
Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

Alvin J. K. Chua*

Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom

Christopher J. Moore†

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, United Kingdom

Jonathan R. Gair‡

School of Mathematics, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, United Kingdom
(Received 11 May 2017; published 7 August 2017)

The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are
an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals
from EMRIs will require waveform models that are both accurate and computationally efficient. In this
paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly
available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite.
This version of the AAK model has improved accuracy compared to its predecessors, with two-month
waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it
also generates waveforms 5–15 times faster than the fiducial model. The AAK model is well suited for
scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic
argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent
template bank method, while the use of the original analytic kludge in the same approach will result in
around 90% fewer detections.
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I. INTRODUCTION

The key sources for future space-based gravitational-
wave (GW) detectors operating in the millihertz frequency
band will include the inspirals of stellar-mass compact
objects—typically stellar-origin black holes, but also
potentially neutron stars or white dwarfs—into massive
black holes (MBHs) at the centers of galaxies. Such
systems are called extreme-mass-ratio inspirals (EMRIs),
since the typical mass of the inspiralling object is ∼10M⊙
while that of the central MBH is ∼104–107M⊙ (to give
emission at millihertz frequencies). EMRIs occur because
an MBH is typically surrounded by clusters of stars, and
various dynamical processes (including two-body scatter-
ing, tidal splitting of binaries and stripping of giant stars)
can lead to compact objects being captured by and
subsequently inspiralling into the MBH (see [1,2] for
comprehensive discussions of the astrophysical channels
leading to EMRI formation).
In 2013, ESA identified GW detection from space [3] as

the science theme to be addressed by the third L-class
mission (L3) in its Cosmic Vision scientific program, with a
provisional launch date of 2034. A call for mission

proposals to address this science theme was issued in
October 2016, and ESA has now selected a three-satellite
interferometry mission—the Laser Interferometer Space
Antenna (LISA) [4]. EMRI detection formed a key part of
both the L3 science case [3] and the specification of the L3
mission requirements [4]. Between a few and a few
hundred EMRI observations are expected over the mission
lifetime [5–8], and these have tremendous potential for the
purposes of astrophysics, cosmology and fundamental
physics.
The observation of as few as ten EMRIs can provide a

measurement of the slope of the black-hole mass function
to better precision than is currently known [9]. EMRIs can
also be used as standard sirens to investigate the expansion
history of the Universe and, hence, to constrain cosmo-
logical parameters [10]. Finally, EMRI observations pro-
vide exquisite probes of gravitational physics; in particular,
they can be used to map out the spacetime structure around
the central MBH to high precision, allowing us to test if that
geometry is described by general relativity or an alternative
theory (see, e.g., [11]). We refer the reader to [12] for a
comprehensive review of testing relativity with EMRIs and
other LISA sources.
The scientific objectives described above will only be

achieved if EMRIs can be successfully identified and
characterized in the noisy LISA data stream. This is
difficult because EMRI orbits are generally expected to
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be both eccentric and inclined to the equatorial plane of the
MBH, such that the emitted GWs contain a complex
superposition of three fundamental frequencies. Since an
EMRI waveform depends on 14 different parameters and
∼105 waveform cycles can be observed in the LISA
frequency band, there are a huge number of independent
EMRI signals that must be searched for in the data.
Early work [5] showed in theory that EMRI data

analysis is possible using a semicoherent approach, without
actually demonstrating the effectiveness of such a method
in practice. Between 2006 and 2011, the feasibility of LISA
data analysis in general was explored through a sequence of
mock LISA data challenges [13–17]. These showed in
practice that it is possible to correctly identify individual
EMRIs in data sets without other sources, and using narrow
parameter priors [15–18]. The successful approaches typ-
ically used techniques such as Markov chain Monte Carlo
to stochastically explore the EMRI parameter space and
find the best-fit parameter values.
Much work is still needed to move from these simple

initial demonstrations to a practical suite of tools for EMRI
characterization. However, one thing that all of these data
analysis techniques have in common is the need for models
of EMRI signals that might be present in the data. These
models need to be sufficiently faithful to astrophysical
EMRI signals in order to identify them in the data, but also
computationally inexpensive enough that they can be
generated in the large numbers required for grid-based
or stochastic searches.
EMRI waveforms can be modeled accurately using

black-hole perturbation theory, which exploits the extreme
mass ratio to describe the inspiral through expansions in
mass ratio. Perturbation theory can be used to construct the
gravitational self-force acting on the inspiralling object;
these calculations are challenging both theoretically and
computationally (see [19,20] for recent reviews). The
self-force at leading order in mass ratio is well understood
and has been successfully computed, but tracking the
phase of an EMRI accurately over ∼105 cycles requires
second-order self-force calculations, which have yet to be
performed (although the theory of such calculations has
recently been worked out [21]). Additional complicating
features such as transient resonances [7,22] also require
more work to fully understand.
While fully consistent self-force waveforms for EMRIs

will probably be available by the time that LISA is taking
data, these are also likely to be extremely computationally
intensive. Hence, there is a clear need for computationally
efficient, but faithful, models to use in data analysis. Two
such “kludge” models for generic inspirals exist in the
literature; these were constructed to scope out LISA data
analysis issues, e.g., EMRI event rates, parameter estima-
tion precision, etc. The “analytic kludge” (AK) model [23]
uses the quadrupole emission from a Keplerian orbit [24] as
its base, imposing on top of this relativistic effects such as

precession of the periapsis and the orbital plane, and
radiation-reaction-driven evolution of the orbital parame-
ters. The AKmodel is very fast to evaluate, and was used as
the reference model in past mock data challenges for this
reason. However, it does not provide a good match to true
EMRI signals (as gauged by comparison to perturbative
calculations) and so is not appropriate for LISA data
analysis.
The “numerical kludge” (NK) model builds the trajec-

tory of an EMRI from an exact Kerr geodesic, the
parameters of which are then evolved using expressions
derived from post-Newtonian (PN) expansions and fits to
perturbative calculations [25]. A waveform is computed
from the resulting trajectory by identifying the Boyer–
Lindquist coordinates of the Kerr spacetime with flat-space
spherical polar coordinates [26]. NK waveforms show high
fidelity with more accurate Teukolsky-based waveforms
[27,28] and can readily be extended to include additional
physical effects, such as conservative corrections to the
evolution [29] or a prescription for the force acting on
the orbit [30,31]. These waveforms therefore satisfy the
requirement of faithfulness to true EMRI signals, but they
are more computationally expensive to generate than AK
waveforms.
In this paper, we describe an “augmented analytic

kludge” (AAK) model that uses information from the
NK model to improve the faithfulness of AK waveforms
without significantly increasing their computational cost.
This is achieved by mapping the parameters of the AK
model to match the frequencies of NK waveforms. The
AAK model was first introduced in [32]; here we further
improve the model, give details on the released imple-
mentation at https://github.com/alvincjk/EMRI_Kludge_
Suite, and discuss its implications for EMRI detection
with LISA. AAK waveforms are much closer to astro-
physical signals than AK waveforms, and so can detect/
localize candidate signals in LISA data with sufficient
sensitivity/accuracy such that follow-up parameter estima-
tion with perturbative waveforms is feasible. They are also
about an order of magnitude faster to evaluate than NK
waveforms. Hence, the AAKmodel is well suited for use in
future mock data challenges, and possibly even in the final
LISA data analysis infrastructure.
A brief overview of the AK and NK models is given in

Sec. II, while the AAK model is presented in Sec. III. In
Sec. III A, we first introduce the Kerr fundamental frequen-
cies and the parameter-space map they induce in the AK
model, before describing the technical details of the AAK
implementation in Sec. III B. The performance of the
augmented model is then compared to that of the original
AK model in Sec. III C, with the more accurate but slower
NK model used as the benchmark for both. In Sec. IV, the
application of the AAK model to EMRI detection with
LISA is considered; we provide an analytic estimate for the
threshold signal amplitude required in a semicoherent
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search and assess the viability of the AK and AAK models
for real LISA data analysis.

II. KLUDGE WAVEFORM MODELS

A kludge in the context of EMRI modeling is any
approximate model that uses a combination of formalisms
to generate waveforms quickly and extensively for data
analysis. Kludge waveforms capture many qualitative
features of more accurate EMRI waveforms, and (owing
to their modular construction) can be modified to incor-
porate self-force information as it becomes available.
Two widely used kludges are introduced briefly in this

section: the AKwaveform of Barack and Cutler [23], which
is very fast to compute and provides the basis for our new
model, and the NK waveform of Babak et al. [26], which
we take as a fiducial model for calibration and bench-
marking purposes. Other approximate EMRI models exist
but at varying levels of implementation (e.g., [33,34]), and
we do not consider them in this work (apart from the PN
fluxes of Sago and Fujita [35], which are used as part of the
AAK model).
Assuming the spin of the compact object is negligible, an

EMRI can be described by 14 parameters: the two masses
ðμ;M ≫ μÞ of the system, the three components of the
central black hole’s spin vector S, three constants E
describing the compact object’s (instantaneous) orbit, the
three components of the compact object’s position vectorX
with respect to the black hole, and the three components of
the system’s position vector R with respect to the Solar
System.
Of these 14 degrees of freedom, seven are extrinsic to the

source: two in S and one in X (corresponding to spatial
rotation of the source), three in R (corresponding to spatial
translation), and one in E (corresponding to temporal
translation). The parameters of an EMRI model are often
chosen to decouple the intrinsic degrees of freedom from
the extrinsic ones, which are generally cheaper to search
over during data analysis [36].
Schematically, the main ingredients of a kludge wave-

form model are then (i) the evolution of the orbital
constants along the inspiral (i.e., the “phase-space” trajec-
tory), using PN or fitted fluxes F:

_E ¼ Fðμ;M;S;EÞ; ð1Þ

(ii) the construction of the compact object’s worldline (i.e.,
the “configuration-space” trajectory), using geodesic or
flux-derived expressions G:

_X ¼ Gðμ;M;S;EÞ; ð2Þ

and (iii) the generation of the waveform field h at the
detector, using some weak-field multipole formula H:

hðtÞ ¼ HðX;RÞ: ð3Þ

A. Analytic kludge

In the AK model [23], both the orbital trajectory and the
waveform are computed in a flat-space approximation, with
relativistic effects such as inspiralling and precession added
separately. The trajectory is built out of rotating Keplerian
ellipses. Radiation reaction is introduced in phase space,
where the orbital constants describing a Keplerian ellipse
are evolved with PN equations. In configuration space, the
orientation of this ellipse is also evolved with PN equations
to simulate relativistic precession. The waveform is then
generated using the Peters-Mathews mode-sum approxi-
mation for Keplerian orbits [24], in which the mass
quadrupole moment is decomposed into harmonics of
the Keplerian orbital frequency.
Since a Keplerian orbit is confined within the plane

normal to its angular momentum vector L, the AK wave-
form is constructed in an L-based coordinate frame

ðx̂; ŷ; ẑÞ ~L ≔
�ðR̂ · L̂ÞL̂ − R̂

SL;R
;
R̂ × L̂
SL;R

; L̂

�
; ð4Þ

and projected transverse to the wave frame

ðx̂; ŷ; ẑÞAK ≔
�
R̂ × L̂
SL;R

;
L̂ − ðL̂ · R̂ÞR̂

SL;R
;−R̂

�
; ð5Þ

where the normalization factor SL;R ≔ ð1 − ðL̂ · R̂Þ2Þ1=2.
These two frames are made time-varying (with respect to a
fixed heliocentric and ecliptic-based frame [37]) through
the forced precession of L.
The two waveform polarizations in the transverse–

traceless gauge (with the usual ðþ;×Þ convention for
ðx̂; ŷÞAK) are given by the n-mode sums

hþ ¼
X∞
n¼1

hþn ; h× ¼
X∞
n¼1

h×n ð6Þ

with

hþn ¼ ð1þ ðR̂ · L̂Þ2Þðbn sin 2~γ − an cos 2~γÞ
þ ð1 − ðR̂ · L̂Þ2Þcn; ð7Þ

h×n ¼ 2ðR̂ · L̂Þðbn cos 2~γ þ an sin 2~γÞ; ð8Þ

where ~γ is an azimuthal angle in the orbital plane measuring
the direction of periapsis with respect to ðR̂ · L̂ÞL̂ − R̂
(i.e., the orthogonal projection of ẑAK onto the plane
normal to L̂).1 The functions ðan; bn; cnÞ describe the

1We have changed some of the notation in [23] for consistency,
since we are constructing a hybrid model using different
formalisms. For example: the notation for the angles γ and ~γ
has been swapped; the notation ν for the orbital frequency
_Φ=ð2πÞ is unused; the notation for the inclination λ is now ι.
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changing mass quadrupole moment of a Keplerian orbit
with mean anomaly ΦðtÞ, eccentricity e and orbital angular
frequency _Φ, and are given by [24]

an ¼ −nAðJn−2ðneÞ − 2eJn−1ðneÞ þ ð2=nÞJnðneÞ
þ 2eJnþ1ðneÞ − Jnþ2ðneÞÞ cos nΦ; ð9Þ

bn ¼ −nAð1 − e2Þ1=2ðJn−2ðneÞ − 2JnðneÞ
þ Jnþ2ðneÞÞ sin nΦ; ð10Þ

cn ¼ 2AJnðneÞ cos nΦ; ð11Þ

where the Jn are Bessel functions of the first kind, and
A ¼ ð _ΦMÞ2=3μ=jRj in the extreme-mass-ratio limit.
In the ecliptic-based coordinate system, the sky position

R̂≡ ðθS;ϕSÞ of the source and the black-hole spin ori-
entation Ŝ≡ ðθK;ϕKÞ are effectively constant. It is con-
venient to represent L̂ in ecliptic coordinates with respect
to Ŝ. We have

L̂ ¼ Ŝ cos ιþ
�
ẑ − ðẑ · ŜÞŜ
jẑ − ðẑ · ŜÞŜj cos αþ Ŝ × ẑ

jŜ × ẑj sin α
�
sin ι;

ð12Þ

where ẑ ¼ ½0; 0; 1�T is normal to the ecliptic plane, ι is the
inclination angle between L̂ and Ŝ, and α is an azimuthal
angle in the spin-equatorial plane measuring the direction
of L̂ − ðL̂ · ŜÞŜ with respect to ẑ − ðẑ · ŜÞŜ (i.e., the
angle between the orthogonal projections of L̂ and ẑ onto
the plane normal to Ŝ). Furthermore, since ~γ is neither
intrinsic nor extrinsic, it is useful to define the purely
intrinsic parameter γ ≔ ~γ − β, where β ¼ βðR̂; Ŝ; L̂Þ ¼
βðθS;ϕS; θK;ϕK; ι; αÞ is an azimuthal angle in the orbital
plane measuring the direction of L̂ × Ŝ with respect
to ðR̂ · L̂ÞL̂ − R̂.
Only one of the six parameters comprising E ¼ ðe; ι; _ΦÞ

and X ¼ ðΦðtÞ; γ; αÞ in the above Keplerian setup changes
with time. In the AK model, ðe; _Φ; γ; αÞ are promoted
to functions of time and evolved with mixed-order PN
expressions that depend on ðμ;M; a ¼ jSj=M;EÞ [38–41],
while ι is approximated as constant (since the inclination
angle of a typical EMRI varies extremely slowly [42]). The
Keplerian orbit shrinks and circularizes as _ΦðtÞ and eðtÞ
increase and decrease, respectively. From (12), the time
dependence of the orbital orientation L̂ðtÞ is confined to
αðtÞ, where _α is precisely the angular rate of Lense-Thirring
precession. Finally, the angular rate of periapsis precession
is given by _γ þ _α since γðtÞ is measured with respect
to L̂ðtÞ × Ŝ.
While the waveform field is effectively planar at

the Solar System and may be calculated in the fixed

heliocentric frame (as opposed to a detector-centric one),
the rotational and orbital motion of LISA in the ecliptic
plane must be factored into the detector’s response to the
GW. In the standard LISA framework, the waveform
polarizations hþ;× are transformed into the response func-
tions hI;II via

hI ¼
ffiffiffi
3

p

2
ðFþ

I hþ þ F×
I h×Þ;

hII ¼
ffiffiffi
3

p

2
ðFþ

IIhþ þ F×
IIh×Þ; ð13Þ

where the antenna pattern functions [43]

Fþ
I ¼ 1

2
ð1þ cos2 θDÞðcos 2ϕDÞðcos 2ψDÞ

− ðcos θDÞðsin 2ϕDÞðsin 2ψDÞ; ð14Þ

F×
I ¼ 1

2
ð1þ cos2 θDÞðcos 2ϕDÞðsin 2ψDÞ

þ ðcos θDÞðsin 2ϕDÞðcos 2ψDÞ; ð15Þ

Fþ
II ¼

1

2
ð1þ cos2 θDÞðsin 2ϕDÞðcos 2ψDÞ

þ ðcos θDÞðcos 2ϕDÞðsin 2ψDÞ; ð16Þ

F×
II ¼

1

2
ð1þ cos2 θDÞðsin 2ϕDÞðsin 2ψDÞ

− ðcos θDÞðcos 2ϕDÞðcos 2ψDÞ ð17Þ

depend on the sky location ðθD;ϕDÞ and polarization angle
ψD of the source in a detector-based coordinate system and,
hence, rotate with respect to R̂ as the plane of the detector
along its orbit precesses around the ecliptic plane. Doppler
modulation of the waveform phase [through ΦðtÞ] is also
included to correct for the orbital motion of the detector
itself.
The AK model was the first waveform model used to

investigate the precision of LISA parameter estimation
over the full (modulo compact-object spin) EMRI param-
eter space [23]. Due to its computational efficiency, the
model has also been employed in past mock LISA data
challenges to generate injected signals in simulated data
and parametrized templates for search algorithms [15–18].
However, the approximate waveforms it produces are
demonstrably inaccurate, and will result in reduced detec-
tion and parameter estimation performance if used to
analyze data sets containing realistic EMRI signals.

B. Numerical kludge

In the NK model [26], the orbital trajectory is com-
puted in curved space with a treatment that is fully
relativistic up to the evolution of orbital constants
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[25,44], i.e., it is built out of Kerr geodesics. The three
constants of motion for a geodesic are evolved with
Teukolsky-fitted PN equations, which introduces radiation
reaction. In configuration space, precession effects are
obtained for free by integrating the geodesic equations
along the phase-space trajectory. The curved-space coor-
dinates of the compact object’s worldline are then asso-
ciated artificially with coordinates in flat space, and the
waveform is generated using the standard quadrupole
formula (or variants that include additional contributions
from higher-order moments of mass [45,46]).
The NK waveform is constructed in an S-based coor-

dinate frame,

ðx̂; ŷ; ẑÞS ≔
�
R̂ × Ŝ
SS;R

;
R̂ − ðR̂ · ŜÞŜ

SS;R
; Ŝ

�
; ð18Þ

and projected transverse to the wave frame,

ðx̂; ŷ; ẑÞNK ≔
�
R̂ × Ŝ
SS;R

;
Ŝ − ðŜ · R̂ÞR̂

SS;R
;−R̂

�
; ð19Þ

where the normalization factor SS;R ≔ ð1 − ðŜ · R̂Þ2Þ1=2.
Aligning the z axis with S is a more natural choice for the
NK model, since the compact object’s worldline is com-
puted in Boyer-Lindquist coordinates. The two wave
frames (5) and (19) are related by a (time-varying) rotation
about R.
Using the standard quadrupole formalism, the two

waveform polarizations in the transverse–traceless gauge
(with the ðþ;×Þ convention for ðx̂; ŷÞNK) are given by

hþ ¼ 1

2
hijH

þ
ij; h× ¼ 1

2
hijH×

ij ð20Þ

with

hij ¼
2

jRj
�
PikPjl −

1

2
PijPkl

�̈
Ikl; ð21Þ

where ̈IijðtÞ is the second time derivative of the source’s
mass quadrupole moment IijðtÞ. The polarization tensors
Hþ;×

ij and transverse projection tensor Pij are given by

Hþ
ij ¼ ðx̂ix̂j − ŷiŷjÞNK; ð22Þ

H×
ij ¼ ðx̂iŷj þ ŷix̂jÞNK; ð23Þ

Pij ¼ ðδij − ẑiẑjÞNK; ð24Þ

where δij is the Kronecker delta.
In the extreme-mass-ratio limit, the mass quadrupole

moment is simply

Iij ¼ μxixj; ð25Þ

where the xiðtÞ are Cartesian components of the compact
object’s position vector X with respect to the frame (18)
centered on the black hole. Although (21) [with (25)] is a
weak-field equation in flat-space coordinates, the NK
model specifies and calculates ðx1; x2; x3Þ ¼ ðr sin θ cosϕ;
r sin θ sinϕ; r cos θÞ in Boyer-Lindquist coordinates. The
self-consistency of this approach clearly degrades further
into the strong field, but does not severely impact the
effectiveness of the NK waveforms as an approximation to
Teukolsky-based ones [26].
A timelike Kerr geodesic is described fully by three

first integrals of motion: the orbital energy E, the pro-
jection Lz of the orbital angular momentum L onto S, and
the quadratic Carter constant Q. Along such an orbit,
½rðtÞ; θðtÞ;ϕðtÞ� are obtained by integrating the geodesic
equations for a test particle in the Kerr spacetime; these are
written in canonical form as [47]

Σ
dr
dτ

¼ �
ffiffiffiffiffiffi
Vr

p
; ð26Þ

Σ
dθ
dτ

¼ �
ffiffiffiffiffiffi
Vθ

p
; ð27Þ

Σ
dϕ
dτ

¼ Vϕ; ð28Þ

Σ
dt
dτ

¼ Vt; ð29Þ

where τ is proper time along the worldline and Σ ¼ r2 þ
a2 cos2 θ. The potential functions Vr;θ;ϕ;t are given by

VrðrÞ ¼ P2 − ðr2 þ ðLz − aEÞ2 þQÞΔ; ð30Þ

VθðθÞ ¼ Q − cos2 θ

�
a2ð1 − E2Þ þ L2

z

sin2 θ

�
; ð31Þ

Vϕðr; θÞ ¼
Lz

sin2 θ
− aEþ aP

Δ
; ð32Þ

Vtðr; θÞ ¼ aLz − a2E sin2 θ þ ðr2 þ a2ÞP
Δ

; ð33Þ

with P ¼ Eðr2 þ a2Þ − aLz and Δ ¼ r2 − 2Mrþ a2.
In practice, it is convenient to work with alternative

parametrizations of ðE;Lz;QÞ. For a bound orbit, the
geodesic may be specified by the parameters ðrp; ra; θminÞ
(the values of r at periapsis and apoapsis, and the minimal
value of θ, respectively), which fully describe the range
of motion in the radial and polar coordinates. The roots
of Vr determine rp and ra, while the roots of Vθ determine
cos θmin (the maximal value of cos θ). Another parametriza-
tion is ðe; ι; pÞ (the quasi-Keplerian eccentricity, inclination
and semilatus rectum); these are defined in terms of
ðrp; ra; θminÞ as
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ðe; ι; pÞ ≔
�
ra − rp
ra þ rp

;
π

2
− θmin;

2rarp
ra þ rp

�
: ð34Þ

Finally, since the configuration-space parameters ðr; θÞ
oscillate between the bounds rp ≤ r ≤ ra and θmin ≤ θ ≤
π − θmin, it is useful to define

ðψ ; χÞ ≔
�
cos−1

�
p − r
er

�
; cos−1

�
cos θ

cos θmin

��
; ð35Þ

such that ψ (the quasi-Keplerian true anomaly) and χ are the
phases of radial and polar motion respectively.
The orbital constants E ¼ ðE; Lz;QÞ in the above

geodesic setup do not vary with time. Radiation reaction
is added to the NK model by evolving E with fluxes that
depend on ðμ;M; a;EÞ (note that the inclination ιðtÞ ¼
tan−1ð ffiffiffiffi

Q
p

=LzÞ is correctly time dependent in this model).
These fluxes are mixed-order PN expressions that have
been fitted to the results of Teukolsky-based computations
for circular inclined orbits [25]. Integrating the geodesic
equations along the phase-space trajectory then gives
X ¼ ½ψðtÞ; χðtÞ;ϕðtÞ�, complete with relativistic preces-
sion. Once the waveform polarizations hþ;× have been
calculated via (20)–(25), the LISA response functions hI;II
may be obtained through the method outlined in Sec. II A.
Waveforms from the NK model display excellent agree-

ment with Teukolsky-based waveforms in the strong-field
regime; they are reliable up to a closest approach of
rp ≈ 5M, with typical matches of over 0.95 [26]. NK
waveforms might even be accurate enough to serve as
templates in actual LISA detection algorithms. However,
they are still slightly expensive to generate in large numbers
due to the relatively elaborate construction of the phase-
and configuration-space trajectories, while added computa-
tional cost also arises in the parameter conversion
ðE;Lz;QÞ ↔ ðe; ι; pÞ, the handling of plunge, etc.

III. AUGMENTED ANALYTIC KLUDGE

The AK model is 5–15 times faster than the NK model at
generating year-long waveforms sampled at 0.2 Hz for a
generic ð101; 106ÞM⊙ EMRI with low initial eccentricity
(e0 ≲ 0.3); this speed-up is enhanced for longer waveform
durations, but diminished for higher initial eccentricity
(since more modes must be summed in the Peters-Mathews
approximation).2However, AK waveforms suffer from
severe dephasing with respect to NK waveforms, even at
the early-inspiral stage. In Fig. 1, the AK waveform for a

ð101; 106ÞM⊙ EMRI with initial semilatus rectum p0 ¼
15M matches the qualitative features of the corresponding
NK waveform, but is a full cycle out of phase within three
hours. This is due to the mismatched frequencies in the two
models.
In Secs. III A and III B, we describe the construction of a

hybrid model that capitalizes on the benefits of both kludges.
The AK model is augmented with an initial map to the
fundamental frequencies of Kerr geodesic motion, which
corrects the instantaneous phasing as shown in Fig. 1. Over
longer time scales, the mapped orbital trajectory is further
improved through self-consistent PN evolution and a local
polynomial fit to the phase-space trajectory of the NK
model. Fast algorithms for higher-order fits and plunge
handling have been incorporated in the latest implementation
of the AAK model, which has been made publicly available
at https://github.com/alvincjk/EMRI_Kludge_Suite as part
of a software suite for generating kludges.
The initial version of the AAK model yields waveforms

that can remain phase-coherent with NK waveforms for
over two months, but with overlap values lower than 0.97
[32]. This is the commonly chosen minimal match for a
waveform template bank that corresponds to a 90%-ideal
observed event rate [48], and thus ensures the equivalent
localization of any signal detected with such banks of AAK
and NK templates. In Sec. III C, we report further improved
results for the present AAK implementation. Two-month
overlaps higher than 0.97 are found for EMRIs with
varying spin and eccentricity; however, the overlaps still
degrade with proximity to plunge, due to the divergence of
the AAK and NK trajectories deep within the strong field.

A. The fundamental-frequency map

The geodesic equations (26)–(29) take a simple form
with the choice of a timelike parameter λ ¼ R

dτ=Σ

FIG. 1. First 12 hours of AK (red) and AAK (green) waveforms
overlaid on NK waveform (black), for the early inspiral of a
ð101; 106ÞM⊙ EMRI with initial semilatus rectum p0 ¼ 15M.
Figure reproduced from [32].

2The sums in (6) must be truncated at some arbitrary number of
modes N, which directly affects both the speed and accuracy of
the AK model. This number may be specified by setting a
threshold for the relative power radiated into the N-th harmonic,
and has been experimentally determined to scale linearly with
eccentricity [23]. We use N ¼ ⌊30e0⌋ as the default value for
both the AK and AAK models.

CHUA, MOORE, and GAIR PHYSICAL REVIEW D 96, 044005 (2017)

044005-6

https://github.com/alvincjk/EMRI_Kludge_Suite
https://github.com/alvincjk/EMRI_Kludge_Suite


[49,50]; this decouples (26) and (27), and for a bound orbit
makes the radial and polar components of motion mani-
festly periodic with respect to λ. For the azimuthal and
temporal components [whose potentials depend only on
ðr; θÞ], overall rates of evolution may be obtained by
averaging (32) and (33) over many periods of radial and
polar motion.
From the radial and polar periods Λr;θ, the average

azimuthal rate hdϕ=dλi and the average temporal rate
hdt=dλi (denoted Γ by analogy with the Lorentz factor),
we may define three angular and dimensionless fundamen-
tal frequencies Ωr;θ;ϕ for the test particle’s motion with
respect to coordinate time. In terms of ðrp; ra; θminÞ, these
frequencies are written as [35,51]

Ωr ¼
2π

ΛrΓ
; Ωθ ¼

2π

ΛθΓ
; ð36Þ

Ωϕ ¼ lim
N→∞

1

N2ΛrΛθΓ

Z
NΛr

0

dλr

Z
NΛθ

0

dλθVϕ; ð37Þ

where Λr;θ and Γ are given by

Λr ¼ 2

Z
ra

rp

drffiffiffiffiffiffi
Vr

p ; Λθ ¼ 4

Z
π=2

θmin

dθffiffiffiffiffiffi
Vθ

p ; ð38Þ

Γ ¼ lim
N→∞

1

N2ΛrΛθ

Z
NΛr

0

dλr

Z
NΛθ

0

dλθVt: ð39Þ

Expressions for Ωr;θ;ϕ in terms of ðe; ι; pÞ have been
derived by Schmidt [52]; these are less compact, but have
more utility in practical implementations.
In terms of the fundamental frequencies, the periapsis

and Lense-Thirring precession rates are given by Ωϕ −Ωr
and Ωϕ − Ωθ, respectively. These vanish in the Newtonian
limit, where Ωr;θ;ϕ approach a single orbital frequency Ω
from below, i.e., Ωr ↗ Ωθ ↗ Ωϕ ↗ Ω. The frequency Ω
is then related to ðe; pÞ by Kepler’s third law:

Ω ¼
�
1 − e2

p

�
3=2

: ð40Þ

In the AK model, Ω is associated with the quantity _ΦM;
however, periapsis and Lense–Thirring precession are
added on top of _Φ via _γ þ _α and _α; respectively, and so
Ω is the lowest frequency by construction. This incon-
sistency with the relativistic case leads to mismatched
frequencies when supplying identical parameters to the two
models, since the same value of p in (40) specifies the
radial AK frequency while approximating the azimuthal
NK frequency. In other words, the frequencies in the AK
model are generally too high.
A three-dimensional endomorphism over the AK space

of orbits is induced by requiring that the radial, polar and
azimuthal frequencies ð _Φ; _Φþ _γ; _Φþ _γ þ _αÞ for any

ðe; ι; pÞ have the same values as the (dimensionful)
relativistic frequencies ωr;θ;ϕ ≔ Ωr;θ;ϕ=M. We map the
parameters ðM; a; pÞ rather than ðe; ι; pÞ to unphysical
values; this gives better results since periapsis and Lense-
Thirring precession are more directly determined by the
central mass and its rotation, respectively. The map
ðM; a; pÞ ↦ ð ~M; ~a; ~pÞ is given implicitly by solving the
algebraic system of equations

_Φð ~M; ~a; ~pÞ ¼ ωrðM; a; pÞ; ð41Þ

_γð ~M; ~a; ~pÞ ¼ ωθðM; a; pÞ − ωrðM; a; pÞ; ð42Þ

_αð ~M; ~a; ~pÞ ¼ ωϕðM; a; pÞ − ωθðM; a; pÞ ð43Þ

for the unphysical set ð ~M; ~a; ~pÞ, which is defined as the
root closest to the physical set ðM; a; pÞ with a Euclidean
metric on parameter space.
Substituting ð ~M; ~a; ~pÞ for ðM; a; pÞ in the AK model

provides an instantaneous correction of its frequencies at
any point along the inspiral trajectory ½eðtÞ; ιðtÞ; pðtÞ�. In
principle, applying the map along the entirety of a fiducial
inspiral will keep the AK waveform phase-coherent with
relativistic waveforms (generated from that trajectory) until
plunge. However, such an inspiral is usually more expen-
sive to compute (as in the case of the NK model), and the
additional cost from evaluating the map itself also scales
linearly with the number of points sampled along the
trajectory. Complications also arise as the compact object
approaches the point of plunge, where the fundamental
frequencies diverge and the map (41)–(43) is no longer well
defined.

B. Implementation

In order to retain the main advantage of the AK model,
computational costs are kept as low as possible by
evaluating the map at a small number of points and relying
on independent evolution of the orbital constants over long
time scales. Firstly, the NK phase-space trajectory is
generated at and around the specified initial time t0 over
a user-defined time scale Tfit, which depends on the
radiation-reaction time scale TRR ≔ M2=μ and specifies
the duration over which the AAK model is calibrated. The
time scale Tfit and number of sample points Nfit may be
adjusted adaptively based on the proximity of the initial
point ðe0; ι0; p0Þ ≔ ½eðt0Þ; ιðt0Þ; pðt0Þ� to plunge; they typ-
ically satisfy 0.1TRR ≲ Tfit ≲ 10TRR (over which ι is
approximately constant) and Nfit ≲ 10 (to ensure an added
computational cost of ≲1%). Evaluation of the map at each
of the Nfit points gives a local “best-fit” trajectory
½ ~MðtÞ; ~aðtÞ; eðtÞ; ~pðtÞ�fit in the AAK phase space, where
the unphysical ð ~MðtÞ; ~aðtÞÞfit change with time.
The global trajectory in the AAK phase space is gen-

erated independently from the NK model and, hence, more
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rapidly. From the mapped initial point ð ~M0; ~a0; e0; ~p0Þ
(which also lies on the best-fit trajectory by construction),
a global PN trajectory ½ ~M; ~a; eðtÞ; ~pðtÞ�PN is obtained by
evolving ðeðtÞ; ~pðtÞÞPN with 3PN Oðe6Þ expressions given
by Sago and Fujita [35], while ð ~M; ~aÞPN are left constant.
Higher-order 4PN Oðe6Þ expressions [35] have also been
tested, but these seem to result in poorer agreement with
NK waveforms (which use fluxes of up to 3PN), possibly
due to the known divergence of certain expansions beyond
3PN order [53].
Sampling the PN trajectory at each of the Nfit

points allows the calculation of ð ~MðtÞ; ~aðtÞ; eðtÞ; ~pðtÞÞfit −
½ ~M; ~a; eðtÞ; ~pðtÞ�PN over the duration Tfit. This difference
trajectory is fitted to polynomials in time and extrapolated
over the lifetime of the inspiral; it is then added to the PN
trajectory, giving the final global trajectory ½ ~MðtÞ; ~aðtÞ;
eðtÞ; ~pðtÞ�. In the initial AAK implementation, the coef-
ficients of the quadratic fit are given by second-order finite-
difference quotients (i.e., Nfit ¼ 3), which works well but
only for small values of Tfit. The present version uses a
quartic least-squares fit, which allows the choice of longer
Tfit and consequently gives better long-term phase agree-
ment with NK waveforms.
After the phase-space trajectory ½ ~MðtÞ; ~aðtÞ; eðtÞ; ~pðtÞ�

has been constructed, the configuration-space evolution of
ðΦ; γ; αÞ is performed with the appropriate combinations
(41)–(43) of the fundamental frequencies, given by Sago–
Fujita expressions [35] that are consistent at 3PN Oðe6Þ
with the phase-space evolution. The waveform field is then
generated as in the AK model. For illustrative purposes,
a flowchart summary of the entire AAK algorithm (as
presently implemented) is shown in Fig. 2.
The augmentations to the AK framework are focused on

improving the phase information of its waveforms, since
the amplitude of a GW signal is measured far less precisely
than its phase. However, the calculation of amplitude in the
original AK model [A in (9)–(11)] is a decent approxi-
mation since it is based on _ΦM, which is assigned a value
≈Ωϕ that turns out to be correct for this purpose [see
discussion around (40)]. Hence, it is the AAK amplitude
that is shifted away from the fiducial NK value through the
mapping of frequencies and the unphysical evolution of ~M.
A simple adjustment is made to reverse this shift; in (9)–
(11) for the AAK model, the amplitude is now given by

A ¼ ðωϕMÞ2=3μ
jRj ; ð44Þ

where the azimuthal frequency ωϕ and the physical black-

hole massM are used in place of _Φ ¼ ωr and ~M (i.e.,M in
the original AK model), respectively.
Finally, a fast method of plunge handling has been added

to the present AAK implementation; this feature is useful in

FIG. 2. Flowchart summary of the AAK waveform model
algorithm. Dashed arrows indicate additional steps for an EMRI
that plunges within the mission lifetime.
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general, but especially when generating large numbers of
AAK waveform templates for search algorithms. The
compact object plunges when its instantaneous orbit along
the phase-space trajectory EðtÞ becomes unstable, i.e.,

∂2Vrðr; a;EÞ
∂r2 ≤

∂Vrðr; a;EÞ
∂r ¼ Vrðr; a;EÞ ¼ 0; ð45Þ

where Vr is given in (30) withE ¼ ðE;Lz;QÞ. This point is
termed the last stable orbit ELSO, and is precisely the point
at which the discriminant Dða;EÞ of the quartic poly-
nomial VrðrÞ changes sign from positive (four real roots) to
negative (two real roots) [54]. Since D is a simple analytic
function of the quartic coefficients, it is computationally
trivial to check for stability at every integration step for the
phase-space trajectory, provided the evolution is done in
terms of ðE;Lz;QÞ.3
Plunge detection in the AAK model is far less straight-

forward than in the other two kludges, partly because the
evolution is performed in terms of the quasi-Keplerian
orbital parameters, and the computational benefits of the
discriminant method are nullified by having to convert
ðe; ι; ~pÞ → ðE;Lz;QÞ. Furthermore, ð ~M; ~a; ~pÞ are unphys-
ical; the inverse of the map (41)–(43) is computationally
expensive and (more crucially) ill-defined at plunge, and so
cannot be used to obtain the physical parameters for
stability calculations.
To circumvent these issues, the AAK model uses (40)

with Ω ≈ Ωϕ to obtain an approximation for the physical
parameter p. While generating the phase-space trajectory,
it checks (between the least- and most-bound orbits [27])
the stability of ðe; ι; pÞ at every radiation-reaction interval
TRR. Once the stability changes across an interval, it then
bisects that interval to find pLSO, and smoothly zeroes the
waveform over ten additional orbits with a one-sided
Planck-taper window [55]. The added computational cost
associated with this algorithm is ≲1%. Although the
approximation for p is crude, the phase-space trajectories
in the AAK and NK models are generally divergent to
begin with, and the plunge points for both models may
differ significantly even if a more accurate expression
is used.

C. Benchmarking results

The specified initial state of an EMRI in the AAK
model is described by the intrinsic parameters ðμ;M; a;
e0; ι0; γ0;ψ0Þ and the extrinsic parameters ðp0; θS;ϕS;

θK;ϕK; α0; DÞ, where D ≔ jRj.4 In configuration space,
transformations fromXAAK ¼ ðψ ; γ; αÞ toXAK ¼ ðΦ; γ; αÞ
and XNK ¼ ðψ ; χ;ϕÞ are required for a comparison of the
three waveform models. We have chosen to specify the
quasi-Keplerian true anomaly ψ in the (shared) AAK
parameter space, since there is no closed-form expression
for ψ in terms of the mean anomaly Φ. The conversion
ψ → Φ is given by the Keplerian expressions [56]

Φ ¼ E − e sinE; E ¼ tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p

sinψ
eþ cosψ

�
; ð46Þ

where E is known as the eccentric anomaly.
On the other hand, the AAK model retains the AK

parameters ðγ; αÞ; these have explicit meanings in the
(intrinsic) L-based coordinate frame,

ðx̂; ŷ; ẑÞL ≔
�
L̂ × Ŝ
SL;S

;
ðŜ · L̂ÞL̂ − Ŝ

SL;S
; L̂

�
; ð47Þ

where the normalization factor SL;S ≔ ð1 − ðL̂ · ŜÞ2Þ1=2
and L̂ðαÞ is given in ecliptic coordinates by (12). The unit
position vector of the compact object with respect to (47) is
r̂L ¼ ½cos ðψ þ γÞ; sin ðψ þ γÞ; 0�T , and a change of basis
to the S-based coordinate frame (18) gives

r̂S ¼ QT
SQLr̂L; ð48Þ

where the orthogonal matrices QS ≔ ½x̂jŷjẑ�S and QL ≔
½x̂jŷjẑ�L are formed from the triads in (18) and (47),
respectively. It is then straightforward to obtain ðχ;ϕÞ
from r̂S ¼ ½sin θ cosϕ; sin θ sinϕ; cos θ�T , via (35).
As a generic example, we consider a prograde EMRI

with redshifted component masses ðμ;MÞ¼ ð101;106ÞM⊙,
spin a ¼ 0.5M, and initial orbital parameters ðe0; ι0; p0Þ ¼
ð0.1; π=6; 8.25MÞ. The initial semilatus rectum is chosen
such that the compact object plunges approximately one
year after entering the LISA band at a representative
frequency fGW ¼ 2.7 mHz, where fGW is defined as twice
the azimuthal orbital frequency (i.e., the dominant GW
harmonic at low eccentricity). In the AAK model, the
fitting time scale and number of sample points are set to
Tfit ≤ 10TRR and Nfit ≤ 10, respectively, with inequality in
the case of adaptive adjustments.
One important result from our comparison studies is that

the AK model can lead to an overestimation of SNR if used
without modification. This is due to the fact that the
frequencies in the AK model are generally too high for
any given ðe; ι; pÞ, as mentioned in Sec. II A. The SNR of a
signal h ¼ hI þ ihII is defined as ρ ≔

ffiffiffiffiffiffiffiffiffiffiffihhjhip
, where h·j·i

3The discriminant method is applicable to the NK model,
and may speed it up slightly. Currently, the NK implemen-
tation precomputes (for the specified value of a) an interpolated
pLSO surface over the relevant region of ðe; ιÞLSO space, by
finding and examining the roots of VrðrÞ numerically. It then
checks for p < pLSOðe; ιÞ when generating the phase-space
trajectory.

4For a source at cosmological redshift z, the values of D and
ðμ;MÞ are replaced with the luminosity distance Dð1þ zÞ and
the redshifted masses ½μð1þ zÞ;Mð1þ zÞ�, respectively.
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is the standard matched-filtering inner product (on the
space of finite-length time series) between two waveforms,
i.e., [57]

hajbi ¼ 2

Z
∞

0

df
~a�ðfÞ ~bðfÞ þ ~aðfÞ ~b�ðfÞ

SnðfÞ
: ð49Þ

Throughout this paper, the noise power spectral density
SnðfÞ is taken to be a LISA noise model for the L6A5 (six
links, five-million-kilometer arms) configuration known as
classic LISA, assuming the original mission requirements
and including confusion noise from the foreground of
Galactic white-dwarf binaries [58].
At a luminosity distance of 5 Gpc, an NK signal

(sampled at 0.2 Hz) from the example EMRI described
above has a one-year SNR of ρ ¼ 30.8. When using the
AAK model to generate the signal, a comparable value of
ρ ¼ 32.1 is obtained. However, an AK signal from the
same EMRI has ρ ¼ 57.8. To illustrate this, we consider the
characteristic strain hc of a signal and the noise amplitude
hn; these are given, respectively, by [59]

hcðfÞ ¼ 2fj ~hðfÞj2; hnðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p
; ð50Þ

such that

ρ2 ¼
Z

∞

−∞
dðln fÞ

�
hcðfÞ
hnðfÞ

�
2

: ð51Þ

With these definitions, the area between hc and hf on a log-
log plot gives an indication (but not an approximation) of
SNR, and allows the relative detectability of signals to be
estimated. The characteristic strain for the three signals and
the LISA noise amplitude are shown in Fig. 3, where the
excess power in the AK signal at higher frequencies is

evident, along with the consequent boost to SNR. This error
is likely to persist for M ≳ 106 M⊙, but may be mitigated
for less massive central black holes as the maxima of the
three hc curves are blueshifted past the minimum of hn.
For the purposes of this paper (where the NK model is

taken as fiducial), the phase accuracy of the AK and AAK
models is assessed by how well their waveforms overlap
with NK waveforms. The overlap O between two wave-
forms a and b is defined as

OðajbÞ ≔ hajbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihajaihbjbip ; ð52Þ

which takes the value of one for identical waveforms
and zero for orthogonal waveforms. In [32], the overlaps
OðhAKjhNKÞ and OðhAAKjhNKÞ over two and six months
are computed for the example EMRI, as well as for the
same source with (i) μ ¼ 100 M⊙, (ii) a ¼ 0.8M and
(iii) e0 ¼ 0.5. The AK and initial AAK models have
virtually identical computation times τ, and are both
quicker than the NK model with typical speed-up factors
of σ ≔ 1 − τ=τNK ≈ 0.9 (except in the case of e0 ¼ 0.5,
where σ ≈ 0.4). However, the AAK model yields overlaps
that are consistently higher, and by 2–3 orders of magnitude
in most cases.
The speed-up factors for the AAK model are preserved

by the present implementation, while its overlaps are
increased across the board due to the enhanced fitting
algorithm. Most notably, there is substantial improvement
for EMRIs with higher initial eccentricities, although this is
partly attributable to the use of a higher sample rate than
that in [32]. The overlap and timing performance of the
AAK model across 2–6 months with varying compact-
object mass, black-hole spin and initial eccentricity is
summarized by the plots in Figs 4–6.

FIG. 3. Characteristic strain for year-long AK (red), AAK
(green) and NK (black) signals from the example EMRI, along
with the noise amplitude (dashed) for the LISA configuration
L6A5. A moving-average filter has been applied to the hc curves,
such that oscillations are smoothed out for ease of visualization
while the overall spectral profile is preserved.

FIG. 4. Two- to six-month overlaps between AAK and NK
waveforms for generic EMRIs with varying compact-object
mass. The computational speed-up σ of the AAK over the NK
is coded by color. Vertical dashed lines correspond to the example
EMRI, while horizontal ones indicate the standard minimal-
match value of 0.97 for template banks.
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In Fig. 4, the overlap OðhAAKjhNKÞ is computed for the
example EMRI, as well as for the same source with
0.5 ≤ lg ðμ=M⊙Þ ≤ 2. The minimum value of μ ≈ 3 M⊙
is chosen since the upper bound of 10TRR for Tfit exceeds
six months for a less massive compact object, and so the
overlaps in that regime will not show significant improve-
ment (even the six-month overlap is already > 0.97). We
also do not consider intermediate-mass black holes with
μ > 100 M⊙. Instead of choosing p0 such that the EMRI
plunges after one year (as done in [32]), we consider fixed
p0 ¼ 8.25M in this analysis; this leads the overlaps to
degrade at larger rather than smaller mass ratios μ=M. The
two-month overlaps are> 0.97 up to μ ≈ 20 M⊙, for which
plunge occurs at around 5.6 months. There is greater speed-
up over the NK model for longer waveform durations as
expected, but all values of σ are ≳0.8.
Overlaps for the example EMRI with varying spin 0.1 ≤

a=M ≤ 0.9 are shown in Fig. 5. Again, all values of σ are
≳0.8, with greater speed-up for longer waveform durations.
For fixed p0, prograde EMRIs with lower spin start closer
to plunge, and so the overlap values generally increase
along with a. There appears to be an opposing effect at
higher spin (possibly due to the additional degrees of
freedom for error from fitting ~M and ~a in the AAK model)
that causes a falloff in the four- and six-month overlaps for
a≳ 0.6. The two-month overlaps are > 0.97 across the full
range of considered spins, which is perhaps unsurprising
since the upper bound of 10TRR for Tfit is also two months
for a ð101; 106ÞM⊙ EMRI. However, we note here that
while the phase accuracy of the AAK model may be
arbitrarily increased in principle by taking Tfit > 10TRR,
the computational requirement that Nfit ≲ 10 will likely
reduce the quality of the trajectory fit at early times.
The effect of varying eccentricity for the example EMRI

is illustrated in Fig. 6. We consider initial eccentricities
0.05 ≤ e0 ≤ 0.5, since there turns out to be no speed-up
over the NK model (σ ≈ 0) when generating a two-month
AAK waveform with e0 ¼ 0.5. This is an important

limitation of the Peters-Mathews approximation for wave-
form generation (see discussion in footnote 2), and will
have to be addressed if the AAK model is to be useful in
searches for high-eccentricity EMRIs. Nevertheless, the
two- and even four-month overlaps are> 0.97 for e0 ≲ 0.3,
with σ ≳ 0.5. As in the case of Fig. 5, there is a peak in the
six-month overlap; this is probably due to variance in the fit
for e, and is unlikely to carry any fundamental significance.
Finally, although parameter estimation with AAK wave-

forms is not the focus of this paper, we summarize here the
results of a Fisher matrix calculation for a year-long AAK
signal from the example EMRI considered throughout
Sec. III C. The Fisher information matrix Γ for a GW
signal h parametrized by λ is given by [57]

Γij ¼
�∂h
∂λi j

∂h
∂λj

�
; ð53Þ

where λ ¼ ðμ;M;S;E;X;RÞ for EMRIs. The parameter-
estimation errorsΔλ due to Gaussian noise have the normal
distribution N ð0;Γ−1Þ in the case of high SNR, and so
the root-mean-square errors in the general case can be
approximated as

Δλi ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
: ð54Þ

For our AAK signal normalized to an SNR of ρ ¼ 30, we
find that the masses and spin can be measured to within the
fractional errors

Δðln μÞ ≈ 4 × 10−5 ð55Þ

ΔðlnMÞ ≈ 2 × 10−5; ð56Þ

Δðln ða=MÞÞ ≈ 4 × 10−5: ð57Þ

These errors are roughly an order of magnitude better than
the corresponding values for the AK model [23], and are

FIG. 5. Overlaps and computational speed-up as in Fig. 4, but
for generic EMRIs with varying black-hole spin.

FIG. 6. Overlaps and computational speed-up as in Fig. 4, but
for generic EMRIs with varying initial eccentricity.
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more comparable to those cited for the NK model [29]
(although the latter consider a circular, equatorial EMRI
with a ¼ 0.9M). They are also consistent with (the lower
end of) the values reported in the L2/L3 mission proposal
for ESA’s Cosmic Vision program [3], where the AKmodel
was used but with a modified plunge criterion.

IV. DATA ANALYSIS APPLICATION:
SEMICOHERENT DETECTION SEARCHES

GW detection is usually achieved via a template
bank search, in which a large set of signal templates hi
is compared against the noisy detector data s. A single
coherent integral of template and data is calculated for each
template in the bank and used as a detection statistic, i.e., a
detection is claimed if any of these values exceeds
a predetermined threshold. For EMRI detection, such a
procedure is hampered by the extremely large number of
templates needed to cover the parameter space; a previous
estimate [5] put this number at Nbank ∼ 1040. In that same
work, a computationally viable alternative was suggested: a
semicoherent search that involves splitting the time series
data into N segments, searching each segment separately
with a smaller template bank, then combining the results to
obtain a new detection statistic. Inevitably, such a search is
less sensitive than the (computationally prohibitive) fully
coherent search.
The minimum feasible number of segments for a semi-

coherent EMRI search was estimated in [5] by considering
the computational resources anticipated to be available
when LISA flies; it was found that N ≳ 100 for a mission
lasting ∼108 s, giving segments of length ΔT ≲ 106 s. In
this work, we assume that computational resources are not a
limiting factor and instead consider the loss in performance
of the semicoherent search compared to the fully coherent
search, estimated as a function of N. For a waveform model
to safely be used in a semicoherent search, it must remain
phase-accurate over the duration of each segment, and so
the different dephasing times in the AK and AAK models
will determine the maximum ΔT for each model and the
corresponding loss in performance. This section will
discuss whether either model is sufficiently accurate for
real LISA data analysis.
For an EMRI template bank fhiji ¼ 1; 2;…; Nbankg, we

may define the fully coherent detection statistic for each
template as

ρi ≔
hsjhiiffiffiffiffiffiffiffiffiffiffiffiffiffihhijhii

p ; ð58Þ

i.e., the template SNR. If the measured data consists
solely of Gaussian noise (s ¼ n), it is straightforward to
show that ρi ∼N ð0; 1Þ (each template SNR is distributed
as a zero-mean normal random variable). In the presence of
an EMRI signal (s ¼ hi þ n), we have ρi ∼N ðA; 1Þ for the

corresponding template, where A ≔ hhijhii1=2 is the signal
amplitude. A detection is claimed if any ρi exceeds a
predetermined threshold ρ�, which may be set by fixing a
desired false-alarm probability PF:

PFðρ�Þ ¼
Z

∞

ρ�
dρi

1ffiffiffiffiffiffi
2π

p exp

�
−
ρ2i
2

�

⇒ ρ�ðPFÞ ¼
ffiffiffi
2

p
erfc−1ð2PFÞ: ð59Þ

In practice, ρi is not used as a detection statistic because
it is computationally cheaper to analytically search over
several extrinsic parameters (rather than having to generate
templates that vary in those parameters). Each template
may be written as

hiðtÞ ¼ Auiðt − tcÞ expðiϕcÞ; ð60Þ

where the normalized templates ui satisfy huijuii ¼ 1. The
waveform amplitude A, time-of-arrival tc and phase offset
ϕc are extrinsic parameters that may be searched over for
each ui at negligible additional cost [36].
We may now define a fully coherent phase-maximized

detection statistic as

~ρi ≔ max
ϕc

hsjuii; ð61Þ

i.e., ρi maximized over ϕc. Unlike the template SNR, ~ρi is
not normally distributed; in the no-signal case s ¼ n, it
follows a Rayleigh distribution with unit scale parameter,
and has the probability density function [36]

f0ð~ρiÞ ¼ ~ρi exp

�
−
~ρ2i
2

�
; ~ρi ≥ 0: ð62Þ

If s ¼ hi þ n, then ~ρi for the corresponding template
follows a Rice distribution with unit scale parameter and
offset parameter A; its probability density function is [36]

f1ð~ρi; AÞ ¼ ~ρi exp

�
−
~ρ2i þ A2

2

�
I0ðA~ρiÞ; ~ρi ≥ 0; ð63Þ

where I0 denotes the order-zero modified Bessel function
of the first kind.
A detection threshold ~ρ� for the new statistic may be

chosen in similar fashion to (59):

PFð~ρ�Þ ¼
Z

∞

~ρ�
d~ρif0ð~ρiÞ

⇒ ~ρ�ðPFÞ ¼ −2 lnPF: ð64Þ

In the following analysis, we consider a desired false-alarm
probability of 10−3 for the entire template bank. By appro-
ximating f~ρiji ¼ 1; 2;…; Nbankg as a set of independent
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random variables, we may simply reduce this value by a
trials factor of Nbank to obtain PF (the desired false-alarm
probability for a single template). We may also assume that
the time-of-arrival has been maximized over (e.g., using fast
Fourier transforms [60]), which incurs an additional trials
factor of Ntime ∼ 108 (for tc offsets of 1 s). Hence, we set

PF ¼ 10−3

NbankNtime
¼ 10−51: ð65Þ

With ~ρ� fixed by (65), we now consider the detection
probability

PDðAÞ ¼
Z

∞

~ρ�
d~ρif1ð~ρi; AÞ; ð66Þ

i.e., the probability in the presence of a signal that ~ρi > ~ρ�
for the corresponding template. The detection probability
as a function of A is shown as the blue curve in the top panel
of Fig. 7, and the critical signal amplitude needed to
achieve PD ¼ 0.9 is Ac ≈ 17. This threshold is the SNR

required for an EMRI to be detected by an idealized fully
coherent search; for a semicoherent search, Ac will increase
with N as detection sensitivity is lost.
In a semicoherent search where the data is split into N

segments of equal length, the phase-maximized detection
statistic ~ρi is calculated as before but for each segment j,
and the semicoherent detection statistic is then taken to be
the quadrature sum

ϒi ≔
XN
j¼1

ð~ρi;jÞ2: ð67Þ

Although each of the ~ρi;j follows a Rayleigh/Rice
distribution, the distribution of ϒi is analytically intrac-
table. However, in the limit N → ∞, the central limit
theorem guarantees that ϒi will be normally distributed.
We find empirically that for N ≳ 70, the distribution
of ϒi is well approximated as Gaussian; the mean and
variance in the respective absence/presence of a signal are
given by

ðμ0; σ20Þ ¼ ðNμk; 2Nσ2kÞ; ð68Þ

ðμ1; σ21Þ ¼ ðNμk þ A2; 2Nσ2k þ 4A2Þ; ð69Þ

with μk ≈ 2.00 and σk ≈ 1.45. The functional forms of
ðμ1; σ21Þ are motivated by the corresponding expressions for
a noncentral chi-squared distribution.
Using this normal approximation for the distribution of

ϒi, the detection thresholdϒ� is set by the fixed false-alarm
probability (65) as

PFðϒ�Þ ¼
Z

∞

ϒ�
dϒi

1ffiffiffiffiffiffiffiffiffiffi
2πσ20

p exp

�
−
ðϒi − μ0Þ2

2σ20

�

⇒ ϒ�ðPFÞ ¼ μ0 −
ffiffiffiffiffiffiffi
2σ20

q
erf−1ð2PF − 1Þ; ð70Þ

while the detection probability is given by

PDðAÞ ¼
Z

∞

ϒ�
dϒi

1ffiffiffiffiffiffiffiffiffiffi
2πσ21

p exp

�
−
ðϒi − μ1Þ2

2σ21

�

¼ 1

2

�
1þ erf

�
μ1ðAÞ −ϒ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ21ðAÞ
p

��
: ð71Þ

Along with the fully coherent expression (66) in the top
panel of Fig. 7, the semicoherent detection probability (71)
is also plotted for several values of N; the threshold signal
amplitude Ac for which PD ¼ 0.9 in each case is indicated
by the corresponding vertical line.
In the bottom panel of Fig. 7, Ac is shown as a function

of N; through a reduced chi-squared fit, we find that this
relationship is well approximated as the power law

FIG. 7. Top panel: Detection probability PD as a function of
signal amplitude A for fully coherent search and semicoherent
search with three different numbers of segments N. Vertical lines
indicate the threshold amplitude at which PD ¼ 0.9. Bottom
panel: Threshold amplitude Ac as a function of N for semi-
coherent search; horizontal lines correspond to the vertical lines
in the top panel. For N ≲ 70, the distribution of the semicoherent
detection statistic ϒi can no longer be approximated as Gaussian
and the black curve becomes unreliable (indicated on the plot by
the use of a thinner stroke).
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Ac ≈ 6.57 × N0.235 ð72Þ

in the range 1 ≤ N ≲ 104 (well beyond the range
plotted in Fig. 7). As the number of segments is
increased, the threshold SNR at which an EMRI can
be detected increases, i.e., the search becomes less
sensitive and a greater number of events will be
missed. However, (72) taken at face value suggests
that for N ≲ 55, the semicoherent search is more
sensitive than the fully coherent search (Ac < 17).
This conclusion is obviously incorrect, and is due to
the breakdown of the normal approximation for the
distribution of ϒi at N ≲ 70 (indicated on the plot by
the transition to a thinner black curve).
Since the AK model typically dephases over a few

hours (∼104 s), employing AK waveforms in a semi-
coherent detection search would necessitate the use of
N ∼ 104 segments to cover the full mission lifetime of
∼108 s. This incurs an intolerable loss of performance;
the threshold SNR at which an EMRI can be detected
would be raised from 17 to 59, where this number is
estimated by using the power law (72) and dividing by

an assumed model accuracy of 0.97 over the dephasing
time. On the other hand, only N ∼ 102 segments are
required for the AAK model with its typical dephasing
time of two months (∼106 s), which would raise the
threshold SNR from 17 to 20. It was also found
previously in [5] that N ∼ 102 is the minimum number
of segments needed for a computationally feasible
semicoherent search.
In moving from the AK model to the AAK model, the

lowering of the threshold SNR from 59 to 20 has a
profound effect on the likely number of detected
EMRIs. Tab. I shows how many events LISA would
expect to observe, using the thresholds appropriate for
both kludges. Numbers are reported for the 12 astro-
physical EMRI-population models that were recently
considered in [8]. These populations make different
assumptions about the characteristics of the MBHs that
play hosts to EMRIs, the typical masses of the compact
objects involved, and the amount of mass that the
central black holes can accrete; we refer the reader to
[8] for full details. Event SNRs are computed with two
different plunge criteria: either the innermost stable

TABLE I. Number of EMRI events when using AAK and AK waveforms in a semicoherent detection search, for the 12 astrophysical
EMRI-population models considered in [8] (M1–12) and two different plunge criteria (Schwarzschild and Kerr innermost stable circular
orbits). Events are further divided into four black-hole mass bins, whereM10 ≔ lg ðM=M⊙Þ. Event counts are rounded to the nearest 10
for all models except M11, where they are rounded to the nearest 1.

Number of events in mass range

M10 < 5 5 < M10 < 5.5 5.5 < M10 < 6 M10 > 6 Total

Plunge criterion Population model AAK AK AAK AK AAK AK AAK AK AAK AK

Schwarzschild M1 20 0 240 10 110 10 10 0 380 20
M2 30 0 190 10 70 10 0 0 290 10
M3 20 0 310 10 510 40 40 10 880 50
M4 70 0 280 20 80 20 0 0 440 40
M5 0 0 10 0 20 0 0 0 30 0
M6 20 0 270 10 210 10 20 0 520 30
M7 230 0 2190 60 1040 100 60 10 3530 180
M8 0 0 30 0 10 0 0 0 50 0
M9 20 0 210 0 110 10 10 0 350 20
M10 30 0 240 10 100 10 10 0 370 10
M11 0 0 0 0 1 0 0 0 1 0
M12 230 10 2420 70 1730 130 180 30 4560 230

Kerr M1 20 0 260 10 230 10 80 10 590 30
M2 20 0 210 0 160 10 50 10 440 20
M3 10 0 360 10 1000 60 240 50 1620 120
M4 50 0 300 20 140 30 30 10 520 70
M5 0 0 10 0 40 0 40 10 90 10
M6 20 0 300 10 430 30 200 50 960 80
M7 190 0 2390 60 2110 150 730 120 5420 330
M8 0 0 30 0 30 0 10 0 70 0
M9 20 0 230 0 160 10 30 0 430 20
M10 30 0 240 10 100 10 10 0 370 10
M11 0 0 0 0 1 0 0 0 1 0
M12 190 0 2700 60 3710 210 1830 410 8440 690
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circular orbit for a Schwarzschild black hole (as in the
original AK paper [23]), or that for a Kerr black hole.
As argued in [8], these two assumptions should give
values that bracket the true SNR. Detected events are
further divided into four mass ranges for the central
black hole.
We see that some detections would still be expected if

the AK model is used to analyze LISA data, although
significantly fewer (by at least an order of magnitude)
than if the more faithful AAK model is employed.
Moreover, we would lose the events at the edges of
the distribution (i.e., in the lowest and highest mass
ranges), and so the astrophysical information provided by
the LISA EMRI population would be reduced. The AAK
model, on the other hand, would find a significant
number of events under most of the population models,
with its required threshold SNR of 20 for a semicoherent
search being compatible with the thresholds that have
traditionally been assumed when assessing LISA’s
capability for EMRI detection. Results for a fully
coherent search are not shown in Tab. I, but reducing
the threshold SNR from 20 to 17 would increase the
event rate by only a modest amount (50% or less);
furthermore, it is unlikely that the computing power
needed for such a search will be available even in the
mid-2030s.

V. CONCLUSION

We have developed an augmented variant of Barack
and Cutler’s widely used EMRI kludge waveform model
[23]; the new AAK model retains the speed of its
predecessor, while matching the phase evolution of more
accurate but slower kludges over a significant fraction
of the inspiral. With the latest implementation of the
model released online at https://github.com/alvincjk/
EMRI_Kludge_Suite as part of a kludge software suite,
AAK waveforms will hopefully see widespread use in the
next round of mock LISA data challenges.
One existing deficiency in the AAK model is the ill-

defined nature of the fundamental frequency map (41)–
(43) at the last stable orbit, due to the divergent Kerr
frequencies; this complicates both plunge detection and
the specification of orbital parameters at plunge.
Another limitation is that the mode-sum approximation
(6) becomes more expensive than the quadrupole for-
mula itself at high eccentricities (e0 ≳ 0.5). Work is
ongoing to resolve these issues, and to make the model

as streamlined and robust as possible for the mock data
challenges.
Regardless, the present implementation of the AAK

model shows significantly improved accuracy over larger
fractions of the inspiral as compared to the initial AAK
implementation [32] (which itself extends the dephasing
time of the original AK model from hours to months).
The two-month overlaps of AAK waveforms with NK
waveforms for a variety of EMRIs with different com-
pact-object mass, black-hole spin and initial eccentricity
are typically increased from ≲0.95 (in the initial imple-
mentation) to > 0.97 by the techniques presented in this
paper. Computational efficiency for the present imple-
mentation is also retained to within 1% of the AK and
initial AAK models, with all analytic kludges able to
generate generic waveforms 5–15 times more quickly
than the NK model (except when e0 ≳ 0.3).
We have also considered the performance of the AAK

model in a data analysis application: the semicoherent
EMRI detection search proposed in [5]. An analytic
estimate is provided for the threshold SNR needed to
detect an EMRI with a false-alarm probability of ∼10−3
when using a bank of ∼1040 templates. This threshold is
17 for a fully coherent search with templates that are
97% accurate over the inspiral lifetime, although such a
search is likely to be out of reach computationally. If the
AK model is used in a semicoherent search, the threshold
rises to 59 and around 95% fewer EMRI events will be
detected (under various population models); however, a
semicoherent AAK search requires a lower threshold of
20 due to the model’s longer dephasing times, and will
yield at least an order of magnitude more events than the
AK search while remaining computationally feasible.
This suggests that unlike the AK model, the AAK model
might realistically be employed in actual LISA data
analysis without much loss in detection sensitivity.
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