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Imaging surveys of galaxies will have a high number density and angular resolution yet a poor
redshift precision. Intensity maps of neutral hydrogen will have accurate redshift resolution yet will not
resolve individual sources. Using this complementarity, we show how the clustering redshifts approach
proposed for spectroscopic surveys can also be used in combination with intensity mapping
observations to calibrate the redshift distribution of galaxies in an imaging survey and, as a result,
reduce uncertainties in photometric-redshift measurements. We show how the intensity mapping
surveys to be carried out with the MeerKAT, HIRAX and SKA instruments can improve photometric-
redshift uncertainties to well below the requirements of DES and LSST. The effectiveness of this
method as a function of instrumental parameters, foreground subtraction and other potential systematic
errors is discussed in detail.
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I. INTRODUCTION

Photometric-redshift surveys are an economic way of
building up a detailed map of the large-scale structure of the
Universe. By imaging large swathes of the sky, it is possible
to construct catalogs of individually resolved galaxies with
high number density (and therefore a low “shot” noise).
The trade-off for such a large number of objects is the
inability to obtain accurate redshift measurements for
individual objects. Thus, photometric-redshift surveys are
orders of magnitude less resolved in the radial direction
than the sparser spectroscopic redshift surveys. The uncer-
tainty in the individual redshifts and in the overall galaxy
redshift distribution can severely degrade the constraining
power of such data sets for cosmology.
Galaxies cluster to form the cosmic web, and one expects

structures in the galaxy distribution to be spatially corre-
lated with structures in any other tracer of the dark matter
density. For example, if one has an imaging survey of
galaxies (where redshifts are poorly resolved) and a
spectroscopic catalog (where redshifts are well resolved),
they should have nontrivial cross-correlations; in particular,
structures in the imaging survey should be mirrored in the
spectroscopic survey. A natural step is to use these cross-
correlations so that the precise redshift measurements of the
spectroscopic survey can be used to sharpen the photo-
metric redshifts in the imaging survey, or at least calibrate
its redshift distribution. These types of methods have been
advocated in [1–6], and employed in the analysis of several
data sets (e.g., [7–11]).
One does not necessarily have to use a catalog of

resolved sources to follow this rationale. In particular, if
one can accurately map out, in redshift, any tracer of the

dark matter, it can in principle be used to improve redshift
measurements in a sister imaging survey. A notable
example is that of an unresolved map of neutral hydro-
gen, HI, through a technique known as intensity mapping
[12–22]. Radio observations at a gigahertz or below will
map out the distribution of neutral hydrogen out to
redshifts z ∼ 2 and higher. The neutral hydrogen traces
the large-scale structure of the dark matter and thus,
inevitably, will be correlated with any other tracer. Maps
of HI will be exquisitely resolved in the frequency
domain and therefore will map out the density distribu-
tion, in detail, in redshift. Although intensity mapping
observations will not resolve individual objects, they
will be able to achieve sufficient angular resolution for
cosmological studies (although this statement depends on
the observing mode).
In this paper we explore the use of HI intensity mapping

to calibrate photometric-redshift surveys. In particular we
show that forthcoming intensity mapping experiments such
as those undertaken by MeerKAT [23], HIRAX [24] and
the SKA [25] can be used to reduce the uncertainties related
to photo-z systematics well below the requirements cur-
rently posited by the DES and LSST surveys, thus
improving final constraints on cosmological parameters.
We structure this paper as follows: In Sec. II we describe
the formalism and discuss, in detail, various aspects of the
instrumental and observational models we are assuming.
Section III presents our results as a function of experi-
mental configuration and foreground uncertainty. In
Sec. IV we discuss the prospects of using such a method
and compare it with other proposals currently being
developed. The appendixes present a number of calcula-
tions which are essential for the models considered here.
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II. FORMALISM

A. Clustering-based photo-z calibration

Consider two galaxy samples with redshift distributions
ϕiðzÞ (i ¼ f1; 2g), and let ailm be the harmonic coefficients
of their projected overdensity of counts on the sky. Their
cross-correlation is given by

hailmaj�lmi ¼ Nij
l þ Sijl ð1Þ

Sijl ¼ 2

π

Z
dz

Z
dz0ϕiðzÞϕjðz0Þ

×
Z

dkk2biðzÞbjðz0ÞPmðk; z; z0ÞjlðkχðzÞÞjlðkχðz0ÞÞ;

ð2Þ

where Pm is the matter power spectrum, χ is the radial
comoving distance, jlðxÞ is a spherical Bessel function,
Nij

l is the cross-noise power spectrum between samples i
and j, bi is the linear bias of the ith sample and we have
neglected redshift-space distortions and all other subdomi-
nant contributions to the observed power spectrum. In
the Limber approximation—where jlðxÞ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2lþ 1Þp

δDðlþ 1=2 − xÞ—this expression simplifies to

Sijl ¼
Z

dkPmðk; zlÞ
H2ðzlÞbiðzlÞbjðzlÞ

lþ 1=2
ϕiðzlÞϕjðzlÞ;

ð3Þ

where χðzlÞ≡ ðlþ 1=2Þ=k.

For the purposes of this discussion, the most important
feature of Eq. (3) is the fact that the amplitude of the cross-
correlation is proportional to the overlap between the
redshift distributions of those samples. This is especially
relevant if one of the samples has good radial resolution, in
which case it can be split into narrow bins of redshift. The
cross-correlations of all narrow bins with the other sample
will therefore trace the amplitude of its redshift distribution,
and can effectively be used to constrain it. This is illustrated
in Fig. 1, which shows the cross-power spectrum between a
Gaussian photo-z bin of width σ ¼ 0.05 and a set of narrow
redshift bins (δz ∼ 0.002). Note that we have only used
the Limber approximation in Eq. (3) to more easily
illustrate the motivation of the clustering redshifts
approach. However, all the power spectra computed for
this work, with the exception of the discussion in Sec. III D,
were computed without adopting this approximation.
Note also that Eq. (3) implies that the redshift distribu-

tion and the redshift-dependent galaxy bias of the photo-
metric sample are completely degenerate in this method,
and therefore additional information is needed in order to
separate both quantities (e.g., including prior information
or lensing data). Since this is an inherent problem of the
method, and not specific to the case of intensity mapping,
we will simply assume that bðzÞ is a sufficiently smoothly
varying function of z, thus treating intensity mapping (IM)
and spectroscopic surveys on an equal footing. The more
complicated biasing scheme that arises on small scales also
prevents the use of those modes to constrain ϕðzÞ [4], and
therefore one must be conservativewhen deciding the range
of scales to include in the analysis.
Different recipes have been formulated to carry out this

kind of analysis, such as the optimal quadratic estimator

FIG. 1. (Left panel) Example of a redshift bin for a photometric survey and the redshift bins chosen for an overlapping spectroscopic
survey. (Right panel) Amplitude of the cross-correlation with an overlapping spectroscopic survey as a function of spectroscopic redshift
bin (x axis) and angular scale (y axis). The amplitude of the cross-correlation traces the redshift distribution, and can therefore be used to
constrain it.
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method of [26]. The forecasts presented here will interpret
the redshift distribution (in a parametric or nonparametric
form) as a set of extra nuisance parameters, on which wewill
carry out the Fisher matrix analysis described in Sec. II E.
Thus, even though our results will be optimistic in as much
as the Fisher matrix saturates the Rao-Cramer bound, they
will account for all correlations between redshift distribution
parameters and with the cosmological parameters, as well as
the presence of redshift-space distortions and magnification
bias (effects that have been overseen in previous works).
For the purposes of estimating the ability of future surveys

to calibrate photometric-redshift distributions through cross-
correlations, we will always consider an individual redshift
bin for a photometric sample with unknown distribution,
together with a set of overlapping narrow redshift bins of
spectroscopic galaxies or intensity mapping observations.
Let NpðzÞ be the overall true redshift distribution of the
photometric sample, and let pðzphjzÞ be the conditional
distribution for a photo-z zph given the true redshift z. Then,
the redshift distribution in a photo-z redshift bin b with
bounds zib < zph < zfb is given by

ϕbðzÞ ∝ NpðzÞ
Z

zfb

zib

dzphpðzphjzÞ: ð4Þ

In what follows we will consider 2 degrees of complexity in
terms of describing the unknown redshift distribution:
(1) We will assume Gaussian photo-zs with a given

variance (σ2z) and bias Δz:

pðzphjzÞ≡N ðzph − Δz; z; σzÞ

≡
exp

h
− 1

2

ðzph−z−ΔzÞ2
σ2z

i
ffiffiffiffiffiffiffiffiffiffi
2πσz

p ; ð5Þ

and we will assume that the uncertainty in the
redshift distribution is fully described by Δz and σz.

(2) We will use a nonparametric form for ϕbðzÞ, given as
a piecewise function with a free amplitude for each
spectroscopic redshift bin.

Our assumed fiducial value for Δz and σz, as well as the
binning scheme used, are described in Sec. II B.
We finish this section by noting that the use of cross-

correlations with spectroscopic surveys or intensity map-
ping observations for photo-z calibration is not limited to
the measurement of the redshift distribution of a given
galaxy sample, but that they can also be used to improve the
precision of photometric-redshift estimates for individual
galaxies (e.g., [27]). Although we leave the discussion of
this possibility for future work, we describe a Bayesian
formalism for this task in Appendix A.

B. Photometric-redshift surveys

This section describes the model used here for a LSST-
like photometric-redshift survey. As in [28], we base our

description of the number density of sources and their
magnification bias on the measurements of the luminosity
function of [29], with k corrections computed with
KCORRECT [30]. We assume a magnitude cut of 25.3 in
the i band, corresponding to the so-called “gold” sample
[31]. Unlike [28], and for simplicity, we will consider a
single galaxy population, instead of splitting it into “red”
and “blue” sources. The resulting redshift distribution is
shown by the solid black line in Fig. 2.
We model the linear galaxy bias as a function of redshift

as bðzÞ ¼ 1þ 0.84z, based on the simulations of [32], and
quoted in the LSST science book [31].
The photometric-redshift requirements for the gold sample

as stated in the LSST science book are σz=ð1þ zÞ < 0.05,
with a goal of 0.02. Here we have taken a conservative
estimate, assuming a standard deviation σz ¼ 0.03ð1þ zÞ.
We then split the full sample into redshift bins with a width
given by 3 × σ̄z, where σ̄z is the photo-z variance at the bin
center. This binning scheme is chosen to reduce the corre-
lation between bins induced by the tails of the photo-z
distribution, and results in the 15 redshift bins shown in
Fig. 2 [where the redshift distributions are computed with
Eq. (4)]. Our fiducial photo-z model will assume biased
Gaussian distributions, fully determined by σz and Δz.

C. Intensity mapping

IM is a novel observational technique that circumvents
the long integration times needed to obtain reliable
spectroscopic redshifts for individual objects through an
approach that is transverse to that used by photometric
surveys. The idea [13,15,17,21] is to observe the unre-
solved combined emission of many line-emitting sources
in a relatively wide pixel at different frequencies. The

FIG. 2. Angular number density of galaxies as a function of
redshift for the LSST gold sample (solid black line). The colored
lines show the window functions of the 15 redshift bins
considered here.
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signal-to-noise ratio of the corresponding line emission
is much stronger than that of the individual sources, and
thus, combining the intensity measured across the sky and
relating the intensity observed at a given frequency to the
rest-frame wavelength of the emission line it is possible to
produce three-dimensional maps of the density of the line-
emitting species. This technique is particularly appealing
for isolated spectral lines, as is the case of the 21 cm line
caused by the spin-flip transition in HI atoms, and thus HI
intensity mapping has been proposed as an ideal method to
cover vast volumes at relatively low cost.
A number of experiments have been proposed to carry

out IM measurements of the baryon acoustic oscillation
scale, such as BINGO [33], CHIME [34], FAST [35],
HIRAX [24], SKA [25] and Tianlai [36]. The different
instrumental approaches to IM can be broadly classified
into two camps:
(a) Interferometers. The sky emission is measured by a

set of antennas, and the measurements of pairs of
antennas separated by a given baseline d are cross-
correlated to produce the measurement of an angular
Fourier mode with scale l ∼ 2πd=λ (where λ is the
observed wavelength). The intensity map is then
reconstructed by combining pairs with different
baselines.

(b) Single-dish. In this case the sky emission is measured
and autocorrelated by individual antennas. A band-
limited intensity map with a resolution δθ ∼ λ=Ddish is
then produced by varying the antenna pointing, where
Ddish is the antenna diameter.

The expressions for the noise power spectrum for both
cases are derived in Appendix C, and can be summarized as

Nν
l ¼ T2

sys4πfsky
η2Δνttot

8<
:

1
NdishB2ðlÞ ; single dish

Ωp

Ndðd¼lλ=ð2πÞÞλ2 ; interferometer:
ð6Þ

Here Tsys is the system temperature, given as a combination
of instrumental and sky temperature (see Appendix C), fsky
is the sky fraction covered by the observations, η2 is the
antenna efficiency,1 Δν is the bandwidth in that channel,
ttot is the total observation time for the survey, Ndish is
the number of dishes, BðlÞ is the harmonic transform of
the antenna beam,NdðdÞ is the distribution of baselines and
Ωp is the solid angle covered per pointing. For all experi-
ments discussed here we will assume η ¼ 1, Gaussian
beams so that BðlÞ ¼ exp½−lðlþ 1Þθ2FWHM=ð16 log 2Þ�,
and Ωp ¼ θ2FWHM, where θFWHM is the beam full width at
half maximum, which will approximate as θFWHM ¼
1.22λ=Ddish. Note that the baseline distribution Nd is
normalized such that

NdishðNdish − 1Þ
2

¼
Z

dd2NdðdÞ; ð7Þ

where NdishðNdish − 1Þ=2 is the total number of indepen-
dent baselines.
Given their expected full overlap with LSST, we will

consider here the two main currently envisaged Southern
Hemisphere intensity mapping experiments: SKA (and its
pathfinder, MeerKAT) and HIRAX. The specifications of
these experiments are summarized in Table I.

1. MeerKAT and the SKA

MeerKAT is the 64-dish precursor to the midfrequency
component of the SKA. MeerKAT is comprised of 13.5 m
dishes and will operate between ∼550 MHz and 3 GHz
using three separate receivers. Although it will predomi-
nantly be used as an interferometer, and as such only be
sensitive to relatively small spatial scales, there is a proposed
project to use MeerKAT in single-dish mode [23]. If such a
mode of operation is viable, then MeerKATwill become an
extremely efficient intensity mapping facility operating at
frequencies that allows the detection of HI to z ∼ 1.5.
Indeed, a proposed open-time survey would provide a
several thousand square degree sky survey over the Dark
Energy Survey and/or Kilo-Degree Survey areas, which will
provide excellent visible wavelength coverage.
In the 2020s, MeerKATwill be enhanced by the addition

of 130 15 m dishes to form the midfrequency SKA.
Operating at similar frequencies to MeerKAT, the addi-
tional 130 dishes will provide much more sensitivity for all
science aims, and is capable of carrying out a ∼10;000 deg2
intensity mapping survey [25].
As such, both MeerKAT and the SKA will provide a

unique view on the HI Universe, and as we will show, can
enhance the cosmological science with the LSST with
cross-correlations.

2. HIRAX

The Hydrogen Intensity mapping and Real-time
Analysis eXperiment (HIRAX) is a proposed close-packed

TABLE I. Experimental specifications assumed for SKA,
MeerKAT and HIRAX. The baseline distributions for each
experiment are described in Sec. II C. Note that the frequency
ranges above correspond to the ultrahigh-frequency (UHF) band
of SKA and MeerKAT.

Experiment SKA MeeKAT HIRAX

T inst 25 K 25 K 50 K
ttot 10000 h 4000 h 2.8 × 104 h
Ndish 197 64 1024 (32 × 32)
Ddish 15 m 13.5 m 6 m
ν range 350–1050 MHz 600–1050 MHz 400–800 MHz
fsky 0.4 0.1 0.4

1η is defined as the ratio of the effective to real antenna area.

ALONSO, FERREIRA, JARVIS, and MOODLEY PHYSICAL REVIEW D 96, 043515 (2017)

043515-4



radio array comprising 1024 6 m dishes disposed in a
32 × 32 grid and operating at 400–800 MHz. The telescope
will be located on the South African Karoo site, which has
very low levels of radio-frequency interference in this band,
and provides an ideal location to overlap in sky coverage
with other planned southern sky cosmological surveys. The
large collecting area and field of view provide excellent
sensitivity and mapping speed, with the high density of
short baselines allowing for sensitive measurements of the
baryon acoustic oscillation (BAO) scale in the cosmic HI
distribution from redshift ∼0.8 to 2.5, which in turn will
provide competitive constraints on dark energy [24].
HIRAX will make high signal-to-noise maps of 21 cm
intensity fluctuations over 15; 000 deg2 (taken to overlap
fully with LSST) on cosmological scales of interest, with
the relatively high frequency resolution (1024 channels
over the 400 MHz bandwidth) allowing for accurate red-
shift calibration of 21 cm intensity maps. This makes it
ideal for calibration of LSST photometric redshifts through
the cross-correlation technique.

3. Generic IM experiment

Besides SKA and HIRAX we will also explore the
capabilities of a generic intensity mapping experiment in
terms of photo-z calibration. The performance of a given
experiment is roughly determined by three quantities:
(a) The range of angular scales over which the noise

power spectrum is low enough to probe the cosmo-
logical HI emission. This range can be characterized
by the minimum and maximum baselines dmin
and dmax.

(b) The noise level (normalized by the bandwidth Δν) σT
on this range of scales. For a fixed integration time,
this is determined by the system temperature Tsys and
the observed sky area fsky.

Here we will model the effects of the minimum and
maximum baselines as a sharp and an inverse-Gaussian
cutoff respectively. Thus, our model for the angular noise
power spectrum is

Nν
l ¼ σ2T

Δν

�
Θ
�
lλ
2π

; dmin

��
−1

exp

�
lðlþ 1Þ θ2beam

8 log 2

�
; ð8Þ

where θbeam ≡ 1.22λ=dmax and Θðx; xiÞ is 1 if xi < x and 0
otherwise. Note that by definition σT has units of
½mK radMHz1=2�. For comparison, the equivalent values
of these parameters that roughly reproduce the noise curves
for HIRAX are

dHIRAXmin ¼ 6 m; dHIRAXmax ∼ 300 m;

σHIRAXT ∼ 10−3 mK radMHz1=2:

4. Foregrounds

One of the main obstacles that HI intensity mapping
must overcome to become a useful cosmological tool is the
presence of galactic and extragalactic foregrounds several
orders of magnitude larger than the 21 cm cosmological
signal [37,38]. Under the assumption that foregrounds are
coherent in frequency (as opposed to the cosmic signal
tracing the density inhomogeneities along the line of sight),
these foreground sources can be in principle efficiently
removed using component-separation methods [38–40].
However, instrumental imperfections, such as frequency-
dependent beams or polarization leakage, can generate
foreground residuals with a nontrivial frequency structure
that could strongly bias cosmological constraints from
21 cm data alone. In any case, the removal of fre-
quency-smooth components will introduce large uncertain-
ties on the large-scale radial modes of the 21 cm
fluctuations.
Here we have introduced the effect of foregrounds by

including an extra component, f, in the sky model for
HI accounting for foreground residuals. Thus we will
assume that the measured harmonic coefficients at a given
frequency ν are given by

aνlm ¼ sνlm þ fνlm þ nνlm; ð9Þ

where sνlm and nlm are the true cosmological signal and
the instrumental noise contribution. We will model f as an
almost-correlated component with a cross-frequency power
spectrum given by

Cνν0
f;lm ≡ hfνlmfν

0�
lmi

¼ AFG

�
l
l�

�
β
�
νν0

ν2�

�
α

exp

�
−
log2ðν=ν0Þ

2ξ2

�
: ð10Þ

Here AFG and β parametrize the amplitude of the fore-
ground residuals and their distribution on different angular
scales, and α describes their mean frequency dependence.
Finally, ξ parametrizes the characteristic frequency scale
over which foregrounds are decorrelated. When including
the effects of foregrounds (Sec. III C) we will also mar-
ginalize over ðAFG; α; β; ξÞ. For α and β we will use the
fiducial values α ¼ −2.7 and β ¼ −2.4, corresponding to
galactic synchrotron emission [37,41], and we will set
AFG ¼ 1 mK2, large enough for the residuals to dominate
the equal-ν power spectrum.2 We will study the final
constraints as a function of ξ. Unless otherwise stated
(e.g., in Sec. III C), all our results for intensity mapping
experiments assume a fiducial ξ ¼ 10, corresponding to the
case where the only modes removed are mostly those
associated with a fully correlated foreground component.

2We use a pivot scale l� ¼ 1000 and a pivot frequency
ν� ¼ 130 MHz, as in [37].
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Effectively, this extra component cancels the con-
straining power of all radial modes of the 21 cm fluctua-
tions with comoving radial wave numbers k∥ below a scale
kFG∥ , related to ξ through

kFG∥ ∼
πHðzÞ

cð1þ zÞξ : ð11Þ

The effect of foregrounds on the ability to constrain
redshift distributions can be readily understood as loss of
information in the k∥ − k⊥ space. In the flat-sky approxi-
mation, and on linear scales, the angular power spectrum
between two tracers i and j of the matter density can be
computed as

Cij
k⊥ ¼

Z
dk∥
2π

Pðk∥; k⊥ÞWiðk∥ÞWj�ðk∥Þ; ð12Þ

where we have again ignored the effect of redshift-space
distortions and

Wkðk∥Þ≡
Z

dx∥ϕkðx∥Þbkðx∥ÞDðx∥Þeix∥k∥ : ð13Þ

Here D is the linear growth factor and bk and ϕk are the
linear bias and selection function for the kth tracer. Let us
assume that i is a photometric-redshift bin and j is a narrow
intensity mapping frequency shell with comoving width δχ
centered at χ�. Assuming D and the bias bj to be slowly
varying functions of χ we obtain

Cij
k⊥ ¼

Z
dk∥
2π

Pðk∥; k⊥ÞWiðk∥ÞDðχ�Þbjðχ�Þj0ðk∥δχ=2Þ:

ð14Þ

Now, assuming that ϕi has support over a wide range of
redshifts, corresponding to a comoving width Δχ, its
Fourier transform (∼Wi) will only have support over
wave numbers k∥ ≲ 1=Δχ. Since the Bessel function j0
provides support over all values of k∥ ≲ 1=δχ, and under
the assumption that δχ < Δχ, the total number of modes
that contribute to Cij is bound by ∼1=Δχ. Since fore-
ground contamination will mostly affect large radial
modes, eventually a large fraction of this k∥ range
becomes dominated by foreground uncertainties and
stops contributing efficiently to the overall signal-to-
noise ratio, thus degrading the final constraints on any
model parameter.
We finish this section by noting that, as described in

Sec. II A, the main constraining power for photo-z calibra-
tion comes from the cross-correlation of the photometric
and spectroscopic samples. Since the photometric sample
would not suffer from foreground contamination, these

cross-correlations are very robust against foreground biasing,
which makes photo-z calibration an ideal application of IM.

D. Spectroscopic surveys

In order to showcase the possibility of calibrating red-
shift distributions through cross-correlation with future
intensity mapping experiments we will compare their
forecast performance against that of the most relevant
future spectroscopic surveys:
(a) The Dark Energy Spectroscopic Instrument (DESI)

[42] is a spectroscopic galaxy survey planned to cover
∼14000 deg2 from its Northern Hemisphere location
at Kitt Peak National Observatory. We assume an area
overlap of fsky ¼ 0.2 with LSST, and we model the
number density and clustering bias of the two galaxy
samples considered here (luminous red galaxies and
emission line galaxies) as done in [43].

(b) The Euclid galaxy survey [44] is a space-borne infrared
spectrograph that will aim to detect ∼5 × 107 Hα-
emitting galaxies in the redshift range 0.65 < z < 2

over ∼15000 deg2. We assume full overlap with LSST,
and we model the number density and bias as in [43].

(c) The Wide Field Infrared Survey Telescope (WFIRST)
[45] is a future space observatory in the infrared that
will measure redshifts for ∼2.6 × 107 objects over
∼2000 deg2. The deep nature of WFIRSTwill make it
ideal to calibrate the LSST redshift distribution at high
redshifts. We model the number density and bias of
the WFIRST sample as in [43], and we assume a full
overlap with LSST (fsky ¼ 0.05).

Figure 3 shows the redshift distributions for galaxies
detected by these three experiments.

FIG. 3. Angular number density of galaxies as a function of
redshift for the three spectroscopic surveys considered here:
DESI (solid), Euclid (dashed) and WFIRST (dot dashed). The red
solid line shows the redshift dependence of the mean HI density
(arbitrarily normalized) for comparison.
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E. Forecasting formalism

Our formalism will distinguish between two types of
tracers of the density field:
(a) Spectroscopic. Tracers whose redshift distribution is

well known. This would correspond to tracers with
good radial resolution such as a narrow redshift bin of
spectroscopic sources or an intensity map in a narrow
frequency band, as well as other tracers with a well-
known window function, such as a cosmic microwave
background (CMB) lensing map.

(b) Photometric. Tracers whose redshift distribution is
unknown or uncertain. This would correspond to e.g.,
a photometric-redshift bin, a radio continuum survey
or a map of the cosmic infrared background.

Let us start by considering a set of sky maps corre-
sponding to a number of tracers, and let a be the
corresponding vector of maps expressed in a given basis.
In the following sections we will assume that a is stored in
terms of spherical harmonic coefficients and that it takes the
form alm ¼ ðplm; s1lm;…sNs

lmÞ, where plm is a photometric
tracer and silm is a set of spectroscopic tracers. For the
moment, however, we will keep the discussion general.
Assuming that a is Gaussianly distributed with zero

mean and covariance Ĉ≡ haa†i, its log-likelihood is
given by

L≡ −2 logpðaÞ ¼ a†Ĉ−1aþ logðdetð2πĈÞÞ: ð15Þ

Now let qi be a set of parameters modeling Ĉ, including
(but not limited to) the parameters describing the
photometric-redshift distribution. A maximum-likelihood
estimator for qi can be defined by using an iterative
Newton-Raphson method to minimize Eq. (15). This is
described in [26,46,47], and yields the iterative algorithm

qni ¼ qn−1i þ ½F̂−1�ij½a†Ĉ−1Ĉ;jĈ
−1a − TrðĈ;jĈ

−1Þ�;

F̂ij ≡
� ∂2L
∂qi∂qj

�
¼ TrðĈ−1Ĉ;iĈ

−1Ĉ;jÞ; ð16Þ

where, in Eq. (16) there is an implicit summation over j, the
subindex, i implies differentiation with respect to qi, F̂ is
the Fisher matrix, qni is the nth iteration of the solution for
qi and the previous iteration qn−1i is used to compute Ĉ and
Ĉ;i in the second term. Note that we have simplified a
pure Newton-Raphson iteration by taking the ensemble
average of the likelihood Hessian (i.e., the Fisher matrix).
Furthermore, in the case where the likelihood is well
approximated by a Gaussian, F̂−1 is the covariance matrix
of the qi. Equation (16) is the basis of the method proposed
in [26] (with a number of simplifications) and used in [11]
to constrain the redshift distribution of galaxies in the KiDS
survey.

In our case, we mainly care about the uncertainty in the
redshift distribution parameters included in the qi, and
therefore we will simply estimate the Fisher matrix F̂. In the
case where a is a set of spherical harmonic coefficients with
power spectrum halma†l0m0 i ¼ δll0δmm0Ĉl, F̂ is given by

F̂ij ¼
Xlmax

l¼2

fskyðlþ 1=2ÞTrðĈ−1
l Ĉl;iĈ

−1
l Ĉl;jÞ; ð17Þ

where we have approximated the effects of a partial sky
coverage by scaling the number of independent modes per
l by the sky fraction fsky. The form of the power spectra Ĉl

for the different tracers considered in this work is given in
Appendix B.
As explicitly shown in Eq. (17), smaller-scale modes

carry a higher statistical weight (proportional to ∼l), and
would in principle dominate the redshift distribution con-
straints. The smallest scales are, however, dominated by
theoretical uncertainties from nonlinearities in the evolu-
tion of the density field and the galaxy-halo connection,
and therefore a multipole cutoff lmax must be used to
contain the constraining power of systematics-dominated
modes. In this paper we use a redshift-dependent cutoff
defined as follows. Let z be the mean redshift of a given
redshift bin, and let σ2ðk�Þ be the variance of the linear
density field at that redshift on modes with wave number
k < k�:

σ2ðk�; zÞ≡ 1

2π2

Z
k�

0

dkk2Pmðk; zÞ: ð18Þ

We then define the cutoff scale as lmaxðzÞ ¼ χðzÞkmaxðzÞ,
where kmaxðzÞ satisfies σðkmax; zÞ ¼ σthr for some choice of
σthr. In what follows we will use a fiducial threshold
σthr ¼ 1, corresponding to kmaxðz ¼ 0Þ≃ 0.3 hMpc−1,
and we will study the dependence of our results on
this choice. Besides this choice of lmax, we will also
impose a hard cutoff for all galaxy-survey and intensity
mapping tracers of l < 2000 [thus, in reality, lmax ¼
minðχkmax; 2000Þ].

III. RESULTS

In order to forecast the ability of future experiments
to constrain photometric-redshift distributions, in the fol-
lowing sections we will use the formalism described in
Sec. II E with a data vector given by alm ¼ ðplm; s1lm;…;
sNs
lmÞ, where p is a photometric-redshift bin and si are a set
of overlapping redshift bins for a spectroscopic tracer
(either an intensity mapping experiment or a spectroscopic
galaxy survey). The number Ns, width and redshift range
of the spectroscopic redshift bins is chosen in order to
adequately sample the changes in the photometric-redshift
distribution. We choose the redshift bin width to be 33% of
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the photo-z uncertainty σz, which governs the variability of
the redshift distribution (i.e., each redshift interval of σz is
sampled in three points). In order to sample the tails of the
distribution we then define the redshift range of the set of
spectroscopic bins as ½zib − 3σz; z

f
b þ 3σz�, where zib and zfb

are the edges of the photometric-redshift bin. The number
of spectroscopic redshift bins Ns is then defined in terms of
these numbers.
The model parameters qi in the following sections will

be given by
(a) All of the parameters needed to determine the redshift

distribution [σz, Δz or the amplitude NðzÞ in different
spectroscopic bins, depending on the case].

(b) Two overall clustering bias parameters, bp and bs,
corresponding to the bias of the photometric and
spectroscopic tracers.

(c) We will also include two cosmological parameters: the
fractional matter density ΩM and the amplitude of
scalar perturbations As, in qi in order to account for the
possible cosmology dependence of the results.

We will change this setup in Sec. III E, where we
will explore the impact of the achieved constraints on
the photo-z parameters on the final cosmological con-
straints. In this section a will correspond to the 15
photometric-redshift bins for LSST, for both galaxy clus-
tering and weak lensing (i.e., 30 sets of spherical harmon-
ics). Likewise qi will contain the cosmological parameters
ðωc;ωb; h; w0; wa; As; ns; τreioÞ as well as all the baseline
photo-z parameters (Δz and σz for all redshift bins), with

priors corresponding to the constraints found in the
preceding sections.

A. Baseline forecasts

Using the formalism described above, and in the sim-
plified scenario of Gaussian photo-z’s, we present, in the
left panel of Fig. 4, the forecast constraints on the photo-z
bias (Δz) and variance (σz) for the key intensity mapping
experiments introduced in Sec. II C. In this and all
subsequent plots, the thin black solid line shows the
LSST requirement of σðΔz; σzÞ≲ 10−3ð1þ zÞ [48,49],
while the thin dashed line corresponds to the nominal
requirement for the Dark Energy Survey (2 × 10−3) [50].
The colored bars in these and all subsequent plots show the
redshift ranges corresponding to the proposed frequency
bands of the three IM experiments explored here.
Two key features must be noted in this figure: first, the

uncertainties grow steeply at low redshifts. This is due to
the reduced number of modes available in that regime,
associated with the smaller comoving volume and the
impact of nonlinearities on lower values of k. The latter
effect is especially severe for HIRAX, given its inability to
measure angular modes larger than its beam size. Note,
however, that this regime lies outside the proposed fre-
quency ranges for both HIRAX (0.8≲ z≲ 2.5) and
SKA (0.35≲ z≲ 3).
Secondly, the ratio between σðσzÞ and σðΔzÞ stays

roughly constant (∼1.4). This is compatible with the
expected ratio between the uncertainties associated with

FIG. 4. (Left panel) Forecast 1σ constraints on the photo-z scatter σz (solid lines) and bias Δz (dashed lines) for the three IM
experiments under consideration: HIRAX (blue), SKA (red) and MeerKAT (yellow). (Right panel) Comparison of the previous three
intensity mapping experiments, in terms of the forecast constraints on σz, with three future spectroscopic surveys: DESI (black solid),
Euclid (black dashed) and WFIRST (black dot dashed). In both panels, the thin solid line shows the photo-z calibration requirement on
both σz and Δz for LSST, with the corresponding requirement for DES shown as a thin dashed line in the right panel. The colored bands
in the upper part of all plots show the proposed frequency ranges for the three 21 cm experiments (same color code). We have assumed
using the UHF band for SKA and MeerKAT. The L band would be able to cover all redshifts below z ∼ 0.35. The colored dashed lines
show the predictions in the presence of correlated (ξ ¼ 10) foreground residuals (see Sec. III C for further details).

ALONSO, FERREIRA, JARVIS, and MOODLEY PHYSICAL REVIEW D 96, 043515 (2017)

043515-8



the maximum-likelihood estimates of the mean and stan-
dard deviation of a Gaussian distribution from a finite
number of samples [σðσÞ=σðμÞ ¼ ffiffiffi

2
p

]. This result holds
for most of the cases explored here (see Sec. III C for an
exception), and thus we have omitted the curves for σðΔzÞ
in most of the subsequent figures.
The right panel of Fig. 4 compares the constraints

achievable by IM experiments with those forecast for the
spectroscopic surveys described in Sec. II D. We see that
both SKA and HIRAX would be able to satisfy the LSST
requirements over the redshift range of interest. The SKA
precursor MeerKAT would fall short except at low red-
shifts. However, the shorter-term timeline of MeerKAT
(2018 onward) would make it an ideal experiment to prove
the viability of this technique in cross-correlation with the
Dark Energy Survey (DES) [50], particularly in the light of
the proposed intensity mapping surveys [23] targeting a full
overlap with DES.3

As discussed in [22], the dish size of SKA is not ideal
for cosmological observations, since it is not large/small
enough to resolve the angular BAO scale sufficiently well
in either single-dish or interferometric modes, although
single-dish observations are able to address important
science cases such as primordial non-Gaussianity [28,51].
Small scales carry a larger statistical weight, however, and it
is not clear that a single-dish strategy would also be ideal
for the purposes of photo-z calibration. This is explored in
Fig. 5, which shows the constraints on σz achievable with
single-dish (dashed lines) and interferometric (dash-dotted

lines) observations for SKA (red) and MeerKAT (yellow).
The constraints from a joint auto- and cross-correlation
analysis are shown as solid lines, and correspond to the
results reported here. We see that, in the case of SKA, the
single-dish mode outperforms the interferometer up to
z ∼ 1.4, when a sufficiently large number of usable modes
enter the regime probed by the latter. This suggests that, if
simultaneous single-dish and interferometric observations
proved to be unfeasible, the photo-z calibration requirements
could still be met by using either mode in different redshift
ranges.
The performance of this method at low redshift depends

crucially on the prescription used to isolate the effect of
nonlinearities. Here we have done this in terms of the
threshold rms variance σthr defined in Eq. (18) for a fiducial
value of σthr ¼ 1, corresponding to kmax ∼ 0.3 Mpc−1 h at
z ¼ 0. Figure 6 shows the result of relaxing or tightening
this criterion. The effect on SKA and MeerKAT is only
moderate, since these experiments gather most of their
sensitivity from the large, linear scales in autocorrelation
mode. HIRAX, on the other hand, loses sensitivity more
rapidly as the scale of nonlinearities removes a larger
fraction of the available modes. Nevertheless, even for
σthr ¼ 0.5 (corresponding to kmax ¼ 0.1 Mpc−1 h at z ¼ 0)
the LSST calibration requirements are satisfied in the
redshift range corresponding to the HIRAX frequency
band. It is also worth noting that the performance at high
redshift is insensitive to the high-l cut, due to the fact that
nonlinear scales are noise dominated beyond z ∼ 1.5 for

FIG. 5. Forecast constraints on the LSST photo-z scatter σz for
SKA (red) and MeerKAT (yellow) assuming only interferometric
observations (dot-dashed lines), single-dish observations (dashed
lines) and both simultaneously (solid lines).

FIG. 6. Dependence of the constraints on the LSST photo-z
scatter σz on the overdensity variance threshold used to filter out
nonlinear scales [see Eq. (18)]. The results are shown for HIRAX
(blue), SKA (red) and MeerKAT (yellow). The fiducial value
used in this analysis is shown as solid lines, while a more
optimistic scenario where all multipoles up to l ¼ 5000 are
included at all redshifts is shown as a dashed line. This case
would mostly benefit interferometric observations, given their
higher sensitivity on small angular scales.

3Note that the photo-z calibration requirements, defined in
terms of the degradation of the final constraints, should be less
stringent for DES.
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all the experiments described here (with the exception of
the interferometric parts of SKA and MeerKAT).

B. Dependence on experimental parameters

We have so far quantified the potential of currently
proposed experimental configurations for photo-z calibra-
tion. The aim of this section is to identify the optimal
instrumental specifications for this task.
We start by exploring the balance between noise level

and sky fraction, varying the total overlapping area of the
three experiments explored in the previous section (SKA,
MeerKAT and HIRAX) keeping the total observation time
fixed. The result is presented in Fig. 7, which shows the
achievable constraints on σz when reducing the sky area by
successive factors of 2. We find that, although the results are
almost insensitive to the reduction in fsky, larger sky areas are
always preferred, a reflection of the fact that the constraints
are dominated by cosmic variance rather than noise.
As we have discussed in the previous section, the key

drawback of single-dish experiments is their inability to
access angular scales smaller than the beam size (with their
higher statistical weight). Conversely, interferometers are
unable to cover scales larger than that probed by their
smallest baseline, and therefore they have access to a
limited number of reliable (i.e., mildly nonlinear) modes.
Using the generic instrument parametrization given by
Eq. (8), and the fiducial parameters corresponding to
HIRAX, Fig. 8 explores these issues.
The upper panel shows the constraints achievable by a

single-dish experiment for different dish sizes. Dishes of at
least 15 m (corresponding to the SKA case) are needed in

order to achieve the LSST requirements at all redshifts,
while a ∼100 m dish (e.g., such as the Green Bank
Telescope [20]) would be able to achieve constraints similar
to those of HIRAX. The largest currently planned experi-
ment is FAST [35], with a dish size of 500 m.
The lower panel of the figure shows the performance of an

interferometer as a function of the minimum baseline dmin.
In this case the main effect is the loss, at lower redshifts, of
the large, mildly nonlinear scales. A maximum baseline of
at most 12 m is needed in order to calibrate redshift
distributions below z ∼ 0.5 with sufficient accuracy.

C. Foregrounds

As we discussed in Sec. II C 4, the main effect of radio
foregrounds for 21 cm observations is to make large radial

FIG. 7. Dependence of the forecast constraints on the LSST
photo-z scatter σz on the overlap sky fraction for constant total
observation time. In all cases the constraints are mostly insensi-
tive to the trade-off between sky area and noise level, although
larger areas are marginally preferred, which reflects the fact that
these measurements are mostly dominated by cosmic variance
and not noise.

FIG. 8. (Upper panel) Dependence of the forecast constraints
on the LSST photo-z scatter σz on the dish size for single-dish IM
observations. A dish size of at least ∼15 m is needed to match the
LSST requirements throughout the whole redshift range. (Lower
panel) Dependence on the minimum baseline for interferometers.
Baselines of at most ∼12 m are needed to successfully constrain
photo-z systematics below z ∼ 0.5.
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scales (i.e., modes with k∥ smaller than some kFG∥ ) useless.
We have parametrized this by introducing an extra com-
ponent corresponding to foreground residuals characterized
by an amplitude AFG and a frequency correlation length ξ
[see Sec. II C 4 and Eq. (10) for a full description]. We set
AFG to a value large enough to dominate the emission on
radial scales larger than the comoving length corresponding
to ξ [see Eq. (11)], and study the final constraints as a
function of ξ. We have further verified that our results do
not vary significantly after increasing AFG by an order of
magnitude with respect to its fiducial value.
Figure 9 shows the result of this analysis: while

sufficiently coherent foregrounds (ξ≳ 1) do not qualita-
tively modify the final results for the three experiments

under consideration, correlation lengths smaller than
ξ ∼ 0.1 would result in a fast degradation of the perfor-
mance for photo-z calibration. In particular, the associated
loss of k-space volume would prevent MeerKAT and SKA
from reaching the calibration requirements for DES and
LSST. The performance of HIRAX would also be severely
compromised by foreground contamination, although it
would still be able to reach the required constraints within
its proposed frequency range.
It is worth noting that, even in the presence of perfectly

correlated foreground residuals (ξ → ∞), their smooth
frequency dependence will make them dominate over a
finite interval of k∥, and this is the cause for the noticeable
difference between our predictions for ξ ¼ 10 and those in
the absence of foregrounds (dashed and solid lines in the
upper panel of Fig. 9 respectively). Smaller values of ξ will
then enlarge this lost range of k∥, and our results show that
this only becomes relevant for ξ≲ 1.
These results pose the question of how uncorrelated

we can expect foreground residual to be. For reference,
raw foreground components are constrained to have corre-
lation lengths of ξ ∼ 1–10 [37]. On the other hand, more
complicated residuals arising from leaked polarized syn-
chrotron would exhibit a much richer frequency structure
caused by Faraday rotation, with correlation lengths ξ ∼ 0.1
at high frequencies (∼800 MHz) decreasing for longer
wavelengths [39,40,52]. An exquisite instrumental calibra-
tion will therefore be necessary in order to optimize the
scientific output of 21 cm experiments. It is worth noting
that the comoving scale corresponding to ξ ∼ 0.1 (k∥ ∼
0.01 hMpc−1 at z ∼ 1) is similar to the cut suggested by
[39], although the exponential form assumed here for the
power spectrum of the foreground residuals [Eq. (10)]
extends the degrading effect into larger wave numbers.
A further complication comes in the form of the so-

called “foreground wedge,” produced by the long time-
delay contribution of foregrounds from antennas with far
sidelobe responses [53–56]. As proven in [57,58], this
effect makes the region of k space defined by

khor∥ <
χðzÞHðzÞ
cð1þ zÞ k⊥ ð19Þ

liable to foreground contamination. This is the so-called
“horizon” wedge, and corresponds to the case where fore-
ground contamination can be caused by the sources in the
horizon picked up by very distant sidelobes. Under optimistic
assumptions, however, we can consider the case where this
effect extends only up to foreground sources located in the
outer fringes of the primary beam, in which case the size of
the wedge is reduced to the so-called primary-beam wedge
[58], given by kpb∥ ¼ sinðθFWHM=2Þkhor∥ . The lower panel of
Fig. 9 shows that the LSST photo-z calibration requirements
are still met after accounting for the loss of k space to the
primary-beam wedge.

FIG. 9. (Upper panel) Dependence of the forecast constraints
on the LSST photo-z scatter on the frequency correlation length
of foreground residuals (a measure of the coherence of these
residuals across frequencies). Correlation lengths above ξ ∼ 0.1
(corresponding to radial scales k∥ ∼ 0.01 hMpc−1) are necessary
to limit the degradation of the photo-z calibration. (Lower panel)
Impact of the foreground wedge on the final constraints on the
photo-z scatter.
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D. Generalized redshift distributions

Even though the simple parametrization of photo-z
systematic uncertainties in terms of Δz and σz allows us
to easily compare the performance of different experiments
in terms of photo-z calibration, in a realistic scenario we
would like to calibrate generic redshift distributions with-
out assuming a particular parametrization.
This is typically done by promoting the amplitude of the

redshift distribution of the photometric sample in each
narrow redshift interval to a free parameter that can be
constrained from the cross-correlation with the spectro-
scopic survey. In this section we explore this scenario for
the same redshift bins considered in the previous sections.
For this we use the method proposed by [26]. In essence,

this method is equivalent to the formalism outlined in
Sec. II E, where the free parameters qi considered are the
amplitudes of the photometric-redshift distribution. The
method is further simplified in [26] to make it applicable to
the analysis of real data using the following approximations:
(1) All power spectra are computed using the Limber

approximation. This implies (among other things)
that all cross-correlations between nonoverlapping
redshift bins are neglected.

(2) The contributions from redshift-space distortions
and magnification bias are not included in the model
for the angular power spectra.

(3) No marginalization over cosmological or other
nuisance parameters is carried out.

(4) The autocorrelation of photometric sources does not
contain information about their redshift distribution.

We have adopted these same assumptions here to simplify the
discussion.
Figure 10 shows the constraints achievable by different

IM experiments and spectroscopic surveys on the

generalized form of the redshift distribution for three
photometric-redshift bins centered around z ∼ 0.5; 1.35
and 2.6.4 The constraining power displayed in this figure
matches the results shown in the right panel of Fig. 4.
Note that the uncertainties on the amplitude of the

redshift distribution found this way can be translated into
uncertainties on the two parameters Δz and σz used to
characterize this distribution in the previous section by
performing a simple two-parameter likelihood analysis for
the model in Eqs. (4) and (5). We find that, using this
procedure, we recover constraints on Δz and σz that are a
factor ∼2 to 3 worse than in the optimal case. This can be
understood in terms of the simplifying assumptions
adopted here, such as neglecting the information encoded
in cross-bin correlations and in the autocorrelation of the
photometric sample. In all cases, however, we recover the
same relative performance between different experiments
in terms of σðσz;ΔzÞ.

E. Impact on cosmological constraints

In order to study the impact of photo-z calibration on the
final cosmological constraints, we have run a Fisher matrix
analysis using the formalism described in Sec. II E with the
specifications for LSST described in Sec. II B. In this case
we consider a set of 54 free parameters:
(a) Three nuisance parameters for each of the 15 redshift

bins: the galaxy bias b, the photo-z bias Δz and the
photo-z scatter σz.

(b) Nine cosmological parameters: the fractional density
of cold dark matter Ωch2, the fractional density in

FIG. 10. Nonparametric reconstruction of the redshift distribution for four different redshift bins. The points with error bars show the
1σ constraints on ϕðzÞ achievable with HIRAX (blue), SKA (red) and MeerKAT (yellow), as well as two spectroscopic surveys (green),
DESI and WFIRST, at low and high redshifts respectively. Note that, given the proposed frequency band for HIRAX, it would not be
able to calibrate the low- and high-redshift bins shown here.

4Note that the first and last bins would lie outside the proposed
frequency range of HIRAX.
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baryons Ωbh2, the normalized local expansion rate h,
the amplitude and tilt of primordial scalar perturba-
tions As and ns, the optical depth to reionization τ, the
equation of state of dark energy in the w0-wa para-
metrization and the sum of neutrino masses

P
mν.

In order to pin down the early-universe parameters, we
also include information from a hypothetical ground-based
stage-4 CMB experiment [59] using the specifications
assumed in [60] and complemented by Planck at low
multipoles.
For the photo-z nuisance parameters we then add

Gaussian priors corresponding to the 1σ uncertainties on
σz and Δz found using the procedure described in the
previous sections for the different experiments considered
in this paper. The results of this exercise are displayed in
Fig. 11, which shows the constraints on the most relevant
late-universe parameters: the dark energy equation of state
parameters, w0 and wa, and the sum of neutrino masses.
The results shown correspond to the 1σ contours in the
absence of photo-z uncertainties (dashed black line), with
photo-z systematics constrained through cross-correlation
with a 21 cm experiment, in this case HIRAX (red ellipse)
and in the absence of external data for photo-z calibration
(blue ellipse).
It is important to stress that the overall constraints on

these parameters forecast here depend heavily on the
survey specifications assumed (e.g., photo-z model and
uncertainties), as well as the scales included in the analysis,

a point where we have tried to be very conservative. Thus,
the results shown in Fig. 11 should not be taken to represent
the final constraints achievable by LSST. The main result
shown in this figure is the relative improvement on the
final constraints after photo-z calibration, which should be
more robust to these considerations.
Photo-z calibration improves the constraints on each of

these parameters by a factor ∼1.5–2, and the dark energy
figure of merit by a factor≳5. Furthermore, we find that the
level of calibration achievable through cross-correlations
with intensity mapping experiments is nearly equivalent to
the case of perfect calibration. Equivalent results are found
for SKA and HIRAX, as well as for the combination of
DESI, Euclid and WFIRST, as could be expected from the
results displayed in the right panel of Fig. 4.

IV. DISCUSSION

In this paper we have shown that intensity maps of the
HI emission can be used to improve the scientific output
of photometric-redshift surveys. By exploiting the cross-
correlations between imaging surveys of galaxies and HI
maps, we find that it is possible to optimally calibrate the
photometric-redshift distributions. This is made clear when
assessing improvements in constraints on cosmological
parameters: in Fig. 11 we see that the figure of merit using
this method is effectively as good as having perfect
calibration. This also means that, with the aid of future
IM experiments it should be possible to, for example,
improve the LSST equation of state figure of merit by
approximately a factor of 5.
This approach is promising, but it is important to

highlight some of the limitations that have to be overcome
if IM is to be used successfully in this context. For a start,
it will be important to be able to deal with foreground
contamination. In essence, as we have discussed, one can
model the effect of foregrounds as a source of noise that
cancels the information contained in long-wavelength
radial modes. This effect is therefore greatly dependent
on how coherent foreground residuals are in frequency. We
can expect foregrounds to be highly correlated in intensity,
with correlation lengths of order ξ ∼ 1–10. However,
instrumental effects such as polarization leakage or fre-
quency-dependent beams could spoil this coherence and
lead to significant losses in the coverage of the k∥ − k⊥
plane. We estimate that residuals with correlation lengths
ξ≲ 0.1 (as expected for polarized synchrotron emission,
and corresponding to scales k∥ ≳ 0.01 hMpc−1 at z ∼ 1)
would significantly degrade the ability of 21 cm maps to
calibrate redshift distributions efficiently. We have further-
more shown that the calibration requirements of future
photometric surveys can also be matched after accounting
for the so-called foreground wedge. Finally, it is worth
noting that one of the main strength of the method is its
reliance on cross-correlations between the spectroscopic
and photometric samples, and that this cross-correlation

FIG. 11. Constraints on the equation of state of dark energy and
the sum of neutrino masses in the absence of external photo-z
calibration (blue ellipses), with redshift distributions calibrated
through cross-correlation with a HIRAX-like 21 cm experiment
(red ellipses) and in the case of perfect calibration (dashed lines).
The constraints also include early-universe information from a
stage-4 CMB experiment.
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should be very robust against systematic biases caused by
foreground contamination.
If we are to use IM to calibrate future redshift surveys,

then we need to make sure that the observational setup
satisfies minimum requirements and to do so, we have
explored its dependence on experimental parameters. We
have found that, for the noise levels of currently proposed
experiments, we are primarily limited by cosmic variance
and therefore there is no advantage in gaining depth at the
cost of sky area: it is preferable to maximize the overlap
between the HI maps and the galaxy imaging survey.
Furthermore, if we are to accurately capture the longer
wave-length modes, we need to resort to single-dish
observations, and therefore deal with the problems associ-
ated with correlated noise in autocorrelation measurements.
In the long term, these “1=f” noise contributions will have to
be controlled, and our analysis shows that the dishes must
have a minimum size of ∼15 m. If, on the other hand, we are
to use interferometric observations (a method which is more
tried and tested) then we need to ensure a minimum baseline
of ∼12 m to capture the large-scale angular modes. We have
shown how MeerKAT, HIRAX and SKA fall well within
these experimental parameter constraints.
We must also note that our analysis has been

conservative in terms of the ranges of scales that add up
to the constraints on photo-z parameters, only including
angular scales in the regime where nonlinear structure
formation is believed to be well understood. It may,
however, be possible to use even smaller scales for the
purposes of photo-z calibration [5], in which case some of
the conclusions drawn from this analysis could vary. In
particular, the relative performance of HIRAX and SKA in
terms of photo-z calibration could be significantly different,
owing to the higher sensitivity of the SKA interferometer to
small angular scales (see Fig. 13).
It is interesting to consider alternative approaches

to sharpening photometric-redshift measurements.
Gravitational lensing of the CMB has recently been
advocated as a promising approach, given its perfectly
well-determined radial kernel (e.g., see [61]). We can
explore this possibility by considering correlations between
LSST and a CMB lensing convergence κCMB map as in
Sec. II E. We consider two different generations of CMB
experiments: an ongoing “stage-3” experiment, character-
ized by a rms noise level of σT ∼ 8 μKarc min, and a future
“stage-4” experiment with σT ¼ 1 μKarc min. In both
cases we assume very optimistic configurations, with a
beam FWHM of 1 arc min and using all angular scales
l ∈ ½2; 3000�. We also fix all cosmological and bias
parameters, and only consider varying Δz and σz for each
LSST redshift bin. Figure 12 shows the constraint on the
photo-z bias Δz in the absence of CMB lensing data (green
solid line), and using the cross-correlation with κCMB as
measured by S3 (purple) and S4 (cyan) experiments. We
clearly see that, even under these overly optimistic

assumptions, adding CMB lensing information does not
significantly help calibrate photo-z uncertainties.
Experiments to undertake intensity mapping of HI are an

ongoing effort, and will give us an extremely promising
new window on the Universe. We have argued that they will
not only contribute in their own right to the further
understanding of the large-scale structure of the
Universe, but will also help improve the scientific returns
from a plethora of up and coming optical surveys.
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APPENDIX A: INDIVIDUAL CLUSTERING
REDSHIFTS

The idea of using clustering information to constrain the
redshifts of individual objects of a given sample has been
considered before in the literature, and shown to yield
interesting results even in the absence of spectroscopic data
[27]. Here we outline the steps that should be taken to
include intensity mapping information in this formalism.

FIG. 12. Forecast constraints on the LSST photo-z biasΔz in the
absence of external data sets (green), and adding CMB lensing data
from stage-3 (purple) and stage-4 (cyan) CMB experiments.
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Our aim is to find the most general expression for the
posterior distribution of the true redshifts of a set of
galaxies for which we only have photometric data and
an overlapping intensity mapping survey. We start by
considering a data vector d consisting of
(a) n̂: galaxy positions.
(b) m: galaxy magnitudes.
(c) δHI: a map of the perturbation in the HI density across

angles and redshift.
For each galaxy we want to estimate a redshift zi, so let z be
a vector containing all those redshifts. We want to study the
posterior probability pðzjδHI; n̂;mÞ. Let us start by noting
that, in the standard models of large-scale structure, both
δHI and the galaxy distribution can be thought of as being
biased and noisy representations of the underlying matter
overdensity δM. Sampling the galaxy redshifts could then
also give us information about δM, and therefore it is worth
considering the joint distribution pðz; δMjδHI; n̂;mÞ.
One can study this distribution by iteratively sampling

the two conditional distributions:

δiþ1
M ←pðδMjzi;δHI;m;n̂Þ; ziþ1←pðzjδiþ1

M ;δHI;m;n̂Þ:
ðA1Þ

We outline these two steps below.
(a) Conditional density distribution. We start by noting

that, if the true redshifts z are known, then the
photometric redshifts given by the magnitudes m
are of no use in constraining the overdensity field,
and therefore

pðδMjδHI; z; n̂;mÞ ¼ pðδMjδHI; z; n̂Þ ðA2Þ

¼ pðδMjδHI; δgÞ; ðA3Þ

where δgðz; n̂Þ is the galaxy overdensity uniquely
defined by the galaxy angular coordinates and red-
shifts. pðδMjδHI; δgÞ can then be decomposed using
Bayes’s theorem as

pðδMjδHI; δgÞ ∝ pðδgjδMÞpðδHIjδMÞpðδMÞ; ðA4Þ

where, following the same philosophy as above, we
have considered that pðδgjδM; δHIÞ ¼ pðδgjδMÞ, since
δHI is just a noisy and biased realization of δM. All that
remains is then to model the conditional distributions
pðδgjδMÞ and pðδHIjδMÞ, which is by no means a
cursory matter, but something that can certainly be
accomplished in the regime of validity of structure
formation models.

(b) Conditional redshift distribution. Under the assump-
tions that galaxies are Poisson distributed over the
(biased) matter overdensity, and that the photometric-
redshift errors are independent of the environmental
density, it is possible to show (e.g., [27]) that the

galaxy redshifts can be sampled individually with the
distribution

pðzjδ; n̂; mÞ ∝ ½1þ bgðδMÞðz; n̂Þ�pðzjmÞ; ðA5Þ

where bgðδMÞðz; n̂Þ is the galaxy overdensity along
the angular direction of each galaxy, and pðzjmÞ is the
prior photo-z distribution.

APPENDIX B: ANGULAR POWER SPECTRA

This section describes the theoretical models used for
the angular power spectra entering the computation of
the Fisher matrix [Eq. (17)]. The cross-power spectrum
between two tracers of the cosmic density field, a and b,
can be estimated as

Cab
l ¼ 4π

Z
∞

0

dk
k
PΦðkÞWa

lðkÞWb
lðkÞ; ðB1Þ

where PΦðkÞ is the power spectrum of the primordial
curvature perturbations and Wa

lðkÞ is the window function
for tracer a, containing information about the different
contributions to the total anisotropy in that tracer and about
its redshift distribution.
In the case of galaxy clustering and intensity mapping,

and neglecting contributions from magnification bias and
large-scale relativistic effects, Wa is given by

Wa
lðkÞ ¼

Z
∞

0

dzϕaðzÞ
�
baðzÞTδðk; zÞjlðkχðzÞÞ

þ 1þ z
HðzÞ Tθðk; zÞj00lðkχðzÞÞ

�
; ðB2Þ

where HðzÞ and χðzÞ are the expansion rate and radial
comoving distance at redshift z respectively, ϕaðzÞ is the
source redshift distribution, and Tδ and Tθ are the transfer
functions of the matter overdensity and velocity divergence
fields. Note that, even though we include the effect of
nonlinearities using the nonlinear transfer function for δ
(through the prescription of [62]), we only introduce the
effect of redshift-space distortions at the linear level, and
only consider a deterministic linear bias baðzÞ. This is,
nevertheless, a more rigorous treatment than has been used
in the literature, and the procedure used to mitigate the effect
of nonlinearities described in Sec. II E should minimize the
corresponding impact on the forecasts presented here.
For galaxy shear tracers of weak lensing, the expression

for the window function is

Wa
lðkÞ ¼ −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
∞

0

dz
HðzÞ

Z
∞

z
dz0ϕaðz0Þ

×
χðz0Þ − χðzÞ
χðz0ÞχðzÞ Tϕþψ ðk; zÞjlðkχðzÞÞ; ðB3Þ
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where Tϕþψ is the transfer function for the sum of the two
metric potentials in the Newtonian gauge.
The computation of Eq. (B1) was carried out using a

modified version of the Boltzmann code CLASS [63,64].

APPENDIX C: NOISE POWER SPECTRUM FOR
INTENSITY MAPPING EXPERIMENTS

This section derives the expression for the noise power
spectra of single-dish experiments and interferometers
presented in Eq. (6). Similar derivations have been pro-
vided before in the literature (e.g., [22]), but we include this
calculation here for completeness.
Throughout this section we will use a flat-sky approach,

where angles on the sky are represented by a 2D Cartesian
vector x. In this approximation, the spherical harmonic
transform of a field becomes a simple 2D Fourier trans-
form:

flm ≡X
lm

fðn̂ÞYlmðn̂Þ → fl ≡
Z ðdxÞ2

2π
eix·lfðxÞ: ðC1Þ

We will also simplify the derivation by writing integrals as
Riemann sums. For instance, the Fourier transform above
will read

fl ¼
X
x

ðΔxÞ2
2π

eix·lfðxÞ: ðC2Þ

Note that, with this normalization, the definition for the
power spectrum Pf of a stochastic field f is

hflf�l0 i≡
δl;l0

ðΔlÞ2 PfðlÞ; ðC3Þ

where Δl≡ 2π=Δx.

1. Single dish

The flux at angular position x measured by a single
dish is the sky intensity I integrated over the instrumental
beam B:

SðxÞ ¼ NB

X
x0
ðΔxÞ2Iðx0ÞBðx − x0Þ; ðC4Þ

where NB ≡ 1=Bð0Þ. Inserting the definition (C2) in the
expression above, and using the orthogonality relationP

xðΔxÞ2 exp½ixðl − l0Þ� ¼ δl;l0 ð2π=ΔlÞ2, one can relate
the Fourier components of S and I as

Il ¼ Sl=½NBBðlÞ�; where BðlÞ≡X
x

ðΔxÞ2
ð2πÞ2 e

ix·l:

ðC5Þ
The power spectrum for I is then related to that of SðsÞ as

PIðlÞ ¼ PSðlÞ=½NBBðlÞ�2. Assume now that S is purely

white noise with a per-pointing rms flux σS, such that its
power spectrum is simply flat with an amplitude

PS¼σ2SðΔxÞ2¼
�

2kBTsys

Ae
ffiffiffiffiffiffiffiffiffiffi
Δνtp

p �
2

ðΔxÞ2¼
�
2kBTsys

Ae

�
2 Ωobs

Δνttot
;

ðC6Þ

where Δx is the angular separation between pointings, Tsys

is the per-pointing rms temperature fluctuation, Ae is the
effective collecting area of the dish, Δν is the channel
frequency bandwidth, tp is the integration time per point-
ing, Ωtot is the total observed sky area and ttot is the total
integration time.
Substituting this into the expression for PI and relating

the intensity I to a brightness temperature T through the
Rayleigh-Jeans law (I ¼ 2kBT=λ2), we obtain the temper-
ature noise power spectrum:

PTðlÞ ¼
T2
sys4πfsky

η2NdishΔνttot
B−2ðlÞ; ðC7Þ

where fsky is the observed sky fraction, we have considered
the possibility of having Ndish independent dishes and we
have defined the quantity η≡ AeNB=λ2. Note that, for a
circular aperture telescope,NB ¼ 4λ2=ðπd2Þ, where d is the
dish diameter, and therefore η ¼ Ae=½πðd=2Þ2� is the ratio
of the effective to total dish area, which we have labeled
“efficiency” in Eq. (6).

2. Interferometers

The visibility observed by a pair of antennas separated
by a baseline d≡ λu is

VðuÞ≡X
x

ðΔxÞ2TðxÞBðxÞe2πiu·x → TðxÞBðxÞ

¼
X
u

ðΔuÞ2e−2πiu·x: ðC8Þ

Transforming this to Fourier space we find

Tl ¼
X
u

ð
ffiffiffiffiffiffi
2π

p
ΔuÞ2VðuÞ

X
x

�
Δx
2π

�
2 eix·ðl−2πuÞ

BðlÞ

¼ Vðl=ð2πÞÞ
2π

; ðC9Þ

where, in the last step, we have used the small-angle
approximation B ¼ 1. The variance of Tl is therefore
given by

hjTlj2i ¼
hjVðl=ð2πÞÞj2i

ð2πÞ2nðl=ð2πÞÞðΔuÞ2 ; ðC10Þ
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where nðuÞðΔuÞ2 is the number of baselines in a volume
ðΔuÞ2 in u space.
In temperature units, the noise variance per visibility

is given by hjVðuÞj2i ¼ ½λ2Tsys=ðAe
ffiffiffiffiffiffiffiffiffiffi
Δνtp

p Þ�2. Relating
baselines to Fourier coefficients as u ¼ l=ð2πÞ and recall-
ing the definition of a power spectrum [Eq. (C3)], the noise
power spectrum in temperature is then given by

PTðlÞ ¼
λ2T2

sysNp

A2
eΔνttotnðu ¼ l=ð2πÞÞ ; ðC11Þ

where Np is the total number of pointings. Relating nðuÞ
to the number density of physical baselines, and defining
NpΩp ≡ 4πfsky, we recover the expression for the noise
power spectrum of interferometers in Eq. (6).

3. Comparison with spectroscopic surveys

Converting the angular maps in different frequency
channels into a three-dimensional map of the HI over-
density, we can relate the 3D noise power spectrum to its
angular counterpart as

P3Dðk∥;k⊥Þ ¼
c½ð1þ zÞrðzÞ�2
ν21HðzÞT2

HIðzÞ
PTðl≡ rk⊥Þ; ðC12Þ

where r is the comoving angular diameter distance to
redshift z and THI is the average 21 cm temperature. This
can then be directly compared with the shot-noise power
spectrum of spectroscopic surveys, given by P3D ¼ 1=n̄,

where n̄ is the 3D density of sources. The left panel of
Fig. 13 shows the 3D noise power spectrum at z ∼ 1.2 as a
function of the transverse wave number k⊥ for the three IM
experiments (HIRAX, SKA and MeerKAT) and the three
next-generation spectroscopic surveys (DESI, Euclid and
WFIRST) considered here.
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