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Two quasilocal approaches to black holes are combined: Near horizon geometries (NHG) and stationary
black hole holographs (BHH). Necessary and sufficient conditions on BHH data for the emergence of
NHGs as resulting vacuum solutions to Einstein’s equations are found.
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I. INTRODUCTION

In this paper we combine results of two topics of the
quasilocal theory of black holes (BH). The first one is the
theory of near horizon geometries (NHG) of extremal BHs
[1–3]. They are exact solutions to Einstein’s equations
obtained by a naturally defined limit of neighborhoods of
extremal (degenerate) Killing horizons. The first examples
were derived from the extremal Reissner-Nordström solution
and from the extremal Kerr. A larger family of examples
(definedmodulo an equation that has to be solved, though) is
set by the Kundt’s class of solutions to Einstein’s equations
[4–10]. The second topic is the recent stationary black
hole holograph (BHH) [11,12]. This approach relies on
the characteristic Cauchy problem for the electrovacuum
Einstein’s equations. If two transversal null surfaces are
nonexpanding, then they become components of a bifurcated
Killing horizon. The motivation for the current paper is an
observation that the NHGs also admit bifurcated Killing
horizons. Thatmakes them a special case of the BHHs. In the
current paper we present a solution to the inverse problem;
namely, we find conditions on the BHH data that are
necessary and sufficient for the corresponding hologram
spacetime to be a NHG. Our result may be considered as the
first step in using the BHH construction in a quest for an
interesting generalization of the idea of NHG. For simplicity,
we will restrict our work here to 4D spacetimes and the
vacuum Einstein’s equations.
A BHH data subset ðS; g;ωÞ is a compact 2-manifold S

(a BHH space) endowed with a metric tensor (a BHH
metric tensor),

g ¼ gABdxAdxB; ð1Þ

and a 1-form (a BHH 1-form),

ω ¼ ωAdxA; ð2Þ

where ðxAÞ ¼ ðx1; x2Þ is a local coordinate system at S. Note
that this is a geometric version of the original definition
[11,12]. The corresponding hologram is a 4D spacetime in
which the 2-space S becomes the intersection between
two nonexpanding null surfaces (nonexpanding horizons
[13–15]), while g becomes the metric tensor induced in S.
The 1-form ω becomes the pullback to S of the rotation
1-form potential of one of the horizons, and, respectively,
minus the rotation 1-form potential of the other one pulled
back to S. The spacetime geometry is determined via the
characteristic Cauchy problem for vacuum Einstein’s equa-
tions in the causal future and in the past of the intersection S.
The BHH theorem states that in this spacetime the non-
expanding horizons set a bifurcated Killing horizon. Among
all the black hole spacetimes obtained in this way, there are
also all the NHGs. Indeed, it is known, that each NHG
contains a bifurcated Killing horizon [4,16]. We will find
below necessary and sufficient conditions on ðS; g;ωÞ for the
corresponding hologram to be a NHG.

II. THE BLACK HOLE HOLOGRAPH

Given a BHH data set ðS; g;ωÞ, the hologram spacetime
manifold M has the product topology

M ∼ S ×R ×R: ð3Þ

The coordinates ðxAÞ defined on S, as well as coordinates u
and v defined on the first and the second factor R,
respectively, are naturally extended to the Cartesian prod-
uct. The surfaces

N1 such that u¼ 0 and N2 such that v¼ 0; ð4Þ

respectively, are assumed to be null and nonexpanding
with respect to the resulting spacetime geometry, while S is
identified with the surface u ¼ v ¼ 0 in M. According to
the standard characteristic Cauchy problem for vacuum
Einstein’s equations, in the smooth case the spacetime
geometry is determined (up to remaining diffeomorphisms)
in the wedges u ≥ 0, v ≥ 0 and u ≤ 0, v ≤ 0, in some
neighborhood of S ¼ N1 ∩ N2, provided that the following
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conditions hold at the surfaces N1 and N2, and at S,
respectively:

(i) The pullback of the spacetime metric to each of the
surfaces N1 and N2, respectively, is the following
degenerate metric:

gABdxAdxB: ð5Þ

(ii) The vectors l ¼ ∂u, n ¼ ∂v are future oriented and
satisfy

∇lljN1
¼ 0; ∇nnjN2

¼ 0: ð6Þ

(iii) The pullback to S of the 1-form −nμ∇νlμ is

−nμ∇AlμjS ¼ ωA: ð7Þ

The BHH theorem [11,12] states that the spacetime
metric tensor determined by the data admits a Killing vector
K that, using the remaining diffeomorphisms, can be given
the form

K ¼ u∂u − v∂v: ð8Þ

Therefore, the surfaces N1 and N2 form a (nonextremal)
bifurcated Killing horizon while the pullback of the 1-form
ων ¼ −nμ∇νlμ to N2 is its rotation 1-form potential. In this
sense, the construction works as a stationary BH holograph:
given any two-dimensional data ðS; g;ωÞ, it produces four-
dimensional spacetime in the domain of dependence of the
bifurcate Killing horizon, N1 ∪ N2.

III. NHG FROM BHH

Suppose now, that a BHH data set ðS; g;ωÞ satisfies the
following equation

ωðA;BÞ þ ωAωB −
1

2
RAB ¼ 0 ð9Þ

where by “;”we denote the torsion-free covariant derivative
defined on S by the metric g, and RAB is the Ricci tensor of
g. This equation is soluble [4,17,18] only when S is either a
topological 2-sphere,

S ¼ S2;

or a 2-torus,

S ¼ S1 × S1:

In the latter case, the only solution is

ωA ¼ 0 ¼ RAB;

therefore, we will be assuming henceforth that the manifold
S is a 2-sphere S2. Whenever Eq. (9) holds, the hologram
metric tensor can be written down explicitly. Indeed, the
metric tensor

ds2 ¼ −2du
�
dv − 2vω −

1

2
v2½ωA;

A þ 2ωAω
A�du

�

þ gABdxAdxB ð10Þ

is an exact solution of the vacuum Einstein equations [4]
that matches the hologram data (5)–(7). Owing to unique-
ness (mod diffeomorphisms) in BHH [12], this is the
corresponding BH hologram. Such geometries are called
near horizon. A remarkable property of this BH hologram
(10) is the emergence of a second Killing vector field,
namely

L ¼ ∂u: ð11Þ

The surface N2 is extremal Killing horizon of the Killing
vector field L, still being a component of the bifurcated
nonextremal horizon of the Killing vector field K.
Therefore, our first conclusion is that all BHH data
ðS; g;ωÞ such that the Eq. (9) is satisfied define a NHG
with the extremal Killing horizon N2.

IV. FLIPPED NHG BHH DATA

The gauge freedom we have in setting up the initial data
for BHH [12] yields some ambiguity in identifying NHGs.
For instance, condition (9) is not necessary as other BHH
data may also define a NHG as the hologram spacetime.
For example, the following transformation in the space of
the holographic data:

ðS; g;ωÞ ↦ ðS; g;−ωÞ ð12Þ

corresponds to switching of the factors in S ×R ×R,
namely

ðxA; u; vÞ ↦ ðxA; v; uÞ; ð13Þ

because on S ¼ N1 ∩ N2

−ð∂vÞμ∇Að∂uÞμ ¼ ð∂uÞμ∇Að∂vÞμ

holds. Hence, all data ðS; g;ωÞ which satisfies the switched
Eq. (9), which is

ωðA;BÞ − ωAωB þ 1

2
RAB ¼ 0; ð14Þ

also define a NHG, this time with the extremal horizon N1.
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V. A GENERAL CASE OF NHG FROM BHH

In virtue of Eq. (2.5) of [12], a gauge freedom,
represented by the coordinate transformation

ðxA; u; vÞ ↦ ðxA; e−λu; eλvÞ; ð15Þ

where λ∶ S → R is a sufficiently regular but otherwise
arbitrary function on S, has been left over. This, in
particular, means that if BHH data ðS; g;ωÞ satisfies
Eq. (9), i.e., it gives rise to a NHG with an extremal
Killing horizon structure at the null surface N2, then the
data yielded by the transformation

ðS; g;ωÞ ↦ ðS; g;ωþ dλÞ ð16Þ

will determine a gauge equivalent solution. Note that this is
also in accordance with the statement that BHH provides us
uniqueness of solutions only “up to diffeomorphisms.”
Accordingly, the most general form of condition (9),

guaranteeing that the BHH data ðS; g;ωþ dλÞ yields, up to
diffeomorphisms, the same NHG as ðS; g;ωÞ does, reads as

ωðA;BÞ þλ;ABþðωAþλ;AÞðωBþλ;BÞ−
1

2
RAB ¼ 0: ð17Þ

This nonlinear equation on the unknown function λ can be
written as a linear equation on the nowhere vanishing
function

f ≔ eλ:

Indeed, that substitution turns Eq. (17) into (below,
‘D0 ≡ ‘;0 )

�
DADB þ ωADB þ ωBDA þDðAωBÞ þ ωAωB −

1

2
RAB

�
f

¼ 0: ð18Þ

In conclusion, a BHH data set ðS; g;ωÞ, as described in
Sec. II, gives rise to a NHG with an extremal Killing
horizon structure at the null surface N2 if and only if there
exists on S a real nonvanishing function f that satisfies
Eq. (18). In the next section an equivalent necessary and
sufficient condition is given that explicitly constrains g
and ω.

VI. NECESSARY AND SUFFICIENT
CONDITIONS ON BHH TO GIVE RISE

TO NHG WITH RESPECT TO N2

As explained below, for a given BHH data set ðS; g;ωÞ, a
necessary and sufficient condition guaranteeing the exist-
ence of a real nonvanishing solution f to Eq. (18) is
equivalent to the existence of a real (modulo a constant

phase factor) and nowhere vanishing function ~f that has the
explicit form (25), and that also satisfies Eq. (23).
In doing so, note first that for an arbitrary choice of

a nowhere vanishing real valued function h on S2, the
replacement ðg; f;ωÞ ↦ ðg0; f0;ω0Þ, with

ω0 ¼ ω − d ln h; f0 ¼ hf; g0 ¼ g; ð19Þ

is a symmetry transformation of Eq. (18). As a special case
of Eq. (19) one gets Eq. (17) from Eq. (18) by choosing

h ¼ 1

f
:

Recall also that, given the metric g on S2, the 1-form field
ω, as any of the 1-form fields on a 2-sphere, can be
uniquely given in terms of its scalar potentials U and B and
the Hodge ⋆, namely

ω ¼ ⋆dU þ d lnB: ð20Þ

Here U and B are determined by the relations

ΔU ¼ ⋆dω and Δ lnB ¼ ⋆d⋆ω; ð21Þ

whereΔ is the Laplace operator defined on S2 by the metric
g. Note that the equations in (21) can always be uniquely
solved on S2 provided that a sufficiently regular ω is given.
Now, by applying the symmetry transformation (19) with

the choice

h ¼ B; ð22Þ

one gets from Eq. (18)

�
DADB þ ~ωADB þ ~ωBDA þDðA ~ωBÞ þ ~ωA ~ωB −

1

2
RAB

�
~f

¼ 0; ð23Þ

where

~ω ¼ ⋆dU; ~f ¼ Bf: ð24Þ

Note that Eq. (23) consists of three partial differential
equations, one per each pair of values A;B ¼ 1, 2. By
following the basic steps of the argument applied in the
appendix of [13] and in Sec. II.2 of [19], the integrability
condition of Eq. (23) can be used to verify the existence of
a (possibly) complex constant A0 with the help of which
the most general solution to Eq. (23) can be given as

~f ¼ A0ðR − 2iΔUÞ−1
3eiU ; ð25Þ

where
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R ¼ gABRAB

denotes the Ricci scalar of the metric g.
Before giving our new necessary and sufficient con-

ditions as explicit restrictions on g and U, note first thatA0,
without loss of generality, may be assumed to be real as if
it was complex its phase factor could always be eliminated
by using the freedom U ↦ U þ U0, with U0 ¼ const, we
have in choosing a solution to Eq. (21), which, on the other
hand, leaves ω intact.
In summary, our necessary and sufficient conditions

(modulo the flipping of section I 3) can then be given by the
following:
Theorem: A BHH data set ðS2; g;ωÞ gives rise to a

NHG with extremal Killing horizon N2 if and only if the
function

ðR − 2iΔUÞ−1
3eiU ; ð26Þ

which can be given in terms of the scalar curvature R of g
and the scalar potential U of ω, has the following
properties:

(i) It is real (modulo a constant phase factor),
(ii) it is nonvanishing, and
(iii) it is a solution to Eq. (23).

VII. NONROTATING BHH DATA

Let us finally consider, as a special case, a nonrotating
NHG represented by the BHH data ðS2; g;ωÞ with

dω ¼ 0: ð27Þ

Note that then, in virtue of Eq. (26) and the vanishing of
~ω ¼ ⋆dU, the function R−1

3 is a solution to Eq. (23), which
implies [13]

0 ¼
Z
S2

d2x
ffiffiffiffiffiffiffiffiffi
det g

p �
Δ −

1

2
R

�
R−1

3

¼ −
1

2

Z
S2

d2x
ffiffiffiffiffiffiffiffiffi
det g

p
ðR1

3Þ2;

a condition requiring the vanishing of R throughout S2.
This, however, leads to a contradiction as a 2-sphere does
not admit a flat metric tensor, which, in turn, verifies the
nonexistence of nonrotating vacuum NHGs, in accordance
with [20].

VIII. SUMMARY AND OUTLOOK

The subset of BHH data that corresponds to NHGs was
identified. It was shown that, up to the flips of the horizons,
a BHH data set ðS2; g;ωÞ gives rise to a NHG if and only if
the function in Eq. (26), determined by the scalar curvature
R of g and the scalar potential U of ω, is real (up to constant
a phase factor), nowhere vanishing, and satisfies Eq. (23).
A general exact solution to these constraints is not known
yet.
It is important to emphasize that the found intimate

interrelation between the BHH construction and the NHGs
may play a significant role in attempting to give suitable
generalizations of the concept of NHGs. The NHGs are
exact solutions to Einstein’s equations that at the same time
provide the 0th order in a suitable expansion of spacetime
metric about an extremal Killing horizon. In the nonex-
tremal case a suitable generalization of the NHGs is not
known yet.
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