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We consider a universe with an arbitrary number of extra dimensions, N. We present a new method for
constructing the cosmological equations of motion and find analytic solutions with an explicit dependence
onN. When we take theN → ∞ limit, we find novel emergent behavior which distinguishes it from normal
Kaluza-Klein universes.
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I. INTRODUCTION

The observational evidence for life in 3D is unassailable.
There have been attempts at justifying why this is so,
i.e., why a three-dimensional universe is natural or inevi-
table. Ehrenfest famously argued that it was impossible to
construct stable classical orbits in higher-dimensional
spaces [1]. Conversely, in less than 3 dimensions, there
is no gravitational force (or, to be correct, it is topological in
nature) [2].
Our three-dimensional space could be a slice of a

higher-dimensional space-time [3]. What the exact number
of extra dimensions is remains to be determined. String
theory has a preference for 11 or 26 dimensions. Indeed it
has been proposed that it is through the interaction of the
extra dimensions and the statistical mechanical properties
of fundamental strings that three large dimensions naturally
emerge [4]. Some of the more exotic theories of the
multiverse allow for an arbitrary number of extra dimen-
sions breathing in and out of existence.
It is fair to say that a certain agnosticism prevails with

regards to the number of extra dimensions although
pragmatism tends to favor less rather than more [5]. The
classic model of Kaluza and Klein posits the existence of
one extra dimension and attempts to tie it to the vector
potential of the electromagnetic source. The more recent
brane-world universes [6] tend to reside in 4þ 1 dimen-
sional spacetimes with various schemes for deforming, or
“warping,” the extra dimension [7].
Very little attention has been paid to cases in which one

has a large number of extra dimensions, N. The expect-
ation is that such a scenario might be calculationally
unwieldy or that the dynamics of the extra dimensions will
completely overwhelm the dynamics of the full space-
time. What little work there has been has focused on small
scales. Strominger pioneered efforts by attempting to
calculate scattering processes using an expansion in
1=N, very much along the lines of what has been done
for SUðNÞ [8]. The mantle has been picked up by a few
authors, focusing on the field theoretic and quantum

properties of Kaluza-Klein universes [9], asymptotic
safety [10,11], nonlocal gravity [12], quantum gravity
in general [13], and on a lattice [14]. For a historical
perspective, see [15]. The study of the classical properties
arising from many extra dimensions has focused on black
holes. In [16], the authors explored the fact that for large
N, the gravitational force becomes ultralocalized. They
have used this property to explore the fact that black holes
become noninteracting and have looked at how results in
the gravitational canon (such as instabilities, wave equa-
tions on curved background, radiation, etc.) are modified
in the N → ∞ limit.
While the focus of previous work on N → ∞ has been

on small scales, we wish to look large and explore the
consequences for cosmology. To do so, we will study
homogeneous, but not necessarily isotropic, universes in
the case of large N with an eye towards finding meaningful
solutions in the infinite dimensional case.
We structure the paper as follows. In Sec. IV we present

a novel technique for constructing the field equations in
arbitrary dimensions and determine the equations of
motion. In Sec. V we find solutions for arbitrary D and
N for the vacuum, isotropic matter (including the cosmo-
logical constant), and anisotropic matter. In Sec. VI we
explore the N → ∞ limit of our solutions and discuss their
phenomenology. In Sec. VIII we conclude.
Throughout this paper we work with 8πG ¼ 1 and the

mostly plus metric signature. The time direction is the zero
coordinate, lowercase roman letters run over the back-
ground space, greek letters over the extra dimensions, and
uppercase roman letters over all spatial dimensions.

II. SETUP

We will consider space-time manifolds of the form
I×M1×M2×���×Mq in which I is an interval of R
which comprises our time direction, and Mi are homo-
geneous spatial manifolds of dimensionDi. This splitting is
motivated by the idea that the physically relevant cosmol-
ogy is that of a large three-dimensional spatial manifold and
a (potentially large) number of small extra dimensions.
With this in mind, we consider metrics of the form*David.Sloan@physics.ox.ac.uk
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ds2 ¼ −dt2 þ e
2v1
D1ds21 þ e

2v2
D2ds22 þ � � � þ e

2vq
Dq ds2q; ð1Þ

wherein vi are functions of time representing the logarithms
of the volumes of the homogeneous manifolds, and the dsi
are the line elements of the unit homogeneous manifolds.
The usual technology of Kaluza-Klein compactifications is
to begin with a large manifold of arbitrary dimension and
perform a compactification of a number of these to leave a
manifold with a mixture of “large” and “small” dimensions.
Our motivation is somewhat different—since we want to be
able to take a well-defined limit in which the number of
dimensions is taken to be infinite, we do not want to begin
with an infinite dimensional manifold and follow this
process. Rather, we consider the effect of taking the product
of a space-time with a (series of) homogeneous manifold(s)
which has a small volume and whose dimension is taken to
infinity. Further, our choice of considering the metric
written in terms of the volumes of homogeneous manifolds
(rather than their scale factors) may seem unusual; one
normally considers a “compactification length” when
making reductions. However, as we shall see below, when
taking the limit as the number of small dimensions tends to
infinity any noninfinitesimal change in the scale factor of
an infinite dimensional manifold will completely dominate
dynamics to the point that all the remainder of the dynamics
is rendered trivial.
For metrics of this form we find that the Ricci scalar, R

splits into components nR, being the Ricci scalars ofMn, a
kinetic component from each of the volumes, and a cross
term;

R¼
Xq
i¼1

�
e−

2vi
Di ðiRÞ þ 2v̈i þ

Di þ 1

Di
_vi2
�
þ 2

X
a≠b

_va _vb : ð2Þ

We note here that iR are simply numbers dependent on the
topology of the unit volume manifoldsMi; for example, if
Mj ¼ Sl, the l-dimensional sphere, then jR ¼ lðl − 1Þ. As
we are dealing with the product of homogeneous mani-
folds, there is only one independent diagonal element of the
rank (1,1) Einstein tensor on each manifold. We shall label
the spatial eigenvalue of the Einstein tensor of the space-
time I ×Mn by nG. For the element whose corresponding
eigenspace covers Mi we find

Gi ¼ iGþ
X
p≠i

e−
2vp
Dp ðpRÞ
2

−
v̈p
2
−
Dp þ 1

2Dp
_vp2

−
X
a<b

_va _vb −
_vi
Di

X
p≠i

_vp ð3Þ

Note here that Einstein’s equations read Gn ¼ Pn where Pn
is the pressure arising from the stress-energy tensor. The
final eigenvalue of the Einstein tensor, the energy density
Go ¼ ρ, is the Friedmann equation

ρ ¼
X

ρi þ
X
a<b

_va _vb ð4Þ

wherein ρi is the energy density of the spacetime I ×Mi.

A. Lagrangian description

The gravitational Lagrangian is Lg ¼ ffiffiffi
g

p
R. The splitting

that we have performed above allows us to express this as
the Lagrangian for one of the spatial manifolds with extra
terms arising from the others; this is particularly useful
when considering the effects of small extra “internal”
dimensions on the evolution of a large background geom-
etry. Here we will single out v as being the volume of the
large background space, and label the logs of internal
manifold volumes as ui of dimension Ni, of total log
volume u ¼ P

i ui. To make the comparison with GR in
3þ 1 dimensions clear, we will express the background
space-time Ricci scalar as R.

Lg ¼ evþu

�
Rþ 2_v _uþ2üþ

X
i

�
Ni þ 1

Ni
_ui2 þ e−

2ui
Ni ðiRÞ

��

ð5Þ

Thus, we see that the internal dimensions can be cast in
the role of a nonminimally coupled scalar field—by making
the transformation ϕi ¼ logðuiÞ, we could rewrite this
Lagrangian in the familiar Brans-Dicke form with a
nonstandard kinetic term, and a coupling between the
kinetic term and the Hubble rate of the large dimensions.
It is further apparent that should the dynamics stabilize the
extra dimensions ( _u ¼ ü ¼ 0), then we will recover the
Einstein-Hilbert Lagrangian for the background manifold,
albeit with a modified coupling to matter and the curvature
term from the extra dimensions appearing as an effective
cosmological constant.

III. INFINITE DIMENSIONAL LIMITS

Before continuing to show equations of motion and their
solution in some physically interesting cases, it is important
to note certain choices in our setup which affect the manner
in which we will take the Di → ∞ limit. In particular, we
have chosen to explore the dynamics of our system in terms
of the logarithmic volumes of the spatial manifolds, as we
are interested in the case in which the dimension of one of
these manifolds is taken to infinity. There is a simple
connection between these and the logarithmic scale factors;
vi ¼ Diai. However, when we take the infinite dimensional
limit, we note that the expression in terms of volume
captures a more subtle set of dynamics than that of scale
factor alone, since δvi ¼ Diδai dictates that any nonzero
change in scale factor be reflected by an infinite change in
volume, and similarly any finite change in volume is
infinitesimal in scale factor. For example, in the case where
Dk → ∞ any finite change in the corresponding scale factor
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ak would force the rest of the ai to constants in order to
satisfy the Friedmann equation (4) with finite energy
density. Similarly, this is manifest in the gravitational
Lagrangian (5); each of the kinetic terms comes with a
prefactor that ranges from 1=2 (in the case of two
dimensions) to 1 in the infinite limit. Had we instead
considered scale factors, these factors would have con-
tained a term proportional to D2

i , and hence in any of the
equations of motion, this term would completely dominate
the dynamics, fixing the scale factor for Mi and giving no
further dynamical information.
Another way in which one could take the infinite dimen-

sional limit is to take the limit where the number of spatial
manifolds becomes large. This is a physically distinct
scenario from making one of the manifolds large, as the
behavior of the Ricci scalar of the manifolds contributes
terms that depend on the dimension of the manifold. This is
particularly clear when we consider, for example, SD as a
spatial manifold; RðSDÞ ¼ DðD − 1Þ, and hence grows to
dominate dynamics completely in the infinite dimensional
limit. Note that if our internal manifold is simply connected,
the Killing-Hopf theorem states that it must be theD sphere,
SD, D-dimensional euclidean space ED (R ¼ 0), or the
D-dimensional hyperbolic plane,HD (R ¼ −DðD − 1Þ). In
the nonflat cases, the curvature therefore dominates dynam-
ics entirely, and the system becomes frozen. We could
further consider the case in which the internal manifold is
formed as the infinite product of lower dimensional mani-
folds. The Ricci scalar of a product manifold is the sum of
Ricci scalars (i.e., RðM1 ×M2Þ ¼ RðM1Þ þ RðM2Þ). To
explore this situation, consider for example the contribution
of q identical manifolds each Sn for some n which we
describe in terms of the volume of each spatial manifold, v.
Then the contribution of this to Eq. (5) becomes

Lg ¼ evþqu

�
Rþ 2q _v _uþ qðqn − 1Þ

n
_u2 þ qe−

2u
n nðn − 1Þ

�
:

ð6Þ

Thus, the dynamics of the internal manifold will again
dominate those of the background. It would further appear
that the kinetic term overwhelms the potential (curvature)
term in the q → ∞ limit, and the system would be inde-
pendent of the choice of topologies. This highlights the
subtlety involved in the choice of variables—had we instead
chosen to express the dynamics in terms of the total volume
of this manifold, V ¼ qv, we would see that the potential
term dominates the kinetic. In either case, the dynamics of
the background manifold are rendered trivial as a result of
the infinite dimensional product. Since the Ricci scalar is the
product of sectional curvatures and our spatial manifolds are
homogeneous and isotropic, any curvature of the internal
infinite dimensional manifold is incompatible with a
dynamical background manifold. One could consider the
case in which our internal manifold is anisotropic, and thus

can consist of the product of a finite dimensional curved
space and an infinite dimensional flat space (e.g., SD × Eq

with the limit q → ∞ taken). However, in order to provide
tractable equations, for the remainder of this article we will
restrict ourselves to the product of flat manifolds.

A. Flat spatial slices

When considering the spatial manifold to consist of a
product of tori, our system simplifies since for these spaces
the Ricci scalar is dependent only on the Hubble rates, not
the physical volumes. This is unsurprising as the geometry
of flat spaces picks out no preferred length scale, as there is
no radius of curvature. Although one might consider that
the length scale around a torus would be a natural scale, the
condition of homogeneity already identifies all points on
the manifold, and therefore there is no direct physical role
for the volume (or scale factor) to play. For a torus the Ricci
scalar of the spatial manifold is zero, and thus we find the
dynamics of a space-time wherein the spatial manifold
consists of the product of q tori of dimensions Di are
governed by a Lagrangian density consisting only of
kinetic terms. This is given (up to a total divergence term
introduced to render the system first order)

Lg ¼ e
P

i
vi

�X
i

Di − 1

Di
_vi2 þ 2

X
i≠j

_vi _vj

�
: ð7Þ

Note that in this action the only dependence on the volumes
vi of the tori is in an overall factor. We could absorb this
into the lapse to work in conformal time rather than proper
time; however, for clarity of exposition we will not do so.
The gravitational Lagrangian can be minimally coupled to a
matter Lagrangian which is also independent of the
anisotropies (shape parameters) si for, e.g., perfect fluids
on such a space-time, with the Hamiltonian giving rise to
the Friedmann equation (4). As such, the dynamics of the
system break into those of the total volume v ¼ P

i vi and
the behaviors of the anisotropic expansions which deter-
mine the evolution of the shape of the tori, si. Our
Lagrangian only contains time-derivative terms in si;
hence, we find that there will be q − 1 conserved quantities.
This splitting into shape and volume terms is the basis of

the “cosmological billiards” approach to homogeneous
vacuum GR [17,18]. In such approaches the dynamical
system is described in terms of the log volume and “Misner
parameters” which describe the relative anisotropies. The
Ricci gives rise to a potential which can be split as the
product of that for the volume and the shape potential,
which asymptotes to, e.g., a sharp-walled triangular well in
the 3D case. Recent work in the relational description of
such a system has shown that it retains well-defined
dynamics of shape through the singularity even though
the volume becomes singular [19]. The cosmological
billiards paradigm has proven particularly useful in exam-
ining the dynamics of low-dimensional curved space-times
close to singularities (particularly in light of the Belinskii,
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Khalatnikov, Lifshitz (BKL) conjecture). However, in the
case of flat spatial slices, the shape potential is exactly zero,
and thus the billiard dynamics are always that of simple
linear motion. For completeness, we develop the general-
ized billiards approach to our space-times in Appendix B.
These equations reproduce those in [20], for example, if

we assume that the we have the product of two flat
Robertson-Walker metrics. However, our expression is
much more general—we can consider the product of any
number homogeneous manifolds.

B. Matter

As our cosmology is to be homogeneous and isotropic
on submanifolds, we will consider matter that is subject to
the same restrictions. In such a case, the high-dimensional
limits of many types of matter will be identical. As an
example, consider radiation whose energy density is
reduced by both dilution of the fields and redshift; in
the isotropized limit of an N-dimensional spatial slice, the
energy density will follow v−ð1þ

1
NÞ, and thus in the high N

limit will be indistinguishable from dust. A more accurate
model of radiation would consider the matter as an
anisotropic fluid, as only expansion in the direction of
the radiation’s velocity will be redshifted; at small scales
this plays a significant role [21]. A similar argument applies
for the isotropized limits of most matter types; in the
infinite dimensional limit, the dilution factor is all that
remains; thus, for isotropized matter sources w → 0 as
N → ∞. The exceptions to this are the stiff fluid/massless
scalar field, for which ρ ∼ v−2 and hence w ¼ 1, and the
cosmological constant, ρ ∼ Λ, w ¼ −1. Hence, in the
isotropic limit these are the only interesting matter cases;
the 1=N contributions from redshift, etc. to the dust
behavior do not play a role in the limit.
When considering anisotropic matter, the system is more

complex. Particularly, we consider matter that behaves
differently on the internal manifolds than on the external.
An apparent example is that of a p-brane which wraps
around p of the compact internal dimensions. As such, the
winding modes of the brane contribute pressures given
wp ¼ − p

D in the directions in which they wrap, and wx

determined by the fields on the brane in the remaining
directions [22].We can therefore reconstructmatter for which
the averaged anisotropic pressures take any values in ½−1; 1�.

IV. EQUATIONS OF MOTION

In the special case of two tori of dimensions D and N,
respectively, with logartihmic volumes v and u, the
Einstein equations are

v̈þDþ 1

2D
_v2 þ N − 1

N
_v _uþN − 1

2N
_u2 þ N − 1

N
ü ¼ −Px;

ð8Þ

D − 1

D
v̈þD − 1

2D
_v2 þD − 1

D
_v _uþN þ 1

2N
_u2 þ ü ¼ −Py;

ð9Þ

with the Hubble equation given by

D − 1

2D
_v2 þ _v _uþN − 1

2N
_u2 ¼ ρ: ð10Þ

We can see in Eq. (10) that for large N, _v and _u must either
have the same sign or there must be a large and consistent
hierarchy in expansion rates for the energy density to
remain positive. Note too that the topology of our system
ensures that there are no raw v or u terms in the field
equations, only in the Pα and ρ terms. Furthermore, Eqs. (8)
and (9) are identical under swapping the N for D and v for
u simultaneously, as expected—at this point we have no
preference between the two.
If we now consider isotropic pressures, Px ¼ Py, for

example, and difference the two equations of motion, we
are left with

1

D
v̈þ 1

D
_v2 þ N −D

DN
_v_u−

1

N
_u2 −

1

N
ü ¼ 0; ð11Þ

which can be written as a total derivative

e−ðvþuÞ d
dt

�
evþu

�
_v
D
−

_u
N

��
¼ 0: ð12Þ

One immediate implication is that isotropic matter will lead
to isotropic expansions at large volumes; when uþ v is
large, the directional Hubble rates become equal. If we
change the time variable to dη ¼ e−ðuþvÞdt, with deriva-
tives by η denoted by a prime, we end up with a constant of
motion,

v0

D
−
u0

N
¼ C: ð13Þ

Note that we can rescale η to setC ¼ 1=D, which simplifies
calculations further down the line. We do not consider the
cases where C ¼ 0 as these would constitute perfectly
isotropic space-times, and thus are simply the (N þD)-
dimensional extensions of the Friedmann-Lemâitre-
Robertson-Walker cosmologies. The relationship between
t and η introduced by changing our time variable is
monotonic since the exponential function is everywhere
positive for real arguments. We therefore cover the entire
history of the Universe in proper time under this trans-
formation. In other words, η is a good clock for our system.
These results generalize to a spatial manifold consisting

of the product of any number of tori with (possibly)
different volumes. For isotropic matter the pressures are
equal, and thus all the eigenvalues of the Einstein tensor are
equal. Thus, from Eq. (3) we find
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e−
P

vk d
dt

�
e
P

vk

�
_vi
Di

−
_vj
Dj

��
¼ 0: ð14Þ

We follow the analogue of the above change of time,

dη ¼ e−
P

vidt, and thus arrive at a set of conserved
quantities,

v0i
Di

−
v0j
Dj

¼ Cij: ð15Þ

Note that the Cij comprise a space of q − 1 independent
components, as Cij ¼ C½ij� and Cij ¼ Cik þ Ckj.
We can now use Eqs. (12) and (13) to explore what

happens in some simplified scenarios.

V. GENERAL SOLUTIONS

Let us first try and find the vacuum solution. Note that
the perfectly isotropic vacuum in any dimension is
Minkowski space. To see this, one has that, from isotropy,
the integration constantC is exactly zero, forcing u0 ¼ 0 for
any nonzero v0. However, Eq. (10) has ρ ¼ 0, which
implies v0 ¼ 0; hence, we have the isotropic Minkowski
vacuum.
A more interesting result arises in the case of the

anisotropic vacuum, which is analogous to the Bianchi I
type solution with one degree of anisotropy in three
dimensions, taking our spatial manifold to be the product
of two tori. To solve the equations, we first note that the
conserved quantity in Eq. (13) can now be combined with
Eq. (10) to give us a quadratic equation for either u0 or v0
and will give us possible solutions for the vacuum. Setting
C ¼ 1 for convenience, we have v0 ¼ 1þ Du0

N and

u0 ¼
−N � N3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðDþN−1Þ
p

Dþ N
: ð16Þ

We find then that the vacuum solutions (i.e., the Kasner
solutions) always give rise to power-law scale factors;
hence, our spacetimes take the following form:

ds2 ¼ −dt2 þ tnxdx⃗2 þ tnydy⃗2; ð17Þ

with the two solutions for each pair of nx and ny given by
the choice of sign in the square root. These two powers are

nx ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
D ðN þD − 1Þ

q
Dþ N

;

ny ¼
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
N ðN þD − 1Þ

q
Dþ N

: ð18Þ

These correspond to the specific Bianchi I LRS cases of
higher-dimensional cosmology noted in other contexts

[23,24]. One can easily verify that these two solutions in
the D ¼ 1, N ¼ 2 case correspond to the two locally
rotationally symmetric Bianchi I vacuum solutions with
exponents either f1; 0g or f− 1

3
; 2
3
g. Readers familiar with

Bianchi I solutions will note that the anisotropic shear
follows the t−2 and the total spatial volume t as we would
expect. Hence, the effective Friedmann equation for the
isotropic (geometrically averaged) scale factor ā is

_̄a2

ā2
¼ Σ

ā2ðDþNÞ : ð19Þ

To find the vacuum solutions with an arbitrary number of
anisotropies, it is sufficient to find the solution in the case
where the spatial manifold consists of q anisotropic copies
of S1 and impose equalities on some of the volumes after
finding the solution. This simplifies the algebra consid-
erably, asDi ¼ 1 throughout. The Friedmann equation (10)
reads simply

X
i<j

_vi _vj ¼ 0; ð20Þ

which can be solved together with the Einstein equations to
again give power laws for the scale factors—with metric

ds2 ¼ −dt2 þ t2Pidx2i ; ð21Þ

wherein the Pi are constrained
P

Pi ¼
P

P2
i ¼ 1.

Let us now turn to isotropic polytropic matter, with
Px ¼ Py ≡ P ¼ wρ. As our primary interest will be in the
Dj → ∞ limit for some choice of j, this will inform our
strategy for examining the equations of motion; from
Eq. (15) it can be seen that if only one of the internal
manifolds is to have its dimension taken to be large, the
remaining spatial manifolds (including the large external
manifold) will have their volumes evolve trivially in η,
described by v0i ¼ Ci for some constants Ci. Let us first
examine the case in which there is only one internal
manifold. We will label its volume u and dimension N;
we will first solve the dynamics of the u as our conserved
quantity [Eq. (13)] renders v trivial in this limit. Defining
ξ ¼ w − 1, we can use Eq. (13) to replace v0 and find

u00 þ
�
N þD
2N

�
ξu02 þ ξu0 þ

�
NðD − 1Þ

2DðN þD − 1Þ
�
ξ ¼ 0:

We note from this that, if there exists a turning point in u,
given that ξ ≤ 0, it will be a minimum. Therefore, we see
that outside the case of the stiff fluid (ξ ¼ 0), we cannot
stabilize the volume of the extra dimensions with an
isotropic fluid. Furthermore, as a mixture of fluids can
be given an effective equation of state, no mixture of
isotropic fluids can achieve stability of the extra dimen-
sions. For the case in which ξ ¼ 0, the stiff fluid, the
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equations of motion become trivial, and we quickly recover
the solution u ¼ A logðtÞ, v ¼ ð1 − AÞ logðtÞ. Thus, we see
that in the isotropized effective Friedmann equation (19),
the behavior of a stiff fluid is comparable with that of the
anisotropic shear—the “matter that matters” near a singu-
larity in the BKL scenario.
To solve our equations for general ξ, we set the boundary

condition such that the singularity is at η ¼ 0 and find

u0 ¼ N
Dþ N

8>><
>>:
N coth

h
Nξη

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DNðDþN−1Þ

p
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DNðDþ N − 1Þp − 1

9>>=
>>;

ð22Þ

with energy density given by

ρ ¼ N exp½−2ðuþ vÞ�
DðDþ NÞ

n
cosh

h
Nξηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DNðDþN−1Þ
p

i
− 1

o : ð23Þ

The case of a cosmological constant is a subset of these
solutions when ξ ¼ −2. The N þD-dimensional de Sitter
solution is maximally symmetric (i.e., isotropic) for these
solutions C ¼ 0, and we recover ud ¼ vn ¼ expðΛtÞ for
some constant Λ. This was examined for other curvatures
in [25].
We now turn our attention to matter that has anisotropic

pressures. The N ¼ 1, D ¼ 2 case was treated explicitly in
[21]. Taking ðwy − 1Þ times Eq. (9) and subtracting ðwx−1Þ
times Eq. (8), we find a generalization of Eq. (12) that can
be expressed as

e−ðvþuÞ d
dt

�
evþu

�½1þ ðD − 1Þwx −Dwy�
D

_v

−
½1þ ðN − 1Þwy − Nwx�

N
_u

��
¼ 0. ð24Þ

It is convenient to write ξ ¼ wx − 1 and δ ¼ wx − wy. The
equation of motion for u thus becomes

u00 þ ðDþ NÞξ2 − 2Dδξ − ðN − 1ÞDδ2

2Nðξ −DδÞ u02 ð25Þ

þðξ − δÞu0 þ NðD − 1Þðξ −DδÞ
2DðN þD − 1Þ ¼ 0: ð26Þ

We can solve this equation to find

u0 ¼ u0o

�
ðξ − δÞ þ μðξ −DδÞ coth

�ðξ −DδÞμη
2

��
; ð27Þ

where the constants are

u0o ¼
Nðξ −DδÞ

ξ2ðDþ NÞ − 2Dδξ −DðN − 1Þδ2 ;

μ ¼ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DNðDþ N − 1Þp ; ð28Þ

and we once again find the energy density

ρ ¼ u0o
e−2ðuþvÞðξþDδÞ
D½1 − coshð2μηÞ� : ð29Þ

Note that the dependence on N only enters through the
value of u0o. Furthermore, this is positive for positive u0o
when ξþDδ > 0, and there is a strong interplay between
the number of large dimensions D and the matter
anisotropy δ. In the isotropic limit, δ ¼ 0, and ξ is never
positive; therefore, we require a strong density contrast if
the initial singularity is to be at vanishing u. We use this to
analyse the turning points of u by setting u0 ¼ 0 in Eq. (25).
Here we see that the sign of u00 is determined to be the
opposite of that of ðD − 1Þδþ ξ. We will examine this
relationship further in the next section, where we consider
specific solutions with D ¼ 3 and N → ∞.
Let us now consider the case of multiple internal

manifolds. In such a situation if the matter content is
isotropic, we can use Eq. (15) to reduce the problem to that
of a single ODE, the equivalent situation to Eq. (22).
Without loss of generality, let us label the volume and
dimension of the manifold in question by v ¼ va and
D ¼ Da, with the remaining manifolds having volumes ui
and dimensions Ni, with N ¼ P

Ni the codimension of the
manifold in question, and C ¼ P

Cia the total of the
constants relating the expansion of the manifold we have
chosen and the remaining manifolds. The general form is

0¼DþN − 1

D
v00 þ ξ

�
2NþD
2D

þNðNþ 1Þ þ 2NiNj

2D2

�
v02

þ ξ

�
C
DþN − 1

D
þCiNj

D

�
v0

þ ξ

�X
k≠a

ðNk − 1ÞC2
k

2Nk
þCiCj

�
; ð30Þ

wherein the subscripts i and j should be summed over i < j
with neither being a. It is immediately apparent from this
that if there is only one manifold of high dimension, this
corresponds closely with Eq. (22),

v00 þ ξ

2
v02 þ ξCv0 þ ξ

�X
k≠a

ðNk − 1ÞC2
k

2Nk
þ CiCj

�
¼ 0:

ð31Þ

The only qualitative difference that has come about from
introducing multiple manifolds in this way is that the final
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term can be negative. Essentially, such a change can be
absorbed into the choice of sign of η.
If there are multiple high-dimensional manifolds, our

treatment must adjust. To make life simple, we will choose
to order our manifolds by their number of dimensions and
consider the case where

Nj

D
→

�
λi j < m

0 j ≥ m
: ð32Þ

In such a case we find that the effect of the infinite
dimensional manifolds upon one another is to act as a
single manifold with an extra anisotropy term that con-
tributes only to the constant term in the ODE. Defining
ν ¼ ð1þP

j λjÞv (a rescaling of the log of the volume of
the manifold of highest dimenison), we find

ν00 þ ξ
ν02

2
þ ξν0 þ ξ

�X
k

Nk − 1

2Nk
C2
k þ CiCj

�
; ð33Þ

where again the indices i and j should be summed for j > i.
In such cases we can use the results above (under the
substitution of ν for v) to describe the full set of solutions.
This simple relationship can be explained physically by the
fact that the product of two tori is a torus, and thus in
considering multiple internal manifolds, each of which is
toroidal, the only difference with considering a single torus
(with dimensions the sum of the tori’s dimensions) is that
there is there can be some anisotropic expansion, and this is
entirely contained in the Ci.

VI. D= 3, N → ∞

We now proceed to construct our infinite dimensional
cosmologies, focusing on D ¼ 3. If we first focus on the
vacuum solutions (what is, in effect, a higher-dimensional
generalization of the Kasner solution), we find that
nx ¼ �1=

ffiffiffi
3

p
, while ny ¼ 0. Is this behavior more general,

i.e., can N → ∞ stabilize the extra dimensions in a more
general setting? A full derivation of the solutions in general
dimension is given in Appendix Awith a discussion about
stabilization in Sec. VII. Here we will present the results in
the specific case D ¼ 3, N → ∞. One can recover exact,
proper time evolutions in certain conditions for isotropic
matter. As discussed in Sec. III there are three matter types
of interest in the infinite dimensional limit: stiff fluids, dust,
and cosmological constants. From our equation of motion,
we see that the stiff fluid solutions are all given by
v ∼ A logðtÞ; u ∼ B logðtÞ. One branch of these has
A ¼ 0, the other Aþ B ¼ 1. Again, these are the gener-
alizations of the locally rotationally symmetric Bianchi I
solutions with stiff fluids to higher dimensions. In the
former case, the three-dimensional background space is
static; in the latter we can fix the internal manifold only for
a scalar field whose energy density is sufficiently large

(again, analogous to the Bianchi cosmologies). In such a
case B ¼ 0, and thus the 3D space-time will appear to have
a scale factor that grows as a ∼ t

1
3. Let us examine first dust

solutions (ξ ¼ −1). Here we see

_u ¼ 12 − 2t
12 − t2

; ð34Þ

_v ¼ −
12

12 − t2
; ð35Þ

with energy density

ρ ¼ 2

t2 − 12
: ð36Þ

We should note here that this solution is only really valid
for t2 > 12 as the other regions are negative energy
solutions of the equations. We can integrate the equations
of motion to find

a ¼ ao

�
t

tþ 4
ffiffiffi
3

p
� 1ffiffi

3
p
: ð37Þ

The equation of motion for b is of itself trivial in this limit,
but the volume bN is given by

bN ¼ bNo t1−
ffiffi
3

p
ðtþ 4

ffiffiffi
3

p
Þ
ffiffi
3

p þ1: ð38Þ

The case of a cosmological constant (ξ ¼ −2) is some-
what complicated by the existence of anisotropic expansion
—we no longer have only the de Sitter solution to consider.
Solving the more general equations, we find

_u ¼ 1ffiffiffi
3

p coth

�
tffiffiffi
3

p
�
þ csch

�
tffiffiffi
3

p
�
; ð39Þ

_v ¼ −csch
�

tffiffiffi
3

p
�
; ð40Þ

with constant energy density ρ ¼ 1=6. Note that due to the
normalizations used, we find only a single solution in each
instance whereas a full set of solutions should be given for
general energy density. One can generate a full set of
solutions from ours by rescaling fu; vg → fαu; αvg, which
scales the energy density ρ → α2ρ. On examining these
solutions we find that _v → 0 as t → ∞. This seems to stand
in contrast to what we would expect from our experience
dealing with finite dimensional spacetimes, in which the
cosmological constant leads to exponential expansion. The
reason can be traced to insisting that ρ be finite. The energy
density in a de Sitter spacetime relates to the expansion of
the volume of the spatial slice, so as we take the large
dimensional limit holding energy density fixed, the expan-
sion of each individual scale factor tends to zero. Since v
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represents a finite dimensional volume, and u the infinite
limit, it is thus unsurprising that v becomes fixed. The scale
factor of the three dimensions follows

a ¼ ao tanh

�
t

2
ffiffiffi
3

p
� 1ffiffi

3
p
: ð41Þ

Again, the equation for b is trivial and the volume bN is
given by

bN ¼ bNo sinh

�
tffiffiffi
3

p
�
tanh

�
t

2
ffiffiffi
3

p
� ffiffi

3
p

: ð42Þ

It is obvious from these solutions that the late time
behavior of the three large dimensions is that they tend
towards a constant size. In fact, this will be the case for all
isotropic matter; as u0 > 0 for all these solutions at all
times, any perfect fluid with a pressure greater than that of
the cosmological constant (i.e., P > −ρ) the diffusion
under expansion of the extra dimensions will cause the
energy density to asymptote to zero, the vacuum solution.
Furthermore, the anisotropy tends to zero at late times and
so the dynamics approach that of an infinite dimensional
isotropic universe. In this case although the total volume
may vary, the change in the scale factor must be infini-
tesimal to render this finite, a consequence of the finiteness
of energy following a similar argument to that of the
cosmological constant above. To see this more directly,
consider the isotropic limit of (10). As the universe
isotropizes, _v → D

N _u. Thus, if ρ is finite, then _u is finite
and hence _v → 0.
Let us now turn our attention to anisotropic matter. There

is a particular set of solutions wherein 3wy ¼ 2wx þ 1

which satisfy ü ¼ _u ¼ 0, and thus can lead to an exactly
stable extra-dimensional space. These are discussed in
Sec. VII. Let us consider here a different solution, specifi-
cally where wx ¼ 0,wy ¼ −1. This is chosen as an example
of how the extra dimensions can have different late time
behavior to those of the 3 background dimensions. In such
cases, ξ ¼ −δ ¼ −1 and thus Eq. (27) simplifies as follows:

u0 ¼ 4 −
8ffiffiffi
3

p coth

�
4ηffiffiffi
3

p
�
; ð43Þ

v0 ¼ −2þ 6ffiffiffi
3

p coth

�
4ηffiffiffi
3

p
�
: ð44Þ

Although the resulting relationship between t and η is
everywhere invertible, as it is a bijection, the closed form
for ηðtÞ does not simplify globally. However, at large t we
can determine the asymptotics to our solution, obtaining

η ¼
ffiffiffi
3

p

1þ ffiffiffi
3

p log

�
4t

3 −
ffiffiffi
3

p
�
: ð45Þ

Together with the above, we see that the asymptotic
behavior is to find that _u is monotonic decreasing towards
zero everywhere, and _v increases before tending towards
zero. The volume of the extra dimensions is large but
shrinks and asymptotes to a constant, whereas the three-
dimensional space expands over time.

VII. STABILIZATION

Outside of the vacuum (ρ ¼ 0) or stiff fluid
(wx ¼ wy ¼ 1), it is not possible to have the dynamics
of the extra dimensions stabilized by isotropic matter. In the
case of a single internal manifold, this can be seen from our
initial equations of motion, Eqs. (9). Setting _u ¼ ü ¼ 0 and
Px ¼ Py forces _v ¼ v̈ ¼ 0 which contradicts the Hubble
equation (10) unless ρ ¼ 0. Now consider the case of
multiple internal manifolds with (possibly) differing scale
factors. A similar argument to the above shows that not all
the internal manifolds can have constant volume unless
ρ ¼ 0 or the matter is a stiff fluid. The conservation law of
Eq. (15) shows that v0i ¼ 0 is only possible when v0j is
constant for all other j.
Therefore, if we wish to stabilize our extra dimensions

for general matter types (e.g., for the dark energy epoch we
currently observe) we must consider anisotropic matter. We
can see interesting behavior of our anisotropic system by
examining Eq. (25) directly. When ξ ¼ Dδ this forces
u0 ¼ 0. Note that this is the same condition as is implied by
the consistency of our equations of motion (9) in the case
where _u ¼ ü ¼ 0. We can solve our equations of motion
easily, here yielding _v ¼ 3

Cþð2þwxÞt. This indicates that

having a large number of stable extra dimensions gives
an accelerated expansion at early times (t → 0) with matter
pressures taking over at later times. In general, achieving
inflation with extra dimensions is a difficult task [26].
This leads us to consider the following scenario; suppose

that our matter consists of a mixture of fluids which are
represented by effective equations of state at a given time.
Then both ξ and δ are evolving as universe expands. Thus,
this mixture may encounter the situation described, and the
extra dimensions will (momentarily) be frozen. At this
point we find that v0 ¼ 1, and Eq. (25) sets u00 ¼ 0 also (the
pole in the coefficient of u02 is first order and met with a
second-order zero). We thus encounter a way in which our
system can stabilize. As a simplified example, we consider
the limit of infinite extra dimensions added to a three-
dimensional background and take the three-dimensional
space to be large, and thus our dynamics are dominated by
fluids for which wx ≈ −1. If we let the effective wy ¼
−1=3þ ε we see that around the stationary solution u0 ∝ ε
and hence if our effective wy > −1=3 (i.e., ε > 0), then u0 is
positive, which should in turn reduce the effective wy until
it reaches −1=3, whereas if ε < 0 the opposite happens.
Hence, our system has a stable equilibrium in which the
extra dimensions are fixed in scale. Upon reaching this
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scale there may be a time of accelerated expansion
mimicking the cosmological constant in the three large
dimensions; however, this will decay.
Note that our system has only required that there exists

an effective wy ¼ −1=3; this can easily be achieved by a
mixture of, for example, the cosmological constant and
matter that behaves like dust in the extra dimensions and
the cosmological constant in the normal three. The freezing
happens because of the interactions between the pressures
and energy density, as can be seen directly from Eqs. (9)
without any need to make the assumption of perfect fluids
in the expansion; one can simply define the (possibly time-
dependent) effective equation of state as P ¼ wρ. What we
have done is essentially to posit that under a perturbation
about this point in phase space, there is a a negative
correlation between the effectivewy and u, since fluids with
lower wy will be diluted less as u expands. This is in
agreement with the usual behavior of cosmology in which
fluids with lower values of w dominate at large scales, and
high w at low scales. This negative correlation means that
the equilibrium is stable. It is interesting to note that this
behavior is qualitatively independent of N, the number of
extra dimensions—any number of extra dimensions can be
stabilized by the correct type of matter.

VIII. DISCUSSION

In this paper we have taken the first steps in studying the
dynamics of an infinite dimensional universe. We have
proposed a simple approach for determining the equations
of motion in the Kaluza-Klein construction, which allows
us to study space with an arbitrary numbers of dimensions.
The process laid out in Sec. IV generalizes to arbitrary
topologies, but here we have restricted ourselves to
Euclidean tori.
We have looked at vacuum solutions (the analogue of the

Kasner solution in higher dimensions), an isotropic perfect
fluid and an anisotropic fluid and found interesting and
novel behavior. In particular we found that in the N → ∞
limit, the extra dimensions are stabilized in the vacuum
case. We showed that property is lost once one adds a
nonzero energy momentum tensor although we discussed
some ideas of how to recover it. While some familiar
properties of the cosmological solutions remained in the
N− → ∞ limit, the overall behavior of the large dimen-
sions (i.e., the three-dimensional space) is markedly differ-
ent from that of a strictly four-dimensional universe. At first
glance, from the background dynamics alone, it is unlikely
that we live in an infinite dimensional Universe although a
more general analysis considering different geometries and
sources for energy-momentum needs to be considered.
This is a first analysis in what one might consider the

simplest higher-dimensional universe: the Kaluza-Klein
construction. However, the past two decades have brought
to the fore an altogether different approach to higher
dimensions involving three-dimensional structures, i.e.,

branes. Some of the machinery for p-branes in spaces of
arbitrary dimensions has already been established [27], but
an analysis such as the one done here remains to be done.
It would also be interesting to link the results of [16] with

those found in this paper. Specifically, it would interesting
to see how the ultralocalization that the authors found there
plays itself out in, for example, the cosmological solutions
for dustlike matter. One approach is to attempt a bottom-up
construction of cosmology, as advocated in [28], that could
link the smaller scales with global evolution.
Finally, and pragmatically, one might consider the

N → ∞ limit as a useful calculational tool. By taking
expansions in 1=N it may be possible to find approximate
yet accurate solutions for Kaluza-Klein theories with a
moderate number of extra dimensions—for example, string
theory or super gravity invoke N ¼ 6 or N ¼ 7 for which
corrections may be sufficiently small. Regardless, the
analysis of Secs. IV and V is exact for any N and D.
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APPENDIX A: GENERAL ISOTROPIC
MATTER SOLUTIONS: DUST AND

COSMOLOGICAL CONSTANT

To obtain a general solution, we note that it is simpler to
stay with the first time derivatives of variables throughout
our transformations between t and η: From Eqs. (13) and
(22) we find that u0 þ v0 takes a simpler form, and so we
can find the relationship between η and t simply

sinh

�
Nξη

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DNðDþ N − 1Þp

�
2=ξ

dη ¼ dt; ðA1Þ

from which we can generally recover η as a function of t.
Unfortunately, for general η this involves inverting a
confluent hypergeometric function which supports multiple
branch cuts leading to different solutions in different
branches. However, in the case where ξ ¼ −1 (i.e., dust)
we find that this results in

t ¼ −
2

μ
coth

�
μη

2

�
; ðA2Þ

which is easily inverted for t. We set μ ¼ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDðNþD−1Þ

p
for brevity. Using this together with _v ¼ v0 _η and Eq. (A1),
we see
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_u ¼ 4DNðDþ N − 1Þ − 2N2t
ðDþ NÞð4DðDþ N − 1Þ − Nt2Þ ; ðA3Þ

_v ¼ −
2DNð2ðDþ N − 1Þ þ tÞ

ðDþ NÞð4DðDþ N − 1Þ − Nt2Þ : ðA4Þ

These can be integrated to give

u ¼ μD log ð4DðDþ N − 1Þ − Nt2Þ − 2N tanh−1ðμt
2
Þ

μðDþ NÞ ;

ðA5Þ

v ¼ μN log ð4DðDþ N − 1Þ − Nt2Þ þ 2N tanh−1ðμt
2
Þ

μðDþ NÞ :

ðA6Þ

It is clear that these can be split into the growth of the
isotropic volume and the anisotropy easily. The measure of
anisotropic expansion is

Σ ¼ _u
N
−

_v
D

¼ 4ðDþ N − 1Þ
4DðDþ N − 1Þ − Nt2

: ðA7Þ

This is singular at the origin, but reduces as the matter
presses the system into isotropy.
We can perform a similar analysis by considering the

case of the cosmological constant (ξ ¼ −2). Here we follow
the above to obtain

_u ¼ N
Dþ N

1

sinhðμtÞ ðμ coshðμtÞ þ 1Þ; ðA8Þ

_v ¼ N
Dþ N

1

sinhðμtÞ
�
D
N
μ coshðμtÞ − 1

�
; ðA9Þ

which has a constant energy ρ ¼ N
2DðNþDÞ. This solution

asymptotes to the isotropic limit. The measure of
anisotropy in expansion,

Σ ¼ _u
N
−

_v
D

¼ 1

d sinhðμtÞ : ðA10Þ

At early times this is very large, diverging at the origin,
but quickly tends to zero as time goes on, and we return to
an isotropic exponential expansion as the system asymp-
totes to de Sitter expansion.

APPENDIX B: GENERALIZED BILLIARDS

The cosmological billiards approach rewrites the metric
in a manner such that the anisotropies have the form
of scalar fields evolving on a shape potential which
arises from the Ricci scalar. We shall here present a
small generalization of this approach to include the

block-diagonal metric we use. We identify sets of the
translational one-forms under which our spatial slices are
homogeneous to form isotropic subspaces, and hence our
approach is equivalent to taking the cosmological billiards
approach on a M-dimensional spatial manifold and enforc-
ing equalities between some of the scalar fields. We express
our metric in the form

ds2 ¼ −dt2 þ e2v
X
i

e2sids2i ; ðB1Þ

wherein the final shape parameter sq ¼ −
P

i<q si. As
before, the dsi are Di-dimensional homogeneous isotropic
manifolds of unit volume. However, in this form we have
explicitly captured the behavior of the entire volume of
space in v. The Ricci scalar will split into the product of a
term purely in v and a term Rs½s⃗� which depends only on
the shape parameters (called the “shape potential”). Our
Langrangian becomes

Lg ¼ ev
�
−
�X

i

Di − 1

Di
þ qðq − 1Þ

�
_v2

þ
X
i<q

�
Di − 1

Di
þDq − 1

Dq
− 2

�
_s2i

þ 2

�
Dq − 1

Dq
− 1

�X
i≠j

_si _sj

þ 2
X
i<q

�
Di − 1

Di
−
Dq − 1

Dq

�
_v _si

þ e
2−M
M vRs½s⃗�

�
: ðB2Þ

In the case where we do not impose each of the isotropies
on the spatial manifolds the above reduces to the usual
cosmological billiards Lagrangian, setting eachDi ¼ 1 and
q ¼ M. This setup is a starting point for investigation of the
shape dynamics of such a system, which is beyond the
scope of the current work. As we are here primarily
interested in the case of one large spatial manifold and
many small ones, it is more convenient to use the para-
metrizations given above, rather than dealing with a
mixture of v and si terms. Nevertheless, we can gain
insight into our system by considering the behavior of
this system. In particular, we note that there exist
geometries for which Rs is independent of one or more
of the shape parameters. A trivial example of this is that
of the product of tori, but this can happen in the case of
more complicated systems. When this is the case, the
Euler-Lagrange equations immediately reveal a conserved
quantity, δL

δ _si
. In the toroidal case these correspond exactly

to the Cij of Eq. (15).
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APPENDIX C: GENERAL EINSTEIN EQUATIONS

In Sec. IV we presented the Einstein equations that arise
when the spatial manifold is the product of two tori. Here
we will give the equations in full generality. These can be
easily derived from the Lagrangian in Eq. (5) by singling
out one particular spatial manifold at a time to consider as
the “background.” In doing so we find the equations arising
from the spatial eigenvalues of the Einstein tensor (the
pressures) are given

−P1 ¼
D1 − 1

D1

v̈1 þ
D1 − 1

2Di
_v12

þ
X
1<j<k

_vj _vk þ
D1 − 2

2D1

e−
2v1
D1

1R

þ
X
j>1

�
D1 − 1

D1

_v1 _vj þ
Dj þ 1

2Dj
_vj2 þ v̈j þ

e
−
2vj
Dj jR
2

�
;

ðC1Þ

with P2, etc., given cyclically. Again, we find the
Friedmann equation from the Hamiltonian of the system,

ρ ¼
X
i

�
Di − 1

2Di
_vi2 þ e

−
2vj
Dj jR

�
þ
X
i<j

_vi _vj : ðC2Þ

Here we reiterate the observation that the manner in which
we approach the limit of taking a large number of
dimensions in our spatial manifold can lead to different
dominating behaviors—if we take the number of manifolds
q to be large, the cross between _vi _vj grows as q2, whereas
the others grow linearly in q and hence are insignificant.
However, if we take the limit of a large number of
dimensions n in a homogeneous, isotropic spatial manifold,
we expect the curvature term iR to grow as n2 and thus
dominate.
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