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We consider two solutions of Einstein-Λ theory which admit the extremal vanishing horizon (EVH)
limit, odd-dimensional multispinning Kerr black hole (in the presence of cosmological constant) and
cosmological soliton. We show that the near horizon EVH geometry of Kerr has a three-dimensional
maximally symmetric subspace whose curvature depends on rotational parameters and the cosmological
constant. In the Kerr-dS case, this subspace interpolates between AdS3, three-dimensional flat and dS3 by
varying rotational parameters, while the near horizon of the EVH cosmological soliton always has a dS3.
The feature of the EVH cosmological soliton is that it is regular everywhere on the horizon. In the
near EVH case, these three-dimensional parts turn into the corresponding locally maximally symmetric
spacetimes with a horizon: Kerr-dS3, flat space cosmology or BTZ black hole. We show that their
thermodynamics match with the thermodynamics of the original near EVH black holes. We also briefly
discuss the holographic two-dimensional CFT dual to the near horizon of EVH solutions.
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I. INTRODUCTION

Exploring the classical and semiclassical aspects of
solutions to gravitational theories may provide a good
framework to better understand the nature of gravitational
fields and the origin of spacetime, such as the causal
structure of spacetime in relativistic theories. In this way,
studying the stationary black hole (brane) solutions with
their nontrivial causal structures is distinguished. It is
known that at the classical level they perform some
thermodynamiclike behavior which can be promoted to
the real thermodynamics at the semiclassical regime.
Studying black hole physics involves finding and classify-

ing black hole solutions to different gravitational theories in
diverse dimensions. Various limits of these black hole
solutions and their thermodynamic properties are interesting.
In particular, studying the near horizon limit of extremal black
branes andblackholes (which havevanishing surface gravity)
have shed light on black hole physics and (quantum) gravity.
The main property of this limit is based on the symmetry
enhancement of near horizon geometries at the extremality.
The most well-known example is AdS/CFT where the
emergence of an AdS throat in the near horizon of extremal
p-branes inspires a holographic duality between gravity on
AdSpþ2 space and a strongly coupled CFT [1]. Another
example is the near horizon of the extremal black holes. In this
case, the enhanced symmetry in the near horizon geometry
provides a description for extremal black hole in the context
of Kerr/CFT [2,3] or entropy function e.g. [4].

In addition to symmetry enhancement, the near horizon
of generic extremal black holes with smooth horizon enjoys
more interesting features: Firstly, they can be considered as
a new class of solutions to the same gravity theory of the
original black hole. These solutions usually have a two-
dimensional maximally symmetric subspace. As is proved
in [5–7], this two-dimensional subspace is limited to be
AdS2 or two-dimensional flat by imposing strong energy
condition (see [8] for a review.). Generically, in most
studied extremal examples, it turns out that this two-
dimensional subspace is AdS2. Secondly, they show a
thermodynamiclike behavior which is called near horizon
extremal geometry (NHEG) dynamics [9,10].
In above discussion, there is an implicit assumption:

Horizon is smooth and the horizon area remains nonzero
in the extremal limit. However, there is another class of
extremal black holes for which horizon area vanishes in the
extremal limit such that

A; κ → 0;
A
κ
¼ finite; ð1:1Þ

where A and κ denote area and surface gravity of horizon,
respectively. These kinds of black holes are called extremal
vanishing horizon (EVH) black holes, vanishing of the
horizon comes from the vanishing of one-cycle on the
horizon [11] (for an incomplete list of EVH examples and
their common features see [12–25]). One can study the near
horizon geometry of EVH black holes similar to the generic
extremal black holes.
These near horizon EVH geometries are also solutions

to the same original theory. Interestingly enough, most
EVH black holes admit a three-dimensional subspace,
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which is generically pinching AdS3, as the near horizon
geometry. In the case of near EVH black holes, this AdS3
should be replaced with a BTZ black hole [11,26,27].
Thermodynamics of these BTZ black holes represents the
thermodynamics of original EVH black holes around the
EVH limit [11,28].
It is worthwhile to mention that the existence of the AdS3

throat suggests a dual description in terms of AdS3=CFT2

for the near horizon physics of the EVH black hole and
its excitations. In fact, in the four-dimensional case [11],
it has been proven that the near horizon limit of a (near)
EVH black hole is a decoupling limit. These suggest that a
dual description for near horizon physics of EVH black
holes in terms of a two-dimensional CFT which is called
EVH/CFT [11].
The near horizon structure of EVH black holes has been

studied in [26,27]. A summary of these results is in the
following theorems:

(i) Theorem I. The near horizon of any EVH black hole
in Einstein-Maxwell-Scalar-Λ theory which has a
finite energy momentum tensor at the horizon has a
three-dimensional maximally symmetric subspace.

(ii) Theorem II. The strong energy condition.1 excludes
the three-dimensional de Sitter space (dS3) in the
near horizon of EVH black holes which are asymp-
totically flat or AdS.

These theorems do not exclude the existence of dS3
and three-dimensional flat spacetime in the near horizon
geometry once the spacetime is asymptotically dS. Indeed,
exploring this possibility is one of the main motivation of
this paper. In other words, we are mainly interested in the
near horizon structure of asymptotically dS EVH solutions.
The presence of a subspace with positive curvature in the

near horizon of asymptotically dS black holes is not new.
For example, the near horizon of the dS-Schwarzschild
black hole solution in the extremal limit (when the
cosmological and black hole horizons coincide) is
dS2 × Sn denoted as Nariai solution [29–33].
This paper is organized as follow. In the first section,

after a short review on the multispinning Kerr black hole
in the presence of a cosmological constant, we will study
the (near) EVH limit and its near horizon limit in odd
dimensions. In particular we will show that the three-
dimensional part of the near horizon geometry of EVH
Kerr-dS can be either AdS3, dS3 or three-dimensional flat.
In the case of the near EVH limit, we also study the relation
between the thermodynamics of the EVH and the three-
dimensional part of the near horizon. In Sec. II, we will
study EVH limit of the cosmological soliton. In particular,
we will show that the near horizon geometry enjoys a dS3
subspace. The last section is devoted to discussions.

II. KERR BLACK HOLES IN
HIGHER DIMENSIONS

In this section, we will apply the (near) EVH limit to
the multispinning Kerr black hole in higher dimensions and
in the presence of a (possible) cosmological constant
[34,35]. This spacetime generalizes the single spinning
four-dimensional Kerr black hole to multispinning higher-
dimensional black hole and in the vanishing cosmological
constant case, it reduces to the Myers-Perry solution [36].
It solves the following Einstein equation,

Rμν ¼ ðd − 1Þλgμν; ð2:1Þ

in d ¼ 2nþ 1þ α dimensions and its metric is given by
[34,35]

ds2 ¼ −Wð1 − λr2Þdt2 þ 2m
VF

�
Wdt −

Xn
i¼1

ai
Ξi

μ2i dφi

�
2

þ
Xn
i¼1

r2 þ a2i
Ξi

μ2i dφ
2
i þ

VFdr2

V − 2m
þ
Xnþα

i¼1

r2 þ a2i
Ξi

dμ2i

þ λ

Wð1 − λr2Þ
�Xnþα

i¼1

r2 þ a2i
Ξi

μidμi

�
2

: ð2:2Þ

Here, α is the “even-ness” parameter such that it equals 1
in even dimensions and 0 otherwise. In addition, one
should set anþ1 ¼ 0 in even dimensions. In general, metric
functions are

Ξi ≡ 1þ λa2i ; W ≡Xnþα

i¼1

μ2i
Ξi

; ð2:3Þ

V ≡ rα−2ð1 − λr2Þ
Yn
i¼1

ðr2 þ a2i Þ;

F≡ 1

1 − λr2
Xnþα

i¼1

r2μ2i
r2 þ a2i

: ð2:4Þ

This solution is described by the parameters m and ai’s
which are respectively related to the mass and rotations. In
the case of m ¼ 0, this solution is nothing but (A)dS. On
the other hand, in the case of ai ¼ 0 with nonvanishing m,
spherical symmetry restores and this solution reduces to the
known Schwarzschild-(A)dS black hole. This geometry is
written in a coordinate system with (nþ α) number of
latitudinal coordinates μi which are constrained by

Xnþα

i

μ2i ¼ 1; ð2:5Þ

where μi ∈ ½0; 1� for 1 ≤ i ≤ n, μnþ1 ∈ ½−1; 1� for even-
dimensional cases and n number of azimuthal angular
coordinates φi ∈ ½0; 2π�. In general, this black hole solution

1We note that here the energy condition is on the matter energy
momentum tensor without cosmological constant.
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may admit several horizons: inner and outer black hole
horizons and a cosmological horizon for λ > 0. All of them
are determined by the roots of the following equation,

Vðr ¼ rhÞ ¼ 2m: ð2:6Þ

Let us consider a typical horizon H which is specified by
radius rh. One may show this horizon is generated by the
following Killing vector

ξH ¼ ∂
∂tþ Ωi

H
∂
∂φi ; Ωi

H ¼ aið1 − λr2hÞ
ðr2h þ a2i Þ

; ð2:7Þ

where Ωi
H is the angular velocity of the horizon along φi.

Then, the surface gravity computation gives

κH ¼ ð1 − λr2hÞ
4m

V 0ðr ¼ rhÞ: ð2:8Þ

Entropy and temperature of this horizon are

S ¼ AH

4Gd
¼ Ad−2

4Gd
rα−1h

Yn
i¼1

r2h þ a2i
Ξi

;

T ¼ κH
2π

¼ 1

2π

�
rhð1 − λr2hÞ

�Xn
i¼1

1

r2h þ a2i
þ α

2r2h

�
−

1

rh

�
;

ð2:9Þ

in whichAn is the volume of a unit n-sphere. The mass and
angular momenta of this solution are given by [37]2

M ¼ mAd−2

4πGd
Q

jΞj

�Xn
i¼1

1

Ξi
þ α − 1

2

�
;

Ji ¼
mAd−2

4πGdð
Q

jΞjÞ
ai
Ξi

: ð2:10Þ

Using these quantities, one can check the first law holds

δM ¼ TδSþ
X
i

Ωi
HδJi; ð2:11Þ

here, δ denotes all possible variations in the parameter
space of Kerr-(A)dS solution, i.e. fm; a1; a2;…; ang.

A. (Near) EVH limit

In the following, we explore the EVH limit of the Kerr
black hole metric given by (2.2). From Eq. (2.8), it is clear
that the extremal limit, κH → 0, is simply given by the
condition V 0ðr ¼ rhÞ ¼ 0while rh is a root of (2.6). To find

the extremal vanishing horizon limit, we need to take
vanishing horizon limit, AH → 0, as well, such that AH=κH
is fixed. Note that, generically, an extremal limit happens
when two horizons degenerate and we define the vanishing
horizon limit for the corresponding horizons.
In the case of solution (2.2), one can check that there is

no such EVH limit in even dimensions. Therefore, in what
follows, we only consider odd dimensions and simply
set α ¼ 0.
To find the EVH limit, we simplify the entropy using the

equation VðrhÞ ¼ 2m (2.6),

AH ¼ 2mAd−2

ð1 − λr2hÞ
�Yn

i¼1

1

Ξi

�
rh: ð2:12Þ

It is clear that entropy is not vanishing unless rh goes to
zero. This can not be compatible with the equation which
gives the location of the horizon (2.6),

ð1 − λr2hÞ
r2h

Yn
i¼1

ðr2h þ a2i Þ ¼ 2m; ð2:13Þ

unless one of ai ’s is zero. We assume that the zero rotation
parameter is along the φ1 direction and set a1 ¼ 0. This
assumption simplifies the surface gravity expression to

κH ¼ ð1 − λr2hÞ
4m

V 0ðrhÞ
����
a1¼0

¼
�Xn

i¼2

1 − λr2h
r2h þ a2i

− λ

�
rh;

ð2:14Þ

which is also proportional to rh. So, by setting a1 ¼ 0 and
rh ¼ 0 one can obtain an extremal black hole with vanishing
horizon area. To show that the ratio of AH and κH remains
finite, we need to do more careful analysis. Actually, from
the above argument and Eq. (2.13), one may deduce it is
necessary to set a1 ¼ 0 first and then rh ¼ 0. In other words,
we should consider the following scaling limit3

rh ¼ ρ0ϵ; a1 ¼ a0ϵ2; ϵ → 0: ð2:15Þ

Now, we can obtain surface gravity κH and area of the
horizon AH via these scaling limits

κH ¼ −
�
a20
ρ40

þ λ3

�
ρ0ϵ; AH ¼ Ad−2

�Yn
i¼2

a2i
Ξi

�
ρ0ϵ;

ð2:16Þ

in which, for convenience, λ3 is defined by
2Although the expressions of thermodynamic quantities are

given for negative λ in that reference but those are valid for
positive cosmological constant as well. This has been checked by
calculating the charges via symplectic phase space method [38].

3In general, one can scale ai with ϵβ as far as β ≥ 2. However,
the near horizon limit of the near-EVH with β ¼ 2 includes also
β > 2 cases.
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λ3 ≡ λ −
Xn
i¼2

1

a2i
: ð2:17Þ

It manifestly shows AH
κH

is finite in ϵ → 0 limit. One may note
that the surface gravity may become negative for some
values of parameters. However, as we will discuss later, it is
not a serious issue and one can show either the negative
temperature is due to cosmological horizon (for λ > 0) or
violation of extremality bound.
Note that EVH limit (2.15) should be also compatible

with VðrhÞ ¼ 2m. Therefore, we need to fix the value of m
in an appropriate way. Consequently, we add the proper
scaling of m to (2.15) and take the following limit as the
EVH limit of Kerr black hole (2.2) in odd dimensions

rh ¼ ρ0ϵ; a1 ¼ a01ϵ2;

m ¼ 1

2

Yn
i¼2

a2i þ ~mϵ2; ϵ → 0; ð2:18Þ

where the parameter ~m is given by

~m ¼ ρ20
2

�
a20
ρ40

− λ3

�Yn
i¼2

a2i : ð2:19Þ

For later use, we also apply this limit to the angular velocity
and the momentum along φ1

Ω1 ¼ a0
ρ20

þOðϵ2Þ; J1 ¼
Ad−2

8πGd

Yn
i¼2

a2i
Ξ2
i
a0ϵ2 þOðϵ4Þ:

ð2:20Þ

One may note the expansions of Ji and Ωi along the other
directions (i ≠ 1) start from the zeroth order of ϵ.
There is an interesting interpretation for ~m. Indeed, one

can simply check that this term does not contribute to any
quantities in the EVH limit. However, for the near EVH
case, this term becomes important and changes the mass of
the black hole above the EVH. In other words, we can
interpret ~m as excitations above the EVH surface in the
parameter space [21,28]. Moreover, by eliminating λ3
between ~m and κH in (2.16), we find ~m depends on the

temperature T ¼ κH
2π and a012

ρ2
0

∼ Ω1
HJ1 in this way,

~mϵ2 ¼ 8πGd
Q

n
i¼2 Ξi

Ad−2

�
1

2
TSþ Ω1

HJ1

�
þOðϵ4Þ: ð2:21Þ

Curiously, the expression inside the parentheses is exactly
the Smarr mass formula for a three-dimensional BTZ black
hole. It suggests that the excitations of EVH black holes
may be governed by a three-dimensional gravity [11,28].
However, one should note that this result is independent of
the λ3. We will come back to this point later.

B. Horizon structure in the EVH limit

In the previous subsection, we considered the EVH limit
for a typical horizon H. However, the metric (2.2) admits
various types of horizons: cosmological, inner or outer
horizon. In what follows, we investigate under which
conditions cosmological horizon (if exists) coincides with
a black hole horizon or two black hole horizons degenerate
in the EVH limit. As a part of these conditions, the sign of
λ3 would be constrained in each situation.
Let us consider the horizon at r ¼ 0, in the EVH limit,

a1 ¼ 0; 2m ¼
Yn
i¼2

a2i : ð2:22Þ

In general, to specify the type of the horizon we analyze
VðrÞ − 2m whose roots determine the locations of the
horizons. Applying the EVH conditions (2.22) to this
expression gives

VðrÞ − 2m ¼ ð1 − λr2ÞΠ − 2m; Π≡Yn
i¼2

ðr2 þ a2i Þ;

ð2:23Þ

that Π is polynomial function of r and can be rewritten as a
summation,

Π ¼
Xn−1
p¼0

Cpðr2Þp; ð2:24Þ

where the Cp coefficients are defined by

Cp≡
Xn

i1<���<iðn−p−1Þ¼2

a2i1a
2
i2
� � �a2iðn−p−1Þ ; Cn−1≡1: ð2:25Þ

In particular, for C0 and C1, we have

C0 ¼
Yn
i¼2

a2i ; C1 ¼ C0

Xn
i¼2

1

a2i
: ð2:26Þ

Substituting (2.24) into (2.23), we obtain

VðrÞ − 2m ¼ ðC0 − 2mÞ þ
Xn−1
p¼1

ðCp − λCp−1Þr2p

− λCn−1r2n: ð2:27Þ

Again, using EVH conditions (2.22), we have C0 ¼ 2m
and by defining Cn ¼ 0, we arrive at the following form
for the exact expansion of VðrÞ − 2m,

VðrÞ − 2m ¼
Xn
p¼1

cpr2p; cp ≡ ðCp − λCp−1Þ: ð2:28Þ
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Near the origin, r ¼ 0, the most dominant term of VðrÞ −
2m comes from the smallest power of r, i.e. r2, which is

c1 ¼ C1 − λC0 ¼ C0

�Xn
i¼2

1

a2i
− λ

�
¼ −2mλ3; ð2:29Þ

and far from the origin, the term r2n is dominant with the
coefficient cn ¼ −λ. Depending on the sign of λ, these
coefficients can be positive or negative. In the following,
we explore each case of positive/negative λ separately.

1. Kerr-dS (λ > 0)

In the presence of positive cosmological constant, the
Einstein equation admits spacetimes with a cosmological
horizon. So, the type of multispinning Kerr-dS EVH black
hole horizons are more complicated. There are three types
of degenerate horizon: (i) the outer horizon of the black
hole coincides with the cosmological horizon, (ii) the outer
horizon comes to the inner horizon and (iii) the cosmo-
logical, outer and inner horizons coincide. Following the
nomenclature of [39] for the extremal four-dimensional
Kerr-dS, we also call them the Nariai, cold and ultracold
limit, respectively.
Nariai limit For the asymptotically dS spaces, cn is

negative, then for the ranges of parameters ai’s where all
cp’s are negative, VðrÞ − 2m has no positive root except at
r ¼ 0 (see Fig. 1). This condition,

cp < 0 ∀ p ¼ 1; 2;…; n; ð2:30Þ

also includes c1 < 0 which translates to λ3 > 0. As we will
show in the next section it implies that the near horizon
geometry have a dS3 part.
Cold limitThis limit only happenswhen the spacetime has

a cosmological horizon at r > 0 (seeFig. 1).Aswewill show
in the following, it indicates λ3 < 0. Descartes’ rule of signs
implies the existence of the cosmological horizon is only
possible when at least a positive cp exists. For the case of

c1 > 0ðλ3 < 0Þ; cp < 0; ∀ p > 1; ð2:31Þ

we have the possibility of at most a positive root for
VðrÞ − 2m. Accordingly, the slope and concavity of this
function is also positive at the origin (c1 > 0) and it goes to
minus infinity in the large r region (cn < 0), then it certainly
has that positive root, at r > 0. As wementioned, this root is
corresponding to the cosmological horizon. Therefore, in
this case, the degenerate horizon at r ¼ 0 comes from the
coincidence of black hole horizons (cold limit).
Now let us assume c1 < 0 (λ3 > 0) and that the cosmo-

logical horizon exists. So, cp’s must be positive for some
p > 1. Using the asymptotic behavior of VðrÞ − 2m and its
concavity at the origin and the cosmological horizon, one
can deduce there is another root between the origin and the

cosmological horizon. In this case, two inner black hole
horizons are degenerate at r ¼ 0 (we do not study this case
anymore since we are interested in the thermodynamics of
outer black hole horizon).
Ultracold limit(s) Up to here, we have assumed that

none of the cp’s are zero and the horizon at r ¼ 0 is just a
double root or equivalently r2 ¼ 0 is a simple root (since
a2i≠1 > 0). However, Kerr-dS admits cp ¼ 0, then r2 ¼ 0

can be n-tuple root by requiring some exact relations
between the parameters ai and λ. The simplest case is
c1 ¼ 0. In this case,

c1 ¼ 0 ¼ λ3 ⇒ λ ¼
Xn
i¼2

1

a2i
: ð2:32Þ

Again, the condition,

cp < 0; ∀ p > 2; ð2:33Þ

guarantees that the root at r ¼ 0, is the largest horizon (see
Fig. 1). The only difference with the condition (2.30) is that
r2 ¼ 0 is a double root now, instead of being a simple root.
Thus, a cosmological horizon coincides with black hole
inner and outer horizons which gives the ultracold limit. We
note that if c1 ≠ 0 and one of the other cp’s vanishes, the
root at r2 ¼ 0 does not change its type because the largest
term in the origin comes from the smallest power of r.
Therefore, to have higher q-tuple root at r2 ¼ 0, all cp’s for
p ≤ q should be zero.
The summary of the results is

Double root at r2 ¼ 0∶ c1 ¼ 0;

Triple root at r2 ¼ 0∶ c1 ¼ 0 and c2 ¼ 0;

q-tuple root at r2 ¼ 0∶ cp ¼ 0 ∀ p < q: ð2:34Þ

2. Kerr-(AdS) (λ ≤ 0)

In these cases, cp’s are always positive and there is no
horizon for r > 0 (see Fig. 2). The degenerate horizon at
origin is due to the coincidence black hole outer and inner
horizons.

C. Near horizon geometries

The near horizon geometry of extremal four-dimensional
Kerr-(A)dS (nonvanishing horizon area) has been studied
in [40,41] and in the asymptotically AdS case in higher
dimensions [42].4 For completion, we also mention the
near horizon geometry of extremal Kerr for generic λ in

4Recently, the near horizon of extremal Kerr-(A)dS-NUT
solution in even dimensions has been studied in [43]. By setting
the NUT charge to zero, one can recover the extremal limit of the
even-dimension extremal Kerr.

AdS3 TO dS3 TRANSITION IN THE NEAR HORIZON OF … PHYSICAL REVIEW D 96, 044004 (2017)

044004-5



Appendix A. In the following, we study the near horizon
geometry of Kerr-dS black hole in the EVH limit.
It is more convenient to use the Kerr-Schild form of

the metric (B2). To obtain the near horizon limit of
EVH, we apply the EVH limit (2.18) and the following
transformation

r ¼ γρþ rh; τ̄ ¼ v
γ
; φ̄1 ¼

ψ

γ
;

φ̄i≥2 ¼ ϕi −Ωi
H τ̄; γ → 0; ð2:35Þ

to the metric (B2) and assume ϵ ≪ γ. In this case, the near
horizon of EVH black hole reads as

ds2NH ¼ μ21

�
σ

ρ2

l33
2
dv2 þ 2dvdρþ ρ2dψ2

�
þ hijðrhÞdϕidϕj þ kijðrhÞdμidμj; ð2:36Þ

where hij and kij can be read from (2.2) or (B2) whose
explicit forms are as follows,

hijðrhÞ ¼
a2i μ

2
i

Ξi
δij þ

μ2i μ
2
j

μ21

aiaj
ΞiΞj

;

kijðrhÞ ¼
a2i
Ξi

δij þ λ
μiμj
W

a2i a
2
j

ΞiΞj
; ð2:37Þ

where i, j run from 2 to n. Also, μi’s are restricted
by

P
n
i¼2 μ

2
i ¼ 1 − μ21. In addition, we introduced the

three-dimensional length scale l33 for convenience and
a sign bookkeeper σ via

λ3 ¼
σ

l33
2
; σ ¼ ð0;�1Þ: ð2:38Þ

One may note that three coordinates ðv; ρ;ψÞmake a three-
dimensional maximally symmetric spacetime and λ3 deter-
mines its curvature. The three-dimensional part is dS3 when
λ3 > 0, three-dimensional flat for λ3 ¼ 0 and AdS3 once
λ3 < 0. This three-dimensional spacetime comes form
joining two-dimensional maximally symmetric subspace
of near horizon of the extremal black hole and extra
coordinate φ1 due to vanishing horizon limit.
Using Eq. (2.17), it is clear that λ3 is always negative

or σ ¼ −1, for λ ≤ 0. This result is in agreement with
theorems of [26,27] which imply that for nonpositive
cosmological constant(λ ≤ 0) EVH black hole in the
Einstein-Λ theory has an AdS3 in the near horizon
geometry. In this case, the near horizon geometry (2.36)
lies in the classified solutions with SO(2,2) symmetry in
[44]. Besides, from Eq. (2.17), one can see the positivity
of the cosmological constant λ > 0 since Kerr-dS admits
three-dimensional flat and dS3 along with AdS3. One may
note that theorems of [26,27] do not exclude these
possibilities. Actually, one of the main motivations of this
paper is to study this possibility.
Another interesting result is that λ3 ¼ 0 is exactly the

condition (2.32) for r2 ¼ 0 to be a double root of
VðrÞ − 2m ¼ 0. Since all higher n-tuple roots assume
vanishing of the second derivative, the near horizon
EVH geometries for all of those cases include three-
dimensional flat spacetime.
We emphasize that this geometry is regular everywhere

except at μ1 ¼ 0 on which the Kretschmann scalar blows
up. This is a typical features of EVHs [11,12].

1. Near horizon of near EVH case

In the previous discussion, we consider the near horizon
limit for the case ϵ ≪ γ. However, in the γ ∼ ϵ limit, we find
a more general near horizon geometry which is called near
horizon near EVH geometries. So, once again, we apply
(2.18) and (2.35), but this time we assume ϵ ∼ γ. Up to a
shift ρ → ρ − ρ0, it leads to

ds2NH ¼ μ21ds
2
3 þ hijðrhÞdϕidϕj þ kijðrhÞdμidμj; ð2:39Þ

where ds23 is defined by

ds23 ¼ −fðρÞdv2 þ 2dρdvþ ρ2
�
dψ −

a0
ρ2

dv

�
2

; ð2:40Þ

and fðρÞ is given by

FIG. 1. Roots of Kerr-dS black hole (λ > 0) in the EVH limit.

FIG. 2. Root of Kerr black hole for λ ≤ 0 in the EVH limit.
There is no horizon for r > 0. In these cases λ3 < 0.
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fðρÞ ¼
ðρ2 − ρ20Þð−σρ2 − a2

0
l33

2

ρ2
0

Þ
ρ2l33

2
: ð2:41Þ

This metric reduces to the near horizon metric of EVH
(2.36) for a01 ¼ ρ0 ¼ 0. The corresponding three-
dimensional part of the above geometry, depending on
σ, is BTZ or Kerr-dS3 [45] or three-dimensional flat space
cosmology (FSC) [46,47]. Metric functions fðρÞ suggests
all of these three-dimensional spacetimes have horizon and
one can attribute temperature or entropy to their horizon.5

In what follows, we survey the thermodynamics of this
three-dimensional part.

D. Thermodynamics of the EVH near horizon

As we mentioned before, the near horizon of EVH
black hole admits a three-dimensional maximally symmet-
ric subspace which is replaced by a more general three-
dimensional spacetime in the near EVH. We take
this three-dimensional subspace as a solution to a three-
dimensional gravity which is obtained by a Kaluza-Klein
reduction over the Md−3 manifold via reduction ansatz
(2.39). It is easy to show that the three-dimensional Newton
constant,G3, is given in terms of the d-dimensional Newton
constant, Gd, as

G3 ¼
2πGd

Ad−2

Yn
i¼2

Ξi

a2i
: ð2:43Þ

Since the three-dimensional metric has horizon, we can
study its thermodynamic in the context of the mentioned
thee-dimensional gravity. Using the standard methods,
charges and chemical potentials of this three-dimensional
spacetime are obtained as

M3 ¼
a20l33

2 − σρ40
8G3l33

2ρ20
ϵ; S3 ¼

πρ0
2G3

ϵ; J3 ¼
a0
4G3

ϵ;

T3 ¼
1

2πl33
2

−σρ40 − a20l33
2

ρ30
; Ω3 ¼

a0
ρ20

; ð2:44Þ

where ϵ factor comes from periodicity of ψ ∈ ½0; 2πϵ� due
to the near horizon limit. Interestingly enough, there is one
to one correspondence between these quantities and the
thermodynamic quantities of original black hole

T ¼ ϵT3; Ω3 ¼ Ω1
H;

S ¼ S3; J1 ¼ ϵJ3: ð2:45Þ

In addition, the mass of three-dimensional spacetime is
related to the excitation of mass parameter m above the
EVH limit, i.e. ~m given in (2.19) through

M3 ¼
Ad−2

8πGd
Q

n
i¼2 Ξi

~mϵ: ð2:46Þ

As we mentioned below Eq. (2.21), it represents Smarr
mass formula M3 ¼ 1

2
T3S3 þ Ω3J3. It is straightforward to

see these quantities satisfy the first law of thermodynamics
for the three-dimensional solution,

δ⊥M3 ¼ T3δ⊥S3 þ
X
i

Ω3δ⊥J3; ð2:47Þ

where δ⊥ refers to variations in the parameter space of the
three-dimensional solution, i.e. fa0; ρ0g. This is a subclass
of parametric variations of Kerr-dS which controls the
distance from the EVH surface in the black hole parameter
space, whereas varying ai≠1 would maintain the solution
EVH in the EVH limit (2.18). In this sense, following
[21,28], we call the first subclass “normal” variations δ⊥
and the latter, “parallel” variations δ∥. In other words, it
means the generic variation δ has a decomposition as δ ¼
δ⊥ þ δ∥. Using these, it is easy to see that Tδ⊥S ¼ T3δ⊥S3,
which implies the following relation between the first law
of the near EVH black hole and the corresponding first law
for three-dimensional space in the near horizon,

Tδ⊥S ¼ δ⊥M −
X
i

Ωi
Hδ⊥Ji;

⇓ ð2:48Þ

T3δ⊥S3 ¼ δ⊥M3 −Ω3δ⊥J3: ð2:49Þ

Indeed, it generalizes the relation between near EVH black
holes thermodynamics and BTZ thermodynamics [21,28]
to general three-dimensional locally maximally symmetric
spaces.
One may note the temperature of the three-dimensional

spacetime is always negative for σ ≥ 0 (λ3 ≥ 0). From
the three-dimensional point of view, these cases present
cosmological horizon of a Kerr-dS3 and cosmological flat
solution. For these spacetimes, the negativity of the
cosmological horizon temperature is known [48].
Besides, from the original EVH black hole perspective,
as we mentioned before, λ3 ≥ 0 is corresponding to Nariai
and ultracold limits where in the both of them the
cosmological horizon is involved. Therefore, one can relate
the negativity of the temperature to cosmological nature of

5We note that using the transformation dv ¼ dtþ dρ
fðρÞ, the

metric takes the standard form of BTZ, Kerr-dS3 and flat space
cosmology metric,

ds2 ¼ −fðρÞdt2 þ dρ2

fðρÞ þ ρ2ðd ~ψ − ΩdtÞ2: ð2:42Þ
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the horizon. In addition, for σ ¼ −1 where the three-
dimensional part is a BTZ black hole, one must assume
ρ20 > a01l33 to preserve the extremality bound of the near
EVH black hole and the corresponding BTZ black hole.
Clearly, it implies the positivity of temperature.

E. Cardy-like formula and black hole entropy

We have seen the correspondence between thermody-
namic quantities of the near horizon geometry and the EVH
black hole. For λ3 < 0, the existence of AdS3 geometry
suggests a CFT2 dual description for the physics of the
near horizon geometry. In particular, one can apply Cardy
formula to obtain the entropy of the near horizon BTZ
black hole [49] which equals to the original near EVH
black hole entropy [11]. In Appendix C, we study this case.
For λ3 ≥ 0, where the three-dimensional part of the

near horizon is either locally flat or dS3, there are several
proposals for dual description of these geometries in the
context of dS/CFT [50–52] and flat space holography
[53,54]. Although these proposal generically have some
problems with unitarity, but one may apply their procedures
and use the Cardy-like formula to Kerr-dS3 or three-
dimensional FSC and obtain the entropy.

III. COSMOLOGICAL SOLITON

In this section, we will study the EVH limit of cosmo-
logical soliton. This geometry is asymptotically dS and as
we will show, and it also admits a dS3 in the near horizon
region of its EVH limit. The metric of the cosmological
soliton in odd dð¼ 2nþ 1Þ dimensions is given by [55,56]

ds2 ¼ −gðrÞdt2 þ dr2

gðrÞfðrÞ

þ
�
r
n

�
2

fðrÞ
�
dψ þ

Xn−1
i¼1

cos θidϕi

�
2

þ r2

2n

Xn−1
i¼1

dΣ2
i ;

ð3:1Þ

where

gðrÞ¼1−
r2

l2
; fðrÞ¼1−

a2n

r2n
; dΣ2

i ¼dθ2i þsin2θidϕ2
i ;

ð3:2Þ

θi and ϕi parametrize (n − 1) numbers of 2-spheres, so
θi ∈ ½0; π� and ϕi ∈ ½0; 2π�. This metric solves the Einstein
Eq. (2.1) with

λ ¼ σ

l2
; σ ¼ 0;�1; ð3:3Þ

where σ ¼ 0;−1 represent asymptotically flat and AdS
spaces respectively which do not admit EVH limit. Thus,
we only consider the σ ¼ þ1 case in the following. This

solution is described by two parameters a and l. Since the
factor fðrÞ takes both negative and positive values and ψ is
periodic, one may worry about the existence of closed
timelike curve (CTC). To avoid this issue, one needs to fix
the range of parameters and coordinates. Besides, we are
also interested in the static patch of the solution. Thus, to
find a static CTC-free patch, we will analyze the metric in
the following. Let us consider two cases where a > l or
a < l and determine the sign of each metric components.
(We will come back to the case a ¼ l later when we study
the EVH limit.) The summary of results is given in Tables I
and II for a < l and a > l cases, respectively.
As is clear from Table I, in the case of a < l, this metric

has timelike Killing vector (∂t) in the region r ≤ l and so is
static in that region. Meanwhile, it has CTC along ψ
direction in the region r < a, therefore we restrict our study
to the region a ≤ r ≤ l (it has also been studied in [57]).
In this region, r is a spacelike coordinate and t is timelike
one. Evidently, ψ and ϕi’s are spacelike coordinates in this
region.
For the case of l < a, the region which does not include

CTC is r ≥ a. While the metric is static in the region r ≤ l
and does not have overlap with no-CTC region. Therefore,
we do not consider this case anymore.
The cosmological horizon of this solution is located at

r ¼ l, and the horizon topology is S1 × ðS2Þn−1. One may
note that when l → ∞, this horizon disappears and the
metric goes to the d-dimensional Eguchi-Hanson met-
ric [55,56].

A. Thermodynamic quantities

Using the symplectic phase space method [38,58,59], the
mass for this solution can be computed,

TABLE II. The a > l case.

r 0 l a ∞

gðrÞ þ − −
f(r) − − þ
k∂rk2 − þ −
k∂tk2 − þ þ
k∂ψk2 − − þ

TABLE I. The a < l case.

r 0 a l ∞

gðrÞ þ þ −
f(r) − þ þ
k∂rk2 − þ −
k∂tk2 − − þ
k∂ψk2 − þ þ
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M ¼ kna2n

8πGdl2
; kn ≡ 1

2

�
2π

n

�
n
; ð3:4Þ

where Gd is the d-dimensional Newton’s constant. The
advantage of the symplectic phase space method is that it is
not sensitive to the sign of cosmological constant and
enables us to compute charges on codimension-two surfa-
ces at any radius, not necessarily at infinity. In addition,
straightforward calculations for temperature and entropy
reveal that

T ¼ −
1

2πl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
a2

l2

�
n

s
; S ¼ knlð2n−1Þ

2Gd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
a2

l2

�
n

s
:

ð3:5Þ

Similar to Kerr-dS in the previous section, we assume
the temperature of cosmological horizon is negative. This
justifies the minus sign in above temperature. Given these
thermodynamic quantities, it is easy to check the first law of
thermodynamics,6

δM ¼ TδS: ð3:6Þ

B. Extremal vanishing horizon limit

As is clear from the above, the relation between entropy

and temperature of this solution is given by S
T ¼ − πknl2n

Gd
.

Then, the EVH limit is simply obtained by a → l, or more
precisely

a ¼ l
�
1 −

b2

2
ϵ2
�
; ϵ → 0: ð3:7Þ

The minus sign before ϵ2 ensures that we are taking a → l
limit for a < l. It is worthwhile to mention, this solution
does not admit an extremal limit with nonzero entropy, in
contrast to what we usually expect in black hole physics.
Near the EVH limit, temperature and entropy behave as

T ¼ ~TϵþOðϵ2Þ; ~T ¼ −
b

ffiffiffi
n

p
2πl

;

S ¼ ~SϵþOðϵ2Þ; ~S ¼ knb
ffiffiffi
n

p
2Gd

lð2n−1Þ: ð3:8Þ

From the above, it is clear that the ratio of temperature and
entropy is finite in the ϵ → 0 limit. In addition, the mass has
the following expansion in the EVH limit,

M ¼ Mð0Þ þMð2Þϵ2 þOðϵ4Þ; ð3:9Þ
where

Mð0Þ ¼ knl2ðn−1Þ

8πGd
; Mð2Þ ¼ −nb2Mð0Þ; ð3:10Þ

which remains nonzero (Mð0Þ ≠ 0) when ϵ → 0. Before
closing this part, we would like to mention in this limit,
vanishing of horizon area is a result of vanishing one-cycle
on the horizon along the Killing direction ∂ψ . It can be
inferred by looking at the metric of the horizon in EVH limit

ds2H ∼
l2b2

n
ϵ2
�
dψ þ

Xn−1
i¼1

cosðθiÞdϕi

�2

þ l2

2n

Xn−1
i¼1

dΣ2
i þOðϵ2Þ: ð3:11Þ

C. Near horizon geometries

In the EVH limit, a → l, the width of static region goes
to zero. For that narrow region, we study the near horizon
geometry using

r¼a

�
1þ n

2l2
γ2ρ2

�
; t¼ τ

γ
; ψ¼Ψ

γ
; γ→0; ð3:12Þ

along with the EVH limit (3.7). We note that this trans-
formation is built such that we are taking the near horizon
limit while we are still between r ¼ a and r ¼ l. This gives
a geometry which includes two small parameters ϵ and γ.
For ϵ ≪ γ, the resulting geometry is

ds2NH ¼
�

ρ2

l33
2
dτ2 − l33

2
dρ2

ρ2
þ ρ2dΨ2

�
þ l2

2n

Xn−1
i¼1

dΣ2
i ;

ð3:13Þ
where l2

3 ¼ l2

n . The expression in the parentheses describes
a locally dS3 spacetime whose radius is l33. Using the
transformation (3.12) in the near EVH limit (ϵ ∼ γ), we get
the near horizon near-EVH geometry

ds2NH ¼
�
fðρÞdτ2 − dρ2

fðρÞ þ ρ2dΨ2

�
þ l2

2n

Xn−1
i¼1

dΣ2
i ;

ð3:14Þ
where

fðρÞ ¼ ρ2

l33
2
− b2: ð3:15Þ

One can compare this geometry with the generic three-
dimensional near horizon in (2.40): they match by setting
a0 ¼ 0, ρ20 ¼ l33

2b2 and changing the coordinates as
dv ¼ dτ þ dρ

fðρÞ, along with setting σ ¼ þ1 (since the

geometry is locally dS3).
We note that in both near horizon metrics (3.13) and

(3.14), the range of coordinate Ψ is ½0; 2πγ�. However, in

6In this paper, we fix λ (cosmological constant) and do not
consider the contribution of δλ to thermodynamics. However, the
authors of [57] use a different approach and take λ as a variable.
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contrast to what happens for the EVH limit of Kerr, near
horizon metric for (near) EVH soliton is regular everywhere
except at the origin (where the conical singularity of ψ
occurs).

D. Thermodynamics of the EVH near horizon

Analogous to what we have done for the near horizon of
EVH Kerr-dS in the previous section, we can define
thermodynamic quantities for the three-dimensional part
of the near horizon metric. Therefore, we reduce the
Einstein-Hilbert action on the (d − 3)-dimensional mani-
fold to three dimensions via the metric ansatz (3.13). After
this reduction, the three-dimensional Newton constantG3 is
obtained in terms of Gd as

G3 ¼
πGd

nkn
l−2ðn−1Þ: ð3:16Þ

Then the mass, temperature and entropy of the remaining
three-dimensional space are

M3¼−
b2

8G3

ϵ; T3¼−
b

2πl3

; S3¼
πbl3

2G3

ϵ: ð3:17Þ

It is easy to check that the first law of thermodynamics
holds for these quantities:

δM3 ¼ T3δS3: ð3:18Þ

Here, δ⊥ is the same as δ, because the parameter space of
three-dimensional subspace in the near horizon and soliton
are the same. In other words, thermodynamics of this three-
dimensional subspace is induced by the cosmological
soliton thermodynamics near the EVH limit, (3.9), (3.8),
with these scaling

M3 ¼ ϵMð2Þ; T3 ¼ ~T; S3 ¼ ϵ ~S: ð3:19Þ

IV. SUMMARY AND DISCUSSION

All the so-far studied examples of EVH black holes, e.g.
[12–22] and black rings [23–25] are asymptotically AdS or
flat spacetimes and they have the AdS3 factor in their near
horizon geometries. Based on the theorems studied in
[26,27], near horizon EVH geometries of asymptotically
de Sitter spaces, unlike anti–de Sitter spaces, can have
either dS3, three-dimensional flat space or AdS3 as a
subspace.7 Motivated by this, in this paper, we analyzed
the extremal vanishing horizon limit of two asymptotically
de Sitter spacetimes.
In the first example, we studied the EVH limit of a

d-dimensional Kerr-(A)dS black hole and see that, this limit

can only occur in odd dimensions (similar to the EVH case
of Myers-Perry black hole [18,23]). Then we studied the
near horizon behavior in this limit and observed that the
near horizon EVH geometry enjoys a three-dimensional
maximally symmetric subspace. Depending on the sign of
curvature of the three-dimensional subspace, λ3 ¼ λ −P

i¼2a
−2
i , it can be dS3, AdS3 or flat. Thus, for asymp-

totically AdS black holes (λ < 0), the λ3 is also negative and
the three-dimensional subspace can only be AdS3. In the
asymptotically flat case, this solution reduces to the known
d-dimensional Myers-Perry black hole, so its near horizon
contains AdS3 (λ3 < 0). However, in asymptotically de
Sitter case (λ > 0), λ3 can be positive, zero or negative.
For the highly spinning Kerr-dS black hole, λ3 is positive
and near horizon includes a dS3 factor.
In general, the Kerr-dS solution has at most ½dþ1

2
� roots

for the horizon Eq. (2.6). The largest one is the cosmo-
logical horizon. The EVH limit could be either the result of
the degeneracy of a black hole outer horizon with its
cosmological horizon (Nariai limit) or with its inner
horizon (cold limit) or with both of them (ultracold limit).
We discussed the necessary conditions for each of these
limits in Sec. II B.
We also discussed the thermodynamics of the near EVH

limit. Indeed, there are two types of fluctuations around the
EVH black hole: those which remain in the EVH surface
and those which make the solution parameters out of EVH
surface (normal to the EVH surface in the parameter space).
Allowing for the fluctuations normal to the EVH surface, we
find near horizon near-EVH geometries. Depending on the
sing of λ3, we found Kerr-dS3, BTZ or flat space cosmology
factor in the near horizon near-EVH geometries. We also
studied the thermodynamic behavior of these near horizon
geometries. There is a one-to-one relation between these
behaviors and the thermodynamics of the black hole itself.
Since λ is the parameter of the theory which is fixed and ai’s
are solution parameters which can be varied, it is interesting
to study the phase transition between three possible three-
dimensional geometries via changing ai’s in the context of
original EVH black hole thermodynamics. On the other
hand, we limited the variations to be “normal” to the EVH
surface and kept λ3 and G3 constant. It is possible to take λ3
as a variable and study the thermodynamics of near horizon
near-EVH geometries for generic variations which could be
parallel or normal to the EVH surface. In this case one may
study the thermodynamics of the near horizon geometry in
the context of extended phase space thermodynamics
e.g. [60,61].
Presence of the AdS3 factor in the near horizon geometry

enables us to describe the physics of the black hole in the
vicinity of its horizon by a two-dimensional CFT in the
context of AdS3=CFT2. In particular, the entropy of near
horizon BTZ black hole is obtained via Cardy formula (see
Appendix C). When the three-dimensional part of the near
horizon metric is locally dS3 or flat, one may apply dS/CFT

7In asymptotically AdS spacetimes, that subspace is restricted
by the strong energy condition to be only AdS3 [26,27].
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[50–52] and flat space holography [53,54] proposals to
study the near horizon geometry. Especially for the
proposed dS3=CFT2 in the Nariai limit, it is instructive
to compare the result with what is obtained via Kerr/CFT in
the Nariai limit of Kerr-dS [62]8

In the second example, we considered another type of
asymptotically de Sitter solution, the cosmological soliton.
Using the symplectic phase space method [38], we com-
puted its thermodynamic quantities and integrable charges.
Our result for the mass is independent of the radius of
the codimension-two surface on which the conserved
charge is computed. Therefore, our result for the mass is
different from the masses,Min andMout given in [57].

9 The
discrepancy can be a consequence of using the extended
phase space thermodynamics that they have considered.
An interesting observation is that the entropy of the

cosmological soliton is proportional to its temperature.
Thus, the extremal limit of this solution is already the EVH
limit. In this sense, this is not a standard Nariai limit.
Unlike most other EVH black holes, the horizon of the

cosmological soliton is smooth everywhere and free of
curvature singularity. This is a counter example to the lore
that EVH black holes are naked singularities.
In the near horizon of EVH cosmological soliton, we

found only dS3 subspace in contrast to the EVH Kerr-dS
for which AdS3 and three-dimensional flat space is also
possible. This dS3 factor of the near horizon turns into
Kerr-dS3 in the near EVH limit. We also discussed
thermodynamics of this type of geometries and its relation
to soliton thermodynamics. After reduction on the (d − 3)-
dimensional space, we get an asymptotically dS3 space.
Studying the dual CFT2 (if it exists) is another interesting
question which should be answered.
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APPENDIX A: NEAR HORIZON EXTREMAL
GEOMETRY OF KERR-DS SOLUTION

The near horizon of the extremal limit of more general
Kerr-NUT-(A)ds spacetimes in even dimensions has been

study recently in [43]. Here, we briefly note this limit
for (2.2). Since the surface gravity of this black hole is
proportional to V 0ðrhÞ (2.8), the extremal limit simply is
given by V 0ðrhÞ ¼ 0. We are interested in the near horizon
limit so we can expand the metric around rh. In particular,
the metric time-time component gtt is proportional to
ðVðrÞ − 2mÞ and it vanishes at rh. Therefore, the near
horizon expansion, gtt should start from V 00ðrhÞ. The same
argument also works for g−1rr . Changing the coordinates as

φi → ϕi ¼ φi −Ωi
Ht; r − rh ¼ γρ; t ¼ τ

Xγ
;

X ¼ jV 00ðrhÞj
4m

ð1 − λr2hÞ ðA1Þ

and taking the γ → 0 limit, we find the near horizon
extremal geometry,

ds2 ¼ 4mF
V 00

�
−ρ2dτ2 þ dρ2

ρ2

�
þ hijðrhÞðdϕi − ρkidτÞ

× ðdϕj − ρkjdτÞ þ kijðrhÞdμidμj; ðA2Þ

where hij and kij can be read from (2.2) as

hijðrÞ ¼
ðr2þa2i Þ
ð1þ λa2i Þ

μ2i δijþ
2m
VF

aiμ2i
ð1þ λa2i Þ

ajμ2j
ð1þ λa2jÞ

;

kijðrÞ ¼
ðr2þa2i Þ
ð1þ λa2i Þ

δijþ
λ

Wð1− λr2Þ
ðr2þa2i Þμi
ð1þ λa2i Þ

ðr2þa2jÞμj
ð1þ λa2jÞ

;

ðA3Þ

and i, j run from 1 to n. In the near horizon geometry (A2),
ki is given by

ki ¼ dΩi

dr

����
r¼rh

; ðA4Þ

such that

Ωi ¼
�

W
1þ g

2m
VF

�
ai

ðr2 þ a2i Þ
;

g≡ 2m
VF

Xn
i¼1

a2i μ
2
i

ð1þ λa2i Þðr2 þ a2i Þ
: ðA5Þ

(The horizon angular velocity Ωi
H, can be read from the

above expressions for Ωi on the horizon.) Simple calcu-
lation shows that

V 00ðrhÞ ¼
8mr2h

ð1 − λr2hÞ2
�
1 − 2λr2h

r4h
−
Xn
i¼1

ð1 − λr2hÞ2
ðr2h þ a2i Þ2

�
: ðA6Þ

8In [62], the authors only consider four-dimensional Kerr-dS
but its generalization would be straightforward.

9We remind the reader that “in” and “out” refer to inside and
outside the cosmological horizon in [57].
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APPENDIX B: KERR-DS METRIC
IN THE KERR-SCHILD FORM

The Kerr-Schild form of the Kerr-dS metric is given
by [34]

ds2 ¼ ds̄2 þ 2m
VF

ðkμdxμÞ2; ðB1Þ

in which the de Sitter metric ds̄2 and the null one-form kμ
are as follows:

ds̄2 ¼ −Wð1 − λr2Þdτ̄2 þ Fdr2 þ
Xn
i¼1

μ2i
Ξi

ðr2 þ a2i Þdφ̄2
i

þ
Xnþα

i¼1

ðr2 þ a2i Þ
dμ2i
Ξi

þ λ

Wð1 − λr2Þ
�Xnþα

i¼1

ðr2 þ a2i Þ
μidμi
Ξi

�2

;

kμdxμ ¼ Wdτ̄ þ Fdr −
Xn
i¼1

aiμ2i
Ξi

dφ̄i: ðB2Þ

where, the functions V, F, W and Ξ are defined in
Eqs. (2.4) and (2.3). Using the coordinate transformation
[34]

dτ̄ ¼ dtþ 2mdr
ð1 − λr2ÞðV − 2mÞ ;

dφ̄i ¼ dφi þ
2maidr

ðr2 þ a2i ÞðV − 2mÞ ; ðB3Þ

one can get the metric (2.2).

APPENDIX C: BLACK HOLE ENTROPY FROM
THE CARDY FORMULA (λ3 < 0)

For λ3 < 0, there is a BTZ black hole in the near horizon
of near EVH black hole. The standard AdS3=CFT2 shows

Virasoro operators L0 and L̄0 of CFT2 are given in terms of
mass mBTZ and angular momentum JBTZ

L0 −
c
24

¼ 1

2
ðl3mBTZ þ JBTZÞ;

L̄0 þ
c
24

¼ 1

2
ðl3mBTZ − JBTZÞ; ðC1Þ

where c is the central charge of the corresponding Virasoro
algebra. Following the seminal work of Brown-Henneaux
[63] and taking into account the pinching periodicity of
ψ ∈ ½0; 2πϵ� one can show

c ¼ 3l33

2G3

ϵ ¼ 3l33Ad−2

4πGd

Yn
i¼2

a2i
Ξi

ϵ: ðC2Þ

To keep c finite, we should scale Gd with ϵ [17]. Indeed,
one can define the EVH limit via the following triple
limits [11]

AH; κH; Gd→0;
A
κ
;

A
Gd

finite; ðC3Þ

Now, we can obtain the finite entropy of the BTZ black
hole via Cardy formula

S ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6

�
L0 −

c
24

�s
þ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6

�
L̄0 −

c
24

�s

¼ πρ0
2G3

¼ Ad−2

4Gd

�Yn
i¼2

a2i
Ξi

�
ρ0; ðC4Þ

which is exactly the entropy of near horizon BTZ and the
corresponding near EVH black hole.
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