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It is shown that the standard no-boundary wave function has a natural expression in terms of a Lorentzian
path integral with its contour defined by Picard-Lefschetz theory. The wave function is real, satisfies the
Wheeler-DeWitt equation and predicts an ensemble of asymptotically classical, inflationary universes with
nearly-Gaussian fluctuations and with a smooth semiclassical origin.
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I. INTRODUCTION

The conventional formulation of the no-boundary wave
function [1] involves a Euclidean path integral taken along
an appropriate complex contour, whose choice is con-
strained by certain reasonable physical considerations [2].
It would be appealing to have an expression of the no-
boundary wave function that is based on a Lorentzian path
integral [3,4]. This would yield a new route towards a more
precise formulation of the wave function, perhaps using a
holographic approach in which the dual is most naturally
defined on the future boundary of spacetime, well into the
asymptotically classical, Lorentzian domain of superspace
[5–9].
In this paper we evaluate the no-boundary wave function

in a homogeneous isotropic minisuperspace model con-
sisting of gravity coupled to a positive cosmological
constant and scalar field matter. Our starting point is the
Lorentzian path integral

Ψ ¼
Z
C
DgDϕeiS½g;ϕ�=ℏ; ð1:1Þ

with appropriate boundary conditions on the geometries g
and matter fields ϕ and taken along an appropriate contour
C which ensures its convergence. When properly con-
structed, the path integral (1.1) generates solutions to the
Wheeler-DeWitt equation [10]. For the specific case of
minisuperspace models with configuration space coordi-
nates q and ϕ that we consider here, the path integral is
conveniently written in terms of an integral over the lapse
function N [11–14],

Ψ ¼
Z
C
dN

Z
DqDϕeiS½N;q;ϕ�=ℏ; ð1:2Þ

where the functional integral over q and ϕ has the form of a
standard nonrelativistic path integral between fixed initial
and final data and fixed time interval N.
We consider a Lorentzian contour for the lapse integral

that runs along the entire real axis and avoids the singularity
atN ¼ 0 by going below this point. Using Picard-Lefschetz
theory to rigorously evaluate the path integral in the saddle
point approximation we show this yields a solution of the
Wheeler-DeWitt equation. Specifically, with no-boundary
conditions this yields the usual, real no-boundary wave
function describing two identical copies of an ensemble of
asymptotically classical, inflationary universes [15,16] with
Gaussian fluctuations [17].
Our method closely resembles that of recent work by

Feldbrugge et al. [18,19] who also used Picard-Lefschetz
theory in a Lorentzian framework but took the contour over
N to be half infinite, extending fromN ¼ 0 to infinity. As is
well-known [12,13] and we explain below, such a contour
yields a Green’s function for the Wheeler-DeWitt equation.
Infinite contours on the other hand, such as the one
considered in this work, give genuine solutions. It is clear
that the properties of the wave function (1.2) depend
crucially on the choice of contour, and indeed our results
differ significantly from those in [18,19]. We also briefly
comment on the broader implications of a Lorentzian
viewpoint on the no-boundary wave function.

II. DE SITTER MINISUPERSPACE MODEL

We first consider a homogeneous isotropic minisuper-
space approximation to gravity coupled to a positive
cosmological constant Λ and no matter fields. Following
[20] we write the metric of the minisuperspace model as

ds2 ¼ −
NðτÞ2
qðτÞ dτ2 þ qðτÞdΩ2

3; ð2:1Þ
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where dΩ2
3 is the metric on the unit three-sphere. With this

parametrization of the metric the Einstein-Hilbert action
reads1

S ¼ 2π2
Z

1

0

dτN

�
3 −

3

4N2
_q2 − Λq

�
: ð2:2Þ

Since the action is quadratic in the field, we may evaluate
the path integral (1.1) in this minisuperspace model exactly
by parametrizing a general path as a deviation from the
classical path satisfying the boundary conditions qð0Þ ¼
q0, qð1Þ ¼ q1. The resulting path integral over the devia-
tions is that of a free particle which may be evaluated
trivially. Imposing no-boundary initial conditions q0 ¼ 0,
the integral over q yields [20]

ΨNBðq1Þ ¼
ffiffiffiffiffiffiffi
3πi
2ℏ

r Z
C

dNffiffiffiffi
N

p e2π
2iS0ðN;q1Þ=ℏ; ð2:3Þ

where the reduced action is

S0 ¼
Λ2

36
N3 þ

�
3 −

Λq1
2

�
N −

3q21
4N

; ð2:4Þ

and where the remaining integral over the lapse obviously
depends on the contour C.
In the semiclassical limit one can evaluate the integral in

(2.3) using the method of steepest descent. Picard-Lefschetz
theory provides a rigorous way of determining which saddle
points contribute in the semiclassical approximation for a
givenC [21]. Themethod consists of identifying the curves of
steepest ascent and steepest descent (a.k.a. Lefschetz thim-
bles) emanating from each of the (nondegenerate) saddle
points, enabling one to determine how the original contour C
should be deformed into a sum of steepest descent contours
(which are lines of constant phase of the exponential part of
the integrand). On each of these the familiar Gaussian
approximation may then be applied in the small ℏ limit.
Whenever a steepest ascent curve intersects the integration
contour C an odd number of times, the saddle point from
which it emerges contributes to the integral.
Motivated by physical considerations which will become

clear below we take the integral (2.3) over the lapse along
the contour C ¼ ð−∞;þ∞Þ↓ indicated in Fig. 1 by the
black curve.2 For q1 > 3=Λ, which corresponds to the
regime of superspace where we expect the wave function to
predict classical evolution, the reduced action S0 has four
saddle points in the complex N-plane, located at

Ns ¼ � 3

Λ

�
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λq1
3

− 1

r �
: ð2:5Þ

The corresponding steepest ascent and descent curves of
the integrand in (2.3) in the complex N-plane are also
illustrated in Fig. 1.
For a given contour C the Picard-Lefschetz prescription

can be used to identify rigorously which saddle points
contribute to the integral. The continuous deformation C0 of
C implied by Picard-Lefschetz theory is shown in Fig. 2.
The only subtlety in the Picard-Lefschetz analysis comes
from the fact that the reduced action S0 is a real function of
N, S0ðNÞ ¼ S0ðN̄Þ, which leads to a degeneracy in the
steepest ascent and descent curves [22]. This can be
remedied by including a small symmetry breaking pertur-
bation in the action and then take the limit in which this
perturbation vanishes [21,23]. Independently of how the
perturbation is taken to zero, we find that the two saddle
points in the lower half complex N-plane contribute.3

FIG. 1. The four saddle points (2.5) of the contour integral (2.3)
in the complex N-plane together with their steepest ascent and
descent curves. In the shaded region ReðiS0Þ > 0, suggesting
divergent behavior of an integral along a contour running to
complex infinity or to the essential singularity at the origin in this
domain. The Lorentzian contour C ¼ ð−∞;þ∞Þ↓ avoids the
origin by passing along a parametrically small circle of radius ε
below that point. Analyticity away from N ¼ 0 ensures that
the value of ε > 0 does not affect the outcome of the integral. The
parameter values Λ ¼ 3 and q1 ¼ 10 were taken and to lift the
degeneracy we considered the perturbation S0 → S0 þ i:02N2.

1We set 8πGN ¼ 1.
2We take the branch cut of the square root function in (2.3) to

lie along the positive imaginary N-axis.

3As the perturbation tends to zero, the deformed contour also
runs over the saddle points in the upper half plane. However
contributions from these saddles are exponentially suppressed
compared to those in the lower half plane, so we may safely
ignore these [24].
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This in fact corresponds to the obvious deformation
suggested by examining Fig. 1. Semiclassically, therefore,
and taking into account the angle at which the Lefschetz
thimble passes through the saddle point and the prefactors
coming from the Gaussian integrals, we find for the wave
function

ΨNBðq1Þ¼
eþ12π2=ℏΛ

ðΛq1=3−1Þ1=4 cos
�
12π2

ℏΛ

�
Λq1
3

−1

�
3=2

þ3π

4

�
× ½1þOðℏÞ�: ð2:6Þ

This is real and precisely equal to the no-boundary
wave function familiar from its Euclidean formulation.4

In particular, at sufficiently large values of the scale
factor the wave function evaluated on a q1-surface takes a
WKB form and predicts classical scale factor evolution
[15,16]. It serves as an initial condition for future and
past evolution which in this very simple minisuperspace
model is simply Lorentzian de Sitter space. The de Sitter

universe comes with the familiar no-boundary weighting5

but since there is only one history in this model, this does
not mean much. Below we therefore extend our model to
include a scalar field.
Finally we verify that our choice of contour yields a

solution to the Wheeler-DeWitt equation. The Wheeler-
DeWitt equation for the de Sitter minisuperspace model is
[18,20]

ℏ2
∂2Ψ
∂q21 þ 12π4ðΛq1 − 3ÞΨ ¼ 0: ð2:7Þ

An explicit computation using (2.3) shows that

ℏ2
∂2Ψ
∂q21 þ12π4ðΛq1−3ÞΨ¼ 6π2i

ffiffiffiffiffiffiffi
3πi
2

r �
e2π

2iS0ðN;q1Þ=ℏffiffiffiffi
N

p
�∞
−∞

:

ð2:8Þ

Since the right-hand side vanishes, we see that our solution
Ψ indeed satisfies the Wheeler-DeWitt equation. If by
contrast we had taken C to be a half-infinite contour, we
would have found a delta function on the right-hand side in
(2.8) producing a Green’s function G of the Wheeler-
DeWitt equation rather than a genuine solution Ψ [18].

III. SCALAR MATTER

We now generalize this calculation to include scalar field
matter. As matter content we consider a single scalar field
ϕ, minimally coupled to gravity via the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − ð∂ϕÞ2 − 2VðϕÞÞ þ
Z

d3y
ffiffiffiffiffiffiffi
gð3Þ

q
K:

ð3:1Þ

We concentrate on the analytically tractable model of [25]
in which the potential takes the form

VðϕÞ ¼ Λ cosh

� ffiffiffi
2

3

r
ϕ

�
: ð3:2Þ

For small values of ϕ this matter model reduces to a
cosmological constant Λ and a massive scalar field with
mass m2 ¼ 2H2, where H2 ≡ Λ=3. A smart change of
variables

FIG. 2. The continuous deformation C0 implied by Picard-
Lefschetz theory of the original contour C ¼ ð−∞;þ∞Þ↓ that
passes through the two saddle points in the lower half complexN-
plane. The two Lefschetz thimbles both tend to the negative
imaginary axis at complex infinity, where ReðiS0Þ → −∞. The
contribution coming from the “arc at infinity” connecting the
Lefschetz thimbles and the positive and negative real N-axes
vanishes.

4In hindsight it follows from [20] that an essentially Lorentzian
contour yields the no-boundary wave function.

5One may wonder how the Picard-Lefschetz prescription can
select exponentially enhanced saddle point contributions. Note
however that our original contour passes just below the origin,
where the real part of the exponent of the integrand behaves as
þ1=ε. By a downwards flow from here we are led to the usual no-
boundary saddle points, which are exponentially enhanced to
leading order in ℏ. By contrast in the analysis of [18] the real part
of the exponent of the integrand is zero, so one can only flow to
exponentially suppressed saddles.
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x ¼
ffiffiffi
3

p

2
q cosh

� ffiffiffi
2

3

r
ϕ

�
; ð3:3Þ

y ¼
ffiffiffi
3

p

2
q sinh

� ffiffiffi
2

3

r
ϕ

�
; ð3:4Þ

renders the action quadratic and allows one to perform the
path integral over x and y explicitly [25]. Imposing no-
boundary initial conditions q0 ¼ 0 one finds

ΨNBðq1;ϕ1Þ ¼
2π

ℏ

Z
C

dN
N

e2π
2iS0ðN;q1;ϕ1Þ=ℏ; ð3:5Þ

where

S0 ¼
H4

4
N3 − 3

�
H2q1
2

cosh

� ffiffiffi
2

3

r
ϕ1

�
− 1

�
N −

3q21
4N

;

ð3:6Þ
and C ¼ ð−∞;þ∞Þ↓ is the same contour we considered in
the de Sitter minisuperspace model of Sec. II. The saddle
points Ns of this action satisfy a quartic equation and are
given by

Ns ¼ � 1

H2
ð

ffiffiffiffiffiffiffiffiffiffiffi
F − λ

p
� ffiffiffiffiffiffiffiffiffiffiffiffi

F þ λ
p Þ; ð3:7Þ

where we have defined

Fðq1;ϕ1Þ≡H2q1
2

cosh

� ffiffiffi
2

3

r
ϕ1

�
− 1; λðq1Þ≡H2q1

2
:

ð3:8Þ
The on-shell action is

S̄0ðq1;ϕ1Þ ¼∓ 2

H2
½ðF − λÞ3=2 � ðF þ λÞ3=2�: ð3:9Þ

The saddle points (3.7) of the lapse integral are real when
F ≥ λ. A sufficient condition on ϕ1 for this to hold is
ϕ2
1 ≥ 6=H2q1. The corresponding solutions ½q̄ðτÞ; ϕ̄ðτÞ� in

this regime involve large values of the scalar field where the
potential is steep and the slow roll conditions are not
satisfied. They all exhibit singularities at intermediate
times, however, and thus do not specify valid, regular
saddle points of the no-boundary wave function.6 It is well-
known indeed (see, e.g., [16,26]) that the no-boundary
wave function selects those Lorentzian histories that
originate in relatively flat, inflationary patches of the scalar
potential. This set of histories is associated with regular
complex saddle points which probe the lower part of the
potential where the slow roll conditions hold.
On the other hand if F ≤ −λ then the saddle points (3.7)

are purely imaginary. This is the region of configuration

space where the scale factor is small, and the exponent iS̄0
is real. Evaluating the wave function in this regime reveals
that it exhibits the familiar exponentially growing behavior
as a function of the scale factor [15].
We expect therefore that classical cosmological evolu-

tion will emerge as a prediction of the no-boundary wave
function only in the regime −λ < F < λ in which the scale
factor is sufficiently large, λ > 1=2, and the scalar field is
sufficiently small, ϕ1 <

ffiffiffiffiffiffiffiffiffiffi
3=2λ

p
.

In this classical domain of configuration space there are
always two saddle points in the upper half complex N-
plane and two in the lower half, just like in the de Sitter
minisuperspace model. In the semiclassical limit, a Picard-
Lefschetz analysis shows that the C ¼ ð−∞;þ∞Þ↓ contour
should always be deformed to go through the saddles in the
lower half plane, giving rise to a real wave function and an
exponentially enhanced weighting to leading order in ℏ.
The two relevant saddle points are

N� ¼ 1

H2
ð� ffiffiffiffiffiffiffiffiffiffiffiffi

λþ F
p

− i
ffiffiffiffiffiffiffiffiffiffiffi
λ − F

p
Þ; ð3:10Þ

with on-shell action

S̄� ¼ 2

H2
½∓ ðλþ FÞ3=2 − iðλ − FÞ3=2�: ð3:11Þ

After deforming the contour C in (3.5) to run over the
appropriate Lefschetz thimbles, we use the saddle point
approximation to evaluate (3.5). To perform the Gaussian
integrals in the neighborhood of the saddle points, the
identities jN�j ¼ ffiffiffiffiffi

q1
p

=H and

S000ðN�Þ ¼
∓ 6i
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − F2

p
ð3:12Þ

are useful. Furthermore, one has θþ ¼ ðαþ þ πÞ=2,
θ− ¼ α−=2, where θ� is the angle of the thimble with
the positive real N-axis near the saddle point N�, and
α� ≡ argðN�Þ. Also α− ¼ −π − αþ, and we denote
αþ ≡ α. Using this we obtain

ΨNBðq1;ϕ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πH
3ℏ

ffiffiffiffiffi
q1

p
s

ðλ2 − F2Þ−1=4e4π2ðλ−FÞ3=2=ℏH2

× cos

�
4π2

ℏH2
ðλþ FÞ3=2 þ α

2

�
½1þOðℏÞ�:

ð3:13Þ

An approximate form of the wave function can be
derived in the corner λ ≫ 1;ϕ1 ≪ 1=

ffiffiffi
λ

p
of the classical

regime where we have

ðλ − FÞ3=2 ¼ 1 −
H2q1
4

ϕ2
1 þOðð

ffiffiffi
λ

p
ϕ1Þ4Þ; ð3:14Þ

6This can readily be seen from an explicit form of the saddle
point histories ½q̄ðτÞ; ϕ̄ðτÞ�, which are easily obtained from the
solutions ½x̄ðτÞ; ȳðτÞ�. See also [25], Sec. VI E.
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ðλþFÞ3=2¼ðH2q1−1Þ3=2
�
1þ H2q1

4ðH2q1−1Þϕ
2
1þOðϕ4

1Þ
�
; ð3:15Þ

ðλ2 − F2Þ−1=4 ¼ ðH2q1 − 1Þ−1=4
�
1þH2q1

24

�
H2q1 − 2

H2q1 − 1

�
ϕ2
1 þOðð

ffiffiffi
λ

p
ϕ1Þ4Þ

�
; ð3:16Þ

α ¼ β

�
1 −

H2q1
12β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2q1 − 1

q
ϕ2
1 þOðð

ffiffiffi
λ

p
ϕ1Þ4Þ

�
; ð3:17Þ

β ¼ − tan−1ððH2q1 − 1Þ−1=2Þ: ð3:18Þ

Therefore we find

ΨNBðq1;ϕ1Þ¼P exp

�
4π2

ℏH2

�
1−

H2q1
4

ϕ2
1þOðð

ffiffiffi
λ

p
ϕ1Þ4Þ

��
cos

�
4π2

ℏH2
ðH2q1−1Þ3=2

�
1þ H2q1

4ðH2q1−1Þϕ
2
1þOðϕ4

1Þ
�
þα

2

�
× ½1þOðℏÞ�; ð3:19Þ

where an approximate form of the prefactor P can be
determined from (3.16).
The wave function is real and describes in this classical

λ ≫ 1;ϕ1 ≪ 1=
ffiffiffi
λ

p
domain two identical copies of an

ensemble of slow roll inflationary universes that are asymp-
totically de Sitter [15,16,26]. These classical ensembles can
be viewed as the time reversal of each other. For every
classical history in the first ensemble, associated with an
integral curve following from the eþiS factor7 in (3.19), its
time reversed is in the second ensemble associated with the
e−iS factor. The individual histories have the same proba-
bilities in both ensembles, with a lower probability for
histories with more scalar field driven inflation. If one thinks
of one set of histories as expanding, in the other set they are
contracting. Individual histories in both ensembles are not
connected classically but may be connected by quantum
evolutionmediated by theWheeler-DeWitt equation [27,28].
Equation (3.19) shows that small homogeneous pertur-

bations around the de Sitter saddle points are suppressed.
Naively extrapolating this to larger values of the scalar field
would seem to suggest that the saddles in the upper half
N-plane might become relevant for large perturbations
ϕ1 ∼ 1=

ffiffiffi
λ

p
. However the general form of the wave function

(3.13) differs drastically from the extrapolation of the
perturbative result and shows this is not the case. The
saddles in the upper half N-plane are exponentially sup-
pressed in the entire classical domain of the wave function.8

More generally we note that solutions to the Wheeler-
DeWitt equation are normalizable in the so-called induced
inner product which essentially means the wave function

must be an eigenstate of the Wheeler-DeWitt operator. This
forbids wave functions from rapidly growing at the
boundaries of superspace.9

Finally we turn to the wave function Ψ for spatially
varying scalar perturbations. For simplicity we consider
just a single scalar perturbation mode around the de Sitter
background in the ensemble. The action for this is
given by10

Sl ¼ π2
Z

1

0

dτN�

�
q2

N2
�
_ϕ2
l − lðlþ 2Þϕ2

l

�
; ð3:20Þ

where l > 1 labels the mode on the three-sphere of the
perturbation under consideration, and N� are the two
contributing background saddle points (2.5) in the lower
half complex N-plane. We work to linear order, neglecting
the backreaction of the scalar field on the metric. The
regular saddle point solution for the perturbation mode is
identical for the two background saddle point histories
selected by the Picard-Lefschetz prescription and reads
ϕlðτÞ ¼ ϕl;1fðτÞ=fð1Þ with [19]

fðτÞ ¼
�
1 −

i
τH2N� þ i

�l
2

�
1þ i

τH2N� þ i

�
−lþ2

2

×

�
1þ iðlþ 1Þ

τH2N� þ i

�
: ð3:21Þ

The on-shell perturbation action is

7We emphasize that the classical Lorentzian histories predicted
by the wave function are real and therefore distinct from the
complex saddle point histories specifying its semiclassical
approximation [16].

8This conclusion holds for general scalar potentials [16,26].

9For a useful review of the induced inner product, see [29] and
references therein; for its implementation in quantum cosmology
see [30].

10We employ the normalization convention
R
d3Ω

ffiffiffiffi
Ω

p
YkYq ¼

2π2δk;q for spherical harmonics on the three-sphere.
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iS̄lðq1;ϕl;1Þ

¼π2ϕ2
l;1

�
∓ i

lðlþ2Þ
H

ffiffiffiffiffi
q1

p
−
lðlþ1Þðlþ2Þ

H2
þO

�
1ffiffiffiffiffi
q1

p
��

;

ð3:22Þ

yielding

ΨNBðq1;ϕl;1Þ
∼ e4π

2=ℏH2

e−π
2lðlþ1Þðlþ2Þϕ2

l;1=ℏH
2

× cos

�
4π2

ℏH2

�
ðH2q1 − 1Þ3=2 þ lðlþ 2Þ

4
ϕ2
l;1

ffiffiffiffiffiffiffiffiffiffiffi
H2q1

q ��
:

ð3:23Þ

This result qualitatively generalizes to scalar and tensor
perturbations around all classical backgrounds in both
ensembles. Hence we recover the well-known Gaussian
behavior of the wave function of perturbations in the no-
boundary state [17,31].
The no-boundary condition of regularity on the pertur-

bations implies that the Lorentzian perturbation histories
exhibit growth in the direction of expansion in the classical
backgrounds in both ensembles predicted by the wave
function. This means that even if one were to connect both
ensembles quantum mechanically, the physical arrows of
time would reverse around the bounce [32,33]. This is in
sharp contrast with the causality in ekpyrotic cosmology
where the fluctuation arrow of time points in the same
direction across the entire spacetime.

IV. CONCLUSION

We have put forward a novel formulation of the no-
boundary wave function that is based on a Lorentzian path
integral. Using Picard-Lefschetz theory we have evaluated
the Lorentzian path integral in the saddle point approxi-
mation in a homogeneous isotropic minisuperspace model
consisting of gravity coupled to a positive cosmological
constant and scalar field matter. With no-boundary con-
ditions of regularity on geometry and field and with a
contour for the lapse integral taken along the entire real
axis, we recover the standard predictions of the semi-
classical no-boundary wave function. Specifically, the
resulting wave function is real and describes in its classical
domain two copies of an ensemble of slow roll inflationary
universes that are asymptotically de Sitter, with a Gaussian
spectrum of small fluctuations.
Our results differ significantly from those of [18,19] who

also used Picard-Lefschetz theory to evaluate a Lorentzian
minisuperspace path integral but with a contour for the
lapse that runs over the positive real axis only. This choice
of contour does not yield a solution of the Wheeler-DeWitt

equation but rather a Green’s function. More significantly,
this contour choice is dominated by a saddle point that is
different from those specifying the present model and
which is, in particular, a “wrong sign” saddle point yielding
fluctuation wave functions that imply that fluctuations are
not suppressed [2,19,20,34].
This choice fails to recover quantum field theory in

curved spacetime [2], and thus fails to provide a reasonable
physical basis for a predictive framework for cosmology.
Note that the direction of the lapse integration is not

directly related to the observed arrows of time such as those
defined by the increase in entropy, the retardation of
radiation, and the growth of fluctuations. As shown in
[17] and as much subsequent work confirmed [32,33], these
physical arrows arise because the no-boundary wave func-
tion predicts that fluctuations are small when the universe
was small. Histories of geometry are curves in the superspace
of three-geometries. There is no physical notion of one three-
geometry being “before” or “after” another. Reversing the
sign of the lapse merely reverses the direction of para-
metrization of these curves without physical effects. None of
these statements are at variance with the contribution of
Teitelboim [12] (the apparent motivation for the choice
N > 0 in [18,19]), who suggested taking positive lapse
purely by way of analogy to the familiar causal structure
ofMinkowski spacetime, but also acknowledged that this is a
choice, not a necessity, thus leaving full freedom to explore
the consequences of either half-infinite or infinite contours.
It would be interesting to explore whether the predictions

of the Euclidean and the Lorentzian form of the no-
boundary wave function differ beyond the semiclassical
approximation. This would first require a more precise
formulation of the wave function. A promising approach
towards this is to use holographic techniques which might
enable one to express the wave function of backgrounds
and fluctuations in terms of the partition functions of a set
of deformations of Euclidean CFTs defined on the future
boundary. The reversal of the physical arrows of time in the
histories predicted by the no-boundary wave function
means it is conceivable that a single dual defined at future
spacelike infinity indeed encodes all physical correlations.
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