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We study the spectral properties of the anisotropic part of the Hamiltonian entering the quantum
dynamics of the Mixmaster universe. We derive the explicit asymptotic expressions for the energy spectrum
in the limit of large and small volumes of the universe. Then, we study the threshold condition between
both regimes. Finally, we prove that the spectrum is purely discrete for any volume of the universe. Our
results validate and improve the known approximations to the anisotropy potential. They should be useful
for any approach to the quantization of the Mixmaster universe.
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I. INTRODUCTION

Analytical and numerical results suggest that the dynam-
ics of the Universe on approach to the big crunch/big bang
singularity is dominated by the time derivatives of the
gravitational field [1,2]. Hence, the dynamics at each
spatial point becomes ultralocal, oscillatory, and chaotic
and is driven entirely by the gravitational self-energy. These
generic features are exemplified by the Mixmaster universe
[3], which is a model of spatially homogeneous and
anisotropic spacetime with the incorporated Bianchi type
IX symmetry. In the context of quantum gravity, the
Mixmaster universe seems to be an ideal tool for testing
whether quantization can resolve the problem of classical
singularities.
The canonical formalism of the Mixmaster universe in

the Misner variables describes the universe in terms of a
particle in a three-dimensional Minkowski spacetime in a
potential representing the spatial curvature of the universe.
The anisotropy part of this potential is a nontrivial function
of two variables [see Eq. (3)] for which the Schrödinger
problem is not integrable.
The problem of solving the quantum dynamics of the

Mixmaster universe is quite involved. It is true for the
traditional approaches based on the Wheeler-DeWitt equa-
tion (e.g., see Ref. [4] and references therein) or the Misner

reduced phase space [3] as well as for the novel approaches
like the one developed by us in Refs. [5–7]. The common
element of all the approaches is the natural split between
the isotropic and anisotropic degrees of freedom and the
ensuing decomposition of the Hamiltonian. Although the
anisotropic and isotropic dynamics are coupled and ulti-
mately have to be considered together, the knowledge of
properties of the nontrivial anisotropic Hamiltonian is
crucial for understanding the full dynamics. In this regard,
the Mixmaster universe is analogous to molecular systems
that admit a natural split between nuclear and electronic
degrees of freedom. This feature is essential in our
approach.
The knowledge of properties of the anisotropic

Hamiltonian is a solid starting point for studying the full
model, which includes the coupling between the aniso-
tropic and isotropic variables. The details of such a
framework depend on the specific quantization of the
isotropic Hamiltonian. The dynamics following from the
Wheeler-DeWitt equation is known to be singular, whereas
the quantization proposed in Refs. [5–7] produces an extra
repulsive term that replaces the classical singularity with
a bounce. In any case, some quantum trajectories may be
sufficiently well determined by means of the adiabatic
approximations (the Born-Oppenheimer or the Born-
Huang) [5,6]. Determination of more elaborate quantum
trajectories requires available nonadiabatic methods, e.g.,
those used in the context of chemical reaction dynamics [8].
The key point is that the knowledge of properties of
the anisotropic Hamiltonian enables us to reduce the
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dimensionality of the studied equation. Thus, even though
its solution ultimately requires numerical simulations, the
control over the space of solutions and the qualitative
understanding of dynamics are largely enhanced.
The usual approximations for the anisotropy

Schrödinger spectral problem are the harmonic or the steep
wall approximations (see Ref. [3], and for recent studies,
see, e.g., Refs. [9,10] and references therein). Their
respective validities have never been rigorously studied.
In particular, they have never been considered in a unified
manner as corresponding to the two extreme regimes of the
volume of the universe. Moreover, the limit condition
separating the two regimes has never been explicitly given.
Note that the purely discrete spectrum of the two approx-
imations does not imply a purely discrete one for the exact
potential for all volumes.
In the present paper, we fill those crucial gaps in the

knowledge of the properties of the Bianchi IX anisotropy
potential. For any quantum system, the knowledge of the
full spectrum of the Hamiltonian is crucial. For example,
the adiabatic approximation can be considered only for the
discrete part of the spectrum of a relevant subsystem and
only if this discrete part is not embedded into a continuous
one. These features were considered by Simon in Ref. [11].
Therefore, the proof that the Bianchi IX anisotropy
spectrum is indeed purely discrete for any volume of the
universe is essential. Furthermore, the knowledge of the
analytical approximations to the spectrum is decisive; for
example, a nonadiabatic framework to the Bianchi IX
model is studied in Ref. [7], but the analytical part of
the study is limited (harmonic approximation) by the lack
of detailed knowledge of the spectrum. Since our results
concern the analytical properties of the anisotropic
Schrödinger spectrum which is proper to the Bianchi IX
geometry, they should be useful for studies of many
quantum models of Mixmaster. Nevertheless, the immedi-
ate application of our results is to validate the assumptions
underlying the quantum theory of the Mixmaster universe
proposed in Refs. [5–7].
The outline of the paper is as follows. In Sec. II, we recall

the essential elements of the canonical formalism for the
Mixmaster universe, and the anisotropy potential is ana-
lyzed. Section III deals with the asymptotic analysis of the
spectrum of the quantum model in two opposite situations
corresponding to large and small volumes of the Universe.
In particular, we highlight a unique unitary transformation
that allows us to study both limits on the same ground. The
limit condition separating both regimes is also given.
Moreover, we improve the steep wall approximation, which
is widely used in the literature. In Sec. IV, we prove that
the spectrum associated with the anisotropy potential is
purely discrete, irrespectively of the size of the universe.
We conclude in Sec. V.1

II. PRELIMINARIES

The line element of the Bianchi type IX model reads

ds2 ¼ −N 2dτ2 þ
X
i

a2i ðωiÞ2; ð1Þ

where dωi ¼ 1
2
nεjki ωj ∧ ωk. The Hamiltonian constraint

of the Mixmaster universe in the Misner variables
ðΩ; pΩ; β;pÞ ∈ R6 reads [3]

C ¼ N e−3Ω

24

�
2κ

V0

�
2

×

�
−p2

Ω þ p2 þ 36

�
V0

2κ

�
3

n2e4Ω½VðβÞ − 1�
�
; ð2Þ

where β ≔ ðβþ; β−Þ, p ≔ ðpþ; p−Þ, V0 ¼ 16π2

n3 is the fidu-
cial volume, κ ¼ 8πG is the gravitational constant, and N
is the nonvanishing lapse function subject to an arbitrary
choice. The anisotropy potential reads

VðβÞ ¼ e4βþ

3
½ð2 coshð2

ffiffiffi
3

p
β−Þ − e−6βþÞ2 − 4� þ 1: ð3Þ

Henceforth, n ¼ 1, and 2κ ¼ V0. The gravitational
Hamiltonian (2) resembles the Hamiltonian of a particle
in a 3DMinkowski spacetime in a potential arising from the
spatial curvature. The spacetime variables have the follow-
ing cosmological interpretation:

Ω¼ 1

3
lna1a2a3; βþ ¼ 1

6
ln
a1a2
a23

; β− ¼ 1

2
ffiffiffi
3

p ln
a1
a2

:

ð4Þ

Hence, Ω describes the isotropic part of geometry, whereas
the anisotropic variables β� describe distortions to isotropy.
The Hamiltonian constraint (2) can be decomposed as a
sum of isotropic and anisotropic parts, which read (up to a
nonvanishing factor)

C ¼ −Ciso þ Cani; Ciso ¼ p2
Ω þ 36e4Ω;

Cani ¼ p2 þ 36e4ΩVðβÞ: ð5Þ

The potential V deserves particular attention due to its three
open C3v symmetry deep “canyons,” increasingly narrow
until their respective wall edges close up at the infinity,
whereas their respective bottoms tend to zero (see Fig. 1).
The potential V is asymptotically confining except for these
directions in which V → 0:

ðiÞ β− ¼ 0; βþ → ∞;

ðiiÞ βþ ¼ β−=
ffiffiffi
3

p
; β− → −∞;

ðiiiÞ βþ ¼ −β−=
ffiffiffi
3

p
; β− → ∞: ð6Þ1Throughout the paper, we assume c ¼ 1.
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It is bounded from below and reaches its absolute minimum
value at β� ¼ 0, whereV ¼ 0. Near itsminimum,V behaves
as the two-dimensional isotropic harmonic potential:

VðβÞ ¼ 8β2 þ oðβ2�Þ: ð7Þ

Away from its minimum, the so-called steep wall approxi-
mation applies as V tends to an equilateral triangle potential
with its infinitely steep walls.
We notice in Eq. (5) that, during the evolution of the

universe toward the singular point, Ω → −∞ and the factor
in front of the potential V goes to zero, 36e4Ω → 0.
Therefore, as the universe contracts, the potential walls
move apart, and the particle penetrates larger and larger
parts of the anisotropy space β ¼ ðβþ; β−Þ.

III. ASYMPTOTIC ANALYSIS OF THE SPECTRUM

Canonical quantization of the Hamiltonian constraint (5)
leads to the well-known Wheeler-DeWitt equation [4].
However, as already mentioned, this equation does not
remove the classical singularity. A quantization that
removes the singularity (see Refs. [5,6] for details) is
implemented with the isotropic variables that bring the
singular point to finite values, namely,

q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2a3

p
; p ¼ −

16

3N
_q: ð8Þ

Then, the full quantum constraint operator reads

Ĉ ¼ ∂2

∂q2 −
K
q2

− 36q2=3 þ ĈaniðqÞ; ð9Þ

with K > 0. The anisotropic part of the quantized (5) reads
as the q-dependent Schrödinger operator acting in the
Hilbert space H ¼ L2ðR2; dβþdβ−Þ,

ĈaniðqÞ ≔
p̂2

q2
þ q2=3VðβÞ; ð10Þ

where p̂� ¼ −i∂β� . Note that (9) is multiplied by the factor
q−2 with respect to the Wheeler-DeWitt operator.
Importantly, Eq. (9) includes the extra term ∝ q−2. This
repulsive potential is issued from a quantization consistent
with the affine symmetry of the isotropic variables [5,6].
It is responsible for the avoidance of singularity in all the
studied solutions.
In the present paper, we focus on the operator (10). Note

that it depends on the isotropic variable q > 0 and so do its
eigenstates. Therefore, the isotropic evolution can induce
nonadiabatic transitions between anisotropy eigenstates.
This, however, is an issue of adiabatic and nonadiabatic
approaches to quantum dynamics, which can be studied
independently once the properties of (10) are established.
In what follows, we derive the asymptotic expressions for
its spectrum.

A. Method

The quantum numbers are denoted collectively by I.

Denoting the spectrum by EðIÞ
q , we study limEðIÞ

q as
q → ∞ and q → 0. The method is based on the family
of unitary dilations UξðqÞ on H ¼ L2ðR2; dβþdβ−Þ,

ðUξðqÞψÞðβÞ ≔ ðξðqÞÞ−1ψ
�

β
ξðqÞ

�
;

dependent on a function ξðqÞ. When acting on ĈaniðqÞ, they
leave the spectrum EðIÞ

q unchanged. More precisely, we

investigate the limits in q of ĈðξÞ
aniðqÞ ¼ UξðqÞĈaniðqÞU†

ξðqÞ
for some ξðqÞ that will be specified below. The trans-
formation UξðqÞ acts on p̂� and β̂� as

FIG. 1. Plot of the Bianchi type IX anisotropy potential near its minimum with the three C3v symmetry axes β− ¼ 0, βþ ¼ β−=
ffiffiffi
3

p
,

βþ ¼ −β−=
ffiffiffi
3

p
.
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UξðqÞp̂�U
†
ξðqÞ ¼ ξðqÞp̂�; UξðqÞβ̂�U

†
ξðqÞ ¼

1

ξðqÞ β̂�:

ð11Þ

This leads to the unitarily equivalent Hamiltonian ĈðξÞ
aniðqÞ,

ĈðξÞ
aniðqÞ ¼

ξðqÞ2
q2

ĤðqÞ; ð12Þ

with

ĤðqÞ ¼ p̂2 þ ~VqðβÞ; ~VqðβÞ ¼ q8=3ξðqÞ−2Vðβ=ξðqÞÞ:
ð13Þ

Choosing ξðqÞ as

ξðqÞ ¼ 2

3 ln ð1þ 2
3
q−2=3Þ ; ð14Þ

we prove in the sequel that the potential ~VqðβÞ in Eq. (13)
possesses a well-defined limit for both small and large
values of q, leading to an explicit spectrum of Ĥðq ¼ 0Þ
and Ĥðq ¼ ∞Þ. In other words, the factor q−2ξðqÞ2 in front
of ĤðqÞ on the rhs of Eq. (12) captures both the divergent
behavior (for small q) and the vanishing behavior (for large

q) of eigenvalues of ĈðξÞ
aniðqÞ.

Note that we make use of q-dependent unitary trans-
formations which couple to the isotropic evolution through
the isotropic momentum operator in the constraint operator
(9). Although the spectrum of the anisotropy operator is
determined unambiguously, the obtained anisotropy eigen-
states must be suitably rescaled before their use in a study
of (9).

B. Harmonic behavior for large values of q

For large values of q, we have ξðqÞ≃ q
2
3. From the

above, we can see that the limit q → ∞ corresponds to
β� → 0 for the potential. The asymptotic expression for
~VqðβÞ of Eq. (13) reads

lim
q→∞

~VqðβÞ ¼ 8ðβ2þ þ β2−Þ: ð15Þ

Therefore,

Ĥðþ∞Þ ¼ p̂2 þ 8ðβ2þ þ β2−Þ: ð16Þ

Taking into account the scaling factor q−2ξðqÞ2 of Eq. (13),
we conclude that the eigenvalues EðIÞ

q for large values of q
correspond to rescaled eigenenergies of a 2D isotropic
harmonic oscillator and read

EðIÞ
q ≃

q→∞

8

q2=3
ffiffiffi
2

p ðnþ þ n− þ 1Þ þ oðq−2=3Þ; ð17Þ

where the integers n� ¼ 0; 1;… enumerate one-
dimensional harmonic oscillator energy levels.

C. Validity domain for the harmonic approximation

Starting from the expression of ĈaniðqÞ in Eq. (10), the
equation with eigenvalue E reads

�
p̂2

q8=3
þ VðβÞ − Eq−2=3

�
ψEðβÞ ¼ 0: ð18Þ

Since the eigenfunction ψE is rapidly vanishing outside the
domain VðβÞ − Eq−2=3 ≤ 0, the problem is well repre-
sented by a harmonic approximation, if in the domain
VðβÞ − Eq−2=3 ≤ 0 the potential is essentially quadratic.
This condition is valid for all q for the following reasons:
(a) For large q, the above condition reduces to the simple

fact that VðβÞ is quadratic near the origin. As a matter
of fact, we already know that the harmonic approxi-
mation holds true for large q.

(b) For small q, the kinetic energy term ∝ q−8=3 becomes
dominant, and we know that kinetic energy is due to
the oscillations of the wave function that takes place
in the domain VðβÞ − Eq−2=3 ≤ 0.

A numerical analysis shows that VðβÞ is quadratic for
VðβÞ ≲ 1. Therefore, a harmonic approximation of the
eigenvalues E is validated if the following condition holds
true:

Eq−2=3 ≲ 1: ð19Þ

This condition summarizes the intuitive breakdown of the
harmonic approximation for large excitations and for small
volumes. Using Eq. (17), the above condition can be
translated into the following bound on the (harmonic)
quantum numbers nþ, n−:

nþ þ n− þ 1≲ 1

4
ffiffiffi
2

p q4=3: ð20Þ

This condition has consequences for modeling bouncing
scenarios, as explained below in Sec. III E. Let us stress
that this condition holds irrespectively of adiabatic or
nonadiabatic approximations applied to the full quantum
dynamics and their validity.

D. Steep wall behavior for small values of q

For small values of q, we have ξðqÞ≃ j ln qj−1, and we
prove below that the asymptotic expression for ~VqðβÞ in
Eq. (13) reads
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lim
q→0

~VqðβÞ ¼ V∞ðβÞ; ð21Þ

where V∞ is the infinite potential well corresponding to an
equilateral triangular box with the side size b ¼ 2=

ffiffiffi
3

p
. The

potential V∞ is vanishing inside the triangle and infinite
outside (except for three half-lines) as illustrated in Fig. 2.
Because the potential VðβÞ possesses the C3v symmetry

(see Fig. 1), it is sufficient to study the limit in Eq. (21) for
βþ > 0. We first find the equivalent

∀βþ > 0;

∀ β− ≠ 0; Vðj ln qjβÞ ≃
q→0

1

3
exp ½4j ln qjðβþ þ

ffiffiffi
3

p
jβ−jÞ�:

ð22Þ

Therefore,

∀βþ > 0; ∀ β− ≠ 0;

8<
:

if βþ þ ffiffiffi
3

p jβ−j > 2=3; lim
q→0

q8=3ln2qVðj ln qjβÞ ¼ þ∞;

if βþ þ ffiffiffi
3

p jβ−j < 2=3; lim
q→0

q8=3ln2qVðj ln qjβÞ ¼ 0:

We also find directly from the expression of V

∀βþ > 0; β− ¼ 0; lim
q→0

q8=3ln2qVðj ln qjβÞ ¼ 0:

ð23Þ

Then, taking into account the C3v symmetry of the
potential, we construct the complete potential V∞ðβÞ as
represented in Fig. 2. Having proven Eq. (21), we rewrite
the Hamiltonian ĤðqÞ of Eq. (13) for q ¼ 0 as

Ĥð0Þ ¼ p̂2 þ V∞ðβÞ: ð24Þ

Up to a factor 1=2 in front of p̂2 in the above formula, the
spectrum of this type of Hamiltonian is well known [12–14]
and reads

eðTÞm;n ¼ 8π2

3b2

�
m2

3
þ n2 þmn

�
¼ 8π2

3b2

����nþ 1ffiffiffi
3

p eiπ=6m

����
2

;

ð25Þ

where m ¼ 0; 1; 2;…, n ¼ 1; 2;…, and b ¼ 2=
ffiffiffi
3

p
. Taking

into account the scaling factor q−2ξðqÞ2 in Eq. (13), we
deduce that for small values of q (and for fixed values of m
and n) the spectrum of ĈaniðqÞ reads

EðIÞ
q ≃

q→0

4π2

q2ln2q

����nþ 1ffiffiffi
3

p eiπ=6m

����
2

þ oðq−2ln−2qÞ: ð26Þ

From Eq. (26), we deduce the limit

lim
q→0

q2EðIÞ
q ¼ 0: ð27Þ

The above property has significance for the singularity
resolution, which we explain below.

E. Comments

First, our method shows in a straightforward way that
it is possible to capture in a single factor q−2ξðqÞ2 the
principal part of the q dependence of eigenvalues for large
and small q. It leads to a new Hamiltonian ĤðqÞ that
possesses well-defined limits on both ends (q ¼ 0 and
q ¼ ∞). This opens the way toward future studies for a
possible uniform approximation of eigenvalues.
Second, it is worth noting that the label I in Eq. (26) is

not an ordering parameter and the quantum numbers n and
m are different from those appearing in the harmonic case
(n�) in Eq. (17). Therefore, we cannot connect analytically
both asymptotic expressions. Nevertheless, the ordering
between eigenvalues for each limit (q → 0 and q → ∞) is
meaningful, and the q dependence of the respective
eigenenergies can be analyzed.

FIG. 2. The infinite potential well V∞ðβÞ of Eq. (21) corre-
sponds to an equilateral triangular box. The three C3v symmetry
axes β− ¼ 0, βþ ¼ β−=

ffiffiffi
3

p
, and βþ ¼ −β−=

ffiffiffi
3

p
are included.

Inside the blue triangle, V∞ðβÞ is zero.
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Third, the asymptotic Hamiltonians (q → 0 and q → ∞)
do not possess a continuous spectrum. This constitutes a
strong argument in support of the conjecture that ĈaniðqÞ
has no continuous spectrum for any value of q. The
rigorous proof is given in Sec. IV. The asymptotic analysis
of eigenvalues alone does not give the threshold value qm
that separates the two regimes of validity of the expressions
given in Eqs. (17) and (26). Yet a direct study as presented
in Sec. III C gives the sought condition summarized by
Eq. (19).
Fourth, we have proven Eq. (27). In the Misner paper [3]

where the quantum steep wall approximation is introduced,
the coefficient ln2 q of Eq. (26) is missing in the quantum
energy formula and leads to the false idea that the quantum
eigenenergies behave exactly as ∝ a−6 close to the singu-
larity. This rough approximation has no qualitative conse-
quence on the results of Misner’s paper. However, in our
previous papers [5,6], we have proven that the affine
quantization of the isotropic dynamics given by the
Hamiltonian constraint (5) produces a repulsive potential
term ∝ q−2. Therefore, in our case, this corrected depend-
ence in ln2 q is crucial as Eq. (27) implies that the repulsive
potential is dominant close to the singularity.2 It proves
that a bounce must always exist in the Mixmaster model,
independently of the harmonic approximation used in our
previous papers. The harmonic approximation appears just
as a simplified bouncing scenario (probably a smoother
one), but the existence of a bounce itself is unquestionable
(at least in the adiabatic approximation). This point is
crucial to validate our results in Refs. [5,6] beyond the
framework of the harmonic approximation.
Fifth, the inequality in Eq. (20) that specifies the domain

of validity of the harmonic approximation has interesting
consequences for bouncing models in general and, in
particular, for the one developed in our previous paper
[7]. Indeed, it proves the following: if the use of the
harmonic approximation in a nonadiabatic framework leads
to a dynamical behavior that does not violate (20) (at any
time), then the harmonic approximation is sufficient to
model the system (for the particular set of initial conditions
that has been chosen). In our case, it validates the numerical
simulations done in Ref. [7], and then the conclusions of
that paper are also validated, namely, the adiabatic behavior
of low levels of excitations.

IV. DISCRETENESS OF THE SPECTRUM

A. Criterion

There exists in the mathematical literature a general
criterion for noncompact potentials to originate purely
discrete spectra. It was proved by Wang and Wu in

2008 [15]. A clear account of this result was later given
by Simon in Ref. [16]. These authors assert that the
Schrödinger operator in any dimension,

Ĥ ¼ −Δþ V; ð28Þ

has a purely discrete spectrum if the Lebesgue measure j · j
of the projection set ΩMðVÞ ¼ fxj0 ≤ VðxÞ < Mg is finite:

jΩMðVÞj < ∞: ð29Þ

In the next section, we apply this criterion to prove that the
spectrum of the Hamiltonian (10) is purely discrete.

B. Finiteness of the surface area

Let us show that the surface area containing points
β ¼ ðβþ; β−Þ satisfying

ΩM ¼ fβ∶ 0 ≤ VðβÞ < Mg ð30Þ

is finite jΩMj < ∞. In practice, it needs to be shown that the
area enclosed by the constant potential lines VðβÞ ¼ M is
finite. Several equipotential lines of (3) are plotted in
Fig. (3). They are closed for M < 1 and open for
M ≥ 1. Thus, to prove the finiteness of jΩMj, it is sufficient
to consider the M ≥ 1 case.
The enclosing curves satisfying VðβÞ ¼ M ≥ 1 might be

parametrized by the four equations

FIG. 3. Plot of the contours of the anisotropy potential
VðβÞ ¼ 0.8; 10; 102; 103. The shaded region corresponds to the
compact domain of VðβÞ < 1. The domain of VðβÞ < M is
noncompact for M ≥ 1.

2In a completely different framework (supersymmetric model),
with a different choice of coordinates, the same kind of bounce
for a quantum Bianchi IX model can be found in [10].
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β− ¼ �
ffiffiffi
3

p

6
arcosh

1

2

�
e−6βþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3ðM − 1Þe−4βþ

q �
;

βþ ∈ R

β− ¼ �
ffiffiffi
3

p

6
arcosh

1

2

�
e−6βþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3ðM − 1Þe−4βþ

q �
;

βþ ≤ X; ð31Þ

where X is the negative root of
e−6βþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3ðM − 1Þe−4βþ

p
¼ 2. Because of the C3v

symmetry of the potential, in order to prove that the
enclosed surface area is finite, it is sufficient to prove that
the area of a part of the surface delimited by the curves (31),
say,

jΩMðβ0Þj

¼
ffiffiffi
3

p

6

Z
∞

β0

arcosh
1

2

�
e−6βþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3ðM − 1Þe−4βþ

q �
dβþ;

ð32Þ

is finite for some β0 < ∞. The surface ΩMðβ0Þ for M ¼
100 and β0 ¼ 0 is depicted in Fig. (4). Let us estimate the
area jΩMðβ0Þj of Eq. (32) in a few steps. By making use offfiffiffiffiffiffiffiffiffiffiffi
1þ x

p
≤ 1þ x

2
, we get

jΩMðβ0Þj

<

ffiffiffi
3

p

6

Z
∞

β0

arcosh

�
1þ 1

2
e−6βþ þ 3ðM − 1Þ

8
e−4βþ

�
dβþ;

ð33Þ

which for any β0 > ln
ffiffiffiffiffiffiffiffiffiffiffiffi
3ðM−1Þ

p
2

is further bounded by

jΩMðβ0Þj <
ffiffiffi
3

p

6

Z
∞

β0

arcosh

�
1þ 3ðM − 1Þ

4
e−4βþ

�
dβþ:

ð34Þ

The application of the identity arcoshðxÞ≡ lnðxþffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ and then twice the inequality

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
≤ 1þ x

2

gives

jΩMðβ0Þj <
ffiffiffi
3

p

6

Z
∞

β0

ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðM − 1Þ

2

r
e−2βþ

þ 3ðM − 1Þ
4

e−4βþ þ
�
3ðM − 1Þ

8

	3
2

e−6βþ
�
dβþ:

ð35Þ

Since lnð1þ xÞ ≤ x, we finally get

jΩMðβ0Þj <
ffiffiffi
3

p

12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðM − 1Þ

2

r
e−2β0

þ 3ðM − 1Þ
8

e−4β0 þ 1

3

�
3ðM − 1Þ

8

	3
2

e−6β0
�
<∞;

ð36Þ

which completes the proof.

V. CONCLUSIONS

We have presented several mathematical properties of
the spectrum of the Schrödinger operator describing the
anisotropic evolution of the Mixmaster model. Our main
result concerns the asymptotic expressions for the eigene-
nergies at large and small values of q. We have also
established several interesting facts.
First, a unique unitary transform is able to capture in a

single factor the main q dependence of eigenenergies.
Second, the harmonic approximation used in Refs. [5,6]

corresponds in fact to the mathematical asymptotic expres-
sion (17) for large values of q.
Third, the exact asymptotic behavior (26) for small q is

not the one given by Misner in Ref. [3]; the factor ln2 q is
missing in Misner’s formula. Then, thanks to the ln2 q
factor, Eq. (27) proves that the repulsive potential term
∝ q−2 present in Refs. [5,6] is always dominant close to the
singularity, even if the harmonic approximation is not valid.
This point is crucial in validating our previous results on
bouncing scenarios beyond the framework of the harmonic
approximation.

FIG. 4. The area of the shaded noncompact region Ω102ð0Þ,
enclosed by β− ¼ 0, βþ ¼ 0, β− ¼

ffiffi
3

p
6
arcosh 1

2
ðe−6βþ þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 297e−4βþ
p

Þ, is proved to be finite.
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Fourth, our asymptotic analysis of the spectrum for large
q complemented by a direct reasoning on the eigenfunc-
tions is able to specify the limit on q and E that separates
the two asymptotic regimes.
Fifth, we have proven the discreteness of the spectrum,

despite the noncompact anisotropy potential. This result
validates implementation of approximations of the poten-
tial, which remove the three noncompact canyons and lead
to more manageable Schrödinger operators.

Finally, our analysis based on a unique unitary transform
for all values of q opens interesting perspectives in the
search for the uniform approximation of eigenvalues.
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