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Maybe not. String theory approaches to both beyond the Standard Model and inflationary model
building generically predict the existence of scalars (moduli) that are light compared to the scale of
quantum gravity. These moduli become displaced from their low energy minima in the early Universe
and lead to a prolonged matter-dominated epoch prior to big bang nucleosynthesis (BBN). In this paper,
we examine whether nonperturbative effects such as parametric resonance or tachyonic instabilities can
shorten, or even eliminate, the moduli condensate and matter-dominated epoch. Such effects depend
crucially on the strength of the couplings, and we find that unless the moduli become strongly coupled, the
matter-dominated epoch is unavoidable. In particular, we find that in string and M-theory compactifications
where the lightest moduli are near the TeV scale, a matter-dominated epoch will persist until the time of big
bang nucleosynthesis.
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I. INTRODUCTIONS

Moduli are a generic prediction in string theoretic
approaches to beyond the Standard Model [1] and infla-
tionary model building [2]. It was noted long ago that these
moduli could be displaced from their low-energy minima in
the early Universe, and their coherent oscillations lead to a
period of matter domination [3–7]. This matter phase has
important differences from a strictly thermal universe and is
a rich source of dark matter phenomenology; for a review
see [1]. The matter phase can also lead to enhanced growth
of structure [8–10], changes in inflationary predictions
for the cosmic microwave background [11], and also the
formation of primordial black holes [12,13]. These cos-
mological and phenomenological predictions depend on
the duration of the matter phase, which is determined by the
moduli mass and couplings to other fields.
It is expected that moduli couple gravitationally, and the

matter phase will persist until the perturbative decay of
the modulus is completed, which, for 50 TeV moduli, will
be around the time of big bang nucleosynthesis (BBN) [1].
In this paper, we want to revisit these assumptions and
determine if effects such as parametric enhancement
[14,15] or tachyonic instabilities [16] can lead to an
enhanced decay of the moduli. In the former case, as the
field oscillates, particles are produced, and Bose-Einstein
statistics can lead to a significant enhancement of the decay

compared to the perturbative decay rate [14,15] (for a
review see [17,18]). However, in tachyonic resonance, if
the mass squared of the field becomes negative due to
the time and/or field dependence of the couplings, this can
lead to the efficient decay of the field in less than a single
oscillation [16]. It has also been argued that the dynamics
and backreaction of the produced particles could be used to
“trap” moduli [19–22]. If these types of instabilities are
present, they can significantly enhance the moduli decay
rate resulting in less of a matter phase or even prevent the
formation of the moduli condensate all together. For very
light moduli, which would decay after BBN, this enhanced
decay may lead to a new way to address the cosmological
moduli problem [3–7].

II. MODULI DECAY THROUGH PARAMETRIC
AND TACHYONIC RESONANCE

The moduli will typically couple to other fields with
gravitationally suppressed couplings. This is the case in
examples like KKLT [23], as well as the cases of large
volume compactifications in Type IIB [24] and G2 com-
pactifications of M-theory [25]. The perturbative decay
rate of the modulus is then Γ ∼m3

σ=Λ2, where mσ is the
mass of the modulus and Λ is the suppression scale.
Taking1 Λ ∼mp, the corresponding reheat temperature
for an mσ ¼ 50 TeV scalar is around 5 MeV [1]. Here
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we would like to determine whether parametric or
tachyonic instabilities in the moduli can result in a faster
decay and thus a higher reheat temperature.
We are motivated by recent work on preheating and the

production of gauge fields at the end of inflation [26–28]. In
these papers it was found that a tachyonic instability to the
production of massless gauge fields from inflaton couplings
σFμν

~Fμν=Λ [27,28] or σFμνFμν=Λ [26] can lead to explosive
particle production and drain energy completely before the
inflaton can complete a full oscillation. If this result were
also true for moduli, then this could prevent the formation of
the condensate and the matter-dominated phase.

A. Moduli coupling to gauge fields

In all of the string constructions mentioned above
there are moduli with masses generated by gravitationally
mediated supersymmetry (SUSY) breaking. The corre-
sponding moduli mass is determined by the gravitino mass
m3=2 as mσ ¼ cm3=2 where c is a constant determined
by the particular string theory realization, e.g. in the G2
minimal supersymmetric Standard Model (MSSM) c≃ 2.
We now consider the coupling of the moduli to a hidden

sector gauge field

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν −

c
4Λ

σFμνFμν

�
; ð1Þ

where c is an order one constant (computable in a given
string model) and consistency of the effective theory
requires σ < Λ. The corresponding equations of motion are

∇μFμν þ c
Λ
∇μðσFμνÞ ¼ 0; ð2Þ

□σ ¼ ∂V
∂σ þ c

4Λ
FμνFμν: ð3Þ

Working in Coulomb gauge A0 ¼ 0; ∂iAi ¼ 0, neglect-
ing the expansion of the background, and introducing the
field redefinition ~Ak ¼ ½aðtÞð1þ cσ=ΛÞ�1=2Ak, the result-
ing equations of motion are
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The moduli will remain frozen in their false minimum
until H ≃mσ, at which time the moduli begin oscillations
and σðtÞ ¼ σ0 cosðmtÞ, where the initial amplitude is
typically σ0 ∼mp.

The gauge field equation can be put in the form of a
Mathieu equation by introducing the time variable
z ¼ mt=2. Noting that consistency of the effective theory
requires σ0 < Λ and keeping only the leading terms, we
have

d2Ak

dz2
þ
�
4

�
k
mσ

�
2

þ 2c

�
σ0
Λ

�
cosð2zÞ

�
Ak ¼ 0; ð6Þ

where we have dropped terms further suppressed by powers
of σ0=Λ and we note that the leading time-dependent mass
term corresponds to the term ∼ σ̈=Λ in (5).
Comparing (6) to the usual Mathieu equation,

d2u
dz2

þ ½Ak þ 2q cosð2zÞ�u ¼ 0; ð7Þ

suggests the identifications

Ak ≡ 4

�
k
mσ

�
2

; q≡ c

�
σ0
Λ

�
: ð8Þ

Tachyonic instability corresponds to the condition Ak <
2q, broad resonance occurs for q ≫ 1, and narrow reso-
nance occurs for q≲ 1. We can immediately see that broad
resonance is forbidden, since validity of the effective theory
requires σ0 < Λ or q < 1. Moreover, although narrow
resonance could play a role, it may not lead to significant
enhancement of the production [15]. Thus, we focus on the
case of tachyonic resonance.

B. Tachyonic resonance: Analytic treatment

The modes that will undergo tachyonic resonance
correspond to Ak < 2q in (7), which for the identification
(8) implies

k <
1ffiffiffi
2

p
�
σ0
Λ

�
1=2

mσ: ð9Þ

However, for postinflation we are interested in sub-Hubble
modes2 so we also require k=H > 1, implying the modes of
interest lie in a band

1 <
k
H

<
1ffiffiffi
2

p
�
σ0
Λ

�
1=2

�
mσ

H

�
: ð10Þ

Thus, for tachyonic production of modes we require

1ffiffiffi
2

p
�
σ0
Λ

�
1=2

�
mσ

H

�
≫ 1; ð11Þ

so at the onset of the moduli phase, when H ≃mσ

perturbativity of the effective theory again seems to limit

2This is required by causality if the gauge modes begin in their
vacuum state following inflation.
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the level of enhancement in gauge field production, since
we require σ0 < Λ. However, although the initial moduli
displacement is typically expected to be an order of
magnitude or so below the cutoff, as the moduli oscillations
continue the Hubble parameter will continue to decrease
H < mσ, and tachyonic resonance becomes possible. There
is a competing effect that the amplitude of the moduli
oscillations also decreases compared to its initial value σ0.
It is a quantitative question of how important tachyonic
resonance is for moduli decay and the duration of the
epoch. Moreover, during oscillations, creation of moduli
(moduli particles, meaning k ≠ 0 modes), particle scatter-
ing, and backreaction of both moduli and gauge fields
can play an important role, as can the expansion of the
Universe. To account for these complexities and non-
linearities we perform a lattice treatment and present those
results in the next section.

C. Tachyonic resonance: Lattice results

To determine whether tachyonic (or parametric) insta-
bilities occur in the system (4) and (5), we perform fully
nonlinear lattice simulations. We build our simulations
using the software GABE [29], which has been used
previously to study the interactions of scalar fields and
U(1) Abelian gauge fields [26–28]. Our simulations allow
us to account not only for gauge field production, but also
the effects of scalar particle production, rescattering, back-
reaction, and the expansion of the Universe.
There are several restrictions on the allowed values of the

fields and parameters of our model. For example, although
we perform a lattice simulation, validity of the effective
supergravity description requires that the nonrenormaliz-
able operator in (1) remain subdominant to the leading
kinetic term. Since c is a dimensionless Oð1Þ Wilson
coefficient, this requires that σ not exceed the UV cutoff Λ
(which is typically order the Planck or string scale).
We note that our simulations are similar to those of [26],

where the role of the inflaton there is instead given by
the moduli here. As we will see, a key difference in our
results compared to those of [26] is that there the authors
considered a toy model with a dilatonic type coupling that
could enter a “strong coupling” regime. In this paper, we
are limited by the validity of the effective theory σ < Λ,
and we see that this limits our ability to establish a strong
resonance behavior.3

In order to establish as large a resonance as possible, we
will take the initial amplitude of the moduli to be near the
Planck scale σ0 ≃mp (we take σ0 ¼ 0.2mpl as a fiducial
value). Then, our discussion of the validity of the effective
theory requires that we take Λ ∼mp, and as the field can
change signs this also ensures that the kinetic term of (1)

retains the correct sign. This limits us to a maximum
coupling c=4Λ ≈ 6.9m−1

pl . Throughout this section we will
use this maximum value to make the potential tachyonic
window as large as possible (we have checked that for
lower values of the cutoff the resonance is even weaker than
the results we present here). We are left with only one free
parameter, mσ, which also sets the Hubble scale at the
beginning of coherent oscillations.
Using GABE we discretize space onto a grid of 1283

points that are on a homogeneously expanding box. The
box has initial size, L ¼ 4m−1

σ ≈ 2H−1
0 . The simulations

solve (4) and (5) along with the Friedmann equations. For
numerical simplicity, we employ the standard unitless
conformal time, dτ ¼ aðtÞmdt. We use an adaptive time
step, Δτ ¼ 0.005=aðτÞ, so that we resolve the comoving
modes throughout the simulation. We initialize the modulus
field consistent with the expectations of a field that carries
the “freeze out” power as modes reenter the horizon,4

hδσðkÞδσðk0Þi ¼ π2

2

�
Δ2

sσ
2
0

H3
0

�
δðk − k0Þ; ð12Þ

assuming that most modes have not grown much since
horizon reentry5 and have recently reentered (k ≈H0). For
the gauge fields we set the initial conditions consistent with
the Bunch-Davies vacuum [26],

hjAiðkÞAjðk0Þj2i ¼
δijδðk − k0Þ

2að1þ cσ=ΛÞ ; ð13Þ

with a zero homogeneous mode (we comment on the
robustness of this assumption shortly). We take the initial
surface in Coulomb gauge, but the rest of the simulation is
carried out in Lorenz gauge, ∂μAμ ¼ 0, where Gauss’s
constraint is treated as a dynamical degree of freedom (as
the equation of motion for A0), and we check that the gauge
constraint is maintained throughout our simulations. As
we increase the mass of the modulus field, we shrink the
physical size of the Hubble patch at the beginning of the
simulation. This is the best approach to resolving shorter
wavelength modes of the gauge fields and, hence, a larger
fraction of energy in the gauge sector. As we set the initial
conditions, we impose a window function (as in [26]) that
cuts off power to modes k≳ 90mσ for numerical stability.
However, this scale is above the scale at which we would
expect to see tachyonic instabilities.

3The result that validity of an effective field theory approach
can limit the importance of parametric resonance was noted
recently in [30].

4We start our simulations at the beginning of moduli oscil-
lations, and we take adiabatic initial conditions so that the
inflaton fluctuations will have been transferred to the moduli
that come to dominate the energy density (we assume no
isocurvature; however, see [31]) and assume that Δ2

s ≈ 10−10.
5Prior to moduli domination we take the Universe to be

radiation dominated following inflationary reheating, and sub-
Hubble modes of the moduli will undergo very little growth [their
perturbations grow logarithmically with the scale factor ∼ logðaÞ�.
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Following [26], we take the ratio of the gauge field
energy density (ρEM) to the total energy (ρtot) as a figure of
merit of the amplification of the gauge field and the
effectiveness of the tachyonic (and parametric) instabilities.
Figure 1 shows the evolution of this parameter as a function
of time for a large range of moduli masses. We find the
robust result that regardless of the (relative) amplitude of
the initial fluctuations of the gauge fields, tachyonic (and
parametric) instabilities are absent and do not lead to
significant amplification of the gauge fields. The variation
in the initial value of ρEM reflects that we allow for different
values of the moduli mass as discussed above. Considering
a preexisting density of gauge modes (e.g. non-Bunch-
Davies initial conditions with modes that were classically
or quantum mechanically excited during inflation6) would

have a similar effect, amplifying the initial spectrum of
the gauge field and, hence, raising ρEM=ρtot on the initial
surface.
An additional measure to look for instabilities is in the

spectra of the coupled fields. In Fig. 2, we see that there
is very little change to the power spectra of the fields. In
cases where instabilities exist, we can generally see these
instabilities in the power spectra of the fields. We did not
see any indication of tachyonic or parametric instabilities in
any of the cases we studied.
Although we have not found significant evidence for an

increased decay of the moduli, this does not necessarily
imply a matter-dominated epoch. Indeed, it was recently
shown that the nonlinear dynamics of the fields can have an
important influence on the equation of state [33]. Thus,
we must lastly ensure that the expansion mimics that of a
matter-dominated single-component universe. To do this,
we track the equation of state parameter, w ¼ p=ρ, which
is the usual ratio of the isotropic pressure to the energy
density. Figure 3 shows this for the fiducial case,
mσ ¼ 50 TeV, and shows that w oscillates, as expected,
between �1 as is the case of a massive scalar field
dominated by its homogeneous value.

III. COMMENTS AND CONCLUSIONS

In this paper, we have considered the coupling of moduli
to hidden sector gauge fields for a range of masses and

FIG. 1. Plot of ρEM=ρtot vs unitless conformal time (see text) for
a set of maximally coupled simulations, c=Λ ¼ 6.7mp. The top
panel shows a simulation of the fiducial value of mσ ¼ 50 TeV,
and the bottom panel shows a range of masses, frommσ ¼ 50 TeV
(bottom) to mσ ¼ 5 × 1011 TeV; the 50 TeV case is labeled in
blue in both plots. For each simulation ρtotðtÞ is approximately
the same, since the energy of the modulus is dominated by its
homogeneous mode and is always the dominant component.

FIG. 2. The power spectra of one component of the gauge field,
A1, at the beginning of the simulation (black), at the first zero
crossing (red), and at the second zero crossing (blue) in a
simulation where mσ ¼ 50 TeV. At higher frequencies, the
power is suppressed due to the window function imposed on
the initial slice; the slight increases in these frequencies is not a
physical response, but an accumulation of numerical truncation
errors (and is still many orders of magnitude below the scales of
interest). The increase in the zero-momentum bin is a conse-
quence of the initial value being set to zero to machine precision,
with truncation errors making it drift away. The spectra undergo
negligible amplification over the course of the simulation. The
other spatial components of the field have identical behaviors,
and similar results are seen in all simulations. We find no
indication of tachyonic or parametric instabilities.

6Model-independent bounds on the level of gauge field
production during inflation were recently established in [32].
There it was shown that requiring successful inflation limits the
amplification of gauge fields, thus limiting the size of the initial
amplitude taken for the gauge fields; i.e. one cannot take the
initial amplitude to be arbitrarily large.
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initial values of the gauge fields. We found that even as we
approach modestly strong coupling, tachyonic and para-
metric instabilities have no effect on the moduli decay rate.
Moreover, we have seen that the equation of state during
the moduli oscillations averages to the previously antici-
pated result of a matter-dominated universe. As gauge field
production relies on the moduli dynamics breaking the
conformal invariance of the gauge field sector [34], and in
these string motivated models the source of this breaking
comes from nonrenormalizable operators; it may not be
that surprising that this effect turned out to be negligible.
One reason for considering these operators was that such
couplings generically appear in string theories and are
model independent in the sense that they arise strictly in
the moduli sector and are typically independent of how
one embeds the visible sector. This is indeed the case in
examples like KKLT [23], as well as the cases of large
volume compactifications in Type IIB [24] and G2 com-
pactifications of M-theory [25].

One may wonder if more model-dependent couplings
(arising from embedding the visible sector in a particular
string construction) may alter our conclusions. For exam-
ple, moduli couplings to the Higgs (∼σH†H) are relevant
operators, and the moduli might undergo enhanced
decay to Higgs bosons. However, such couplings were
already considered some time ago by Brandenberger and
Shuhmaher in [35,36]. They considered relevant operators
arising from SUSY breaking for a range of moduli masses.
Their results are similar to our findings for nonrenormaliz-
able operators. That is, if one requires a perturbative theory
and consistency of the effective field theory, then neither
parametric nor tachyonic resonance significantly alters the
moduli decay rate.
Our results, as well as those of [36], suggest that if one is

to eliminate the moduli-dominated epoch, one is going to
have to consider moduli that are strongly coupled. There is
some motivation for this in string theory [37] (for more
recent work see [38]); however, there must typically be at
least one light modulus if we are to realize the perturbative
Standard Model in a string construction [22]. For this
reason, we take our results as a robust prediction that string
theories lead to the expectation for a prolonged, matter-
dominated epoch prior to BBN.
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