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We demonstrate that numerical relativity codes based on the “moving punctures” formalism are capable
of evolving nearly maximally spinning black hole binaries. We compare a new evolution of an equal-mass,
aligned-spin binary with dimensionless spin χ ¼ 0.99 using puncture-based data with recent simulations
of the SXS Collaboration. We find that the overlap of our new waveform with the published results of
the SXS Collaboration is larger than 0.999. To generate our new waveform, we use the recently introduced
HISPID puncture data, the CCZ4 evolution system, and a modified lapse condition that helps keep the
horizon radii reasonably large.
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I. INTRODUCTION

Since the breakthroughs in numerical relativity of 2005
[1–3], it is possible to accurately simulate moderate-mass-
ratio and moderate-spin black-hole binaries. State of the art
numerical relativity codes now routinely evolve binaries
with mass ratios as small as q ≲ 1=20 [4–9] and are
pushing towards much smaller mass ratios. Indeed, there
have been several explorations of q ¼ 1=100 binaries [6,7].
However, when it comes to highly spinning binaries,

prior to the work of [10] of the SXS Collaboration [11], it
was not even possible to construct initial data for binaries
with spins larger than ∼0.93 [12]. This limitation was due
to the use of conformally flat initial data. Conformal
flatness is a convenient assumption because the Einstein
constraint system takes on particularly simple forms.
Indeed, using the puncture approach, the momentum
constraints can be solved exactly using the Bowen-York
ansatz [13]. There were several attempts to increase the spin
of the black hole, while still preserving conformal flatness
[14,15], but these introduced negligible improvements.
Lovelace et al. [10] were able to overcome these limitations
by choosing the initial data to be a superposition of
conformally Kerr black holes in the Kerr-Schild gauge.
Using these new data, they were soon able to evolve
binaries with spins as large as 0.97 [16] and, later, spins as
high as 0.994 [17].
While spins of 0.92 may seem reasonably close to 1, the

scale is misleading. The amount of rotational energy in a
black hole with spin 0.9 is only 52% of the maximum.
Furthermore, particle limit and perturbative calculations
show even more extreme differences between spins of 1
and spins only slightly smaller. For example, Yang et al.
[18] studied an analog to turbulence in black-hole pertur-
bation theory. For spins close to 1, there is an inverse
energy cascade from higher azimuthal (m) modes to lower

ones for l modes that obey ϵ ¼ j1 − χj≲ l−2. This gives
hints that a more useful measure of the spin is actually 1=ϵ.
Similarly, both the analysis of Kerr geodesics [19,20], and
particle-limit calculations of recoils [21,22], indicates that
the dynamics of nearly extremal-spin black holes cannot be
elucidated with any degree of certainty using lower spin
simulations.
Another area of interest is the use of numerical relativity

waveforms in the detection and parameter estimation of
gravitational wave signals as observed by LIGO and other
detectors [23]. This important region of parameter space
with highly spinning binaries is currently poorly covered
and will benefit from new and accurate simulations.
Recently, we introduced a version of highly spinning

initial data, also based on the superposition of twoKerr black
holes [24,25], but this time in a puncture gauge. The main
differences between the two approaches is how easily the
latter can be incorporated into moving-punctures codes. In
Ref. [24], we were able to evolve an equal-mass binary with
aligned spins, and spin magnitudes of χ ¼ 0.95, using this
new data and compare with the results of the Lovelace et al.
Prior to our work, Hannam et al. [26] considered the case

of nonboosted, highly spinning black holes. Similar to what
we see here, they found that removing the conformally flat
ansatz greatly reduces the amount of unphysical radiation.
In this paper, we show the results of a simulation of an

equal-mass binary with aligned spins of χ ¼ 0.99. We
compare the ðl ¼ 2; m ¼ 2Þ and ðl ¼ 3; m ¼ 2Þ modes of
the waveform with those previously published by the SXS
Collaboration in [17]. This comparison allows us to assess
the errors in these waveforms and to gain confidence about
reaching the required accuracy for use in gravitational wave
astronomy.
We use the following standard conventions throughout

this paper. In all cases, we use geometric units whereG ¼ 1
and c ¼ 1. Latin letters (i, j, …) represent spatial indices.
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Spatial 3-metrics are denoted by γij and extrinsic curvatures
by Kij. The trace-free part of the extrinsic curvature is
denoted by Aij. A tilde indicates a conformally related

quantity. Thus γij ¼ ψ4 ~γij and Aij ¼ ψ−2 ~Aij, where ψ is
some conformal factor. We denote the covariant derivative
associated with γij by Di and the covariant derivative
associated with ~γij by ~Di. A lapse function is denoted by α,
while a shift vector by βi.
This paper is organized as follows. In Sec. II A, we

provide a brief overview of how the initial data are
constructed. In Sec. II B, we describe the numerical
techniques used to evolve these data. In Sec. III, we
compare the new HISPID waveform with a similar SXS
waveform. In Sec. III A, we analyze the various diagnostics
to determine the accuracy of the simulation. Finally, in
Sec. IV, we discuss our results.

II. NUMERICAL TECHNIQUES

A. Initial data

We construct initial data for a black-hole binary with
individual spins χ1;2 ¼ 0.99 using the HISPID code [24,25].
The HISPID code solves the four Einstein constraint
equations using the conformal transverse traceless decom-
position [27–30]. In this approach, the spatial metric γij and
extrinsic curvature Kij are given by

γij ¼ ψ4 ~γij; ð1Þ

Kij ¼ ψ−2 ~Aij þ
1

3
Kγij; ð2Þ

~Aij ¼ ~Mij þ ð ~LbÞij; ð3Þ

where the conformal metric ~γij, the trace of the extrinsic
curvature K, and the trace-free tensor ~Mij are free data.
The Einstein constraints then become a set of four coupled
elliptical equations for the scalar field u ¼ ψ − ψ0 and
components of the spatial vector bi (ψ0 is a singular
function specified analytically). The resulting elliptical
equations are solved using an extension to the
TWOPUNCTURES [31] thorn.
The free data are chosen by superimposing two boosted

Kerr black holes, as described in more detail in [24].
The superposition has the form

~γij ¼ ~γðþÞ
ij þ ~γð−Þij − δij; ð4Þ

K ¼ KðþÞ þ Kð−Þ; ð5Þ

Mij ¼ ½ ~AðþÞ
ij þ ~Að−Þ

ij �TF; ð6Þ

ψ0 ¼ ψ ðþÞ þ ψ ð−Þ − 1; ð7Þ

where ðþÞ and ð−Þ refer to the two black holes, ~γð�Þ
ij and ~Aij

are the conformal metric and trace-free extrinsic curvatures
for a boosted and rotated Kerr black hole, Kð�Þ is the mean
curvature, and the conformal factor ψ ð�Þ is chosen such that

ψ ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγð�Þ

ij Þ12

q
(where γð�Þ

ij is the physical metric from

a boosted and rotated Kerr black hole).

To get ~γð�Þ
ij , etc., we start with Kerr black holes in quasi-

isotropic (QI) coordinates and perform a fisheye (FE) radial
coordinate transformation (where rQI ¼ 0 is the location of
the puncture),

rQI ¼ rFE½1 − AFE expð−r2FE=sFE2Þ�; ð8Þ
where rFE is the fisheye radial coordinate, rQI is the original
QI radial coordinate, and AFE and sFE are parameters. These
coordinates have the property that at large rFE, rQI ≈ rFE,
and at small rFE, drQI ¼ ð1 − AÞdrFE (i.e., drQI < drFE).
The FE transformation is needed because it expands the
horizon size from rh ≈ 0.035 to rh ≈ 0.5. We then trans-
form the metric to Cartesian-like coordinates of the form
x ¼ r sin θ cosϕ, y ¼ r sin θ sinϕ, z ¼ r cos θ, where
r ¼ rFE. We then perform a Lorentz-like boost on this
metric and, in the case of nonaligned spins, a rotation. The
resulting 4-metric is then decomposed into a spatial metric
γij and extrinsic curvature Kij.
We use the g attenuation described in [24] to modify

both the metric and elliptical equations inside the horizons.
We briefly summarize the procedure here. The modified
Hamiltonian and momentum constraint equations for the
correction functions u and bi are

~D2u − g
ψ ~R
8

− g
ψ5K2

12
þ g

~Aij
~Aij

8ψ7
þ g ~D2ðψ ðþÞ þ ψ ð−ÞÞ ¼ 0;

ð9aÞ

~ΔLbi þ g ~Dj
~Mij − g

2

3
ψ6 ~γij ~DjK ¼ 0; ð9bÞ

where ~ΔLbi ≡ ~Djð ~LbÞij is the vector Laplacian and ~R is the
scalar curvature associated with ~γij, and where the attenu-
ation function g takes the form

g ¼ gþ × g−;

g� ¼
8<
:

1 if r� > rmax

0 if r� < rmin

Gðr�Þ otherwise;

;

Gðr�Þ ¼
1

2

�
1þ tanh

�
tan

�
π

2

�
−1þ 2

r� − rmin

rmax − rmin

����
;

r� is the coordinate distance to puncture ðþÞ or ð−Þ, and the
parameters rmin < rmax are chosen to be within the horizon.
In addition, we attenuate the background metric itself
when calculating the ~D2u and ~ΔLbi. To do this, we take
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~γij → δij þ gð~γij − δijÞ; ð10Þ

~Γk
ij → g ~Γk

ij: ð11Þ

Note that the modified ~Γk
ij is not consistent with the modified

~γij. There is no advantage to making them consistent because
the constraints will be violated in the attenuation zone
regardless. By modifying the metric in this way, we can
ensure that the elliptical systemhas exactly the formof the flat
space Poisson system in the vicinity of the punctures.
Finally, far from the holes, we attenuate ~γij, K, and ψ0.

This is achieved by consistently changing the metric fields
and their derivatives so that

~γð�Þ
ij → fðr�Þð~γð�Þ

ij − δijÞ þ δij; ð12Þ

Kð�Þ → fðr�ÞKð�Þ; ð13Þ

ðψ ð�Þ − 1Þ → fðr�Þðψ ð�Þ − 1Þ; ð14Þ

where fðrÞ ¼ expð−r4=s4farÞ and r� is the coordinate
distance to puncture ðþÞ or ð−Þ.
For compatibility with the original TWOPUNCTURES

code, we chose to set up HISPID so that the parameters
of the binary are specified in terms of momenta and spins of
the two holes. However, unlike for Bowen-York data, the
values specified are only approximate, as the solution
vector bi can modify both of these. In practice, we find
that the spins are modified by only a trivial amount while
orbital angular momentum is reduced significantly. We
compensate for this by choosing larger momentum param-
eters than those predicted by simple quasicircular con-
ditions would imply [32]. All parameters for the χ ¼ 0.99
run are given in Table I. The quantity rH in the table is the
polar coordinate radius (which is the smallest radius on
each horizon). As this is gauge dependent, it can change
arbitrarily during the evolution. However, large changes are
generally undesirable. The size of rH is also directly related
to the number of refinement levels required, and therefore
to the computational cost. An ideal gauge would have rH
settle to a moderate value and remain there. The initial size
of the horizon is chosen to be large in order to speed up the
convergence of the initial data solver (this is due to the scale
set by the g attenuation discussed above). However, the
gauge conditions we use quickly drive rH towards smaller
values. We note that in quasi-isotropic coordinates, the
coordinate radius of a maximally spinning black hole
is zero.

B. Evolution

We evolve black hole binary initial data sets using the
LAZEV [33] implementation of the moving punctures
approach for the conformal and covariant formulation of
the Z4 (CCZ4) system (Ref. [34]) which includes stronger

damping of the constraint violations than the standard
BSSNOK [35–37] system. For the run presented here, we
use centered, eighth-order accurate finite differencing in
space [38] and a fourth-order Runge-Kutta time integrator.
Our code uses the CACTUS/ EINSTEINTOOLKIT [39,40]
infrastructure. We use the CARPET mesh refinement driver
to provide a “moving boxes” style of mesh refinement [41].
Fifth-order Kreiss-Oliger dissipation is added to evolved
variables with dissipation coefficient ϵ ¼ 0.1. For the CCZ4
damping parameters, we chose κ1 ¼ 0.2, κ2 ¼ 0, and κ3 ¼ 0
(see [34]), but found that these had to be modified during
the evolution.
We locate the apparent horizons using the

AHFINDERDIRECT code [42] and measure the horizon
spins using the isolated horizon (IH) algorithm [43]. We
calculate the radiation scalar ψ4 using the Antenna thorn
[44,45]. We then extrapolate the waveform to an infinite
observer location using the perturbative formulas given in
Ref. [46].
For the gauge equations, we use [2,47,48]

ð∂t − βi∂iÞα ¼ −2α2K; ð15aÞ

∂tβ
a ¼ 3

4
~Γa − ηβa: ð15bÞ

Note that the lapse is not evolved with the standard 1þ log
form. Here we multiply the rhs of the lapse equation by an
additional factor of α. This has the effect of increasing the
equilibrium (coordinate) size of the horizons. For the initial

TABLE I. Initial data parameters for a χ ¼ 0.99 highly spinning
binary. The two spins are given by S⃗1;2 ¼ ð0; 0; SÞ and the two
momenta are P1;2 ¼ �ð0; P; 0Þ. The parameter M is the mass of
the two black holes. Unlike for Bowen-York data, the momenta
and spins cannot be specified exactly. However, the mass M is
very close to the measured horizon mass mH . Quantities denoted
by “init” were measured at t ¼ 0, while quantities denoted by
“equi” are averaged over the several orbits. AFE, sFE, rmin, rmax,
and sfar are attenuation parameters. mH , S, χ are masses, spin
angularmomenta, and dimensionless spins, respectively, of the two
black holes.Mrem and χrem are the remnantmass and dimensionless
spin. The quantity rH is the polar radius of the horizons. Finally,
MADM and JADM are the ADM masses and spins.

M=M ¼ 0.505570 P=M ¼ 0.09675
S=M2 ¼ 0.253045 AFE ¼ 0.99
sFE ¼ 1.7 rmin ¼ 0.01
rmax ¼ 0.40 sfar ¼ 10

JADM=M2 ¼ 1.42621 MADM=M ¼ 0.99998
mHinit=M ¼ 0.50555 mH equi=M ¼ 0.5072� 0.0004
Sinit=M2 ¼ 0.2529 Sequi=M2 ¼ 0.2547� 0.0004
χinit ¼ 0.9897 χequi ¼ 0.9903� 0.0002
rH init=M ¼ 0.44 rH equi=M ¼ 0.081� 0.001
Mrem=M ¼ 0.898� 0.001 χrem ¼ 0.949� 0.001
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values of shift, we chose βiðt ¼ 0Þ ¼ 0, while for the initial
values of the lapse, we chose an ad-hoc function
αðt ¼ 0Þ ¼ ~ψ−2, where ~ψ ¼ 1þM=ð2r1Þ þM=ð2r2Þ
and ri is the coordinate distance to BH i. For the function
η, we chose

ηðr⃗Þ ¼ ðηc − ηoÞ expð−ðr=ηsÞ4Þ þ ηo; ð16Þ
where ηc ¼ 2.0=M, ηs ¼ 40.0M, and ηo ¼ 0.25=M. With
this choice, η is small in the outer zones. As shown in
Ref. [49], the magnitude of η limits how large the time step
can be with dtmax ∝ 1=η. Since this limit is independent of
spatial resolution, it is only significant in the very coarse
outer zones where the standard Courant-Friedrichs-Lewy
condition would otherwise lead to a large value for dtmax.
We evolved the χ ¼ 0.99 data using 11 levels of refine-

ment, with the outermost grid extending to 400M with a
grid spacing of 2.78M. The grid spacing on the finest grid
was h ¼ M=368.64. The total cost of the simulation was
710 KSU.
One remarkable consequence of these superimposed

Kerr data is how small the initial pulse of unphysical
radiation is. As first seen in the nonboosted case by
Hannam et al. [26], the initial pulse is roughly 4 times
as large as the orbital signal at a separation of D ¼ 10M.
While this may sound quite large, for a χ ¼ 0.9 binary, the
amount of unphysical radiation for a Bowen-York binary is
6 times more, and it rapidly increases with spin. The full
waveform, including initial pulse, is shown in Fig. 1.

III. RESULTS

We performed a single simulation from a coordinate
separation of 10M (proper separation of 12.2M) through
merger for an equal-mass binary where both spins are
aligned with the orbital angular momentum and have

dimensionless magnitudes of 0.99. We compare these with
the BBH:0177 waveform [17,50]. In order to compare the
HISPID and SXS waveform, we rescale the time coordinate
by the ratio of the final masses and then introduce a
constant phase and time translation to minimize the RMS
difference between the two waveforms. We note that the
SXS waveform is longer by about t ¼ 5000M.
In Figs. 2 and 3, we directly compare the new HISPID

waveform with the corresponding SXS waveform. We
translate the HISPID waveform to maximize the overlap.
Hence, the “starting” time in the figures is t ∼ 5000M.
The overlap is defined by [51]

MAX
t0

jhRðtÞ; Sðtþ t0ÞijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijhRðtÞ; RðtÞijjhSðtþ t0Þ; Sðtþ t0Þij
p ; ð17Þ

where

haðtÞ; bðtÞi ¼
Z

tf

0

āðtÞbðtÞdt; ð18Þ

an overbar denotes complex conjugation, and t0 is chosen
to maximize the result, while t ¼ 0 corresponds to the time
just after the initial pulse has radiated away and tf to the last
time step in the HISPID simulation. We find an overlap of
0.99975 for the (l ¼ 2, m ¼ 2) mode, which is quite good
considering that the HISPID waveform is eccentric
(e ∼ 0.01), while the SXS waveform is not. Note the phase
agreement is within 0.25 rad across the entire waveform
and the amplitude agreement is better than 4%. The
agreement in frequency is even better, with a relative
difference of lass than 2% across the entire waveform.
The next largest modes after the (l ¼ 2, m ¼ �2)

modes are the (l ¼ 4, m ¼ �4) modes. However, in
our simulations, these show significant effects of dissi-
pation postmerger. We, therefore, compare the (l ¼ 3,
m ¼ 2) mode instead. As shown in Fig. 4, the agreement
between HISPID and SXS is quite good even for a higher-
order mode. The overlap between the (l ¼ 3, m ¼ 2)
modes is 0.998 [the constant t0 was fixed by maximizing
the overlap of the (l ¼ 2, m ¼ 2) modes, the maximum
overlap of the (l ¼ 3, m ¼ 2) is 0.9998].

A. Diagnostics

One of the most important diagnostics for a BHB
simulation is the degree to which the constraints are
satisfied and to what degree the horizon masses and spins
are conserved. In Fig. 5, we show the individual horizon
mass and (dimensionless spin). Note that prior to merger,
the spins are within �0.001 of 0.99 and the masses change
by less than 0.2%. In Fig. 6, we show the L2 norm of the
Hamiltonian and momentum constraints. Here the L2 norm
is over the region outside the two horizons (or common
horizon) and inside a sphere of radius 30M. Note how the
constraints start small (10−8) and quickly increase to 10−4.

150014001300

t/M

−0.2

−0.1

0

0.1

0.2

R
e[

rψ
4]

−50 150 350 550 750 950 1150
−0.005

−0.0025

0

0.0025

0.005

FIG. 1. The HISPID waveform showing the amplitude of the
initial data pulse compared to the physical waveform. Note how
little the pulse contaminates the rest of the signal.

ZLOCHOWER, HEALY, LOUSTO, and RUCHLIN PHYSICAL REVIEW D 96, 044002 (2017)

044002-4



This increase is due to unresolved features in the initial data
(i.e., the AMR grid cannot propagate high-frequency data
accurately). The constraints then damp, as is expected for
CCZ4. However, they start to exponentially blow up around
400M. We found that the parameters κ1 and κ2 had to be
fine-tuned to prevent this blow-up. We found that increas-
ing the damping parameters can effectively drive the
constraints smaller for a short time, but large values of
κi led to an exponential blowup of the constraints at later
times. We used a trial-and-error approach to fine-tuning
these parameters during the run. We show the values of κ1
used during the evolution in the top of Fig. 6.
One challenge with the HISPID data is obtaining low-

eccentricity data without performing an iterative procedure
where the initial data are evolved for a few orbits and then
refined based on the measured orbital evolution [52–55].

In [32], it was shown that relatively low-eccentricity initial
data parameters can be obtained using higher-order post-
Newtonian approximations. However, as shown in Table I,
unlike for Bowen-York data, here we cannot specify the
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FIG. 2. (Top left and top right) The new HISPID simulation (blue) and the SXS simulation (red) of the (l ¼ 2,m ¼ 2) mode of ψ4 (real
part). The HISPID waveform was translated by t ∼ 5000M. (Bottom left) The difference in amplitude between the HISPID and SXS
waveforms. (Bottom right) The difference in phase between the HISPID and SXS waveforms. Note that the period of oscillations in
δA=A and δΦ is very close to the orbital timescale (see Fig. 7). This indicates that these oscillations are likely due to eccentricity.
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FIG. 3. The frequency of the (l ¼ 2,m ¼ 2) mode of ψ4 for the
HISPID (blue) and SXS (red) waveforms. The inset shows the
relative differences in frequency between the two waveforms.
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FIG. 4. The new HISPID simulation (blue) and the SXS
simulation (red) of the (l ¼ 3, m ¼ 2) mode of ψ4 (real part).
The HISPID waveform was translated by t ∼ 5000M.
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initial momenta precisely. That is to say, the orbital angular
momentum of the background (i.e., prior to the inclusion of
corrections due to the fields u and bi) is significantly larger
than the final orbital angular momentum of the initial data.
We compensate for this by increasing the momentum
parameters until the ADM angular momentum matches
the expected value based on quasicircular orbits. However,
we have no method of correcting for the radial momentum
(other than using an iterative evolution procedure).
Consequentially, the eccentricity of the initial data is
relatively high at e ≈ 0.01, as shown in Fig. 7. Of course,

we can run the data for a few orbits and then refine
the parameters, but such a procedure is computationally
expensive. We are thus working on improving the evo-
lution efficiency.
One method which we found was useful for increasing

the run speed was to change the lapse condition. When
using the standard 1þ log lapse, the horizons are a factor
of 0.625 as wide (see Fig. 8). Evolving the data with
horizons this small requires roughly a factor of 2 more in
terms of computational expense because an additional
level of refinement is needed. Using harmonic slicing
leads to still larger horizons, but this proved to be
unstable. The rapid change in the gauge at early time,
as is evident in the size and shape of the horizon (see
Fig. 8) may be responsible for the initial jump in the
constraint violations seen in Fig. 6.
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FIG. 5. The dimensionless spin (top) and horizon (Christodou-
lou) mass (bottom) for the two horizons in the binary.
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FIG. 6. L2 norm of the Hamiltonian and momentum constraints
versus time. Note the rapid growth during the first 2M of
evolution. The CCZ4 damping parameters κ1;2 were adjusted
during the evolution to suppress the constraint growths apparent
at t ¼ 400M–600M, and again at t ¼ 900M. The top panel shows
the value of κ1 used during the simulation.
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FIG. 7. The eccentricity of the HISPID UU99 simulation as
measured using the approximation es ≈ s2 ̈s, where s is the proper
distance of the part of the coordinate line segment connecting the
centroids of the two black holes that is outside both horizons.
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FIG. 8. The coordinate radii (minimum and maximum) versus
time for the standard 1þ log lapse (dot-dashed curves) and the
modified lapse condition used for the full simulation. Note that in
both gauges there is an extremely rapid evolution of the horizon
size and shape during the first fewM of evolution. The new gauge
produces a horizon that is ≈8=5 times larger.
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IV. DISCUSSION

In this paper, we demonstrated that it is possible to evolve
black hole binaries with nearly maximal spin using the
“moving puncture” formalism. This means that comparative
studies of these challenging evolutions by the two main
methods (the generalized harmonic approach used by SXS
and various flavors of the “moving punctures” approach
used by many other groups) to numerically solve the field
equations of general relativity field equations can now be
performed. Independent comparison, along the lines explored
in [56], have been very successful in demonstrating the
accuracy and correctness of moderate-spin black hole sim-
ulations. These new techniques also open the possibility to
explore a region of parameter space which is of high interest
for both astrophysical and gravitational wave studies.
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