Keplerian (or Newtonian) eccentric orbits
and require a solution to the classic Kepler equation and its
subsidiary results. Our solution and the associated PN-
accurate relations will be required to extend the results
of Ref. [22] to 3PN order. We demonstrate the use of our
PN-accurate relations by computing analytic 1PN-accurate
amplitude-corrected expressions for 4, , (/) that are accu-
rate to leading order in orbital eccentricity.

Our prescription to compute analytic amplitude-
corrected £, (I) will also be required to obtain ready-
to-use frequency domain GW response function for
moderate eccentric inspirals. This ongoing effort is extend-
ing detailed computations, presented in Ref. [23], with the
help of the postcircular expansion of PN-accurate eccentric
orbits and the stationary phase approximation, detailed
in Ref. [22].

In what follows, we sketch the derivation of a popular
solution to the classic Kepler equation and provide its
natural and elegant extension to tackle the 3PN-accurate
Kepler equation. An equivalent but lengthy expression,
influenced by Ref. [24], is presented in Appendix A while
Appendix B provides the derivation of some of the crucial
ingredients that are required for our analytic solution of the
3PN-accurate Kepler equation. We perform comparisons of
our 3PN-accurate analytic solution to its numerical counter-
part in a subsection of Sec. II. Section III presents our
approach to obtain PN-accurate postcircular expansion of
time-domain GW polarization states and we discuss its
implications. Many detailed expressions, required for
such an effort, and their brief derivations are provided in
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Appendices C, D and E. Appendix F provides 1PN
amplitude-corrected h, , expressions which extend the
quadrupolar expressions of Ref. [25].

II. DERIVATION OF ANALYTIC SOLUTION
TO PN-ACCURATE KEPLER EQUATION

We begin by sketching how Bessel invoked his now
famous Bessel function to solve a demanding transcen-
dental equation proposed by Kepler [26]. An elegant
extension of Bessel’s approach to solve the 3PN-accurate
Kepler equation is presented in Sec. II B and we probe its
numerical accuracy in Sec. II C.

A. The Bessel function approach to tackle
the classic Kepler equation

We begin by reviewing the classical Keplerian para-
metrization that describes semianalytically the Newtonian-
accurate orbital motion of a binary in noncircular orbits
[26,27]. In polar coordinates and in the center-of-mass
reference frame, this approach provides a parametric
description for an eccentric orbit of Newtonian dynamics
using

r=a(l—ecosu), (1a)

p—py=v= 2arctan{(ii) v tang], (1b)

where r and ¢ define the components of the relative
separation vector r = r(cos¢,sin¢,0). In the above
equations, a and e stand for the semimajor axis and the
eccentricity of the orbit, respectively. The auxiliary angles
u and v are called eccentric and true anomaly. The classical
Kepler equation defines the temporal evolution of these
auxiliary angles and is given by

I=n(t—ty) =u—esinu, (2)

where [ is the mean anomaly and the mean motion 7 is
defined as n = 2?”, P being the orbital period. The quantities
to and ¢y are some initial time and associated orbital phase.
The conservative nature of the Newtonian orbital dynamics
allows one to express the orbital elements a, e, and n in
terms of the Newtonian orbital energy and angular momen-
tum. These expressions are given by

Gm
a = m, (33)
e? =1+ 2Eh?, (3b)
—2E)3?
n= 7< an , (3c)
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where E is the Newtonian orbital energy per unit reduced
mass yu = m;m,/m, m; and m, being the individual masses
of the binary and m = m; + m,. The scaled angular
momentum is given by h = ﬁ, where J is the reduced
Newtonian orbital angular momentum.

Analytic solutions of the classical Kepler equation,
namely [/ =u —esinu, had attracted the attention of
several generations of distinguished mathematicians during
the nineteenth and twentieth centuries [26]. In what
follows, we sketch the derivation of the widely used
solution involving the Bessel functions [28].

We start by expressing u — [ as a Fourier series in [/:

u—I[=esinu = ZAS sin(s/), 4)

s=1

where the coefficients A, are given by

2 [z
4, =2 / (u = 1) sin(sl)dl. (5)
7 Jo
Integrating by parts leads to
2 (= .
4, =2 / (u(D) — 1) sin(sl)dl
7Jo

2 z
=— l)yd
)y cos(sl)du

:%{%A" cos(su — se sin u)du}. (6)

The expression in the curly brackets can be identified with
J(se), namely the Bessel functions of the first kind. This
allows us to write

u=1I0+ i%]s(se) sin(s/). (7)

s=1

This expression provides the most popular solution of the
transcendental Kepler equation. In what follows, we adapt a
similar approach to tackle the PN-accurate Kepler equation.

B. 3PN-accurate solution to PN-accurate
Kepler equation

The post-Newtonian approach, heavily used to describe
dynamics of astrophysical systems, incorporates general
relativistic effects as perturbations to Newtonian dynamics.
Einstein himself invoked the PN approach for describing
the perihelion advance of Mercury [29]. We may treat the
PN approximation as a computational tool for tackling the
nonlinear Einsteinian prescription for gravity in terms of
certain perturbative deviations from the linear Newtonian
gravity. This approach involves an expansion in terms of a
small parameter that is usually the squared ratio of the
velocity of the matter distribution forming the gravitational
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field to the speed of light. For the inspiral dynamics of
compact binaries this small parameter is equivalent to the
above defined parameter x. At present, dynamics of
compact binaries have been computed to the fourth PN
order which provides general relativity based corrections to
Newtonian description that are accurate to x* order (see
Refs. [30-34] and references therein for the details of this
herculean effort from various approaches).

Remarkably, it is possible to obtain a Keplerian-type
parametric solution to the PN-accurate orbital dynamics of
compact binaries in noncircular orbits [19,27,35,36]. At the
third post-Newtonian order, the conservative orbital
dynamics of compact binaries in eccentric orbits is speci-
fied by providing the following parametrization for the
dynamical variables r and ¢:

r=a,(l—e.cosu), (8a)
¢ — o= (1+k)v+ (fay + fop)sin(20)
+ (gap + gop) sin(3v) + igy sin(4v)
=+ hﬁ(/) sin(SU), (8b)

1+ 1/2
where v = 2 arctan [( e¢> tan 4 . (8¢c)
1 - €(/, 2

A distinctive feature of the above two equations is the
presence of different eccentricity parameters e, and e, for
the radial and angular variables. These were introduced so
that the PN-accurate parametrization looks “Keplerian”
even at higher PN orders. The quantity k provides the rate
of periastron advance per orbital revolution. In the above
equations, a,, e,, and e, are some 3PN accurate semimajor
axis, radial eccentricity, and angular eccentricity, while f4,
fop> 9ap> Gop» iep» and hgy are some orbital functions of the
energy and the angular momentum that enter at 2PN and
3PN orders. The explicit PN-accurate expressions of these
quantities are available in Ref. [19].

The following 3PN accurate Kepler equation links the
eccentric anomaly u to the mean anomaly [ = n(t — t;)

l'=u—esinu+(gy + go:)(v — u)
+ (far + fo) sinv + ig, sin(2v) + he, sin(3v).  (9)

This PN-accurate Kepler equation requires another eccen-
tricity parameter, namely e;, which is usually called the
time eccentricity. Additionally, there are more orbital
functions gu;, 9er» fars fe» 16;» and hg, that appear at
2PN and 3PN orders. The above-mentioned orbital ele-
ments and functions, expressible in terms of the conserved
orbital energy, angular momentum, m and 7, are listed in
Ref. [19]. We observe that the above parametric solution is
usually referred to as the “generalized quasi-Keplerian”
parametrization associated with the 3PN-accurate orbital
dynamics. This is mainly due to the presence of these
orbital functions that appear at 2PN and 3PN orders.
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In what follows, we derive an elegant solution to the 3PN
accurate Kepler equation, namely Eq. (9). It is possible to
bring in a compact infinite series expansion, similar to
Eq. (4), by invoking the following exact relations (see
Appendix B for their derivations):

o gl
v—u:ZZﬂ—f/’sin(ju), (10a)
— J
j=1
2 l—e(i o
sinv = > B} sin(ju), (10b)

e¢ Jj=1

4,/1 —ei o
sin(2v) = 6—22ﬁfp(j,/l -5 - 1) sin(ju),
@ j=l1

(10c¢)
2,/1—¢}
. . ¢ j 2
sin(3v) = T2ﬂ¢(4 - ey
=
—6jy/1— el +22(1 - eg,,)) sin(ju),  (10d)

with g, = (1 —,/1 - efp) /ey. These compact expressions
allow us to express Eq. (9) as

l:u—etsinu—FZO{jSin(ju), (11)
=1

where the explicit expressions for the PN-accurate orbital
functions a; can be extracted with the help of Egs. (9) and
(B13). They are given by

WJ1=é
0 =25,

(9ar + ger)€},
] T

. 2
Jy/1—e,
+2ige, [j,/l — e - 1}
+h6,[4—eé—6j,/l —eg +2/7(1 —eé)}). (12)

It is worth noting that the functional forms of a; are
identical in both the modified harmonic (MH) and
Arnowitt-Deser-Misner (ADM) coordinates, since Eq. (9)
takes an identical form in both gauges [19]. However, the
explicit expressions for these orbital functions in terms of
the conserved orbital energy and angular momentum or the
parameters x and e, differ.

The functional form of the PN-accurate Kepler equation,
namely Eq. (11), allows us to write the following PN-

accurate Fourier series for u — [

((f4t + f6t)e§) +
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u—1=> Aysin(sl), (13)
s=1

where the coefficients A, are defined as

4, =2 / "(u = 1) sin(st)dl. (14)

T
Integrating by parts and using Eq. (11) gives

2 [ .
A, = /0 (u —1)sin(sl)dl

T

2 7
=— l)d
o )y cos(sl)du

2 [= >
= — cos| su —se,sinu + s a;sin(ju) |du.
2 eos(su=seqsinu 3 aysintin)

(15)

Note that the a; contributions appear only at 2PN and 3PN
orders as evident from Eq. (12). Therefore, we expand the
sum in the cosine function of the above integral to the first
order in ;. This leads to

T

2
A, =— [ cos(su—se,;sinu)du

ST Jo

2& [n
_;Zaf/) sin (su — se, sin u) sin(ju)du
=1

/2
=— [ cos(su—se;sinu)du
ST Jo

I & /ﬂ : .
+ - a; cos ((s + j)u — se,;sinu
22 |, {eos (s u—sessina)
—cos ((s — j)u — se; sinu) ydu

:éjs(set)_'—zw:aj{Jerj(set)_Js—j(set)}’ (16)

where we employed the usual integral definitions for J,,(x)
to reach the last step. This step allows us to write down a
simple and elegant solution to 3PN-accurate generalized
Kepler equation in terms of Bessel functions as

w=1+Y Ajsin(sl).

s=1

(17a)

A =20 (se) £ Y lhunyfse) — Joj(se)}. (1)

Clearly, one requires explicit expressions for a; in terms of
x, e;, and n while employing our solution. The relevant
expressions, valid for MH and ADM gauges, may be
computed from Ref. [19] as
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(18a)

5 137

=il 15—-65  157—12 L 2880(1 + e?) — (10880 + 2784¢e? — 1237%)n + (960 + 1056¢?)1>
s jV1-é? 4 96j(1 = e7)*?
N 268800 — (182192 + 1120e? 4 43057%)n7 + (8260 — 11620e?)n* — 1820(1 — 7)1
3360(1 — e?)
681;7 — 19977 + 3> ,23n—T3n* + 13;73) }
161/1 - ¢? 48 ’
o=l 15-6n  4n+n’ L 2880(1 + e?) — (10880 + 2784¢? — 1237%)5 + (960 + 1056¢?)1>
s jV1-eé? 4 96j(1 — e7)*/?
N 7488 — (7544 — 48e? — 3% ) + (1168 + 32e2)n* = 52(1 — e?)® —18n + 24n* + 31

96(1 — €7)

where the superscripts H and A stand for the two gauges
involved, namely the MH and ADM gauges. We note that

B = (1—=1+/1—¢€?)/e, is defined with the time eccentric-
ity. To provide a check on our PN-accurate solution, we
derive in Appendix A an alternate and less compact
solution to the 3PN-accurate Kepler equation that is
influenced by Ref. [24]. We expand our two 3PN-accurate
solutions to O(e{°) to verify that they are identical at each
order in e,.

In what follows, we compare our solution with the 2PN-
accurate u(/) solution of Ref. [24]. This solution in our
notation reads

w=1+ Asin(sl). (19a)
s=1
2
Ay = ;Js(set)
Z {J/ s - )et) _Jj+s<(j+s>et)}7 (19b)
with the constant coefficients «; given by
_ 294! = i . .
a; = TZﬁ(p{Jj—i(]et) +Ji(je)}
i=1
+ fanJ 1 = ei{J o1 (er) = Ty (e)}. (20)

We observe that two typos are persistent in Ref. [24] while
trying to express sinv in terms of /. This is evident by
comparing their Eq. (87) with our Eq. (C4) or its equivalent
that may be found in a classical treatise like Ref. [28].
Additionally, the arguments of the Bessel functions should
read (k — n)e; and (k + n)e, while going from steps 7 to 8

48

)} (18b)

164/1 — &?

of Eq. (149) in Ref. [24]. These corrections ensure that
Eq. (19) is consistent with our elegant solution at 2PN
order. To check the consistency of these two solutions, we
expand Eqs. (17) and (19) around ¢, = 0. We have verified
that they are in perfect agreement up to O(e??).

We observe that the approach of Ref. [24] results in a
complicated PN-accurate expression for (/) as is evident
from our Eqs. (19) and (20). This is mainly due to the
presence of infinite Bessel series in the constant ;. It
turned out to be rather difficult to extend the prescription of
Ref. [24] to 3PN order. This prompted us to develop a 3PN
extension of Eq. (19) that requires PN-accurate compact
relations, given by our Eqgs. (10). This additional solution,
detailed in Appendix A, provided an independent check for
our 3PN-accurate elegant solution.

C. Comparison to numerical solution

In this subsection we compare our analytic solution
against a very accurate way of solving the PN-accurate
Kepler equation, detailed in Refs [23,37]. This numerical
approach is based on an efficient and accurate (numerical)
way of solving the classical Kepler equation, developed by
Mikkola [20] and is valid for all / and for 0 <e, < 1.
Mikkola’s method involves finding an analytic solution to
certain cubic polynomial and a subsequent fourth-order
iteration to improve on the initial guess for u. Its PN
extension involves iteratively invoking the method to tackle
the PN-accurate Kepler equation, expressed in certain
“quasiclassical" form (see Refs. [21,23] for details). We
observe that the PN-accurate analytic solution is fully
specified by providing values for I, e¢;, x, and 5. Our
analytic solution is expected to be valid only up to certain
values of the PN-expansion parameter x and it will diverge
for large values of x. Additionally, it will be useful to
concentrate on the differences between u and / values due
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to the nature of Eq. (17). These considerations influenced
us to probe how the fractional relative error, namely
|((ttgum — 1) = (ttamy — 1))/ (Upum — 1)|, varies as a function
of e, for few x values while incorporating 200 terms in the
analytic solution. The results in MH gauge, displayed in
Fig. 1, reveal that the relative error is small for moderate
eccentricities and reasonable x values. However, this error
estimate can approach unity for x values like 0.1 even with
moderate eccentricities (e, = 0.7). In any case, the maxi-
mum factional relative error is below 10% for e, < 0.5 and
x = 0.1 for equal mass compact binaries.

We invoke the more familiar integrated error over one
period using the L? norm, namely

B L 2r ) 1/2
i, = (5, [ )" e1)

where f stands for the above-mentioned fractional relative
error. In Fig. 2, we show this error estimate as a function of
e, for a number of x values. We find that our L?-norm error
estimate is small (<1%) for eccentricities up to ¢, = 0.95
for x values relevant for the early inspiral phase like
x =~ 0.01. However, it diverges quickly for higher x values
and this is true even for moderate e, values like 0.5. A
possible explanation is that this behavior happens when
ey~ e;(1 +x(4—n)) + O(x?) approaches unity. It is easy

z =0.01
=01
— e =02
5 =03
£
5} e =04
()
> e = 0.5
]
= e =0.6
Q
A~ — =07
—e; =08
10 A z =0.10
10!
10°
107! |
102 — e
1073 == e
107
05|
10°¢
0.0 05 1.0 15 20 25 3.0
l
FIG. 1. The fractional relative error |((uyum — 1) — (Uan —

1))/ (ttyum — 1)| as a function of the mean anomaly / for different
e, and x values. We let # = 0.25 and truncate the analytic series
solution at j = 200. x = 0.01 corresponds to a binary neutron star
system entering the alLIGO band at 10 Hz, while a binary black
hole system with masses around 10 M, enters at x ~ 0.03.
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10° 10

10! 10!
107 1072
]
5 10 1077
g
- -
§10 =001 |0
g — w=o002||
107 =003 {107
=005
107 2 =0.07 [{107°
— =010
W =T %2 03 or o5 06 o7 08 09
N
FIG. 2. Integrated relative error as a function of e, for different x

values. The other parameters are as in Fig. 1.

to infer that this happens when e, ~ 1/(1 + 4x) and this is
consistent with our plots.

In what follows, we introduce a new parameter to specify
cleanly where our analytic solution is accurate, trustable,
and devoid of the above divergences. This post-Newtonian
parameter is defined to be

Gmw)'/3
1—e¢;

It smoothly goes to the standard post-Newtonian parameter
x!/2 in the circular limit.

We plot in Fig. 3 the fractional relative error as a function
of [ for several ¢, and few y values. The sharp maxima,
visible in Fig. 1, are absent in such y plots and the

107°

1054 N\

1077}

107 — =01
1073

=02

5 - =03

3 e =04

(]

2 e =05
=107

< e =0.6

~ =07
—6

H =08

0.0 05

FIG. 3. Relative error |((upym — 1) — (g — 1))/ (ttpum — I)| as @
function of the mean anomaly [ for different e, and y values. In
the circular limit y = 0.1 corresponds to x = 0.01 and y = 0.316
to x =0.1.
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107 1072

10*4//—\ 10-3
8
£10 10
=1
2
<
E,nw: — y=010]}ps
= — y=014
y=019
107° y =023 [{107°
y =027
— y=032
=01 02 03 04 05 05 07 08 o907
€t
FIG. 4. Integrated relative error as a function of the eccentricity

e, for different y.

maximum relative error is less than 1% for large y values
like 0.3. This is repeated in Fig. 4 for the integrated error as
function of e, for several y values. We again find smooth
behavior and noticeably lower error estimates (less than

1%) for high y and e, values.
In Figs. 1 to 4 we only considered equal mass binaries.
We found similar behavior for Neutron star-black hole
|

o Gmn X
T 2R (1 —e,cosu)

— (1 + ¢2){[4 —3e? —2¢,cos u + €? cos(2u)] cos(2®) — 4sinue, (1 — €?)'/?sin(2®)} },

0 _ Gmn XC;
R (1—e cosu)

where R’ is the luminosity distance and ® = — ¢b. The source
direction is specified by (1,4) while ¢;=cosz, s;=sinu.
We introduce @ that combines the orbital phase ¢ with f.
The orbital phase is specified by employing 3PN-accurate
generalized quasi-Keplerian parametrization and it reads

¢ —do = (1+k)v+ (fay + fop) sin(2v)
+ (gap + Gop) sin(30) + gy sin(4v)
-+ h6(/) sin(Sv). (24)
It is customary to split ¢ into an angle A, which is linear in /,

and W(!), which is 2z periodic in / [14,39]. This allows us to
write

b =1+ W), (25a)
A= o+ (1+ )L, (25b)
W(l) = (1 +k)(v—=1)+ (fap + fop) sin(2v)
+ (9ap + Gop) sin(30) + igy sin(4v)
+ hey sin(50). (25¢)

~{[4 —3e7 — 2¢, cos u + e} cos(2u)] sin(2®) + 4 sinue, (1 — €?)'/? cos(2®)}.
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binaries (17 ~ 0.1). These estimates suggest that our analytic
solution should be accurate to compute analytic PN-
accurate h, ,(I) expressions for moderately eccentric
inspirals. This is what we pursue in the next section.

III. INPUTS TO COMPUTE ANALYTIC TIME-
DOMAIN AMPLITUDE-CORRECTED 4, ,(I)

In this section we derive inputs that will be required to
compute 3PN-accurate amplitude-corrected expressions for
the time-domain £, , as a sum over harmonics in . These
PN-accurate results, as expected, will also be required to
obtain amplitude corrected Fourier-domain inspiral tem-
plates with the help of Refs. [22,23]. Such PN-accurate
input expressions can be regarded as nontrivial corollaries
to our analytical solution to the 3PN-accurate Kepler
equation. The various Fourier series coefficients derived
in this section are given in a Mathematica notebook in the
Supplemental Material [38].

We begin by listing quadrupolar, Newtonian order
expressions for A, , associated with nonspinning compact
binaries in eccentric orbits, adapted from [14,39],

5 {s7(—e7 + 2e,cosu — ef cos(2u))

(23a)

(23b)

|

This split of ¢ is done to incorporate the advance of periastron
explicitly into the GW phase evolution and its implications
are discussed in Refs. [21,39]. A close inspection of Egs. (23)
reveals that we need to express the cosine and sine of W (1)
and (1 — e, cosu)~2 as functions of the mean anomaly [ to
obtain s, , as a sum over harmonics in [. It is not very
difficult to infer that the derivations of such series expressions
demand additional PN-accurate Fourier series of sin(ju),
cos(ju), sin(jv), and cos(jv). In what follows, we tackle
these challenges.

A. PN-accurate Fourier series expressions for various
trigonometric functions of u, v, and W

We begin by deriving explicit expressions for the
coefficients 3" and &4 such that 3PN-accurate Fourier
series for sin(ju) and cos(ju) can be expressed as

sin(ju) = i ol sin(sl), (26a)
s=1

cos(ju) = i &l cos(sl). (26b)
s=0
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We adopt certain 3 indices notation to keep track of a
number of coefficients that will be derived in this sub-

section. Let us emphasize that both ol and ¢ are not
functions of u. We briefly describe how these Fourier
coefficients are calculated in the Keplerian parametrization.

The Fourier coefficients 05” are defined as

. 2 (=
ot :—/ sin(ju) sin(sl)dl
T Jo

2j [=
=— j l)d
s o cos(ju) cos(sl)du

L s —j)u—sesinu
=L [*feos((s = jyu = sesinu)
+ cos((s

_ %{Jﬁj(se) +Jyj(se)}, (27)

— j)u—sesinu)}du

where we employed the Newtonian Kepler equation
| = u — esinu and invoked the standard integral definition
of Bessel functions of the first kind.

To extend it to 3PN order, we write our PN-accurate
Kepler equation as [ = u— e sinu+ ) a;sin(ju), due
to Eq. (11). We adapt the calculation to obtam A,, detailed
in Sec. IIB, by expanding cos((s+ j)u — se,sinu +
sy_;@;sin(ju)) in terms of the small parameters @;. The
resulting 3PN-accurate Fourier series for sin(ju) reads

sin(ju) = Y _ ol sin(sl). (28a)
s=1
ol =L {Jy5se) + 1y s(se,)}
+ % Z ai{Jijii(se) = Jgpji(se,)
i=1
+Js—j+i(set) —j z(se )} (28b)

Following similar steps, we can easily obtain 3PN-accurate
Fourier series for cos(ju) as

cos(ju) ZCS cos(sl), (29a)
ju 1 .
)= 3 (—eb;1 + a;j), (29b)
G =40, s(5e) = Jj(se))
j )
EZ —]+l S€ J—] l(se)
i1
—Joyjvilse) + g jmi(se)}, (29¢)

PHYSICAL REVIEW D 96, 044011 (2017)

where 6;; stands for the standard Kronecker delta. It is
possible to provide a compact expression for e““ by
combining the above results for cos(ju) and sin(ju) as
e'" = cos(ju) + isin(ju). The resulting expression is

given by

l]u _ Z € ml’ (308.)
ju _ 1

e = 5( e, +a;j), (30b)

eéu = %Js—](set)

+ % ; ai{Js-jii(ser) = Js_ji(se,)}.
(30c)

We now move to derive the Fourier series of sin(j») and
cos(jv) in terms of the mean anomaly / with the help of the
above expressions. The plan is to write down a series
expansion for sin(jv) in terms of u as

[Se]

Z &l sin(su) (31)

s=1

sin(jv)

The above form is justified by our computations as detailed
in Appendix B. We invoke the Fourier series of sin(ju),
given by Eq. (28a), to obtain

sin(jv) Zo-{ sin(s/), (32a)
o' =) Elok, (32b)
=1

where Si is given by Eqgs. (B15). Following similar
arguments, we obtain PN-accurate results for cos(jv) as

cos(jv) ZC’ cos(sl), (33a)
"=y g (33b)
k=0
and €'/’ as
et =N " ellet!, (34a)
el = Elekn. (34b)
=0
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We are now in a position to derive 3PN-accurate Fourier
series expressions for cos(mW) and sin(mW). The starting
point of our derivation is the following equation:

= W,sin(sl), (35a)
s=1
Wy = (1+k)B; + (fap + fop)or
+ (94p + Gop) 03" + i6p05" + heyo3". (35b)

This equation arises from the 3PN-accurate expression for
W(l) given in Ref. [14]

+ (g4¢ + 96¢) sin(3v) + i6¢ sin(4v)
+ h6</) Sin(s’l)), (36)
and our earlier derived series expressions for sin(jv), as well

as a series expression for the true anomaly v — /, derived in
Appendix C. We list these relevant expressions again

v—1= i B, sin(sl), (37a)
s=1
sin(jv) = f:o{" sin(s/). (37b)

s=1

A straightforward computation that employs the above three
infinite series expressions leads to the following Fourier
series of ¢V in terms of [:

0

eimW — Z 'waei”l. (38)

n=—00

The Fourier coefficients P?% are given in Appendix E,
where we describe the derivation of Eq. (38) in detail. It is
then fairly routine to extract Fourier series of cos(mW) as

cos(mW) ZC’”W cos(nl), (39a)
CmW me (39b)
CyW = pmW 4 pmW, (39¢)
and sin(mW) is given by
sin(mW) = Z S™W sin(nl), (40a)
SmW — pmW _ pmW, (40Db)

Finally, we turn our attention to the derivation of
(1—e,cosu)™. We adapt and extend the approach of

PHYSICAL REVIEW D 96, 044011 (2017)

Ref. [24] to obtain 3PN-accurate Fourier series of
(1—e,cosu)™. Adapting the relevant result in Ref. [24],
we write

m an COS ju (413)
1
b= (515 ). (410)
b e{ n+j—1
J _2/'—1 j
x2F1<”;J,"+é+;j+1;e%>,
(41c¢)

where ,F, stands for the ordinary hypergeometric
function. Combining the above expression with the
results for cos(ju), we get a 3PN-accurate Fourier series
for 1/(1 —e,cosu)" as

_ (jI), 42
(l—etcosu ;A cos(f1) (422)
= bk (42b)
k=0

In the next subsection, we apply the 1PN version of these
results to demonstrate their utility in computing analytic
h, x as a sum over harmonics in .

B. Analytic i, ,(I) via small eccentricity expansion

The plan is to apply the above derived PN-accurate series
expansions to compute analytic 1PN-accurate amplitude-
corrected expressions for /1, , (1) in the small e, approxi-
mation. We begin from the exact 1PN-accurate amplitude-
corrected A, , expressions that we symbolically write as

Gmn
R
H', , are functions of ® = f— ¢ = f— (A + W) and u. At
the Newtonian order, explicit H 1 x expressions can be
extracted from Egs. (23), and we list the higher order terms
that appear at 0.5PN and 1PN orders in Appendix F. With

the help of 1PN versions of the various relations derived in
the previous subsection, we obtain

hy,= x{H‘i’X + )CO'SHS)SX + xHL,X}. (43)

Gmn

Z {[a? cos(pl) + b4 sin(pl)] cos(gA)
p.q=0

+ [ cos(pl) + d7% sin(pl)] sin(g4)}. (44)

To show a glimpse of our final result, we display certain
1PN-accurate Fourier coefficients, truncated at O(e;}):
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1
Cl%l = Clﬁsié\/)_C|:—Z

(1+cH)(1+2e7) -1+ 2e3],

PHYSICAL REVIEW D 96, 044011 (2017)

8
at? = czﬁ{(l + ¢2)(=2 + 5¢?) —l—x[g(l —5e2)(1-3n)

3 6

11 1 2
+(1 +c?)<3 +—’7+—e%(315 —151n) +§s%(1 +e?)(1 —311))} }

9
al’ = Zc3ﬁsi(1 + ¢7)8V/x(1 = 6e7),

8
alt = —~cyps?(1+ cF)x(1 = 3n)(1 - 11e?),

3

1
C(i] = Sl/isi5\/)_f [—Z

(1+c2)(1+2e7) -1+ 2e%],

8
02 _ szﬁ{(l )24 5¢) +x{§<1 _ 5e2)(1-3n)

11 1 2
+ (1 +¢?) <3 +Tn+66’2(315 — 151p) +§s%(1 +e2)(1 —371))} }

9
= Zs3ﬁs,~(1 + ¢2)8v/x(1 — 6¢€7),

8
At = —§s4ﬂs%(1 +¢2)x(1=3n)(1 = 11€?),

where ¢ and sy stand for cos (k) and sin(kp) and we list
only those coefficients that survive in the circular limit. We
have verified that these coefficients are consistent with the
1PN-accurate amplitude-corrected £, , for quasicircular
inspirals, provided in Ref. [40]. This exercise demonstrates
the ability of our inputs to compute analytic PN-accurate
amplitude-corrected expressions for 4, , as a sum over
harmonics in 1.

Another important check of our approach is that we
should also be able to reproduce Egs. (3.6)—(3.10) in
Ref. [22] while restricting our attention to the quadrupolar
order h, , from eccentric binaries in Newtonian eccentric
orbits. We use our Eq. (23) which provides the quadrupolar
order /. , and the Newtonian version of our results from
the previous subsection to obtain

Gmn

I —
+,X CZR/

x> [C) cos(pl) + ST sin(ph].  (46)
p=0

We list below p = 1 coefficients accurate to O(e®):

(45a)
(45b)
(45¢)
(45d)
(45¢)
(45f)
(45g)
(45h)

Cl = s%(—e%—eg—%-#&) + eop(l +¢f)
(e,

L=sy(1+¢})

(s
Cl = syp¢; <3e - 4?63 + 3378645 — %), (47¢c)
St = cypc; <—3e + 2?5 + 11926;: + 327516607) (474d)

Note that these are Newtonian order expressions and e
thus stands for the standard Newtonian eccentricity. A close
inspection reveals that our coefficients S}, C!, and S are
identical to those given by Egs. (3.6)-(3.10) of Ref. [22].
However, the coefficient of the s? term that appears in C!.
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is the negative of what is listed in Eq. (3.7) of Ref. [22].
To explore the origin of the above difference, we express
our Eq. (23) in terms of the true anomaly (or the
orbital phase) with the help of the well-known classical

o__Gmn_x
+ CZRI (1—62)

We observe that the above expression differs from
Eq. (3.1) of Ref. [22] in the sign of the s% term. This is
indeed the reason why the sign of the s? term in our C}
differs from its counterpart, given in Eq. (3.7) of Ref. [22].
In contrast, our Eq. (48) is consistent with Egs. (30)—(32) of
Ref. [25]. Note that the relevant expressions of Ref. [25] are
more general than ours. However, they can be compared to
our Eq. (48) by making the following substitutions: § — v,
0,—>p, ¢—0, 0,—0, while using ®=v-p at
Newtonian order. It turns out that the above-mentioned
sign difference may be associated with the convention
adapted for defining (z, f) in the above calculations [41]. At
present, it is not very clear to us which convention is more
appropriate while constructing GW response function from
the amplitude corrected expressions for i, and h,. The
amplitude-corrected PN-accurate versions of these GW
response functions will be reported elsewhere.

IV. A BRIEF SUMMARY AND POSSIBLE
EXTENSIONS

We derived a compact and elegant solution to the 3PN-
accurate Kepler equation, present in the generalized quasi-
Keplerian parametrization for compact binaries in eccentric
orbits. This result crucially depends on certain 3PN-
accurate infinite series expressions for trigonometric func-
tions of » in terms of u. We probed the accuracy and
correctness of our solution using analytical and numerical
methods. In Sec. III, we provided PN-accurate crucial

PHYSICAL REVIEW D 96, 044011 (2017)

Keplerian formulas (1 — e cosu) = (1 —¢?)/(1 + ecos v),
sinu = (1 —e*)"/2sinv/(1+ ecosv), that connect true
and eccentric anomaly. The resulting expression for
hY. reads

{(1 +¢?) (2cos(21) —-2p) +5§cos(v —-2p) +§cos(3v -2pB) + ezcos(Zﬂ)) —s2(ecosv+ e?) } (48)

|

inputs that will be required to compute amplitude corrected
GW polarization states as sum over harmonics in /. The
explicit use of these PN-accurate relations is demonstrated
by computing 1PN-accurate analytic amplitude-corrected
expressions for A, , (1). Detailed derivations of various PN-
accurate relations are provided in the appendices.

It will be interesting to extend the present analysis for
compact binaries in hyperbolic orbits. This requires a 3PN-
accurate Keplerian-type parametric solution for compact
binaries in hyperbolic orbits and this is currently under
investigation. It will also be interesting to include spin
effects into these computations with the help of Ref. [42].
Additionally, it will be worthwhile to compute fully
analytic 3PN-accurate amplitude-corrected expressions
for h, , with the help of our compact expressions and
Ref. [43], that provides inputs to compute amplitude-
corrected A, , in terms of dynamical variables.
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APPENDIX A: ALTERNATIVE SOLUTION TO THE PN-ACCURATE KEPLER EQUATION

An alternative solution to the 3PN-accurate Kepler equation can be obtained in the following way. Rewrite Eq. (9) as

u—esinu=10=1+46l,

where 6/, a small perturbation to [, is given by

6l = —=(9ar + gor)(v — ) = (fa; + fo) sin v — i $in(20) — hg, sin(3v).

(A1)

(A2)

Equation (A1) looks like the classical Kepler equation, but with a mean anomaly /. The solution to this equation can be

written formally using Eq. (7) as
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2.2
=7 —Jy(ke,) sin(kl'). A3
W=+ ulken) sk (43)

Expanding in the small parameter 6/,

[se] 2 (o]
u=1+51+ 7 Jy(ke)sin(kl) +251§:Jk(ket)cos(kl)
k=1 k=1

| \S]

kz:: (ke sin(kD) + 6l Z Ji(ke,)cos(kl).

k=—o00

Using Eqgs. (B13), we can write 6/ as

;WZ% <Zl ﬂéj[]s_j(set) + JS_,_j(set)]) sin(s/)

~(far + for)

— 2 00
_,-6,4172"521(2%( 1-e2 1)[ (se)HH,(se)])sm(sz)

— 2 0
_thl‘ﬁz%ZﬂéJ@_% 6]1/1—e¢+2j(1—e{/,)>[ (se)+JS+j(se)])sin(sl). (A5)

Invoking Eq. (12) for a;, we can rewrite

ii%% (se;) + Jssj(se,)] sin(sl).

s=1 j=1

Substituting into Eq. (A4), the above solution becomes

o0

[oj(ser) + Ty j(se)] sin(sl) > Ji(ke,) cos(kl)

k=—00

v~

a

[]s
[]s

Ji(ke,) sin(kl) —

2
k
% : '[J _j(se,) +Jyyi(se,)] i’: Jk(ke,)%(sin((k + 5)l) —sin((k — 5)1))

J

©
I
-
~.
I
=

[~]e
e
R

v~

Ji(ke,) sin(kl) —

k=—o00

I
~.
I

—j(se) + T j(se)]Uigs ((k + 5)er) = Ty (k= 5)e )}] sin(kl). (A7)

© \\.

Ji(ke,) + iaj i

s=1

A =200se) + 30 S LU ko)) s ke a5+ ) = (5 = Kpe,) (A8)

).

We have checked that this expression indeed matches with Eq. (17) when expanded to O(
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APPENDIX B: ELEGANT SERIES EXPANSIONS FOR THE REQUIRED v -u AND sin(jv)

This appendix, as noted earlier, provides the derivation of Egs. (10). We begin by expressing the relation between the true
and eccentric anomaly as

tan -

(B1)

l—e

where e stands for the usual orbital eccentricity in the Newtonian description or e, of the post-Newtonian approach.
Introduce f such that

1+e
l—e

1+p
=5 (B2)

1—\/1 —e?

For eccentric binaries, it is convenient to express /3 as . This allows us to introduce the following popular series

expansion for v — u [26]

Sl n
n( B3
Z , sin(nu) (B3)
We have verified that this series expansion is fully consistent with an exact relation for v — u, derived in Ref. [15], namely
v —u = 2tan”! <M> (B4)
1 —ficosu

The above series expansion for v — u is indeed one of the series expansions required to tackle the PN-accurate Kepler
equation. We are now in a position to derive similar compact series expansions for sin v, sin(2v), sin(3v) etc. The above
relation connecting tangents of v and # may be written as

v 1+p
tan -~ = —— tan — B5
an > =7 n2 (B3)

Invoking the complex exponential representation of the tangent function, we write Eq. (BS) as

ei—et 14 pei—e

— = _ . B6
ehi4er 1—-fei+e2 (B6)
This leads to
) eiu _ ﬁ
v — — B7
¢ T e (B7)

Expanding this in powers of e, we immediately get

eiv — _ 2 1- e Zﬂs tsu. (BS)

Taking the imaginary part, we find

sin(v) = V- Z/}S sin(su). (B9)

2iv

For sin(2v), we can expand e** in a power series
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_ (_ﬂ+2\/1—e Z/’Y ) _(-é) _22\/1—62 4\/1—e Zﬁ< — _1> . (B10)

e

This leads to
sin(2v) = Zﬂs V1= e = 1)sin(su). (B11)

It is possible to check the correctness of these expressions by computing them with an independent method. In what
follows, we briefly explain a different derivation of the above sin(2v) expression. This approach requires us to use the
above-listed series expansion for sin » and the following expression for cos v, namely

cosv =—f+2

ZﬁY cos(su) (B12)

We use these series expansions for sin v and cos v to express sin(2v) as

V1=e2 V-2 &
sin(21j):2sinvcosv:2(2 I-e Zﬂ’sm 1u><—ﬂ+2 le ¢ Zﬁfcos(ju))

J=1

/1 _ 2 © _ 2
— _M%Zﬁiﬁ sin(iu) + 8 ! 2e Zﬂ”-" sin(iu) cos(ju). (B13)

i=1 ijz1

The double sum in the second part can be rewritten by invoking the Cauchy product formula [28]:

o k
Zﬂ’ﬂ sin(iu) cos(ju) = ZZﬂk cos(su) sin((k — s)u)

ij>1 k=1 s=1
1 (&) k
EZ [sin(ku) — sin((2s — k)u)]
k=1 s=1
I & .
=3 Bk = 1) sin(ku). (B14)
k=1

With the help of this formula Eq. (B13) becomes

sin(2v) :“%i < I=e

s=1
_H l_e Zﬂ( 1—e? —l)sin(su). (B15)

(s-1) —ﬂ)ﬂ" sinsu)

e

This is clearly identical to the earlier derived expression for sin(2v).
To obtain such elegant series expansions for higher order sin(jv), we introduce ¢(z) = (% = ) A close inspection

- . g1
reveals that e'/” is identical to ¢(fle). We now give the general Taylor series of ¢(z). First note that
= 1 k+n—1 > (n+k-1
1 , B16
(eI G s
K/ .
-5 = Z(k) HY, (B16b)
k=0
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From this we find that

= () (S(7))
- Hﬁ’i(Z (s +i - 1) (n i S) (_1)s—nﬂz<s—n))zn_ (B17)

n=0 \s=0

We can give an explicit expression for the inner sum in terms of the hypergeometric function ,F and find

eliv = =c ﬂem ZSJ mu (B18a)
&) = (-BY, (B18b)
j n-—1 . . 2\ pn—i

Ens0 = n—j JFi(=jomn—j+ Lp%)p (B18c)

Also note that the negative harmonics are simply given by e™/ = Y% | &Ehe~inu From this result the series expansions of
sin(jv) and cos(jv) are easily extracted to be

sin(jv) = ZE’ sin(nu) (B19a)

cos(jv) = ZS’ cos(nu) (B19b)

It should be noted that these derivations indeed provide elegant and compact expressions for sin v, sin(2v), and sin(3v) that
are crucial for computing semianalytic solution to our 3PN-accurate Kepler equation. Explicitly, the first few expressions
are

sin v = 2@ Z B sin(su) (B20a)
sin(2v) = 4m2ﬂ ( 1—e?— 1) sin(su), (B20b)
sin(3v) = Qi B (2(1 —e))s? =6V 1 —e?s +4— e2) sin(su), (B20c)
sin(4v) = f: 2)3/253 —6(1 — €2)s® + (1 — €2)/2(11 — 2¢?)s + 3(e? — 2)) sin(su), (B20d)

sin(5v) = 2\/—Zﬁs<2(l — e2)2s% = 20(1 — ¢2)2s3
+10(1 = €2)(7 = €2)s2 — 201/ 1 — €2(5 — 2¢%)s + 48 — 366> + 3e4> sin(su). (B20e)
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APPENDIX C: PN-ACCURATE EXPRESSION
FOR v IN TERMS OF [

We begin by describing in detail how one obtains the series expansion for the true anomaly v = 2 arctan ( /%tan %) in
terms of the mean anomaly [ for the Keplerian parametrization. The definition of v allows us to write

v—1=> Bysin(sl), (C1)
s=1
where the Fourier coefficients are given by
2 [= 2 Fid d 2 P V1 =¢2
B, == / (v — 1) sin(sl)dl = — / cos(sl) o du = = | cos(sl) ———— du. (C2)
7 Jo sz Jo du s Jo 1—ecosu
We invoke now a familiar expression, namely
V1 —eé? ey
— =142 J u), C3
1 —ecosu + ].:ZI'B cos(ju) (C3)

with g = (1 — V1 —e?)/e. This leads to

ST Jo

2 (= 2K, [
B, =— [ cos(sl)du + —Zﬂf / {cos(sl + ju) + cos(sl — ju)}du
ST = 0

= fuse) +§iﬁf{aﬂ-<se> +J,i(se)}, (C4)

where in the last step we invoked the usual integral definitions of the Bessel functions of the first kind. This gives us our
desired result

v=1+ zoo:% (Js(se) + zoo:ﬂj{lsﬂ-(se) + Js_j(se)}) sin(s?). (C5)
s=1 j=1

J

In the PN-accurate generalized quasi-Keplerian description, the true anomaly is related to the eccentric anomaly by

1+
v = 2 arctan ( T “é tan E). (Co)

- €¢ 2
We invoke a Fourier series expansion of the true anomaly in terms of the mean anomaly

v=1+ io: B, sin(sl). (C7)

s=1

It is fairly straightforward to write down the following expression for the constant coefficients B
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B =2 (1(s6) + S ByUussfoe) +Jomsse)

+ i (aj{Jm(set) —Jy_j(se)} + B, io]: aillsijri(sen) = Jopjui(ser) + s jpi(se) = Jojoilse, )}> ()

APPENDIX D: PRODUCT OF FOURIER SERIES

In what follows, we derive compact expressions for certain products of Fourier sine and cosine series. Explicitly, we
consider the products

(ZAS cos(sl) ) (Z By cos(kl) ) = ZPCC cos(nl), (Dla)
1

s=1 n=l

Y A, sin(sl) Y Bysin(kl) | = Y PSS cos(nl), (D1b)
(2 smten) (3 mmn) =3

s=1 k=1 n=0

<i A, cos(sl)> <2 By sin(kl)> = g PSS sin(nl), (D1c)

s=1

that will be crucial to obtain analytic time-domain 4, , (). We show in detail the derivation of the first product in the above
equations. Multiplying out the product and using the angle sum identity for cosine we get

[Se]

<ZA cos(sl) ) (Z By cos(kl) ) Z ZA Bi{cos((s + k)I) + cos((s — k)I)}. (D2)

slkl

We note that the first cosine factor will only contribute to frequencies n = s + k, while the second factor will contribute at
n = |s — k|. The zero mode only appears in the second factor for s = k. Thus we can write

52D AB{eos((s-H 0 +eos(s =0} =D AB 45D (3D BB Dk B ) o5t
s=1 k= s=1 n=1 \s=1 k=1
) [+ n—1
:;;ASBS—I—;;( ZIASBn s ZHA B,_ H+ZIA BW) cos(nl).

(D3)

This allows us to write
<Z A, cos(sl)) <Z By cos(kl)) = Z PSC cos(nl), (D4a)
s=1 k=1 n=0

pec _ ZA B, (D4b)

,?So——<ZA B, + Z AB,_ n+ZA Bm) (D4c)

s=n+1
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The other products can be derived in a similar fashion and they read

(i A, sin(sl) ) (Z By sin(kl) ) Z PSS cos(nl)

n=0

1 0
Pgs :EZASB_W

) n—1
PiiOZ%(ZABsn"FZABH—n ZAan)-

<g A cos(sl)) (g By sin(kl)> = ,Z:l PSS sin(nl)

P’C;S_%<n—1 ASB Z A BS ”+ZA Bs+n>'

1 s=n+1

APPENDIX E: FOURIER SERIES OF ¢™%"
We rewrite the Fourier series for W, given by Eq. (35), as

W)= (v-1)+ Zw sin(sl),

where w, is simply given by

=W, =By = kB + (fap + fop)03" + (9ap + Gop) 03" + i6p05" + heyo3".

We isolate the v — [ part for the ease of calculation. The harmonics ¢”" can then be written as

emW — eim(p—])eim Z‘i] w; sin(sl).

The first part of this can be expanded as a Fourier series using the results in Eqgs. (34)

tm1 -1 —tml zmv _ ,—iml E muv tsl E zsl
( ) =e € €s+m .

§=—00 §=—00

The second part contains only PN-accurate quantities, so it can be expanded in x up to 3PN order, resulting in

e - m? (& 2 im? (& 3
etm Zs:l w; sin(sl) =1 —+ im Sz:]: [op sin(sl) - 7 <Yz]: @y Sin(Sl)) - ? (Sz]: @y Sin(Sl)) .

(D5a)

(Dsb)

(D5c)

(D6a)

(D6b)

(E1)

(E2)

(E3a)

(ES)

We now use the results from Appendix D to expand the products of the Fourier sine series. We immediately see

<§: @y Sin(Sl)> 2 = nZ:O C, cos(nl),
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Co=3> (0. (E6b)

00 00 n—1
Crso = % < Z W05, + Z DWWy p — Z wswn—s) . (E6C)
s=1 s=1

s=n—+1

Using this result, the triple product can be written as

<§; Wy sin(sl)) ’ = (g W sin(sl)) ’ <i Wy sin(sl))

s=1

- (; C, cos(nl)> <§: ;s sin(sl)>

s=1

= Cog“’s sin(sl) + (i C, cos(nl)> @; o, sin(sl)). (E7)

n=1

The product of a cosine and sine series can be expanded using the result in Appendix D and we find

(i @y Sin(sl)) g i D, sin(nl), (E8a)

n—1 ) )
D, = Cyw, +% (Zl Cw,_s — Z Cio,_, + ; Csa)s+n>

s=n+1
1 n—1 o 00
= E (Z Cw,_ — Z Ciwgp + Z Csws+n>'
s=0 s=n+1 s=0
(E8b)
Equation (ES) can thus be decomposed into a Fourier series as
. © . m> ©_ m? o m3
e ZS:] wgsin(sl) _ 1 - 7 Cy— ;7 C, COS(SZ) +1i ; (ma)s - 6Dv> SiI’l(Sl). (Eg)
Converting the sine and cosine series to an exponential Fourier series
eim Zf":l wgsin(sl) _ Z Qg"e”], (ElOa)
m?
1 m? m3
Q;"#O = 5 <—7 C|5‘ + sgn(s) <mws| - ?Ds|> > . (EIOC)
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We now put all of this together and find the Fourier decomposition of the harmonics of W

(6]
MW — pim(v=I) 1mz ° | @ sin(sl) < E €s+m zsl)( E Q;{neikl)
s=—00

k=—00

Z Z etnﬁmgme (s+k)! Z meW ml (E]])

§=—00 k=—00 n=—oo

where the constant Fourier coefficients PV are given by

PV = Z en, Q. (E12)

§=—00

APPENDIX F: 1PN ACCURATE EXPRESSIONS FOR /i, AND h,

Employing inputs from Refs. [14,23,39], the amplitude corrected 1PN accurate expressions for &, , may be written as

Gmny

M = oy {H o+ X HE, o+ xHL ). (F1)

The explicit expressions for H',  are given by

HY = (1_71)()2 (—2(cl2 1)1/1 = e7Esin(2®) + (7 + 1) cos(2@)((2e? — y*) +x —2) + s7(1 —)())(), (F2a)
95 = 0 _1)()3% {(cl2 +1)y/1 = €7 (6¢> — Ty — 8e7 +9) cos(3D) + 2(c7 + 1)E(y* — 2y — 4e7 +5) sin(3D)
/1= e2(1 = 2)((6¢2 = 2 — 2 — 5) cos(®) + 2(1 — 3¢2)(1 — )& sin(q>)}, (F2b)
H! = i _1)()4% {6(1 —3n)E\/1 — et (c7 + 1)(—4x* + 9y + 8e7 — 13)s7 sin(4D)

+ (1 =3n)(c? 4+ 1)(—6x* + 18y* + (48e7 — 61)> + (65 — 69¢? )y — 48e} + 117e? — 64)s57 cos(4D)

(1-2) 4E[((15 — 45n)e? + 45n + x((36n — 12)e? — 36n + 12) — 15)c}

((20 + 30)e? — 327 + x((—26n — 6)e? + 387 — 30) + 6)c?

(39 —Tn)e? — 5y + x((10n — 18)e? + 257 — 18) — 3] sin(2®)

(1-x)
(1-ef)
+x((12 = 36n)ef + (757 — 25)e? — 397 + 13) — 4)ct

+ ((34n — 48)et + (30 — 56n)e? + 22n + x*((26n + 6)e? — 26n + 18) + x> (=135 — 3)e? + 137 - 9)

+x((26n + 6)et + (51 = TTn)e? + 517 — 69) + 18)c?

+ (=11 —33)et + (49 — 5)e? — 38 + 13 ((5n — 9)e? — 517 — 3)

+22((18 = 10n)e? + 107 + 6) + x((18 — 10n)ef + (26 — 257)e? + 127 — 56) + 38] cos(2q>)

+
+
+

4[((27n = 9)ef + (13 =39n)e? + 127 + (187 — 6)e? — 187 + 6) + ¥*((12 = 36n)e? + 365 — 12)
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] —
+ (1-2) [((15 — 45n)ef + (457 — 15)e? + x*((108n — 36)e? — 1087 + 36) + x((3 — 9n)e? + 9 — 3)

(1-e)

+2((18 = 54n)e? + 54n — 18))ct + ((48n + 72)et + (=487 — 72)e? + y((4n — 60)e? — 4y + 108)
+23((52n + 12)e? — 5257 + 36) + x>((—=104n — 24)e? + 104 — 72))c? + (=3 — 87)et + (3n + 87)e?

+ 22 ((2n = 30)e? — 257 — 18) + y((5n + 57)e? — 5 — 105) + 1((60 — 4n)e? + 4n + 36)]}, (F2c)
HO = ﬁZci (2 1 — 2£cos(2®) + (2€2 — 42 + 4 = 2) sin(2q>)), (F2d)
¥ =75 _1)()3 gcisi{Zé’(—)(Z 27+ 4e? = 5) cos(30) + /1 - (6 — 8¢2) = Ty + 9) sin(30)
/1= (1= 2)(2 = 3) sin(®) + 26(1 — 1) cos(@) }. (F2e)
H! = q _1)()4 12(11_ o {(1 —3n)ei(1 = e2)s2 (42 (48¢2 — 61) + y(65 — 69¢2) — 48¢?

+ 1172 — 6¢* + 18> — 64) sin(4®) + 6(1 — 35)(1

— €2)3/2¢,52E(4y* — 9y — 8e? + 13) cos(4D)

+ 2¢,[e}(50n + x*(20n + (12 — 3657)s? — 36) + (=701 + (997 — 33)s? + 126) + (21 — 6317)s? — 90)

—46ne? + y*e?(—10n + (187 — 6)s? + 18) + 2e?(30n + (18 — 545)s? — 54) + y?e?(—16n + (1115 — 37)s? — 16)
+ ye?(42n + (62 — 186n)s? + 14) + (111 — 37)s?e? + 38e? — 4n + x*(10n + (6 — 187)s? + 6)

+ 13 (=300 + (5457 — 18)s7 — 18) + y*(—4n + (25 — 75n)s7 + 124) + (283 + (87 — 29)s? — 164)

+ (16 — 48n)s? + 52 sin(2®@) + 4(1 — y)c;i\/ 1 — e7&[e7 (165 + y(—10n + (187 — 6)s? + 18) + (9 — 27n)s7 — 42)

— 4+ (=21 + (6 — 18n)s7 + 18) + (275 = 9)s7 + 6] cos(2®) — 6(3n — 1)(1 = y)c;&(1 ~ 6?)3/2%2}7

(F2f)

where ¢; = cos(1), s; = sin(1), y = e,cosu, & = e,sinu, ® = ¢ — f§, and § = (m; — m,)/m. The above expressions, as
noted earlier, are required to compute fully analytic &, , (), given Eqgs. (44) and (45).
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