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The spin connection enters the theory of gravity as a non-Abelian gauge field associated with local
Lorentz transformations. Normally it is eliminated from making an extra assumption—that of the metricity
of the vierbein field. However, treated by itself with the usual gauge action, it has a negative beta function,
implying that it is asymptotically free. I suggest that the spin connection could be confined (or perhaps
partially confined) in the same way as other non-Abelian gauge fields. This would remove the need to make
the extra assumption of metricity, as the spin connection would not be present in the low energy theory,
leaving the symmetry to be realized only using metric variables.
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I. INTRODUCTION

When applied to fermions, general covariance most
naturally involves two fields—the vierbein (or tetrad)
eaμðxÞ and the spin connection (or Lorentz connection)
Aab
μ ðxÞ. This construction, originally due to Utiyama [1]

and Kibble [2], will be reviewed below. In general this is
not a purely metric theory of gravity. In order to reduce to
general relativity, one needs to impose an extra constraint,
that of metricity for the vierbein, which relates the spin
connection to the usual connection given by derivatives of
the metric. The relation is

Aab
μ ðxÞ ¼ eaνð∂μebν − Γμν

λebλÞ ð1Þ

where Γλ
μν is the usual connection defined using the metric.

This eliminates the spin connection as an independent
degree of freedom. This extra constraint is unfortunate
because it goes beyond the simple symmetry construction
based purely on general covariance.
However, the spin connection is a non-Abelian gauge field

of the group SOð3; 1Þ. Our present expectation based largely
on lattice gauge theory is that non-Abelian gauge fields are
confined. The group SOð3; 1Þ is not a compact group so that
it is not totally clear that this expectation applies to the spin
connection. However, its Euclidean partner is Oð4Þ, which
is known to be confined. If confinement does occur, it would
remove the need for the metricity constraint as a separate
assumption. This is because the dynamical connection A
would be removed from the spectrum by confinement rather
than by the constraint. However, the symmetries of general
relativitywould remain unchanged.These symmetries can be
still realized below the confinement scale using only the
vierbein. There would still be the need for a spin connection
term in the fermion Lagrangian. Since the only dynamical
field is the vierbein, the spin connection of the low energy

theory will be composed of only this field. The only form
which has the right symmetry is that given on the right-hand
side of Eq. (1). Having removed the dynamical spin
connection by confinement, its role in the low energy theory
is dictated by the symmetry to be composed of the vierbein
field.

II. SPIN CONNECTION AS AN
ELEMENTARY FIELD

General relativity1 is described by a metric field gμνðxÞ.
Under general coordinate changes xμ → x0μ, the metric
transforms in such away that the infinitesimal distanceds2 ¼
gμνdxμdxν is invariant, i.e. g0μνðx0Þdx0μdx0ν ¼ gμνðxÞdxμdxν.
The equivalence principle then allows us to choose a
coordinate system that locally redefines the metric to be flat
at a given point. The change from a general coordinate
system to an infinitesimally flat one defines the vierbein field
eiμðxÞ and allows the metric to be written in terms of the
vierbein as

gμνðxÞ ¼ ηabeaμðxÞebνðxÞ ð2Þ

where ηab is the flat Minkowski metric. One also defines the
inverse metric gμν and inverse vierbein eμa with e

μ
aeaνðxÞ ¼ δμν

and eμaebμðxÞ ¼ δba. Latin indices are raised and lowered with
ηab, ηab and greek ones with gμνðxÞ, gμνðxÞ.
In addition to the general coordinate invariance, under

which the vierbein transforms as

e0aμ ¼
∂xν
∂x0μ e

a
ν ð3Þ

*donoghue@physics.umass.edu

1My conventions follow closely those of the textbook by
Gasperini [3], except for ωab

μ → Aab
μ and Rab

μν → Fab
μν which I have

adopted to emphasize the nature of the connection as a gauge
field. The quantum field theory of gravity in this convention
summarized in Ref. [4].
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there is extra local Lorentz symmetry

e0aðxÞ ¼ Λa
cðxÞecðxÞ with ηabΛa

cðxÞΛb
dðxÞ ¼ ηcd:

ð4Þ

When dealing with spinless particles this extra Lorentz
symmetry (denoted in this paper by latin indices) is
inessential, and all physics can be written in terms of
the metric.
However, when dealing with fermions the situation is

different. The Dirac matrices γa do not transform as
coordinates and here the a index is a flat Lorentz-like
index. In order to write an invariant Dirac Lagrangian the
gamma matrices and the derivatives must be contracted
using the (inverse) vierbein

L ¼ ψ̄ ½iγaeμaðxÞ∂μ þ � � ��ψ : ð5Þ

In addition, the fermions transform under the local Lorentz
symmetry

ψ → ψ 0ðx0Þ ¼ SðxÞψðxÞ ð6Þ

where in matrix notation

SðxÞ ¼ exp

�
−i
2
JabαabðxÞ

�
ð7Þ

where αabðxÞ is the parameter associated with the local
Lorentz transformation Λ and

Jab ¼
σab
2

with σab ¼
i
2
½γa; γb�: ð8Þ

In order that this symmetry be local, we introduce [1,2] a
gauge field Aab

μ and covariant derivative Dμ with

L ¼ ψ̄ ½iγaeμaðxÞDμ −m�ψ ð9Þ

with

Dμ ¼ ∂μ − ig
Jab
2

Aab
μ ≡ ∂μ − igAab

μ : ð10Þ

Here g is a coupling constant (not to be confused with
the determinant of the metric), which is introduced in order
to allow the field Aab

μ to have the proper kinetic energy
Lagrangian, which will be shown below. Traditionally the
factor of g is absorbed into the field as no kinetic term is
considered.
Under the local Lorentz transformation of Eq. (6), the

fields transform as

A0
μ ¼ SAμS−1 −

i
g
ð∂μSÞS−1;

eμ
0

a ¼ Λb
aðxÞeμb with S−1ðxÞγaSðxÞΛb

aðxÞ ¼ γb: ð11Þ

This combined with the general coordinate transformation

A0
μ ¼

∂xν
∂x0μ Aν;

e0μa ¼ ∂x0μ
∂x0ν e

ν
a ð12Þ

define the symmetries of the theory.
It is straightforward to define a field strength tensor

for the gauge field. We note that the spin algebra is that of
SOð3; 1Þ, with the generators satisfying

½Jab; Jcd� ¼ iðηadJbc þ ηbcJad − ηacJbd − ηbdJacÞ: ð13Þ

Equivalently, using the notation for antisymmetric indices

½ab� ¼ 1

2
ðab − baÞ and a�…½b ¼ 1

2
ða…b − b…aÞ

ð14Þ

we can write this as

½Jab; Jcd� ¼ 2if½ab�½cd�½ef�Jef ð15Þ

using the structure constants f½ab�½cd�½ef� defined via2

f½ab�½cd�½ef� ¼ −
1

4
½ηbcηdeηfa − ηbdηceηfa − ηbcηdfηea

þ ηbdηcfηea − ηbcaηdeηfb þ ηadηceηfb

þ ηacηdfηeb − ηadηcfηeb�
≡ 2ηb�½cηd�½eηf�½a: ð16Þ

These structure constants are totally antisymmetric in the
pairs ½ab�, ½cd�, ½ef�. The field strength tensor is defined via

½Dμ; Dν� ¼ −ig
Jab
2

Rab
μν ð17Þ

with

F½ab�
μν ¼ ∂μA

½ab�
ν − ∂νA

½ab�
μ þ gf½ab�½cd�½ef�A

½cd�
μ A½ef�

ν ð18Þ

or more simply

Fab
μν ¼ ∂μAab

ν − ∂νAab
μ þ gðAac

μ Aνc
b − Aac

ν Aμc
aÞ: ð19Þ

2A somewhat similar compact notation has been used in
Ref. [5].
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This construction is more general than the one reviewed
here involving fermions. The covariant derivative can be
defined for any spin by generalizing the spin generator Jab,

always reproducing the same field strength tensor F½ab�
μν .

At this stage, there are two separate fields, the spin
connection Aab

μ ðxÞ and the vierbein eμaðxÞ. Conventionally,
these are tied together by an extra assumption, one which
is distinct from the symmetries of the theory. This is the
metric condition for the vierbein or simply metricity.
By defining covariant derivatives in the usual way, one
postulates that the covariant derivative of the vierbein
vanishes. Specifically this implies that

∇μeaν ¼ 0 ¼ ∂μeaν þ gAa
bμebν − Γμν

λeaλ : ð20Þ

Here Γμν
λ is the usual connection defined from the metric

Γμν
λ ¼ 1

2
gλσ½∂μgσν þ ∂νgμσ − ∂σgμν�: ð21Þ

Solving for the spin connection leads to the conclusion
shown in Eq. (1)—that the spin connection is determined
from the vierbein and is not an independent field if this
assumption is made.3 Note that in Eq. (1), I reverted to the
tradition of absorbing the coupling constant into the field
gAab

μ → Aab
μ . After imposing metricity, and converting

Lorentz indices to spacetime ones

Rμναβ ¼ eaαebβFab
μν ð22Þ

we recover the usual general relativity with Rμναβ being the
Riemann tensor.
Of course, one is not forced to introduce the spin

connection as an independent field. If one wants the theory
to be a purely metric theory from the start, one is able to
construct the Dirac Lagrangian directly with the vierbein
field, yielding the same result as occurs after the imposition
of metricity. This would be the path of the classical theory
where the geometric picture is paramount. However, given
what we have learned about the construction of funda-
mental theories as gauge theories, the spin connection is the
most natural part of the construction. To gauge theorists, it
is more clearly a fundamental field. In this case, the
imposition of the metricity condition feels unnatural.
However, if the spin connection is confined (or partially

confined) and does not appear in the low energy spectrum,
this extra assumption is not required. Even if the dynamical
spin connection cannot propagate at low energy, the
symmetry of the theory is unchanged. That symmetry
can be realized using only the metric and vierbein. The

fermion Lagrangian will still have a term in it which plays
the role of the spin connection, but it will be a composed
field constructed from the vierbein, not an independent
dynamical field. In this case, the symmetry plus the lack of
a propagating spin connection requires that the construction
must necessarily be that of the usual metric theory.

III. ASYMPTOTIC FREEDOM

Will the spin connection be confined? The analogy to
other non-Abelian gauge fields certainly suggests that
confinement is possible. However, we do not have analytic
control over the nonperturbative region, so that there is not
a simple analytic test to answer this question. Nevertheless
indications do point to this outcome.
The spin connection treated as a gauge field is asymp-

totically free and describes a theory which is weakly
coupled at high energies and strongly coupled at low
energies. Consider first the usual gauge Lagrangian4

L ¼ −
1

4
Fab
μνF

μν
ab: ð23Þ

Following from this one obtains the usual Feynman rules
for gauge theories, but with the gauge structure constants
fijk replaced by f½ab�½cd�½ef�. All of the quantization and loop
calculation goes through as usual, with the only change
being the quadratic Casimir being modified from

fimnfjmn ¼ C2δij ð24Þ
with C2 ¼ N for SUðNÞ to

f½ab�½cd�½ef�f½gh�½cd�½ef� ¼ C2δ
½gh�
½ab� ð25Þ

with the result that C2 ¼ 2. The resulting beta function
is then

βðgÞ ¼ −
11C2

3

g3

16π2
¼ −

22

3

g3

16π2
: ð26Þ

The explicit calculation for the renormalization purely within
the gauge sector of Yang-Mills theory is shown in detail in
Ref. [6]. With the substitution of the Casimir, the spin
connection calculation is identical. In contrast with usual
gauge theories, the fermion loop does not contribute to the
renormalization of the charge, as defined by the action
Eq. (23). This will be discussed more below. Graviton loops
with the usual graviton propagator also donot renormalize the
gauge Lagrangian, as they add a dimensionful coupling—
Newton’s constant G—and generate higher-dimension oper-
ators.More discussion of the gravitational sector can be found

3The condition can also be imposed using a first order
formalism [2], but this is simply another mechanism for making
the same assumption as there are many other possible actions
besides the one assumed in the first order formalism.

4This is the equation which defines the normalization of the
kinetic energy term. If we had absorbed the coupling constant
into the spin connection, the coupling would reappear here as the
initial coefficient 1=4 would become 1=4g2.
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in Ref. [7]. Asymptotic freedom implies that the charge is
weak at high energy, but grows nonperturbatively large at low
energy. The apparent divergence of the coupling constant at
low energy is generally treated as an indication of confine-
ment (infrared slavery).
An oversimplified version of the logic for confinement is

that isolated charged fields must have large fields around
them by Gauss’s law, costing an energy which grows as the
coupling grows. A singlet combination of fields does not
have to pay this price. Heuristically, this can be argued by
noting that the interaction between two gluons or two spin
connections is attractive in the singlet channel at first order
in perturbation theory. The gluons or spin connections are
massless in this approximation, and naively one can take
their momentum towards zero. The resulting attractive
interaction however is growing at low energy such that
this state falls below zero energy and forms a singlet
condensation. Of course, this perturbative picture does not
do justice to the strong dynamics at low energy. However,
our naive ways developed to conceptualize confinement
and vacuum condensation in QCD seem to apply in the
singlet channel to the spin connection as well, so that it
appears reasonable to consider this possibility.
It is possible that partial confinement would also have the

desired effect. If the resulting vacuum condensate at strong
coupling does not absolutely confine but still exhibits a
large energy gap, of order the Planck energy, then spin
connection excitations would not propagate at low energy
and we would not be able to distinguish total confinement
from partial confinement.

IV. DISCUSSION

One important difference from usual gauge theories is
that the group SOð3; 1Þ is noncompact. If one ignores
interactions, one can see that different components of the
free field Hamiltonian enter with different signs, which can
be traced back to the contraction with the flat metric tensor
ηab which has terms of both signs. However, if the theory
is confined or even simply strongly interacting, the free
field Hamiltonian may not have any relevance to the
physical spectrum [8]. Since this feature is a property
of the free theory, it is not clear that the interacting theory is
ill-defined. In particular, if the connection is confined, it
does not itself appear in the spectrum. If one looks at the
Lorentzian path-integral treatment

Z ¼
Z

½dA�ei
R

d4x½−1
4
Fab
μνF

μν
ab� ð27Þ

the issue of the signs þi or −i in the exponent do not by
themselves influence the convergence of the path integral.
In order to make the integral fully well defined, one defines
the Lorentzian path integral from the analytic continuation
of the Euclidean path integral. In the latter situation, one
must redefine the field variables also. The Lorentz gauge
group Oð3; 1Þ becomes Oð4Þ in Euclidean space. The

Euclidean action carries a definite sign and the path integral
becomes well defined.
If we address the issue of confinement using lattice

gauge theory, the spin connection is clearly confined close
to flat space. This is because the lattice theory is defined
using the Euclidean continuation. This compact Oð4Þ
gauge group shares the same beta function as the
Lorentzian version.5 It confines in the same way as other
non-Abelian groups. So if the Euclidean analytic continu-
ation is meaningful, the spin connection will be confined.
There is a second complication which is also funda-

mentally important. The existence of the vierbein allows
one to connect the Lorentz indices a, b and the spacetime
indices μ, ν. This can lead to other invariant Lagrangians
beyond the obvious gauge Lagrangian of Eq. (23). For
example, we can contract such a pair as Ra

μ ¼ eνbF
ab
μν and

add a term to the Lagrangian such as Ra
μR

μ
a. Indeed the

action linear in the curvatures could have two scalar
invariants M2

1e
μ
aeνbF

ab
μν as well as the usual scalar curvature

M2
2RðgÞ formed out of the metric. When metricity is

imposed, these two objects are identical, but without that
condition they are distinct. At high energies there are far
more invariants. These possible actions are not completely
optional, unless limited by a symmetry. In particular, in the
sense of any effective field theory [9] they are needed for
the renormalization of the theory.
We can see the need for the extra invariants in the

Lagrangian by considering the effect of a fermion loop. The
fermion couples both the vierbein and to the spin con-
nection, and a vacuum polarization diagram will exist for
both fields. When metricity is assumed, i.e. for regular
general relativity, we know that the result is a divergence
proportional to the square of the Weyl tensor,

ΔL ¼ 1

1920π2
2

d − 4
CμναβCμναβ ð28Þ

where Cμναβ is the Weyl tensor

Cμναβ ¼ Rμναβ −
1

2
ðRμαgνβ − Rναgμβ − Rμβgμα þ RνβgμαÞ

þ RðgÞ
6

ðgμαgνβ − eναeμβÞ: ð29Þ

When the spin connection is treated as an independent
field, the divergent result can be written as the sum of this
term plus a new term which is required to vanish when
metricity is imposed. The full gravitational action will need
to involve at least the Weyl action of Eq. (28)6 plus the new
term involving the spin connection. The vacuum

5Note that there can be different normalization conventions for
OðNÞ groups. Ours is defined by the Euclidean version of the
covariant derivative of Eq. (10).

6Indeed, loops of the spin connection will also generate the
Weyl action. See Ref. [7] for more discussion.
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polarization for the vierbein due to a fermion loop is
unchanged at lowest order because the spin connection
term in the Lagrangian does not influence the coupling of a
single vierbein field to fermions.
We can find the new term by considering the vacuum

polarization of the spin connection due to a massless
fermion loop coupled as in Eq. (9). In doing this, it is
useful to define a combination of the fundamental fields

~wd ¼ ϵabcdeaμAbc
μ : ð30Þ

Using Dirac matrix identities for the product of three
gamma matrices, the spin connection coupling of Eq. (9)
can be written in terms of this combination as

L ¼ ψ̄

�
iγaðeμaðxÞ∂μ −

i
4
g ~waγ5Þ

�
ψ ð31Þ

when m ¼ 0. Near flat space, the coupling of this combi-
nation of fields is that of a massless axial-vector field.
The vacuum polarization of an axial-vector field and that of
a vector field are the same when calculating the loop of a
massless fermion. The explicit calculation is then the same
as the QED vacuum polarization, with the result that the
divergences are represented by

ΔL ¼ −
g2

384π2ϵ
∂a ~wb∂a0 ~wb0 ½ηaa0ηbb0 − ηab

0
ηba

0 �: ð32Þ

This answer is not by itself generally covariant, and
represents a portion of a generally covariant Lagrangian.
In order to display the full result, we need to construct
covariant objects with this field content. Useful in this
context is the covariant field strength tensor defined by

Ec
μν ¼ ∇μecν −∇νecν ¼ ∂μecν − ∂νecμ þ Ac

μde
d
ν − Ac

νde
d
μ:

ð33Þ
From this field strength tensor, we can form its dual via

~Nμ ¼
1

2
ϵabcdeaλebνEc

λνe
d
μ ð34Þ

such that ~Nμ ¼ ���þedμ ~wd or equivalently ~wd ¼ eμd ~Nμ þ � � �.
With this identification, we see that the fermion loop result
involves the covariant field strength formed from ~Nμ,

~Nμν ¼ ∂μ
~Nν − ∂ν

~Nμ ð35Þ
in which case Eq. (32) is part of the covariant action

ΔL ¼ −
g2

192π2ϵ

1

4
~Nμν

~Nμν: ð36Þ

This Lagrangian vanishes if the metricity condition is
satisfied, because the original field tensor of Eq. (33)
obviously vanishes under the imposition of metricity.
The fermion loops then generate both divergences in

both the Weyl action and the action of Eq. (36) and both

need to be included in the action in the presence of
fermions. However it becomes clear that the overall
parameter space to be explored is larger than in most
gauge theories, as the number of possible terms in the
Lagrangian is large. The possibilities of confinement or
condensation may depend on the linear combinations of
invariants that enter the action. For this reason, the
calculation of the beta function using the usual gauge
Lagrangian of Eq. (23) is not decisive in that, while it
indicates that asymptotic freedom will occur with this
Lagrangian, it does not guarantee that this occurs for all
possible Lagrangians. More discussion of the basis of
invariants can be found in [7].
From this calculation we also see that the fermion loop

does not renormalize the spin connection’s gauge field
action of Eq. (23). At first sight this might seem unexpected
because in the case of an Oð4Þ flavor symmetry, the
fermion would influence the gauge field beta function.
For the spin connection itself, using the standard gauge
Lagrangian of Eq. (23), theOð4Þ symmetry manifests itself
in the same form as if it were a gauged flavor symmetry.
However for the fermion this is not the case. The SOð3; 1Þ
symmetry, or Euclidean Oð4Þ symmetry, involves trans-
formations among the gamma matrices and has a quite
different form from an Oð4Þ flavor symmetry. The analogy
to a flavor symmetry is not correct for the fermion.
Analytic methods are not able to address the question of

confinement with rigor. At present, lattice techniques are
the only available option to resolve this question defini-
tively. Lattice simulations of quantum gravity are notori-
ously complicated because one attempts to retain the full
diffeomorphism invariance of the theory [10]. However, a
tentative exploratory pathway can be identified.
For our problem a simpler question can be posed. Let us

consider the gauge Lagrangian of Eq. (23) in flat space,
with the metric set equal to ημν. In this construction, the
confined spin connection can be readily simulated in flat
space. This will remain valid for small gravitational fields,
which could be added as a background field perturbation.
As a second step, one can add the vierbein field. The

structure of this action was addressed in a classic paper by
Tomboulis [11]. However, he added metricity as a delta
function constraint. This constraint shouldbe easy to remove.
Holdom and Ren [12] have also recently proposed that

confinement may play a role in the theory of gravity.
However in their case, they are exploring a purely metric
theory with Rþ R2 interactions in contrast to the discus-
sion of the present paper which focuses on the spin
connection. Their interesting suggestion also deserves to
be explored more. Earlier suggestions of confinement in
gravity by Smilga [13] also are in the context of the metric.
Given the nonlinear nature of gravity and the analogies with
non-Abelian gauge theories, it is perhaps surprising that
this possibility has been so lightly explored.
This paper discusses the possibility that the spin con-

nection can be treated as an independent gauge field in the
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generally covariant theory of gravity, instead of being
eliminated by the extra assumption of the metricity con-
straint for the vierbein. Treated independently with the
usual gauge interaction, it is asymptotically free and
therefore strongly coupled at low energy. This raises the
natural idea that it could be confined, leaving only the
metric variables at low energy. This idea can be explored
without studying the full generally coordinate invariant
theory, perhaps using lattice methods.
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