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There has recently been interest in multisolar mass primordial black holes (PBHs) as a dark matter
candidate. There are various microlensing, dynamical and accretion constraints on the abundance of PBHs
in this mass range. Taken at face value, these constraints exclude multisolar mass PBHs making up all of the
DM for both the delta-function and extended mass functions. However, the stellar microlensing event rate
depends on the density and velocity distribution of the compact objects along the line of sight to the
Magellanic Clouds. We study the dependence of the constraints on the local dark matter density and
circular speed and also consider models where the velocity distribution varies with radius. We find that
the largest mass constrained by stellar microlensing can vary by an order of magnitude. In particular, the
constraints are significantly weakened if the velocity dispersion of the compact objects is reduced. The
change is not sufficiently large to remove the tension between the stellar microlensing and dynamical
constraints. However, this demonstrates that it is crucial to take into account astrophysical uncertainties
when calculating and comparing constraints. We also confirm the recent finding that the tension between
the constraints is in fact increased for realistic, finite width mass functions.
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I. INTRODUCTION

Primordial black holes (PBHs) can form in the early
Universe from the collapse of large amplitude overdensities
[1,2]. PBHs with mass M ≳ 1015 g are stable and since
they form before nucleosynthesis are nonbaryonic. PBHs
are therefore a potential cold dark matter (DM) candidate.
There are various constraints on their abundance, from
gravitational lensing and their dynamical and other
effects on various astrophysical objects and processes
(see Ref. [3] for a detailed compilation of the constraints
as of mid-2016).
LIGO has detected gravitational waves from ∼10 M⊙

black hole (BH) binaries [4]. It has been suggested that
these BHs could be PBHs which make up the DM [5–7].
The Milky Way halo fraction, f, of compact objects with
mass 10−7 ≲ ðM=M⊙Þ ≲ 10 is tightly constrained by stellar
microlensing [8] observations of the Large Magellanic
Cloud (LMC) [9,10]. The dark matter fraction of more
massive PBHs, ðM=M⊙Þ≳ 10, is constrained by their
dynamical effects on dwarf galaxies [11,12] and halo wide
binaries [13–16], x-ray and radio emission from accretion
onto PBHs in the Milky Way [17,18] and the effects
of radiation produced due to accretion onto PBHs in
the early Universe on the cosmic microwave background
[19–23]. See Fig. 1 for a compilation of the constraints for
10−1 < ðM=M⊙Þ < 102, assuming a delta-function mass
function. Compact objects in this mass range will also
microlens quasars [24]. The observed variation in the

brightness of images of multiply imaged quasars is con-
sistent with that expected from stars, hence limiting the
contribution from other compact objects [25]. However,
constraints on the abundance of (dark) compact objects
have not been calculated, and therefore this constraint
cannot be included in Fig. 1.
We see that, taken at face value, the constraints together

exclude multisolar mass PBHs with a delta-function mass
function making up all of the DM [3]. Reference [3] argued
that PBHs with an extended mass function (as produced by
inflation models which have a broad peak in the primordial
perturbation power spectrum) were consistent with all of the
constraints. However, Ref. [26] showed that their method of
applying constraints calculated assuming a delta-function
mass function to extended mass functions was inaccurate
and that the quasi-log-normal mass functions produced by
these inflation models were not consistent with all of the
constraints in the multisolar mass range. Reference [27]
subsequently studied the full range of possible PBH masses
and found a window around ð10−10–10−8ÞM⊙ where PBHs
with a quasi-log-normal mass function could make up all of
the DM. However, high-cadence microlensing observations
of M31 [28] have subsequently placed tight constraints on
this mass range. Recently, Ref. [29] has considered a range
of physically motivated extended mass functions. They
found that the constraints are in fact tighter for the extended
mass function than for a delta-function mass function, and if
all the constraints are taken at face value, PBHs cannot make
up all of the DM.
All of these studies use the stellar microlensing

limits calculated assuming a simple standard halo model.*anne.green@nottingham.ac.uk
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However, it is known that the constraints depend signifi-
cantly on the density and velocity distribution of the
compact objects along the line of the sight to the LMC
[30–32]. In this paper, we examine how uncertainties in the
local density and circular speed affect the microlensing
differential event rate and hence the constraints on both the
delta-function and quasi-log-normal mass functions. We
also consider Evans’s power law models [33] which allow
for a nonflat rotation curve and hence a velocity distribution
that varies with radius. In Sec. II, we introduce these
models and show how the microlensing differential event
rate can vary. In Sec. III, we investigate how the constraints
on both the delta-function and quasi-log-normal mass
functions change, before concluding with discussion
in Sec. IV.

II. MICROLENSING EVENT RATE

Microlensing is the temporary amplification of a back-
ground star which occurs when a compact object passes
close to the line of sight to the background star [8].
A microlensing event occurs when a compact object passes
through the microlensing “tube,” which has a radius of
uTRE where uT ≈ 1 is the minimum impact parameter for
which the amplification of the background star is above the
required threshold and RE is the Einstein radius,

REðxÞ ¼ 2

�
GMxð1 − xÞL

c2

�
1=2

; ð1Þ

where M is the mass of the compact object and x is its
distance from the observer in units of L, the distance to the
source. For the LMC, L ≈ 50 kpc.
Microlensing analyses usually assume a standard halo

model (S), which consists of a cored isothermal sphere,

ρðrÞ ¼ ρ0
r2c þ r20
r2c þ r2

; ð2Þ

with local dark matter density ρ0 ¼ 0.008 M⊙pc−3, core
radius rc ≈ 5 kpc and solar radius r0 ≈ 8.5 kpc and an
isotropic velocity distribution which is approximated to
take the Maxwellian form

fðvÞd3v ¼ 1

ðπ3=2v3cÞ
exp

�
−
v2

v2c

�
d3v; ð3Þ

with local circular speed vc ¼ 220 km s−1.
The differential event rate is then given by [31,34]

dΓ
dt̂

¼ 512ρ0ðr2c þ r20ÞLG2u4T
t̂4vc2c4

×
Z

∞

0

�
ψðMÞM

Z
xh≈1

0

x2ð1 − xÞ2
Aþ Bxþ x2

e−QðxÞdx
�
dM;

ð4Þ

where t̂ is the time taken to cross the Einstein
diameter; QðxÞ ¼ 4R2

EðxÞu2T=ðt̂2v2cÞ; A ¼ ðr2c þ r20Þ=L2;
B ¼ −2ðr0=LÞ cos b cos l; b ¼ −33° and l ¼ 280° are the
Galactic latitude and longitude respectively of the LMC;
and ψðMÞ is the mass function defined so that the fraction,
f, of the total mass of the halo in the form of compact
objects is

f ¼
Z

∞

0

ψðMÞdM: ð5Þ

The expected number of events, Nexp, is given by

Nexp ¼ E
Z

∞

0

dΓ
dt̂

ϵðt̂Þdt̂; ð6Þ

FIG. 1. The constraints on the dark matter fraction, f, of PBHs
with mass M in the multisolar mass region, assuming a delta-
function mass function. The constraints from LMC microlensing
surveys are shown as solid black lines, with the corresponding
dotted lines showing our reproduction of these limits, as
described in Sec. II. The two sets of lines are, from top to
bottom at small M, the MACHO Collaboration ð1–30ÞM⊙ black
hole search [9] and the EROS-2 [10] survey. The dot-dashed pink
lines show the constraints from the dynamical effects on dwarf
galaxies, from left to right: the p-value 0.01 constraint from mass
segregation in Segue 1 [11], the tightest constraint from the
disruption of the Eri II star cluster [12] and the weakest constraint
from the disruption of ultrafaint dwarfs [12]. The short-dashed
dark blue line shows the dynamical limit from the 25 most
“halolike” wide binaries from Ref. [16]. The short-long-dashed
turquoise lines show the limits from the effects of radiation from
primordial gas accreted onto PBHs in the early Universe on the
cosmic microwave background radiation, from left to right at low
M: the constraint from Ref. [23] and the tightest constraint
from Ref. [22] which assumes photoionization of gas (their
limit assuming collisional ionization is significantly weaker:
f ¼ 1 is allowed for M < 102 M⊙). The long-dashed dark green
lines show the limits from radio and x-ray emission due to
accretion onto PBHs in the Milky Way, from left to right at low
M: the 3σ x-ray constraint from Ref. [17], the X-ray constraint,
with no dark disc, from Ref. [18] and the 3σ radio constraint from
Ref. [17].
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where E is the exposure in star years and ϵðt̂Þ is the
detection efficiency i.e. the probability that a microlensing
event with duration t̂ is detected. For the EROS-2 survey
E ¼ 3.77 × 107 star years and the detection efficiency, in
terms of Einstein radius crossing time, is given in Fig. 11 of
Ref. [10] (and as stated in the figure caption should be
multiplied by a factor of 0.9 to take into account lensing by
binary lenses). No events were observed, and therefore
95% confidence constraints on the fraction and mass
function of compact objects can be calculated by requiring
Nexp ≤ 3.0.
The resulting constraints on the halo fraction, f, of

compact objects as a function of massM, from the EROS-2
survey [10] and the MACHO Collaboration ð1–30ÞM⊙
black hole search [9], assuming a delta-function mass
function, ψðMÞ ¼ δðMÞ, and model S, are shown as dotted
lines in Fig. 1. They are in good agreement with the
published constraints (shown as solid lines). We sub-
sequently only consider the EROS-2 survey, as it produces
constraints which are the same as or tighter than the
MACHO constraint in the mass region of interest.
We first consider the uncertainties in the parameters of

halo model S. Determinations of the local dark matter
density lie in the range ð0.005–0.015ÞM⊙pc−3 [or equiv-
alently, in particle physics units, ð0.2–0.5Þ GeVcm−3] [35],
and we consider the upper and lower limits of this range.We
also consider the effects of a 10% uncertainty in the local
circular speed i.e. vc ¼ 220� 20 kms−1 [36]. In a specific
halo model, there is a one-to-one relationship between vc
and ρ0; however, we vary them individually, to assess their
different effects on the differential event rate and the
resulting constraints.
The microlensing differential event rate depends on the

density and velocity distribution for r0 < r < L; therefore,
variations in these quantities with radius can have a
significant effect on the event rate and the resulting
constraints. This has been studied by the MACHO
Collaboration [30,31] using Evans’s power law models
[33] for which tractable expressions for the differential
event rate exist [37]. These models have rotation curves at
large radii (r ≫ rc) which vary as vcðrÞ ∝ r−β and also
allow for the flattening of the halo. We consider models
B and C from Refs. [30,31], which span the range of
plausible models. Model B has a massive halo, total
mass within 50 kpc Mðr < 50 kpcÞ ¼ 7 × 1011 M⊙, with
a rising rotation curve (β¼−0.2) with normalization veloc-
ity va ¼ 200 km s−1, while Model C has a light halo,
Mðr < 50 kpcÞ ¼ 2 × 1011 M⊙, with a falling rotation
curve (β ¼ 0.2) and va ¼ 180 km s−1. Both models are
spherical and have a core radius rc ¼ 5 kpc. For full details
of the power law models, see Refs. [30,31,33,37]. The
lengthy expression for the differential event rate for the
power law models is given in Appendix B of Ref. [37].
Figure 2 shows the rotation curve, i.e. the variation of the

circular speed, vcðrÞ, with radius

v2cðrÞ ¼ v2a
rβcr2

ðr2c þ r2Þðβþ2Þ=2 ; ð7Þ

for these models, along with that of the standard halo S. We
also plot the envelope of the compilation of observational
data at large radii (r > 25 kpc), where the halo contribution
to the rotation curve dominates, from the right-hand panel
of Fig. 7 of Ref. [38]. A detailed confrontation of the power
law models with experimental data is beyond the scope of
this work. However, Fig. 2 demonstrates that these models
are broadly consistent with recent data.
The LMC microlensing theoretical differential event rate

[assuming detection efficiency ϵðt̂Þ ¼ 1] is shown in Fig. 3
for the standard halo S and cored isothermal spheres with
local circular speeds of vc ¼ 200 and 240 km s−1 and for
power law halo models B and C. Varying the local density,
while keeping the circular speed fixed, only affects the
normalization of the differential event rate, so this is not
shown in Fig. 3. Changing the average velocity of the
compact objects affects both the overall microlensing rate
and the durations of the events. A smaller average velocity
means that compact objects enter the microlensing tube less
often, and hence the overall rate is smaller. They also spend
more timewithin themicrolensing tube, and hence the typical
event duration is increased.For a cored isothermal sphere, the
circular speed is independent of radius, and hence the
velocity dispersion does not vary along the line of sight.
In the power law halo models, the circular speed, and hence
the velocity dispersion, varies with radius, and this leads to a
greater variation in the microlensing differential event rates.

III. HALO FRACTION CONSTRAINTS

Figure 4 shows the microlensing constraints from the
EROS-2 survey on the halo fraction, f, for the Milky Way

FIG. 2. The circular speed of the Milky Way, vcðrÞ, as a
function of radius r. The solid black line is for the standard halo
model S, and the long-dashed red lines are for power law halos B
and C (top and bottom respectively). The dotted black lines show
the envelope of the compilation of observational data at large
radii (where the halo dominates) from the right-hand panel of
Fig. 7 of Ref. [38].
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halo models presented in Sec. II, assuming a delta-function
mass function. The tightest of the dynamical and accretion
limits, the dwarf mass segregation constraint from
Ref. [11], is also shown. For future reference, we also
show the dynamical and accretion constraints that have
been recalculated for a quasi-log-normal mass function,
namely the tightest star cluster and weakest ultrafaint dwarf
disruption limits from Ref. [12] and the CMB constraint
from Ref. [23].
Table I gives the smallest value of M for which a delta-

function mass function with f ¼ 1 is consistent with the
EROS-2 microlensing observations, Mmin, for each halo
model. The effect of varying the local density alone is
straightforward; increasing the density increases the micro-
lensing event rate and hence increases Mmin. The models
with lower velocity dispersion (i.e. the cored isothermal
sphere with vc ¼ 200 km s−1 and power law model C) have
smaller event rates, so the constraints are weakened, and
Mmin is smaller. For the lower (upper) limit on the local
density, ρ0 ¼ 0.005ð0.015ÞM⊙pc−3 Mmin is decreased by
∼40% (increased by ∼80%). Varying the local circular
speed, vc, by 10%, while keeping the local density fixed,
changes Mmin by ∼20%. Mmin is increased by a factor of 2
(decreased by 3.5) for model B (C). For model C,
Mmin ¼ 9 M⊙. This is slightly smaller than the largest
mass for which a delta-function mass function with f ¼ 1
is allowed by the weakest dwarf disruption constraint,
Mmax ¼ 12 M⊙ [12]; i.e. a delta-function mass function
with f ¼ 1 and M ≈ 10 M⊙ is compatible with both these
constraints. However, there are other tighter dynamical
constraints in this mass range; the disruption of the star
cluster in Eri II [12] and mass segregation in Segue 1 [11]
both have Mmax ≈ 1 M⊙.

We now apply the microlensing constraint to extended
mass functions. A log-normal mass function is a good fit to
the mass functions produced by inflation models with a
broad peak in the primordial power spectrum [26,29]. For
computational convenience, as in Ref. [26], we use a quasi-
log-normal mass function where the prefactor multiplying
the exponential is independent of mass,

ψðMÞ ¼ N exp

�
−
½log ðM=M⊙Þ − logðMc=M⊙Þ�2

2σ2

�
;

ð8Þ

where N is a normalization constant that we fix so that the
halo fraction is normalized to unity.

FIG. 3. The LMC microlensing differential event rate as a
function of Einstein diameter crossing time, t̂, for compact
objects with a delta-function mass function with f ¼ 1 and
M ¼ 1 M⊙. The solid black line is for model S with local circular
speed vc ¼ 220 km s−1, the short-dashed green lines are for
vc ¼ 240 km s−1 and 200 km s−1 (top and bottom respectively),
and the long-dashed red lines are for power law halos B and C
(top and bottom respectively).

FIG. 4. The dependence of the EROS-2 microlensing con-
straints on the halo fraction, f, on the modelling of the MilkyWay
halo for a delta-function mass function. The line types are as in
Fig. 3. The shaded region denotes the uncertainty in the micro-
lensing constraint i.e. the difference between the tightest and the
weakest constraint. The tightest of the dynamical and accretion
constraints, namely the dwarf mass segregation constraint, [11] is
also shown (leftmost dot-dashed pink line), along with the three
constraints which have been calculated for a quasi-log-normal
mass function: the tightest star cluster and weakest ultrafaint
dwarf disruption limits [12] (dot-dashed pink lines) and the CMB
constraint [23] (short-long-dashed turquoise lines).

TABLE I. The smallest value of M for which a delta-function
mass function with f ¼ 1 is consistent with the EROS micro-
lensing observations, Mmin, for the halo models presented in
Sec. II. See the text for details of models.

Halo model Mmin=M⊙
S (vc ¼ 220 km s−1, ρ0 ¼ 0.008 M⊙pc−3) 31
vc ¼ 200 km s−1 25
vc ¼ 240 km s−1 36
ρ0 ¼ 0.005 M⊙pc−3 19
ρ0 ¼ 0.015 M⊙pc−3 57
B 73
C 8.7
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Figure 5 shows the σ and Mc values excluded by the
EROS-2 microlensing survey for the halo models presented
in Sec. II and studied above for a delta-function mass
function. We also show the dynamical and accretion con-
straints that have been calculated for a quasi-log-normal
mass function, namely the tightest star cluster and weakest
ultrafaint dwarf disruption limits [26], calculated using the
same prescriptions as used in Ref. [12] for delta-function
mass functions, and theCMBconstraints [23]. Tighter limits
are expected, from microlensing of quasars [25] and mass
segregation in dwarf galaxies [11]. However, constraints on
f have not been calculated for the former, and for the latter,
they have not been recalculated for extendedmass functions.
The regions of parameter space excluded by the EROS-2
microlensing survey vary significantly; for a given central
mass Mc, the maximum allowed value of σ for model C is
roughly twice as large as for model B. However, the general
tension between the microlensing constraints and the
dynamical and accretion constraints remains. There is a
small region of parameter space,Mc ∼ 10 M⊙ and small σ,
which is consistent with both the stellar microlensing
constraint for model C and also the weakest dwarf galaxy
disruption limit. The existence of this region is expected,
since a delta-function mass function withMc ∼ 10 M⊙ was
consistent with both these constraints. However, both
constraints are only satisfied for σ < 0.6; i.e. increasing
thewidth of the mass function increases the tension between
the stellar microlensing and dynamical constraints. This
confirms the result recently found in Ref. [29] for a wider
range of mass functions and constraints.

IV. DISCUSSION

Stellar microlensing constrains the halo fraction of
compact objects with 10−7<M=M⊙<10, while dynamical

and accretion constraints constrain the abundance of PBHs
withM=M⊙ ≳ 10. Taken at facevalue, together they exclude
PBHs with 10−7 < M=M⊙ < 105 making up all of the dark
matter [3,26,27,29]. However, the microlensing differential
event rate, and hence the resulting constraints on compact
objects, depend on their density and velocity distribution
along the line of sight to the LMC.
We have studied how the constraints are affected by

astrophysical uncertainties. We first varied the parameters
of the standard halo model, S, used in microlensing studies,
a cored isothermal sphere with an isotropic Maxwellian
velocity distribution. The differential event rate is directly
proportional to the local density, whereas varying the local
circular speed affects both the total rate and the durations
of the events. We then turned to Evans’s power law models
where the circular speed can vary with radius [33]. We
looked at two specific models which have been used by the
MACHO Microlensing Collaboration [30,31] and are
broadly consistent with observations of the rotation curve
of the Milky Way [38]. Model B has a massive halo with a
rising rotation curve, while model C has a light halo with a
falling rotation curve.
For the standard halo model Mmin, the smallest mass for

which a delta-function mass function with f ¼ 1 is allowed
by the EROS-2 survey is 31 M⊙. Varying the local circular
speed, vc, by 10%, while keeping the local density fixed,
changes Mmin by ∼20%. For local densities in the range
ρ0 ¼ ð0.005–0.015ÞM⊙pc−3, Mmin lies between 19 and
57 M⊙ for fixed vc. Models B and C, where the velocity
distribution varies with radius, have larger changes inMmin:
for model B (C), Mmin ¼ 83ð8.7ÞM⊙. The value of Mmin
for model C is slightly smaller than the largest mass for
which a delta-function mass function with f ¼ 1 is allowed
by the weakest dwarf disruption constraint, Mmax ¼
12 M⊙ [12]. In other words, a delta-function mass function
with f ¼ 1 and M ≈ 10 M⊙ is compatible with both the
microlensing constraint for a light halo and the weakest
dwarf galaxy disruption constraint. However, there are
tighter constraints on compact objects in this mass range
from the disruption of the star cluster in Eri II [12], mass
segregation in Segue 1 [11] and potentially also the
microlensing of quasars [25].
We then looked at the constraints on quasi-log-normal

mass functions, which are produced by inflation models
with a broad feature in the primordial power spectrum.
For a given central mass Mc, the maximum allowed
value of the width σ is roughly twice as large for model
C as it is for model B. There is a small region of
parameter space, with Mc ∼ 10 M⊙ and small σ, which
is consistent with both the stellar microlensing con-
straint for the light halo model C and also the weakest
dwarf galaxy disruption limit. However, as recently
found in Ref. [29], the tension between the constraints
is in fact increased relative to the case of the delta-
function mass function.

FIG. 5. Constraints on the width, σ, of the quasi-log-normal
mass function, Eq. (8), as a function of the central mass,Mc, from
the EROS-2 microlensing survey. The line types are as in Figs. 3
and 4, and for the microlensing constraints, parameters beneath
the lines are excluded. The tightest star cluster and weakest
ultrafaint dwarf disruption limits from Ref. [26] and the CMB
constraint from Ref. [23] are also shown. For these constraints,
the areas above the lines are excluded.
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In summary, astrophysical uncertainties have a non-
negligible effect on the constraints on PBHs, and other
compact objects, from stellar microlensing observations.
This effect is unlikely to be large enough to reconcile the
microlensing constraints with the current dynamical con-
straints and allow all of the DM to be in the form of
multisolar mass PBHs. However, this illustrates the impor-
tance of taking into account astrophysical uncertainties and

assumptions when calculating and comparing constraints
on PBH DM.
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