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In a core-collapse supernova, a huge amount of energy is released in the Kelvin-Helmholtz phase
subsequent to the explosion, when the proto-neutron star cools and deleptonizes as it loses neutrinos.
Most of this energy is emitted through neutrinos, but a fraction of it can be released through gravitational
waves. We model the evolution of a proto-neutron star in the Kelvin-Helmholtz phase using a general
relativistic numerical code, and a recently proposed finite temperature, many-body equation of state; from
this we consistently compute the diffusion coefficients driving the evolution. To include the many-body
equation of state, we develop a new fitting formula for the high density baryon free energy at finite
temperature and intermediate proton fraction. We estimate the emitted neutrino signal, assessing its
detectability by present terrestrial detectors, and we determine the frequencies and damping times of the
quasinormal modes which would characterize the gravitational wave signal emitted in this stage.
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I. INTRODUCTION

When a star with mass greater than about 8 M⊙ exhausts
its fuel, the electron Fermi pressure cannot prevent the
collapse of the stellar core. In a few milliseconds, the
density of the collapsing core reaches the nucleon density,
the pressure due to the nucleon Fermi degeneracy and
nuclear interaction sets in, the collapse halts, and a shock
wave is generated as the exterior core layers bounce off the
core. Then, on a longer time scale the stellar core keeps on
contracting as it cools and deleptonizes, while the shock
wave proceeds through the stellar envelope. This part of the
evolution is known as the Kelvin-Helmholtz phase, and the
contracting stellar core is called proto-neutron star (PNS).
This phase lasts for tens of seconds, during which the PNS
matter is opaque to neutrinos. It has been shown that, after
about 200 ms from the core bounce, the PNS evolution can
be modeled as a sequence of quasistationary configura-
tions, where neutrino diffusion determines the thermal and
composition evolution of the hot remnant [1–3]. When the
PNS has radiated about 1053 erg≃ 0.1 M⊙ by neutrinos,
the temperature is low enough for the matter to become
neutrino transparent, and a neutron star is born.
The observation of a nearby supernova in the Large

Magellanic Clouds in 1987, and the simultaneous detection

of 19 neutrinos [4,5] have been milestones for both astro-
physics and particle physics. Since then, impressive progress
has beenmade in themodeling of supernova (SN) explosions.
Numerical codes have been developed to study the highly
dynamical process of core collapse and core bounce. From
the earlier 1D simulations, multidimensionality has been
extended to oneþ two and oneþ three, while including
more and more complex physical inputs (for a recent review,
see e.g. [6]). The effort inmodeling the subsequent PNSphase
has been comparatively smaller, even though a considerable
amount of energy is emitted in this phase.
Because of its much longer time scale, for many years,

the complex core-collapse numerical codes have not
been able to describe the PNS phase. Only recently core-
collapse codes have been able to describe the PNS phase
[7,8], mainly with the aim of studying the nucleosynthesis
processes due to the neutrino wind.
The quasistationary evolution of a PNS was first studied

in [1]. After this first, seminal work in the past years a
number of papers have addressed several related issues,
as for instance the sensitivity of the PNS evolution and
of the related neutrino signal to the nuclear equation of
state (EOS) [2,3,9], the possible delayed formation of
black holes [3,9], convective effects in presence of accre-
tion [9–13], and nucleosynthesis due to the neutrino
wind [14].
In addition, the frequencies at which a gravitational wave

(GW) signal would be emitted by an oscillating PNS have
been computed in [15,16], using quasiequilibrium con-
figurations obtained from the evolutionary code of Pons
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et al. [3], based on a mean-field EOS. In [17], a many-body
EOS was employed, but the entropy and lepton fraction
profiles were included “by hand” in order to mimic a time
evolution similar to that found in [3]. The entropy and
lepton fraction profiles were included in a similar way in
[18], in order to mimic the profiles obtained, in the first
second after bounce, by numerical core-collapse simula-
tions. However, the EOSs they employed (such as that of
Lattimer and Swesty [19]) are more appropriate to describe
the core-collapse phase than the PNS evolution. We remark
that, up to now, finite temperature, many-body nuclear
dynamics have not been included in a consistent way (i.e.,
accounting for the modifications in the neutrino cross
sections) in PNS evolution.
In this paper we describe the results of a new PNS

evolutionary code and a formula that allows to fit a general
nucleonic EOS at finite temperature, as the recently
proposed many-body EOS of [20,21]. Using this code
and three different EOSs (among which, the many-body
EOS proposed in [20,21]), we study the PNS evolution
during the Kelvin-Helmholtz phase. We estimate the
neutrino luminosity, and compute the frequencies and
damping times of the PNS quasinormal modes (QNMs),
which characterize the emitted GW signal.
The work is organized as follows. In Sec. II we describe

the nucleonic EOSs adopted in this paper and a new
nucleonic fitting formula for the free energy. In Sec. III we
describe how we compute the diffusion coefficient, and
show how we effectively describe the baryon single-
particle spectra by means of effective masses and sin-
gle-particle potentials. In Sec. IV we show the results of
our evolutionary code, and discuss how the relevant
quantities, which describe the stellar structure and the
neutrino luminosity, change in time. We also determine
the neutrino signal in the Super-Kamiokande III detector
for our models. In Sec. V we describe the computation
of the QNM frequencies and damping times, and we
discuss how the first QNMs change as the PNS evolve. We
derive a relation between the frequencies of the funda-
mental mode and of the first pressure mode, and the
mean stellar density. In Sec. VI we draw our conclusions.
In Appendix A we provide the details of the fitting
procedure of the nucleonic EOS; in Appendix B we
discuss the convergence of our PNS code and justify
some of the approximations made; in Appendix C we
tabulate the frequencies and damping times of the QNMs
of the stellar configurations we consider.
Unless otherwise stated, we set to unity the speed of

light, the Boltzmann constant, and the gravitational con-
stant c ¼ kB ¼ G ¼ 1. The “microscopic” masses, like
the bare and effective masses of neutron and proton, are
given in MeV. The “macroscopic” masses, that is, the PNS
baryon and gravitational masses, are given in terms of the
Sun mass M⊙. We include the rest mass in the chemical
potential and in the energy density.

II. THE EQUATION OF STATE

In this paper we compare three different finite-temper-
ature nucleonic EOSs: a mean-field EOS, GM3 [22,23]; a
nuclear many-body EOS, CBF-EI, obtained using the
correlated basis function theory [20,21]; and a model based
on the extrapolation from the measured nuclear properties,
LS-bulk [19]. In all EOSs the leptonic part consists of a
Fermi gas of noninteracting electrons, positrons and neu-
trinos of all flavours, where neutrinos are treated as
massless particles. The baryonic part consists of an
interacting Fermi gas of protons and neutrons. We neglect
the Coulomb force between protons (which is screened
by the electrons), we assume charge-independent nuclear
interactions, and the proton and neutron bare masses are set
equal,mp ≡mn. Since we are interested in the evolution of
a proto-neutron star, pasta phases or a solid crust are not
included in our model. We have checked a posteriori that
this approximation is justified, since the PNS temperature is
always above the critical temperature for the formation of
alpha particles, with the exception of the end of the cooling
phase, when this approximation is no longer accurate in the
region near the stellar surface (see Appendix B 3).
In the GM3 EOS, baryons—described by quantum

fields—interact through the exchange of bosons (the σ,
ω and ρ mesons). The resulting equations of motion are
solved in the mean-field approximation, which amounts
to treating mesons as classical fields. The LS-bulk EOS,
specifically designed to be easily implemented in stellar
collapse simulations, is based on a dynamical model
constrained by nuclear phenomenology, and corresponds
to the bulk part of the Lattimer and Swesty [19] EOS.
The CBF-EI EOS (that stands for “correlated basis
functions—effective interaction”) has been obtained within
nonrelativistic many-body theory, using a realistic nuclear
Hamiltonian, which includes the Argonne v06 and the
Urbana IX nuclear potentials. The formalism of correlated
basis functions and the cluster expansion technique have
been used to devise an effective nucleon-nucleon potential,
which includes the effects of both two- and three-nucleon
forces, as well as nuclear correlations. This effective
potential is well behaved and allows to describe both cold
and hot matter, at arbitrary proton fraction at the Hartree-
Fock level.
It is easy and fast to compute the GM3 and LS-bulk

EOSs during the simulation. Conversely, due to their heavy
computational cost, this procedure cannot be adopted for
many-body EOSs (like CBF-EI). Therefore, one should
resort either to an interpolation, or to a fit. Since we are
studying the evolution of a PNS, we would need thermo-
dynamical consistency and continuity of the second
order derivatives of the free energy [24]. It is difficult to
interpolate a table in a thermodynamically consistent way,
because in a PNS the EOS is characterized by three
independent variables (see below). Therefore, to describe
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the baryon interaction we will find, and use, a fitting
formula.

A. Thermodynamical relations

The first law of thermodynamics can be written in terms
of an infinitesimal variation of f, the free energy per
baryon, as

df ¼ −sdT þ P
n2B

dnB þ
X
i

μidYi; ð1Þ

with

P ¼ n2B
∂f
∂nB

����
T;fYig

; ð2Þ

s ¼ −
∂f
∂T

����
nB;fYig

; ð3Þ

μi ¼
∂f
∂Yi

����
T;nB;fYj≠ig

; ð4Þ

where s is the entropy per baryon, P the pressure, T the
temperature, nB the baryon number density, μi and Yi are
the chemical potential of particle i and its particle fraction
(i.e., the number of particles i per baryon) respectively.
Note that f ≡ e − Ts, e being the energy per baryon. In the
following we will also use the energy density ϵ≡ enB. We
remark that we include the rest mass in the energy and in
the free energy, and therefore the chemical potentials
include the rest mass.
Since the number fractions fYig are not independent

variables, one should consider the equation

μi ¼
∂ðnBfÞ
∂ni

����
T;fnj≠ig

; ð5Þ

rather than Eq. (4). If only neutrons and protons are present,
Eq. (5) gives

μp ¼ fB þ PB

nB
þ ð1 − YpÞ

∂fB
∂Yp

����
T;nB

; ð6Þ

μn ¼ fB þ PB

nB
− Yp

∂fB
∂Yp

����
T;nB

; ð7Þ

where the subscript B means that we are considering only
the baryon part of the EOS.

B. Baryon free energy fitting formula

In this section we shall discuss a fitting formula for the
interacting part of the baryon free energy; we remark that
all thermodynamical quantities can be obtained in terms of

partial derivatives of the free energy. We shall not consider
here the kinetic part, which is the standard fermionic free
energy (see Sec. II C), and the leptonic free energy, which
will also be discussed in Sec. II C. In the following, the
superscripts I and K refer to the interacting and kinetic
parts of the thermodynamical quantities, respectively:

fBðYp;T;nBÞ¼fKBðYp;T;nBÞþfIBðYp;T;nBÞ: ð8Þ

To begin with, we discuss the dependency of fIB on the
proton fraction Yp. In a zero-temperature EOS, the baryon
free energy coincides with the baryon energy eB. Its
dependence on Yp is well approximated [25] by

eIBðYp; T ¼ 0Þ ¼ eISNM þ ð1 − 2YpÞ2ðeIPNM − eISNMÞ
¼ 4Ypð1 − YpÞeISNM þ ð1 − 2YpÞ2eIPNM;

ð9Þ

where eISNM ¼ eIBðYp ¼ 1=2; T ¼ 0Þ and eIPNM ¼
eIBðYp ¼ 0; T ¼ 0Þ are the baryon interacting energies of
the symmetric (SNM) and pure neutron matter (PNM),
respectively, at zero temperature.
Following [26], we assume that finite-temperature

effects do not modify the functional dependency of fIB
on the proton fraction, i.e.,

fIBðYp; T; nBÞ ¼ 4Ypð1 − YpÞfISNMðT; nBÞ
þ ð1 − 2YpÞ2fIPNMðT; nBÞ; ð10Þ

where fISNM and fIPNM are the baryon interacting free
energies per baryon for symmetric and pure neutron matter.
We verify the accuracy of this assumption a posteriori: for
given values of temperature and baryon density, the differ-
ence between the interacting baryon free energy and the
quadratic fit in Yp is ≲0.02 MeV for the GM3 EOS and
≲0.05 MeV for the CBF-EI EOS, to be compared with an
interacting baryon free energy on the order of ∼10 MeV.
We now discuss the dependency of the interacting part

of the baryon free energy on the temperature and on
the baryon number density, i.e., the fitting formulas of
symmetric and pure neutron matter, fISNMðT; nBÞ and
fIPNMðT; nBÞ, appearing in Eq. (10). In the literature, there
is no generally accepted fitting formula for these functions
[19,26–29]. In order to perform our evolutionary numerical
simulations, we need a fitting formula which is accurate in
a wide density range, extending from nB ≲ 0.5 fm−3 to
nB ≳ 0.001 fm−3 relevant for the core and the crust of the
star, respectively. Therefore, we cannot use the fitting
formula of [26], which is only accurate for large densities.
Moreover, we need a free energy with continuous second-
order derivatives. Finally, the following constraints have
to be fulfilled: (i) s → 0 as T → 0; (ii) in the low density
limit the EOS must tend to that of a free gas, i.e., fIB → 0,

EVOLUTION OF A PROTO-NEUTRON STAR WITH A … PHYSICAL REVIEW D 96, 043015 (2017)

043015-3



sIB → 0, and PI
B → 0, as nB → 0. Under these conditions, in

the range of temperatures and densities considered (see
Appendix A), we find that a good trade-off between
number of parameters and precision of the fit is given
by the following polynomial fitting formula:

fIjðnB; TÞ ¼ a1;jnB þ a2;jn2B þ a3;jn3B þ a4;jn4B

þ nBT2ða5;j þ a6;jT þ a7;jnB þ a8;jnBTÞ;
ð11Þ

where j ¼ fSNM; PNMg. We have performed the fit
(10), (11) for the EOSs GM3 and CBF-EI. The details of
the fitting procedure, and the values of the coefficients
an;i, for these two EOSs are given in Appendix A. For
the LS-bulk EOS we have used the analytical expression
given in [19],

fIB ¼ ½aþ 4bYpð1 − YpÞ�nB þ cnδB − YpΔm; ð12Þ

with

δ ¼ 1.260;

a ¼ −711.0 MeV fm3;

b ¼ −107.1 MeV fm3;

c ¼ 934.6 MeV fm3δ;

Δm ¼ 0 MeV: ð13Þ

This choice of parameters corresponds to a binding energy
BE ¼ −16 MeV, a saturation density ns ¼ 0.155 fm−3,
an incompressibility at saturation Ks ¼ 220 MeV, a sym-
metry energy parameter at saturation Sv ¼ 29.3 MeV,
and a vanishing neutron-proton mass difference Δm.
As a comparison, the GM3 EOS has ns ¼ 0.153 fm−3,
BE ¼ −16.3 MeV, Ks ¼ 240 MeV, Sv ¼ 32.5 MeV, and
Δm ¼ 0 [23]; the CBF-EI EOS has ns ¼ 0.16 fm−3,
BE≃ −11 MeV, Ks ¼ 180 MeV, Sv ¼ 30 MeV, and a
vanishing bare neutron-proton mass difference (con-
versely, the proton and neutron effective masses are
different and change with density, temperature and
composition). In Fig. 1 we show the mass-radius diagram
for cold neutron stars for the three EOSs. To generate
them, we have computed the zero-temperature EOSs at
beta equilibrium, considering both muons and electrons.
The CBF-EI EOS has been linearly extrapolated in the
logarithms of P, nB, and ϵ for densities higher than
nB ¼ 0.48 fm−3, enforcing causality (cs ≤ 1). This is
necessary to describe the central region of stars with a
gravitational mass M ≳ 1.64 M⊙, corresponding to a
baryonic mass Mb ≳ 1.84 M⊙. The maximum mass for
GM3 and LS-bulk is Mmax ≃ 2.02 M⊙, while for CBF-EI
we get Mmax ≃ 2.34 M⊙.

C. Numerical implementation of the complete EOS

In Sec. II B we discussed the interacting part of the
baryon EOS (composed of protons p and neutrons n). In
addition, for the baryon kinetic part and for electrons and
positrons we have adopted the EOS of free fermions given
in [30,31], and for the three neutrino families the EOS of
free massless fermions given in [19] [Eqs. (C1) and (C3)].
The thermodynamical quantities of the ith lepton are given
in terms of the temperature and of the corresponding
chemical potential μi.
During the PNS evolution other particles are expected

to appear, like hyperons, muons, and tauons. Since we are
mostly interested in comparing how mean-field and many-
body EOSs affect the PNS evolution, we have focused on
nucleons (many-body EOSs have been developed mainly
for nucleons). Moreover, we do not include muons or
tauons (as done also in [1,3]), since a consistent treatment
of these particles would considerably increase the complex-
ity of the transport scheme.
The PNS structure and the transport equations

(Sec. IVA) suggest to use as independent variables the
pressure P, the entropy per baryon s, and the electron
lepton fraction YL ≡ Ye þ Yν, where Ye ≡ Ye− − Yeþ and
Yν ¼ Yνe − Y ν̄e . To determine the different thermodynam-
ical quantities of the complete EOS in terms of these
variables, we use a Newton-Raphson cycle, in which we
exploit the fitting formula discussed in Sec. II B for the
baryonic interacting quantities, along with the leptonic
EOS mentioned above, and we assume charge neutrality
Ye ≡ Ye− − Yeþ ¼ Yp, beta equilibrium

μνe ¼ μp − μn þ μe− ; ð14Þ
and the requirement that muon and tau neutrinos are not
trapped:

μνμ ¼ μντ ¼ 0; ð15Þ
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FIG. 1. T ¼ 0 mass-radius diagrams for the three EOSs
considered in this work.
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μν̄fe;μ;τg ¼ −μνfe;μ;τg : ð16Þ

It is easy to obtain the GM3 quantities by directly solving
the corresponding mean-field equations. For this reason, we
have used GM3 as a benchmark for the fitting procedure of
the baryon free energy.

D. EOSs comparison

In this subsection we compare the features of the three
EOSs, and the accuracy of our fit for the baryon free
energy, by considering three cases: (i) YL ¼ 0.4 and s ¼ 1,
(ii) Yν ≡ Yνe ¼ 0 and s ¼ 2 (corresponding to the end of
the deleptonization phase), and (iii) Yν ≡ Yνe ¼ 0 and
T ¼ 5 MeV (which is the condition in most of the star
at the end of our simulations, i.e., toward the end of the
cooling phase).
In Fig. 2 we compare the behavior of the EOS GM3

(continuous line), GM3-fit obtained using the fitting for-
mula (crosses), LS-bulk (dashed line), and CBF-EI (dot-
dashed line). We plot the pressure, the energy density, and
the sound speed, cs, as functions of the baryon number
density, for cases (i)–(iii) discussed above. Fig. 2 clearly
shows that GM3-fit reproduces the behavior of GM3 EOS.
As already noted by Pons et al. [3], the pressure and the

energy density in the three cases have a similar dependence
on the number density, since they mainly depend on the
baryon interaction and degeneracy, rather than on temper-
ature. At the saturation density ns (whose exact value is
slightly different for the three EOSs, but is in the range
ns ¼ 0.15–0.16 fm−3), the sound speed is slightly larger
(lower) for the EOS with larger (lower) incompressibility
parameter Ks. At high baryon density, the sound speed of
the CBF-EI EOS is larger than that of the LS-bulk and GM3
EOSs: this is due to a well-known problem of the many-
body EOSs, which violate causality at very high density.
However, in the regime of interest for this paper, this
unphysical behavior can safely be neglected.
In Fig. 3 we plot the temperature versus nB for YL ¼ 0.4

and s ¼ 1, and Yν ≡ Yνe ¼ 0 and s ¼ 2 (left and central
panels) and the entropy per baryon for Yν ≡ Yνe ¼ 0 and
T ¼ 5 MeV (right panel). From the right panel we see that,
at a fixed temperature, GM3 reaches a given value of the
entropy for a baryon density lower than that of LS-bulk and
higher than that of CBF-EI. This behavior may be traced
back to the fact that particles in the GM3 EOS are less
correlated than in the CBF-EI EOS, and more correlated
than in the LS-bulk EOS. Therefore, the CBF-EI describes
a “more ordered” nuclear matter than GM3 and the entropy
is lower. The left and central panels of Fig. 3, where we plot
the temperature for fixed values of the entropy, show that
CBF-EI is hotter than GM3, which is hotter than LS-bulk.
As in Fig. 2, the GM3-fit reproduces the behavior of
GM3 EOS.

III. NEUTRINO DIFFUSION COEFFICIENTS

A. The equations

The diffusion coefficients D2, D3, D4 employed in the
PNS evolution (Sec. IV) are given in [3]:

D2 ¼ Dνe
2 þDν̄e

2 ; ð17Þ

D3 ¼ Dνe
3 −Dν̄e

3 ; ð18Þ

D4 ¼ Dνe
4 þDν̄e

4 þ 4D
νμ
4 ; ð19Þ

Dνi
n ¼

Z
∞

0

xnλνitotðωÞfνiðωÞð1 − fνiðωÞÞdx; ð20Þ

λνitotðωÞ ¼
�X

j∈reactions

σνij ðωÞ
V

�−1
; ð21Þ

where fνiðωÞ ¼ ½1þ expððω − μνiÞ=TÞ�−1 and λνitotðωÞ are
the distribution function1 and the total mean-free path of a
νi neutrino of energy ω, respectively, and x ¼ ω=T. The νi
neutrino cross section of the jth reaction is denoted with
σνij . All quantities depend upon the temperature and the
particle chemical potentials, which are determined by the
underlying EOS.
To determine the σνij we adopt the mean-field approach

of [32] [Eq. (82)] that accounts for in-medium effects,
including the scattering of all neutrino types on electrons,
protons, and neutrons, and the absorption of electron
neutrinos and electron antineutrinos on neutrons and
protons, respectively, with the corresponding inverse proc-
esses, i.e.,

νi þ n ⇌ νi þ n; ð22Þ

νi þ p ⇌ νi þ p; ð23Þ

νi þ e− ⇌ νi þ e−; ð24Þ

νe þ n ⇌ e− þ p; ð25Þ

ν̄e þ p ⇌ eþ þ n: ð26Þ

Furthermore, we assume that the cross sections of all non-
electronic neutrinos coincide with those of muon neutrinos.
We do not include nucleon-nucleon Bremsstrahlung [33].

B. Effective masses and single-particle potentials

Identifying single-particle properties in interacting
systems involves nontrivial conceptual difficulties.
However, due to translation invariance, in infinite matter

1Here we set ℏ ¼ 1 and assume that integrals are normalized as
in [3,32].
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single-particle states are labeled by the momentum k, and
the corresponding spectrum can be unambiguously iden-
tified. Within the nonrelativistic many-body theory, the
spectrum of an interacting particle can be expressed as

EðkÞ ¼ mþ k2

2m
þUðkÞ; ð27Þ

where k ¼ jkj and UðkÞ is the momentum-dependent
single-particle potential.

0.1
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100
P

 [M
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GM3-fit
LS-bulk
CBF-EI
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FIG. 2. The pressure (upper panels), the energy density (middle panels), and the speed of sound (bottom panels) are plotted versus the
baryon number density for the EOSs considered in this paper, and for different values of selected parameters [cases (i)–(iii) described in
Sec. II D]. The black solid line refers to the GM3 EOS determined by solving numerically the mean-field equations, the black crosses to
the GM3 EOS determined through the fit and the procedure described in Sec. II C, the blue dashed line to the LS-bulk EOS, and the red
dot-dashed line to the CBF-EI EOS.
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Awidely used parametrization of EðkÞ is given in terms
of momentum-independent effective mass m� and single-
particle potential U,

EðkÞ≃mþ k2

2m� þ U: ð28Þ

Since the baryonic contributions to the mean-free paths
and diffusion coefficients are mostly given by particles
whose energies are close to the particle chemical potential,
it is convenient to determinem� andU from the behavior of
the spectrum near the Fermi momentum,

1

m�
i
¼ 1

kF

∂Ei

∂k ðkFÞ; ð29Þ

Ui ¼ EiðkFÞ −
k2F
2m�

i
−m; ð30Þ

where i ¼ ðfp; ng; Yp; T; nbÞ.
Within the CBF-EI approach EðkÞ has been obtained at

the Hartree-Fock level using the same effective potential
employed for the calculation of the EOS. Therefore, the
effective masses and the single-particle potentials are
consistent with the EOS.
Equation (28) can be easily generalized to the relativistic

case,

EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

p
þ U�; ð31Þ

where we have introduced U� ¼ U −m� þm. To treat
the neutrino transport for the CBF-EI EOS consistently
with that of the GM3 and LS-bulk EOSs, we compute
the neutrino diffusion coefficients using Eq. (31) and the
effective masses and single-particle potentials given in
Eqs. (29) and (30).
We have verified that this approach reproduces, for the

CBF-EI EOS, the correct baryon densities within ∼10% at

saturation density.2 This is important because the neutrino
mean-free path [Eq. (21)] is an “intensive” quantity, and it
depends on the baryon distribution functions. A discrep-
ancy on the baryon densities nB and the proton fraction Yp

would yield diffusion coefficients computed at wrong
values of nB and Yp.
This applies also to the LS-bulk EOS, for which we have

assumed that the baryon effective masses are equal to the
neutron bare mass. To satisfy the aforementioned constraint
(that the effective spectrum description yields the correct
baryon density and proton fraction), we use a nonvanishing
single-particle potential given by

U�
i ¼ μIi ¼ μi − μKi ; ð32Þ

where i ¼ fp; ng, μ is the chemical potential, and μI and
μK are the interacting and free part of the particle chemical
potential, respectively.

C. Numerical implementation

The neutrino diffusion coefficients are evaluated in the
PNS evolution code by linear interpolation of a three-
dimensional table, evenly spaced in Yν (the neutrino
number fraction), T, and nB. The table has been produced
consistently with the underlying EOS, in the following
way. We have first solved the EOS using the method
described in Sec. II C, obtaining the proton fraction Yp as a
function of Yν, T, and nB. The proton and neutron chemical
potentials, effective masses, and the single-particle poten-
tials for the GM3-fit and CBF-EI EOSs have been obtained
by linear interpolation of a table evenly spaced in Yp, T,
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FIG. 3. Comparison among the three EOSs considered in this paper in the three cases described in Sec. II D. In the left and central plots
we show the temperature and in the right plot we show the entropy per baryon. Colors and line styles are as in Fig. 2.

2The other baryon EOS quantities cannot be recovered from
the baryonic spectrum as one should account also for the meson
contributions. This is true also for the GM3 EOS, for which the
description in terms of effective spectrum is exact.
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and nB. From these quantities, we determine the neutrino
cross sections, and finally the neutrino diffusion coeffi-
cients [Eqs. (17)–(20)].

D. EOS comparison

In Fig. 4 we plot the neutrino diffusion coefficient D2,
the electron neutrino scattering mean-free path, and the
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FIG. 4. Comparison between the diffusion coefficient D2 (upper panel), the electron neutrino scattering mean-free paths [middle
panel, the neutrino incoming energy is Eνe ¼ maxðμνe ; πTÞ], and the baryon effective masses, m�=mn (lower panel) for the three EOSs
considered in this paper in the three cases described in Sec. II D. For the GM3 EOS, the effective masses of proton and neutron are
identical [22,23]. We do not show the LS-bulk EOS effective masses, since we have set them equal to the bare ones, m�
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Colors and line styles are as in Fig. 2, apart for the line styles in the lower panel, where the CBF-EI proton (neutron) effective masses are
dotted (double dashed).
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baryon effective masses in the three cases described
in Sec. II D. The incident neutrino energy which we have
used to compute the neutrino mean-free path is Eνe ¼
maxðμνe ; πTÞ. To understand the role of the interactions and
of finite temperature in the neutrino diffusion, we consider
their effects on the baryon distribution function. To fix
ideas, let us consider the distribution function of a non-
relativistic fermion gas,

fðkÞ ¼ 1

h3

�
1þ e

k2

2m�T − μ−U−m
T

�−1
: ð33Þ

If one decreases the temperature T or effective mass m�,
f approaches a Heaviside function, whereas increasing
T or m� it becomes smoother. Because of the Pauli
principle, at lower temperatures T and effective masses
m� lower energy neutrinos can interact only with
particles near the Fermi sphere, and therefore the
mean-free paths and diffusion coefficients increase.
Conversely, a greater temperature and effective mass
imply that the mean-free paths and the diffusion coef-
ficients are smaller. The scattering mean-free paths
reflect the temperature dependence of the three EOSs:
when the matter is hotter, the scattering is more effective
(cf. lower plots of Fig. 3). At equal temperature, the
interaction is more effective when the effective mass is
greater. The behavior of the diffusion coefficient D2

results from a complex interplay between scattering and
absorption, for which the effective masses and single
particle potentials play an important role. The compari-
son between the diffusion coefficient D2 for the three
EOSs suggests that towards the end of the cooling phase
(in which the thermodynamical conditions are roughly
similar to those in the right plots of Fig. 4), the CBF-EI
star evolves faster than the other EOSs.
As in Figs. 2 and 3, GM3-fit (for which the baryon

spectra effective parameters are determined by table
interpolation, Sec. III C) reproduces the results of the
GM3 EOS.

IV. PNS EVOLUTION

A. The equations

We developed a numerical code to model the PNS
evolution. Our code is similar to that of Pons et al. [3]: it
is energy averaged (the neutrino distribution function has
been assumed Fermi-Dirac and in thermal equilibrium
with matter), general relativistic (we include GR con-
sistently both in the stellar structure and in the neutrino
transport), spherically symmetric (the stellar structure is
determined by integrating the Tolman–Oppenheimer–
Volkoff (TOV) equations), and flux limited (we use the
diffusion approximation and apply a flux limiter to
preserve causality in the optically thin regions near the
border). Since we want to focus on how the EOS affects

the evolution and the gravitational wave emission, we do
not include convection in our simulations (see e.g.[10] for
a PNS simulation including convection with the mixing
length theory) nor accretion [9,11–13], which are both
present in this phase. The spacetime metric is

ds2 ¼ −e2ϕdt2 þ e2λdr2 þ r2dΩ; ð34Þ

where ϕ and λ are metric functions that depend on the
radius r, t is the time for an observer at infinity, and dΩ
is the element of solid angle.
The stellar structure, at each time step, is given by the

TOV equations,

dr
da

¼ 1

4πr2nBeλ
; ð35Þ

dm
da

¼ ϵ

nBeλ
; ð36Þ

dϕ
da

¼ eλ

4πr4nB
ðmþ 4πr3PÞ; ð37Þ

dP
da

¼ −ðϵþ PÞ eλ

4πr4nB
ðmþ 4πr3PÞ; ð38Þ

where r is the radius,m is the gravitational mass at radius r,
a is the enclosed baryon number at radius r, ϵ is the total
energy density (matter plus neutrino energy density), and
the metric function λ is given by

e−λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
: ð39Þ

The neutrino diffusion equations are [3,34]

Fν ¼ −
e−λe−ϕT2

6πℏ3

�
D3

∂ðTeϕÞ
∂r þ ðTeϕÞD2

∂η
∂r

�
; ð40Þ

Hν ¼ −
e−λe−ϕT3

6πℏ3

�
D4

∂ðTeϕÞ
∂r þ ðTeϕÞD3

∂η
∂r

�
; ð41Þ

∂YL

∂t þ ∂ðeϕ4πr2FνÞ
∂a ¼ 0; ð42Þ

T
∂s
∂t þ μνe

∂YL

∂t þ e−ϕ
ðe2ϕ4πr2HνÞ

∂a ¼ 0; ð43Þ
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where Fν and Hν are the neutrino number and energy3

fluxes, respectively, η ¼ μνe=T is the electron neutrino
degeneracy, and the diffusion coefficients D2, D3, and
D4 are given by Eqs. (17), (18), and (19). YL ≡ Ye þ Yν ¼
Ye− þ Yνe − Yeþ − Y ν̄e is the total electron lepton fraction.
Previous PNS studies have found that the beta equilib-

rium does occur almost everywhere in the star during
the evolution [1,3]. Therefore, to additionally simplify the
equations, we enforce beta equilibrium [Eq. (14), as in [2]].
We have checked a posteriori that beta equilibrium is
respected almost everywhere in the star during the evolu-
tion, apart for a thin region near the stellar surface at early
times (see Appendix B 2).

B. Numerical implementation

In a PNS in beta equilibrium, all thermodynamical
quantities can be uniquely determined in terms of three
independent variables. A natural choice, looking at the
evolution and structure equations, is to use as independent
variables the pressure P, the entropy per baryon s, and the
lepton fraction YL (see Sec. II).
We started the simulation assuming entropy and lepton

fraction initial profiles similar to those of Pons et al. [3] (see
Fig. 5), that is, the profiles obtained in Wilson and Mayle

[35] at the end of their core-collapse simulation (200 ms
after core bounce). The entropy and lepton fraction content
of the PNS depend on the stellar mass. To qualitatively
reproduce this behavior, we have rescaled the entropy and
lepton fraction profiles with the stellar baryon mass MB,

sða; t ¼ 200 msÞ ¼ MB

M0
B
s0ða0; t ¼ 200 msÞ; ð46Þ

YLða; t ¼ 200 msÞ ¼ MB

M0
B
Y 0
Lða0; t ¼ 200 msÞ; ð47Þ

a ¼ MB

M0
B
a0; ð48Þ

where the prime refers to the reference profiles of Wilson
and Mayle [35]. Using these initial entropy and lepton
fraction profiles at 200 ms, we have first determined the
initial structure of the star solving the TOV Eqs. (35)–(38)
by numerical relaxation ([36], Sec. 17.3). We have then
evolved the star solving separately the structure and
diffusion equations in a series of iterative predictor-
corrector steps, as in [3]. To prevent superluminar fluxes,
the neutrino number and energy fluxes [Eqs. (40) and (41)]
have been numerically limited using the flux limiter of
Levermore and Pomraning [37], which is relevant near
the stellar surface, where the matter is optically thin to
neutrinos and the diffusion approximation breaks down.
We discuss the numerical convergence of our code in

Appendix B 1. More details on the code are reported in [38].

C. Results

We now discuss how the PNS evolution depends on the
EOS adopted and the total stellar baryon mass. In Fig. 6 we

MB = 1.60 Msun , t = 200 ms
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FIG. 5. The initial profiles (at t ¼ 200 ms) of the baryon density (left), entropy per baryon (center), and lepton fraction (right) are
plotted versus the enclosed baryonic mass for a MB ¼ 1.60 M⊙ star. The initial entropy per baryon and lepton fraction profiles are the
same for the three EOSs adopted, whereas the baryon density depends on the EOS (colors and line styles are as in Fig. 2).

3Eq. (43) is derived from the sum of the transport equations for
the neutrino and matter energy,

∂eν
∂t −

Pν

nB

∂nB
∂t þ e−ϕ

ðe2ϕ4πr2HνÞ
∂a ¼ þeϕ

SE
nB

; ð44Þ

∂ematter

∂t −
Pmatter

nB

∂nB
∂t ¼ −eϕ

SE
nB

; ð45Þ

where SE is the energy and momentum integrated source term for
the energy [3].

GIOVANNI CAMELIO et al. PHYSICAL REVIEW D 96, 043015 (2017)

043015-10



show the evolution of the central and maximum temperature,
central entropy per baryon, central neutrino and proton
fraction, and central baryon density for the three nucleonic
EOSs considered in this paper and for the total baryon mass
MB ¼ 1.60 M⊙. It is apparent that the evolution with the
GM3-fit EOS reproduces that with the GM3 EOS.
Therefore, in the rest of this paper we do not distinguish
between the GM3-fit and GM3 EOS. In Table I we
summarize the time scales of the evolutionary phases and
the maximum central temperature for the three EOSs and for
three stellar baryon masses MB¼ð1.25;1.40;1.60ÞM⊙. In
Fig. 7 we plot the time dependency of the total neutrino
luminosity, gravitational mass, and stellar radius of a PNS
evolved using the three EOSs discussed in this paper and
with the stellar baryon masses MB¼ð1.25;1.40;1.60ÞM⊙.
The qualitative behavior of the stellar evolution is the

same for the three EOSs and the three stellar masses, even
though the time scales and the thermodynamical profiles
are quantitatively different (Fig. 6 and Table I). At the
beginning of the evolution, which is 200 ms from core

bounce, the PNS has a (relatively) low entropy core and a
high entropy envelope (see Fig. 5). The neutrino chemical
potential initially is very high in the center of the star; the
process of neutrino diffusion transfers this degeneracy
energy from neutrinos to the matter and this causes the
heating of the PNS core. Moreover, on time scales of about
10 s, the star contracts from about 30 km to its final radius
of about 12–13 km. The region which is affected the most
from this contraction is the envelope, whose temperature
significantly increases. At the same time, the steep negative
neutrino chemical potential gradient in the envelope causes
a deleptonization of the envelope. The neutrinos leave
the star, bringing with them energy. The joint effect of the
envelope heating caused by contraction and the cooling
caused by neutrino emission is apparent in the behavior of
the maximum stellar temperature: before the central tem-
perature, Tc, reaches its maximum, the maximum temper-
ature reached in the interior of the star, Tmax, increases,
reaches a maximum value, and then decreases (Fig. 6).
The initial phase, during which the central temperature
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increases, lasts for several seconds and has been referred to
as Joule heating phase in previous works [1,2]. We may
place the end of this phase approximately at the time Tc
reaches its maximum (vertical dotted lines in Fig. 6); at that
time the central temperature is also the maximum stellar
temperature (see Fig. 6).
After the Joule heating phase, there is a general cooling

of the star as the deleptonization proceeds. In [1,2] it was
found that the end of the Joule heating phase coincides with
the end of deleptonization, whereas in [3], with the GM3
EOS and a more refined treatment of neutrino opacities, it
was found that the deleptonization is longer than the Joule-
heating phase. We agree with this last result for the stars
with the GM3 and LS-bulk EOSs, whereas in the case of
the CBF-EI EOS we find that most of neutrinos have been
radiated away by the end of the Joule-heating phase (Fig. 6
and Table I).
Our results for the MB ¼ 1.60 M⊙ PNS with the GM3

EOS are in qualitative agreement with those of [3]. In
particular, the duration of the Joule-heating phase is in good
agreement (cf. Fig. 6 of this paper with Fig. 17 in [3]);
however we find lower stellar temperatures and a shorter
cooling phase.
We think that the quantitative differences4 between our

results and those of [3] are due to differences in the initial

profiles and in the details of the treatment of the diffusion
processes.
For each EOS, the evolutionary time scales are smaller

for stars with smaller baryonic mass, see Table I. This is due
to the way we have rescaled the initial entropy per baryon
and lepton fraction profiles with MB, but also to the fact
that a lower stellar mass corresponds to lower baryonic
densities and then to longer neutrino mean-free paths. We
also notice that a lower stellar mass corresponds to lower
temperatures. This again depends on the initial entropy
profiles and on the different densities present in the star,
see Fig. 3: at a given entropy per baryon and lepton (or
neutrino) fraction, lower densities (i.e., lower masses)
correspond to lower temperatures. To simulate a fully
consistent PNS evolution, one should use initial profiles
generated by core-collapse simulations of stars with the
same baryonic mass (see [3] for a study on how the initial
conditions affect the PNS evolution).
Figure 3 shows that, at fixed entropy, CBF-EI EOS is

hotter than the GM3 EOS, which is hotter than the LS-bulk
EOS (see discussion in Sec. II D). Since, for a given stellar
mass, the initial entropy profiles are the same for the three
EOSs, then the CBF-EI star reaches temperatures higher
than the GM3 stars, which in turn reaches temperatures
higher than the LS-bulk star, see Fig. 6 and Table I.
The fact that the LS-bulk evolution is slower than the

GM3 one, which in turn is slower than that of the CBF-EI
EOS, may well be explained by the fact that in the many-
body CBF-EI EOS nuclear correlations are stronger than in
the mean-field GM3 EOS, in which in turn are stronger
than in the LS-bulk EOS (where the baryon masses are
equal to the bare ones). A smaller neutrino cross section is a
consequence of a greater baryon correlation (Sec. III D).
This effect is relevant even at the mean-field level, where
one adopts the description of the baryon spectra in terms of
effective masses and single-particle potentials to obtain the
diffusion coefficients. For example, the fact that the proton
effective mass is significantly smaller than the neutron one
in the CBF-EI framework is a consequence of the tensor
correlations which are stronger in the n-p channel than in
the n-n or p-p channels.
To check this interpretation, that is, that the different time

scales are mainly due to the details of the microphysics
(i.e., the baryon spectra and hence the neutrino mean-free
paths and diffusion coefficients), we have run a simulation
of a MB ¼ 1.60 M⊙ PNS with the LS-bulk and CBF-EI
EOSs, but with the diffusion coefficients of the GM3 EOS.
As expected, we find out that the LS-bulk time scale is
reduced with respect to that of a self-consistent simulation
(i.e., using the LS-bulk diffusion coefficients), and the
CBF-EI time scale is increased with respect to that of a self-
consistent simulation. Of course, the time scales and the
evolutionary profiles found in this nonconsistent manner
are not equal to those corresponding to the GM3 EOS, the
differences due to the details of the EOSs. Both the EOS

TABLE I. Significant quantities describing the PNS evolution
for the three EOSs described in this paper and for three stellar
baryon masses. The first column contains the name of the EOS,
the second column contains the stellar baryon mass, the third and
fourth columns contain the maximum central temperature and the
corresponding time (the latter approximately corresponds to the
end of the Joule-heating phase), respectively, the fifth column
contains the time at which the central neutrino fraction becomes
equal to Yν ¼ 0.005 (this is an indication on the duration of the
deleptonization phase), and the sixth column contains the time at
which our simulation ends (namely, when the central temperature
becomes equal to T ¼ 5 MeV). All simulations start at
tstart ¼ 0.2 s.

EOS MB [M⊙] Tmax [MeV] tJh [s] tdel [s] tend [s]

GM3 1.25 24.6 9.0 13.1 20.8
GM3 1.40 28.7 11.2 18.6 27.1
GM3 1.60 34.9 15.2 27.9 37.7
LS-bulk 1.25 23.6 13.5 17.5 30.6
LS-bulk 1.40 26.6 17.6 26.3 41.0
LS-bulk 1.60 32.1 23.8 41.4 59.2
CBF-EI 1.25 32.3 7.31 3.46 17.0
CBF-EI 1.40 37.0 9.55 5.65 21.6
CBF-EI 1.60 43.7 13.6 11.7 29.4

4The differences amount to about 10% in the value of the
central temperature maximum and of the deleptonization time,
and in less than 2% for the time of the end of Joule-heating phase,
compare Table I and Fig. 17 of [3].
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and the neutrino mean-free paths influence the PNS
evolution; in fact, each EOS has a different thermal content
and neutrino degeneracy, and different thermodynamical
derivatives that determine how the stellar profiles change
while energy and leptons diffuse through the star.

D. Neutrino luminosity

In 1987 a supernova (SN1987a) has been observed in the
Large Magellanic Cloud [39]. Together with the electro-
magnetic signal, 19 neutrinos were detected by the
Cherenkov detectors Kamiokande II [4] and IMB [5].
These neutrinos have been observed on a time scale of
ten seconds, and are therefore thought to have been emitted
during the PNS phase. However, they were too few to
accurately constrain the emitted neutrino spectrum and its
time dependence (see e.g. [40]) and to give unambiguous
answers about the proto-neutron star physics [2,3,9,40].
Today, with the current detectors, a SN event such that of
1987 would generate ∼104 neutrino detections [41], which
would provide valuable information on the physical proc-
esses dominating the PNS evolution. It is therefore funda-
mental to determine how the underlying EOS modifies the
PNS neutrino signal.
Our code has some limitations in reconstructing the

emitted spectrum; besides the spherical symmetry it
assumes: (i) beta equilibrium, (ii) a Fermi distribution
for all neutrino species, and (iii) a vanishing chemical
potential for the muon and tauon neutrinos everywhere
in the star. Assumptions (i) and (ii) are reasonable in the
interior of the star, and lose accuracy near the stellar border,
where the diffusion approximation breaks down and in
practice the fluxes are always flux limited. To obtain a
precise description of the neutrino emitted spectrum, one
has to employ multiflavor multigroup evolutionary codes
(see e.g. [14]), that possibly also account for neutrino
leakage near the stellar border. This is outside the aims of
our work; however our approximations are reasonable as
far as one is interested in total quantities, in particular the
total neutrino luminosity Lν (Fig. 7), which is equal to
minus the gravitational mass variation rate,

Lν ¼ e2ϕðRÞ4πR2HνðRÞ ¼ −
dM
dt

; ð49Þ

whereHνðRÞ is the neutrino energy luminosity at the stellar
border.
We determine the formula to estimate the signal in

terrestrial detectors following [9] and applying a slight
modification introduced by [3], and we specify our results
for the Super-Kamiokande III detector [41,42]. The main
reaction that occurs in a water detector like Super-
Kamiokande is the electron antineutrino absorption on
protons, ν̄e þ p → nþ eþ [Eq. (1) of [41]]. The number
flux of antineutrinos arriving at the detector is given by

dN
dt

¼ ~σ0 ~npM

4πD2
eϕνTνLν̄e

GWðeϕνTν; EthÞ
7π4=120

; ð50Þ

GW ¼
Z

∞

Eth=T

x2ðx − Δ
TÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − Δ

TÞ2 − ðme
T Þ2

q
1þ ex

WðxTÞdx; ð51Þ

where ~np ≃ 6.7 × 1031 kton−1 is the number of free pro-
tons (i.e., hydrogen atoms) per unit water mass of the
detector, ~σ0 ¼ 0.941 × 10−43 cm2 MeV−2, M is the water
mass of the detector,D is the SN distance from the detector,
GW is a modified and truncated Fermi integral, Eth is the
incoming neutrino energy threshold (to cut off the low-
energy neutrino background that is a noise for high-energy
SN and PNS neutrinos, [41]), Δm is the neutron-proton
mass difference, me is the electron mass, and WðEÞ is the
efficiency of the detector at incoming neutrino energy
E≡ xT. eϕν , Tν, and μν̄e are the redshift, temperature, and
antineutrino chemical potential at the neutrinosphere,
which is the sphere inside the PNS at whose radius Rν

neutrinos decouple from matter (therefore, eϕνTν and eϕνμν̄e
are the temperature and the chemical potential at the
neutrinosphere, seen by an observer at infinity).
We take Super-Kamiokande III as reference detector, and

therefore M≃ 22.5 ktons [41], Eth ¼ 7.5 MeV, and W is
reported in Fig. 3 of [42] and is one for E > Eth. We
consider a galactic PNS, D ¼ 10 kpc, and assume that the
neutrinosphere is at the radius at which the (total, of all
flavors) neutrino energy flux becomes one third of the
(total, of all flavors) neutrino energy density,Hν=ϵν ¼ 1=3.
Finally, we take the electron antineutrino energy to be one
sixth of the total, Lν̄e ¼ Lν=6, since (i) at the neutrino-
sphere all neutrino type chemical potentials are very small
and (ii) we do not account for neutrino oscillations (which
would enhance the flux by about 10% [41]).
The neutrino signal rate and total signal for the three

EOSs are shown in Fig. 8. Since the binding energies of the
cold neutron star of the three EOSs we consider are very
similar (see Fig. 7), the total energies emitted by neutrinos
during the PNS evolution are very similar too. On the other
hand, the rate of antineutrino emission and the temperature
at the neutrinosphere varies according to the underlying
EOS. Therefore, there is an EOS signature on the cumu-
lative antineutrino detection. The signal of the CBF-EI PNS
is noticeably larger than the other EOSs, even though its
gravitational binding energy at the end of the evolution is
between those of the LS-bulk and GM3 EOSs (Fig. 7). This
is due to the fact that the higher temperatures of the CBF-EI
EOS cause a smoother antineutrino distribution function
at the neutrinosphere, and hence more antineutrinos have
an energy greater than the threshold Eth at the detector.
The different evolutionary time scales for the three EOSs

and stellar masses correspond to different signal time
scales, which may easily be inferred from the antineutrino
detection rate. The antineutrino detection rates for the three
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FIG. 7. Time dependence of the total neutrino luminosity (upper panels), gravitational mass (middle panels), and stellar radius
(lower panels) of a PNS evolved with the three EOSs considered in this paper and the baryon stellar masses MB ¼
ð1.25; 1.40; 1.60Þ M⊙. The black solid lines correspond to the GM3 EOS determined through the fit and the procedure described
in Sec. II C, the blue dashed lines to the LS-bulk EOS, and the dot-dashed red lines to the CBF-EI EOS. The gravitational masses at
the end of the simulations are: for MB¼1.25M⊙, MGM3¼1.1554M⊙, MLS−bulk¼1.1492M⊙, MCBF−EI¼1.1548M⊙; for MB ¼
1.40 M⊙, MGM3 ¼ 1.2824 M⊙, MLS−bulk ¼ 1.2750 M⊙, MCBF−EI ¼ 1.2806 M⊙; and for MB ¼ 1.60 M⊙, MGM3 ¼ 1.4478 M⊙,
MLS−bulk ¼ 1.4386 M⊙, MCBF−EI ¼ 1.4442 M⊙.
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EOSs and the three stellar masses are qualitatively very
similar. During the first ten seconds the LS-bulk and GM3
stars have very similar detection rates; at later times, the
detection rates become different, because the LS-bulk
star has a longer evolution than the GM3 star. The CBF-
EI star, instead, has the peculiarity of maintaining a higher
antineutrino emission rate during the Joule-heating phase
(approximately, during the first ten seconds), which is due
to the faster deleptonization that we have already discussed
in Sec. IV C and to higher temperatures.

V. GRAVITATIONAL WAVES FROM
QUASINORMAL MODES

A supernova explosion is a highly energetic event and
the PNS which is formed as a remnant is expected to
oscillate wildly. The relativistic theory of stellar perturba-
tions [43,44] predicts the existence of stellar oscillation
modes, the so-called quasinormal modes (QNMs), through
which the star loses energy emitting gravitational waves
(GWs). To find the frequencies of these modes, in the case
of a spherical, nonrotating star, Einstein’s equations are

perturbed about the background (34), and the perturbed
functions are expanded in spherical harmonics and Fourier
transformed. Thus, the spacetime metric describing the
perturbed spacetime can be written as5

ds2 ¼ −e2ϕð1þ rlH0Ylme{ωtþ{mφÞdt2
− 2{ωrlþ1H1Ylme{ωtþ{mφdtdr

þ e2λð1 − rlH0Ylme{ωtþ{mφÞdr2
þ r2ð1 − rlKYlme{ωtþ{mφÞdΩ; ð52Þ

where Ylmðϑ;φÞ are the scalar spherical harmonics and
H0ðr;ωÞ, H1ðr;ωÞ, Kðr;ωÞ describe the polar metric
perturbations. A fluid element in a point xμ is displaced
by the perturbation in the new position x0μ ¼ xμ þ ξμ,
where the displacement vector ξμ can be written as

ξt ¼ 0; ð53Þ
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FIG. 8. Signal in the Super-Kamiokande III Cherenkov detector, for the three EOSs considered in this paper. In the top panels, electron
antineutrino detection rate; in the bottom panels, electron antineutrino cumulative detection. In the left plots, we consider a star with
MB ¼ 1.25 M⊙, in the central plots MB ¼ 1.40 M⊙, and in the right plots MB ¼ 1.60 M⊙. Colors and line styles are as in Fig. 7.

5We use the gauge adopted in [43].
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ξr ¼ rl−1e−λWðr;ωÞYlmðθ;φÞe{ωtþ{mφ; ð54Þ

ξθ ¼ −rl−2Vðr;ωÞ∂θYlmðθ;φÞe{ωtþ{mφ; ð55Þ

ξφ ¼ −
rl−2Vðr;ωÞ

sin2θ
∂φYlmðθ;φÞe{ωtþ{mφ: ð56Þ

The perturbations of the energy density and pressure of the
fluid composing the star are expanded in the sameway. Due
to the decomposition in spherical harmonics and to the
Fourier expansion, the linearized Einsteinþ hydro equa-
tions do separate, and are reduced to a set of coupled, linear
ordinary differential equations for the radial part of the
perturbed fluid and of the metric functions.
A QNM is defined as a solution of the perturbed

equations which is regular at the center, continuous at
the stellar surface, and which behaves as a purely outgoing
wave at radial infinity. The set of discrete values of the
complex frequency ω ¼ 2πνþ {=τ for which these con-
ditions are satisfied are the QNM eigenfrequencies: the real
part is the pulsation frequency ν, the imaginary part is the
inverse of the damping time τ.
The QNMs are classified according to the nature of the

restoring force which prevails in bringing back the per-
turbed fluid element to the equilibrium position. For the
pn-modes, or “pressure modes,” (n ¼ 1; 2;…) the main
restoring force is due to pressure; for the gn-modes
(n ¼ 1; 2;…), or “gravity modes,” the main restoring force
is buoyancy. The order n of the mode corresponds to
the number of nodes of the radial eigenfunction of the
displacement vector. The f-mode, i.e., the fundamental
mode of the star, describes the global pulsation motion of
the fluid, and has no radial nodes. In a cold neutron star,
typical values for the QNM frequencies and damping times
are νf ≃ 1.5–2.5 kHz, τf ≃ 0.1 s, νp1

≃ 5–10 kHz, and
τp1

¼ 1–10 s. The g-modes are due to the presence of
thermal and/or composition gradients; in absence of
composition gradients, all g-modes of a cold neutron star
degenerate to zero frequency. Conversely, they are present
in a PNS [15,17], as we shall show below.
To determine the quasinormal mode frequencies at a

given time t of the stellar evolution, we have first evolved
the PNS, finding the profiles of the pressure Pðr; tÞ, the
energy density ϵðr; tÞ, the baryon number density nBðr; tÞ,
and the sound speed, csðr; tÞ, for the three EOSs and the
different values of the baryonic mass we consider in this
paper. Then we have determined the “effective barotropic
EOS” by inverting the pressure-radius profile, thus finding
r¼ rðP;tÞ and then ϵeffðP;tÞ¼ ϵðrðP;tÞ;tÞ and ceffs ðP; tÞ ¼
csðrðP; tÞ; tÞ. Using these expressions, we have solved the
equations of stellar perturbations (we used the formulation
of [45]), to find the frequencies and damping times of the
first p- and g-modes and of the fundamental mode.

A. Results of the numerical evolution

We have evolved three stellar models with baryon
masses (1.25, 1.40, and 1.60 M⊙) and the EOSs LS-bulk,
CBF-EI and GM3, which was used in [15]. For this EOS,
the QNM frequencies we compute for the 1.60 M⊙ star
agree with those of “model A” of [15] within a few percent.
We think that the small differences between our results and
those of [15] are due to differences in the initial profiles and
in the details of the treatment of the diffusion processes.
The numerical values of the f-, g1- and p1-QNM frequen-
cies and damping times are tabulated in Appendix C.
In Fig. 9 we show, as an example, how the QNM

frequencies and damping times change during the first
five seconds of the PNS life. The plots are given for the
three EOSs we consider, and for a star with baryonic mass
MB ¼ 1.40 M⊙ as an example.
In the upper panel we show the frequency of the g1- and

of the f-modes, in the middle panel the frequency of the
mode p1, and in the lower panel the damping time of the
three modes. From the upper panel of Fig. 9 we see that
during the first second, νg1 approaches νf, but they never
cross. At later times, νg1 increases, reaches a maximum and
then decreases, whereas νf does the opposite: it reaches a
minimum slightly before νg1 reaches its maximum, and
then increases toward the asymptotic value of the corre-
sponding cold neutron star. This behavior is a general
feature of the three EOS; however, the minimum (maxi-
mum) of νf (νg1) occurs at different times for different
EOSs. In addition frequencies belonging to different EOSs
differ, at each time, as much as ∼100–200 Hz. νp1

also has
a minimum (which was not found in [15]), at earlier times
with respect to νf and νg1 .
It may be noted that our results are qualitatively different

from those of [17,18], where the QNMs show a monotonic
increase of the f- and p-modes, and a monotonic decrease
of the g-mode. We think that this is due to the fact that a
consistent evolution of the PNS is crucial to describe the
behavior of the QNMs.
The time dependence of the QNM frequencies described

above would produce differences in the gravitational wave-
forms emitted by the PNS which, if detected, would
provide valuable information on the underlying EOS.
The waveform emitted by a star oscillating in a QNM
with frequency ν and damping time τ can be written as
hðtÞ ¼ h0e−ðt−t0Þ=τ sin½2πνðt − t0Þ�, where h0 is the initial
amplitude and t0 some initial time. Since the mode energy
is proportional to the square of the wave function,
EQNM ∝ e−2ðt−t0Þ=τ, and the gravitational wave (GW) lumi-

nosity is LGW ¼ − _EQNM ≃ 2EQNM

τ . Therefore, QNMs with
smaller damping times are more effective in extracting
energy from the PNS in the form of GWs. In a cold star
τf < τp, and this means that the energy will be radiated
mainly at the frequency of the fundamental mode.
However, during the first second of the PNS life the
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situation is quite different; the lower panel of Fig. 9 shows
that the p1-mode has a damping time τp1

≃ 1 s, smaller
than that of the f- and of the g1-modes, and it can be more
effective in radiating energy than the fundamental and the
first g-mode. After the first second, the fundamental mode
becomes the more efficient GW emitter.
It should be stressed that the mechanical energy of a newly

born PNS is dissipated in gravitational waves only

in part. GWs compete with other dissipative mechanisms
associated to neutrino diffusion; therefore, gravitational
waves will be emitted by a PNS only if τGW is smaller
than the dissipation time scales typical of neutrino diffusion.
These have been estimated to be of the order of τν ∼ 10–20 s
(see [15] for a discussion on this issue and references
therein). From the lower panel of Fig. 9 we see that the
damping times of the f- and p1-modes are always smaller
than τν, whereas τg1 becomes larger than τν after the first few
tenths of seconds. Thus, if the PNS has a significant amount
of mechanical energy to release, we can reasonably expect
that a part of it will be released in gravitational waves.
Recent 3Dsimulationsof the early explosionphase of core-

collapse supernovae and of the following accretion phase
[46,47] show that other phenomena than stellar oscillations
may contribute to gravitational wave emission; for instance,
standing accretion shock instability and convection, which
are shown to be associated to stochastic oscillations, and to
unstable g-modes, different from the stable g-modes consid-
ered in this paper. For a review see also [48].

B. A fit of the fundamental and first p-mode periods

In nonrelativistic variable stars (as Chepheids), the ratio
of the periods P1=P0 ¼ νf=νp1

of the first overtone (that
corresponds in the language of stellar oscillations in GR to
the first p-mode) and of the fundamental mode is a function
of the quantityQ0 ¼ P0

ffiffiffiffiffiffiffiffiffiffiffi
ρ̄=ρ⊙

p
, where P0 ¼ ν−1f and ρ⊙ ¼

2.97 × 10−18 M⊙=km3 is the mean Sun density (see e.g.
[49]). We have fitted the ratio P1=P0 ≡ νf=νp1

with a linear
dependence on Q0 ∝

ffiffiffī
ρ

p
=νf, obtaining

P1

P0

¼1.1131ð�0.0066Þ−1596ð�17ÞP0

1s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄
103 km
1M⊙

s
: ð57Þ
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The result of the fit is shown in Fig. 10; the corresponding
reduced chi square is rather low: ~χ ¼ 3.2 × 10−4. This is an
indication that, even in PNSs, the ratio P1=P0 could be a
universal property, independent of the masses and EOSs of
the PNS.

VI. CONCLUSIONS

In this paper we have studied the evolution and the
gravitational wave emission of a proto-neutron star in the
Kelvin-Helmholtz phase, which is the period of the neutron
star life subsequent to the supernova explosion, until the
star becomes transparent to neutrinos. To perform such a
study, we have written a new general relativistic, one-
dimensional, energy-averaged, and flux-limited PNS evolu-
tionary code which evolves a general EOS consistently. In
particular, we have considered three nucleonic EOSs and
three stellar masses, and we have determined the neutrino
cross sections self-consistently with the corresponding
EOS. The EOSs considered are all nucleonic (without
hyperons) and are obtained (i) by the extrapolation from the
measured nuclear properties (the LS-bulk EOS [19]), (ii) by
the nuclear relativistic mean-field theory (the GM3 EOS
[23]), and (iii) by the nuclear nonrelativistic many-body
theory (the CBF-EI EOS [20,21]). We have determined
the frequencies of the quasinormal oscillation modes for
the different EOSs and stellar masses using the general
relativistic stellar perturbation theory.
The main improvements with respect to previous works

introduced by our study are the following:
(i) We have developed and tested a new fitting formula

for the interacting part of the baryon free energy
(i.e., neutrons plus protons), which is valid for high
density matter, finite temperature, and arbitrary
proton fractions. We used this fitting formula to
derive the other thermodynamical quantities. This
formula is suitable to be used in evolutionary codes.

(ii) We have computed the neutrino cross sections for
the many-body theory EOS of [20,21]. They have
been computed at the mean-field level [32], that is,
the interaction between baryons has been accounted
for modifying the baryon energy spectra by means of
density-, temperature-, and composition-dependent
effective masses and single-particle energies.

(iii) We used these neutrino cross sections to evolve the
PNSwith the many-body EOS in a consistent way. To
our knowledge, this is the first time that a PNS with a
many-body EOS has been evolved with consistently
determined neutrino opacities. From this evolution,
we have determined the stellar quasinormal modes.

Our main results are the following:
(i) The PNS evolution depends on the adopted EOS. In

particular, for the many-body EOS CBF-EI the PNS
cooling is faster than that with the mean-field EOS
GM3, which in turn is faster than that with the
extrapolated EOS LS-bulk. In the extrapolated EOS

LS-bulk the effective baryon masses have been
assumed to be equal to the bare ones, and the result
is that this EOS is “less interacting” than the others
in the computation of the neutrino cross sections.

(ii) The deleptonization of the PNSwith the CBF-EI EOS
is almost completed at the end of the Joule-heating
phase (similarly to what was found in the first PNS
numerical studies by [1,2]), whereas the deleptoniza-
tion for the GM3 and LS-bulk EOSs proceeds during
the cooling phase (as found in [3]). Pons et al. [3]
explained this difference with the oversimplifications
in the treatment of the neutrino opacities in [1,2].
However, we compute the neutrino cross sections for
the CBF-EI and the other EOSs with the same
procedure of [3]. Therefore, the faster deleptonization
is a feature also due to the EOS properties and not
only to the treatment of neutrino opacities.

(iii) The total number of electron antineutrinos detected
depends on the gravitational binding energy but is
not completely determined by it. In particular, the
CBF-EI EOS has more antineutrinos detected than
the LS-bulk EOS, even though its binding energy is
smaller. This is due to the fact that the PNS with
CBF-EI EOS has higher temperatures than those
with the other EOSs, hence the electron antineutrino
distribution function at the neutrinosphere is
smoother and more antineutrinos have energies
larger than the detector energy threshold. This result
remarks the importance of an accurate modeling of
the PNS evolution in order to extract information on
the PNS physics from the neutrino signal.

(iv) We show that during the first second, the frequen-
cies at which the PNS oscillates emitting gravita-
tional waves have a nonmonotonic behavior. The
fundamental mode frequency decreases, reaches a
minimum and then increases toward the value
corresponding to the cold neutron star which forms
at the end of the evolution. The frequency of the first
g-mode increases, reaches a maximum and then
decreases to the asymptotic zero limit, that of the
mode p1 has a less pronounced minimum at earlier
times with respect to the f-mode. We show that this
behavior, already noted in [15] for the EOS GM3, is
a generic feature when the PNS evolution is con-
sistently described, and that the time scale depends
on the EOS. Indeed the time needed to reach the
minimum (maximum) for the f- (g1-)mode can
differ by as much as half a second for the EOS
we consider.

During the first second, the damping time of all
modes is shorter than the neutrino diffusive time
scale (∼10 s); therefore gravitational wave emission
may be competitive in subtracting energy from
the star. This remains true at later times only for
the fundamental mode and for the first p-mode.
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However, the damping time of the f-mode is much
shorter, thus we should expect that after the first few
seconds gravitational waves will be emitted mainly
at the corresponding frequency.

(v) The QNM frequencies depend not only on the EOS,
but also on the stellar baryon mass. In particular,
we find that for a lower mass, at the beginning the
p1-mode has higher frequency; for instance, for the
1.25 M⊙ star it approaches 2 kHz.

(vi) We have found a relation between the fundamental
and first p-mode frequencies and the mean stellar
density [Eq. (57)] which is valid during all PNS
phases for the cases considered in this paper. This
may be a universal property of PNSs, independent of
the mass and the EOS.

This paper may be improved in several directions. About
the microphysics, improvements may be done to the
neutrino cross section treatment, for example including
the effects of collective excitations [50,51] and the weak
magnetism correction [52]. Consistently computed neu-
trino cross sections in the many-body theory for finite
temperature and high density matter would be welcome
too. About the EOS, it would be interesting to include more
physical ingredients, like hyperons and the presence of a
crust (alpha particles and a lattice). However, we do not
expect dramatic changes for the inclusion of a crust since
we have checked that alpha particles do form only near the
stellar surface and towards the end of our simulations
(Appendix B 3). About the PNS evolution, it would be
interesting to abandon the request of beta equilibrium (even
though, we have checked that beta equilibrium is almost
respected in most of the star, apart for a region
near the stellar layer at the beginning of the simulation,
see Appendix B 2 and [1,3]) and to allow for the presence
of muons and tauons, accounting for the transport of their
relative lepton numbers. A major improvement to our work
would be the inclusion of accretion [9,11–13] and con-
vection [10], which could have an important effect on the
evolution. Finally, we are using as initial configurations the
final profile obtained from an old simulation [35], con-
veniently rescaling it with the total stellar mass. This brings
a significant amount of uncertainties; to increase the
accuracy of the evolution it would be important to con-
sistently use the final profiles of more modern core-collapse
simulations.
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APPENDIX A: FITTING PROCEDURE

The fit has been performed using a set of points on an
evenly spaced Cartesian 11 × 50 × 12 grid in ðYp;T; nBÞ,
from ð0; 1 MeV; 0.04 fm−3Þ to ð0.5; 50 MeV; 0.48 fm−3Þ,
with steps of ð0.05; 1 MeV; 0.04 fm−3Þ. The fit is strictly
valid for nB ∈ ð0.04; 0.48Þfm−3 and T ∈ ð1; 50Þ MeV, but
its analytic form is suitable to be used also for nB <
0.04 fm−3 and T < 1 MeV, see Sec. II B. First, we have
fitted only the interacting free energy fIB, computing the
root mean square σf. We have done the same for the
interacting entropy and pressure, obtaining the root mean
squares σs and σP. Then, we have simultaneously fitted the
interacting free energy, entropy, and pressure, giving to
each fitting point pi a uniform error σi¼ff;s;Pg that depends
on which quantity that point is describing (the free energy,
the entropy, or the pressure). The result of the fit of the
GM3 and CBF-EI EOS is shown in Table II. We have
tried to include in the fit also the second order derivatives,
∂2fB=∂T2, ∂2fB=∂n2B, and ∂2fB=∂T∂nB, but the resulting
fit did not improve its accuracy.
We have checked that in the range we consider, the fits

for the GM3 and the CBF-EI EOSs satisfy the thermody-
namic stability conditions [Eqs. (13) and (14) of [24]]

TABLE II. Interacting baryon free energy per baryon fitting
parameters, Eqs. (10) and (11). In the first column, we report the
fitting coefficient for SNM and PNM, in the second and third
columns we report the results of the fit for the GM3 and CBF-EI
EOSs, in the fourth and last column, we report the polynomial
that is multiplied by that coefficient in the fitting formula. In the
last two rows we report the number of points used in the fit and
the reduced chi squared. Energies are in MeV and lengths in fm.

Coefficient GM3 CBF-EI Polynomial

a1;SNM −402.401 −284.592 4Ypð1 − YpÞnB
a2;SNM 1290.54 676.121 4Ypð1 − YpÞn2B
a3;SNM −1540.52 −662.847 4Ypð1 − YpÞn3B
a4;SNM 903.8 667.492 4Ypð1 − YpÞn4B
a5;SNM 0.0669357 0.112911 4Ypð1 − YpÞnBT2

a6;SNM −0.000680098 −0.00124098 4Ypð1 − YpÞnBT3

a7;SNM −0.0769298 −0.148538 4Ypð1 − YpÞn2BT2

a8;SNM 0.000915968 0.00192405 4Ypð1 − YpÞn2BT3

a1;PNM −274.544 −121.362 ð1 − 2YpÞ2nB
a2;PNM 1368.86 101.948 ð1 − 2YpÞ2n2B
a3;PNM −1609.15 1079.08 ð1 − 2YpÞ2n3B
a4;PNM 916.956 −924.248 ð1 − 2YpÞ2n4B
a5;PNM 0.0464766 0.0579368 ð1 − 2YpÞ2nBT2

a6;PNM −0.000388966 −0.000495044 ð1 − 2YpÞ2nBT3

a7;PNM −0.0572916 −0.0729861 ð1 − 2YpÞ2n2BT2

a8;PNM 0.00055403 0.000749914 ð1 − 2YpÞ2n2BT3

N 19782 18686
~χ 4.18 2.05
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nB

> 0; ðA1Þ

∂PB

∂n
����
T
> 0: ðA2Þ

APPENDIX B: CODE CHECKS

In this Appendix we show the checks of the accuracy of
the code, and we justify a posteriori the assumption of beta
equilibrium and the assumption of a baryon EOS made of
an interacting gas with neither alpha particles nor a solid
crust. For simplicity, we show the results of a PNS evolved
with the CBF-EI EOS and with total baryon mass
MB ¼ 1.60 M⊙; the results for the other EOSs and the
other baryon masses are similar.

1. Energy and lepton number conservation

The total energy and other quantum numbers (i.e., the
baryon number) are conserved in every physical process.
Our code enforces the conservation of the total baryon
number A ¼ MB=mn, but as it evolves, the PNS loses
energy and lepton number since neutrinos are allowed to
escape from the star. Since the total energy of a star (matter
plus neutrinos) in spherical symmetry is given by its
gravitational massM, the total energy of the system (stellar
energy plus energy of the emitted neutrinos) is given by

Etotal ¼ MðtÞ þ
Z

t

200 ms
LνðtÞdt; ðB1Þ

where Lν is defined in Eq. (49). Similarly, for the electron
lepton number,

Ntotal ¼ NLðtÞ þ
Z

t

200 ms
4πR2eϕðRÞFνðRÞdt; ðB2Þ

NL ¼
Z

A

0

YLðaÞda; ðB3Þ

where NL is the total number of electronic leptons in the
star, and Fν is the electron neutrino number flux (we do not
account for the other lepton numbers since we do not
include muons and tauons in the EOSs and moreover
μνμ ¼ μντ ¼ 0).
Since the conservation of Etotal and Ntotal has not been

enforced, they provide a test for our simulations. From
Fig. 11 and from the top plot of Fig. 12, it is clear that they
are conserved better than about 0.03% during the evolution.
In Fig. 12 we show, for different fixed time steps and

for different grid dimensions, the total and instantaneous
energy conservation from 0.2 to 1 s. The instantaneous
energy fractional conservation is defined as

i:e:f:c: ¼ j _M þ Lνj
Lν

: ðB4Þ

We see that reducing the time step the energy conservation
is improved. The instantaneous energy fractional conser-
vation as a function of time shows regular spikes, whose
number doubles (triples) if we double (triple) the grid
points, and whose magnitude is approximately inversely
proportional to the time step. We explain these spikes with
the nonlinearity of the transport Eqs. ([36], Sec. 19.1). In
fact, the temperature and the neutrino degeneracy appear
inside and outside the gradients in the transport equations
[Eqs. (40)–(43)]. As a consequence, the power in the
Fourier space is accumulated in the shorter wavelengths
and is finally released in the longer wavelengths of the
solution. This explains why the frequency of the peaks
changes with the grid spacing. The spikes of the instanta-
neous energy conservation have magnitudes which increase
when the time step is lowered, since one is dividing over a
smaller time step an approximately constant energy jump,
½Mðtþ dtÞ −MðtÞ�=dt. These spikes do not undermine the
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FIG. 11. Total energy Etotal and total lepton number Ntotal
conservation for a PNS with the CBF-EI EOS and 1.60 M⊙
baryon mass, normalized with the stellar initial energy and lepton
number (our simulations start at 200 ms, see Sec. IV B). The time
step is changed during the evolution in such a way that the
relative variation in a time step of the profiles of entropy per
baryon and lepton fraction is approximately equal to 10−4.
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overall conservation of the energy and lepton number and
the PNS evolution, see Fig. 11 and upper plot of Fig. 12.

2. Beta equilibrium

Our code (as in [2]) assumes beta equilibrium, Eq. (14).
This approximation is valid if the time scale of the beta
equilibrium is shorter than the dynamical time scale. We
estimate the beta equilibrium time scale using Eqs. (16) and
(17a) of [1],

tbeta ¼
1

Dn
; ðB5Þ

Dn ¼ 1.86 × 10−2YpT5½S4ðηeÞ − S4ðηνÞ�

·
1 − e−Δ=T

1 − e−ηeþην

neutrinos
baryon · s

; ðB6Þ

S4ðyÞ ¼
y5

5
þ 2π2

y3

3
þ 7π4

y
15

; ðB7Þ

whereDn is the net rate of production of electron neutrinos,
η ¼ μ=T is the degeneracy parameter, and Δ ¼ 0 in the
case of beta equilibrium (we refer the reader to [1] for more
details). Since we have assumed beta equilibrium, we put
1 − expð−Δ=TÞ≡ 1 to estimate the corresponding time
scale. This means that the value of the beta equilibrium time
scale is not fully consistent.
Since the PNS structure changes due to how neutrinos

transfer energy and lepton number through the stellar layers,
we estimate the dynamical time scale with the formula

tdyn ¼ R
nνðrÞ
FνðrÞ

; ðB8Þ

where nνðrÞ and FνðrÞ are the neutrino number density and
number flux, respectively (which depend on the radial
coordinate r), and R is the stellar radius (notice that
Fν=nν has the dimensions of a velocity).
In Fig. 13 we plot the dynamical and beta equilibrium

time scales for a PNS with the CBF-EI EOS and
MB ¼ 1.60 M⊙. The beta equilibrium is valid in most of
the star, apart for a thin shell near the stellar border.
Towards the end of the evolution the dynamical time scale
seems to reduce, and this is counterintuitive. In fact, we
have associated the dynamical time scale with the neutrino
time scale. This is not true towards the end of the evolution,
since as the PNS becomes optically thin the neutrinos
decouple from the matter and the diffusion approximation
breaks down. At that point, the neutrino time scale drops,
but the stellar dynamics is actually frozen.

3. Baryon gas assumption

In this paper we have not considered the formation of any
kind of crust or envelope, that is, the EOS baryon part is
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FIG. 13. Dynamical time scale (solid lines) and beta equilib-
rium time scale (dashed lines) profiles at different times for a PNS
with the CBF-EI EOS and 1.60 M⊙ stellar mass.
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FIG. 12. Total energy Etotal (normalized with the stellar initial
energy) and instantaneous energy fractional conservation for a
PNS with the CBF-EI EOS and 1.60 M⊙ baryon mass. The time
step dt is kept fixed during the evolution and n is the number of
grid points. The plots begin at 200 ms because this is the initial
time of our simulations (see Sec. IV B).
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made by an interacting gas of protons and neutrons.
However, at low temperature and baryon density, the matter
is not constituted by a gas of baryons only. The alpha
particles (i.e., Helium nuclei) are the first species that appears
decreasing the temperature and the density. The critical
temperature at which alpha particles begin to form, that is,
the lowest temperature at which protons and neutrons are
present alone as an interacting gas, depends on the baryon
density and the proton fraction. Equation (2.31) of [19] is an
estimate of this critical temperature,

TcðYpÞ ¼ 87.76

�
Ks

375 MeV

�
1=2

�
0.155 fm−3

ns

�
1=3

Ypð1 − YpÞ MeV; ðB9Þ

where ns and Ks are the saturation density and the
incompressibility parameter at saturation density of sym-
metric nuclear matter. Equation (B9) is valid for nB < ns,
otherwise no alpha particles may form. In Fig. 14 we
report the profiles of the critical temperature and the PNS
temperature for different snapshots of a PNS with the
CBF-EI EOS and with MB ¼ 1.60 M⊙; the results for
the other EOSs and baryon masses are similar. As expected,
the assumption of a proton-neutron interacting gas is valid
at the beginning of the simulation and loses accuracy
towards the end of the evolution, when it is not valid only
in the outermost layers.

APPENDIX C: PNS QUASINORMAL MODES

In Tables III–XI we report the QNM frequencies and
damping times for the models considered in this paper.

TABLE III. QNMs for a MB ¼ 1.25 M⊙ star evolved with the
GM3 EOS. The column content, from left to right, is time of
the snapshot (in s), frequency (in Hz) and damping time (in s) of
the g1-, f-, and p1-modes, stellar gravitational mass (inM⊙), and
stellar radius (in km). The g1-mode quantities are not shown when
τg1 ≳ 107 s.

t νg1 τg1 νf τf νp1
τp1

M R

0.2 784.1 4.01 955.3 2.49 1712 1.57 1.2064 22.444
0.3 776.6 5.91 928.2 2.18 1619 1.59 1.2051 23.530
0.4 768.0 11.5 925.7 1.75 1623 1.56 1.2036 23.320
0.5 752.9 25.9 940.5 1.48 1653 1.55 1.2021 22.917
0.6 734.4 58.2 965.2 1.31 1696 1.57 1.2006 22.430
0.7 715.1 123 995.0 1.17 1752 1.62 1.1992 21.894
0.8 695.8 247 1027 1.05 1817 1.71 1.1977 21.349
0.9 676.7 472 1058 0.952 1890 1.83 1.1962 20.812
1.0 658.2 873 1090 0.869 1976 1.98 1.1948 20.272
2.0 504.3 1.5 × 105 1300 0.534 3386 3.96 1.1828 15.893
4.0 326.8 2.8 × 105 1412 0.446 4593 5.96 1.1697 13.502
5.0 � � � � � � 1433 0.434 4756 6.46 1.1660 13.215
10.0 � � � � � � 1468 0.415 5017 6.77 1.1562 12.778
15.0 � � � � � � 1475 0.413 5074 6.66 1.1520 12.659
20.0 � � � � � � 1473 0.415 5091 6.88 1.1502 12.600
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FIG. 14. Stellar temperature (solid lines) and critical temper-
ature (dashed lines) for the formation of alpha particles at
different times, for a PNS with the CBF-EI EOS and 1.60 M⊙
baryon mass. When the baryon density reaches the nuclei density,
0.155 fm−3, alpha particles could not form and we do not plot the
critical temperature anymore.

TABLE IV. As Table III, for a MB ¼ 1.25 M⊙ star with the
CBF-EI EOS.

t νg1 τg1 νf τf νp1
τp1

M R

0.2 756.2 3.13 1036 4.41 1625 1.36 1.2118 23.807
0.3 753.2 3.35 1001 4.94 1546 1.38 1.2102 24.808
0.4 767.0 3.47 976.8 4.45 1549 1.34 1.2085 24.628
0.5 783.5 3.82 959.2 3.53 1572 1.30 1.2068 24.238
0.6 796.5 4.88 950.3 2.60 1604 1.27 1.2052 23.765
0.7 800.8 7.85 952.9 1.93 1643 1.25 1.2035 23.251
0.8 795.4 15.4 967.7 1.55 1686 1.25 1.2019 22.723
0.9 782.6 32.2 990.7 1.33 1732 1.26 1.2004 22.200
1.0 766.1 66.4 1019 1.18 1783 1.28 1.1988 21.679
2.0 568.0 2.5 × 104 1296 0.556 2542 2.32 1.1856 17.255
4.0 377.7 3.7 × 105 1512 0.385 4206 6.46 1.1695 13.684
5.0 � � � � � � 1553 0.365 4643 7.75 1.1647 13.113
10.0 � � � � � � 1635 0.330 5355 8.57 1.1535 12.240
15.0 � � � � � � 1659 0.321 5507 8.04 1.1499 12.012
20.0 � � � � � � 1664 0.319 5568 8.00 1.1492 11.903

TABLE V. As Table III, for aMB ¼ 1.25 M⊙ star with the LS-
bulk EOS.

t νg1 τg1 νf τf νp1
τp1

M R

0.2 870.3 8.57 1047 1.21 1982 1.23 1.2020 19.925
0.3 839.0 22.0 1045 1.12 1888 1.27 1.2006 20.780
0.4 805.6 62.2 1068 1.01 1907 1.27 1.1992 20.506
0.5 772.9 161 1102 0.911 1961 1.30 1.1976 20.047
0.6 742.2 380 1139 0.821 2035 1.37 1.1961 19.533
0.7 713.6 829 1176 0.743 2125 1.46 1.1946 19.003
0.8 686.9 1.7 × 103 1213 0.676 2231 1.59 1.1931 18.467
0.9 662.0 3.4 × 103 1248 0.622 2353 1.74 1.1917 17.948
1.0 638.7 6.5 × 103 1279 0.579 2490 1.92 1.1903 17.446
2.0 473.5 5.9 × 106 1457 0.415 4027 3.22 1.1789 13.939
4.0 321.8 3.3 × 105 1538 0.372 4864 4.89 1.1673 12.557
5.0 278.9 5.9 × 105 1552 0.366 5010 5.28 1.1638 12.378
10.0 � � � � � � 1572 0.359 5267 6.01 1.1540 12.091
15.0 � � � � � � 1575 0.359 5328 6.15 1.1493 12.025
20.0 � � � � � � 1575 0.360 5352 6.22 1.1465 11.986
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TABLE VI. As Table III, for a MB ¼ 1.40 M⊙ star with the
GM3 EOS.

t νg1 τg1 νf τf νp1
τp1

M R

0.2 695.5 3.28 954.3 4.83 1495 1.36 1.3553 25.961
0.3 712.6 3.38 924.5 4.62 1469 1.35 1.3536 26.289
0.4 734.6 3.67 904.4 3.61 1494 1.29 1.3518 25.782
0.5 751.3 4.78 895.6 2.54 1530 1.25 1.3500 25.174
0.6 757.2 8.21 901.1 1.83 1572 1.22 1.3482 24.560
0.7 752.5 17.2 919.9 1.46 1619 1.21 1.3464 23.937
0.8 741.5 37.5 947.4 1.24 1672 1.22 1.3447 23.312
0.9 727.4 78.7 979.1 1.09 1730 1.25 1.3429 22.704
1.0 712.1 156 1012 0.972 1793 1.29 1.3412 22.119
2.0 567.7 3.1 × 104 1284 0.484 2938 2.57 1.3260 17.122
4.0 387.1 4.6 × 106 1447 0.372 4461 4.15 1.3084 13.827
5.0 � � � � � � 1476 0.357 4678 4.64 1.3033 13.450
10.0 � � � � � � 1531 0.335 5050 5.14 1.2893 12.872
15.0 � � � � � � 1545 0.330 5142 4.98 1.2827 12.725
20.0 � � � � � � 1548 0.330 5175 4.95 1.2791 12.661

TABLE VII. As Table III, for a MB ¼ 1.40 M⊙ star with the
CBF-EI EOS.

t νg1 τg1 νf τf νp1
τp1

M R

0.2 652.7 3.67 1029 6.68 1436 1.31 1.3613 27.434
0.3 665.1 3.60 1004 7.48 1410 1.31 1.3591 27.740
0.4 688.6 3.39 984.5 7.13 1430 1.26 1.3570 27.266
0.5 715.0 3.20 966.5 6.27 1462 1.21 1.3550 26.671
0.6 741.6 3.12 950.6 5.11 1498 1.16 1.3529 26.044
0.7 766.0 3.25 937.7 3.84 1536 1.12 1.3510 25.421
0.8 785.3 3.89 931.2 2.70 1578 1.09 1.3490 24.805
0.9 795.7 5.84 934.4 1.91 1621 1.07 1.3471 24.204
1.0 795.4 11.0 948.7 1.48 1666 1.06 1.3453 23.622
2.0 633.8 5.4 × 103 1239 0.556 2308 1.50 1.3290 18.681
4.0 381.0 3.7 × 105 1516 0.337 4010 4.28 1.3079 14.254
5.0 � � � � � � 1568 0.315 4539 5.48 1.3013 13.520
10.0 � � � � � � 1670 0.280 5459 7.33 1.2844 12.420
15.0 � � � � � � 1703 0.270 5674 6.92 1.2778 12.146
20.0 � � � � � � 1717 0.266 5761 6.69 1.2752 12.018

TABLE IX. As Table III, for a MB ¼ 1.60 M⊙ star with the
GM3 EOS.

t νg1 τg1 νf τf νp1
τp1

M R

0.2 548.5 4.72 946.8 10.6 1232 1.41 1.5571 32.104
0.3 587.0 4.05 930.4 9.24 1276 1.32 1.5546 30.898
0.4 626.4 3.53 915.4 7.84 1329 1.22 1.5522 29.722
0.5 664.1 3.18 901.1 6.38 1381 1.14 1.5498 28.653
0.6 699.0 3.04 889.0 4.82 1433 1.07 1.5475 27.675
0.7 728.6 3.24 881.2 3.35 1484 1.02 1.5453 26.797
0.8 749.6 4.27 881.7 2.22 1535 0.983 1.5431 25.993
0.9 758.7 7.45 894.3 1.57 1586 0.958 1.5410 25.236
1.0 757.3 15.6 917.9 1.25 1640 0.946 1.5388 24.525
2.0 636.9 5.4 × 103 1239 0.464 2481 1.46 1.5195 18.838
4.0 458.1 6.7 × 105 1484 0.305 4246 2.61 1.4949 14.259
5.0 397.8 106 1526 0.289 4531 3.03 1.4877 13.735
10.0 � � � � � � 1611 0.263 5050 3.69 1.4675 12.955
15.0 � � � � � � 1636 0.256 5210 3.62 1.4572 12.750
20.0 � � � � � � 1646 0.254 5261 3.51 1.4509 12.665

TABLE X. As Table III, for a MB ¼ 1.60 M⊙ star with the
CBF-EI EOS.

t νg1 τg1 νf τf νp1
τp1

M R

0.2 522.7 7.45 995.1 20.4 1197 1.41 1.5637 33.618
0.3 549.3 5.01 986.9 15.3 1231 1.36 1.5606 32.492
0.4 581.2 4.17 978.8 12.3 1273 1.29 1.5577 31.376
0.5 614.4 3.62 969.0 10.4 1318 1.21 1.5551 30.341
0.6 647.5 3.21 957.7 8.95 1362 1.14 1.5525 29.389
0.7 680.3 2.90 945.4 7.56 1408 1.08 1.5500 28.496
0.8 711.9 2.69 933.3 6.14 1453 1.02 1.5476 27.677
0.9 741.4 2.62 922.2 4.67 1497 0.978 1.5452 26.910
1.0 767.2 2.80 914.3 3.28 1542 0.941 1.5430 26.187
1.1 786.1 3.58 913.0 2.20 1588 0.911 1.5407 25.510
1.2 794.6 5.98 921.9 1.55 1634 0.889 1.5386 24.860
1.3 792.6 12.2 941.4 1.22 1682 0.874 1.5364 24.234
1.4 783.8 26.1 967.9 1.04 1732 0.867 1.5343 23.633
1.8 725.5 365. 1095 0.691 1957 0.910 1.5263 21.458
1.9 709.4 648. 1127 0.635 2022 0.939 1.5244 20.962
2.0 693.2 1.1 × 103 1158 0.586 2090 0.975 1.5226 20.486
4.0 453.8 5.5 × 105 1522 0.291 3758 2.55 1.4944 14.944
5.0 � � � � � � 1590 0.267 4348 3.37 1.4853 14.006
10.0 � � � � � � 1714 0.233 5492 5.69 1.4600 12.639
15.0 � � � � � � 1755 0.224 5801 5.88 1.4485 12.295
20.0 � � � � � � 1776 0.220 5926 5.64 1.4425 12.143

TABLE VIII. As Table III, for a MB ¼ 1.40 M⊙ star with the
LS-bulk EOS.

t νg1 τg1 νf τf νp1
τp1

M R

0.2 821.7 2.70 1017 2.61 1739 1.00 1.3505 22.909
0.3 832.1 3.58 990.7 2.07 1708 0.993 1.3488 23.135
0.4 834.6 6.95 988.7 1.46 1739 0.958 1.3470 22.658
0.5 821.9 18.2 1010 1.16 1786 0.939 1.3451 22.081
0.6 800.7 49.2 1045 0.986 1846 0.938 1.3433 21.461
0.7 776.9 122 1086 0.862 1916 0.957 1.3415 20.833
0.8 752.7 278 1128 0.761 1996 0.996 1.3396 20.219
0.9 729.1 595 1171 0.677 2087 1.05 1.3379 19.615
1.0 706.3 1.2 × 103 1213 0.608 2190 1.13 1.3361 19.035
2.0 533.6 2.5 × 105 1472 0.359 3688 2.10 1.3214 14.668
4.0 � � � � � � 1590 0.305 4757 3.42 1.3058 12.757
5.0 � � � � � � 1610 0.298 4946 3.76 1.3012 12.532
10.0 � � � � � � 1644 0.288 5299 4.41 1.2877 12.165
15.0 � � � � � � 1650 0.288 5394 4.58 1.2807 12.082
20.0 � � � � � � 1650 0.289 5431 4.64 1.2764 12.042

TABLE XI. As Table III, for aMB ¼ 1.60 M⊙ star with the LS-
bulk EOS.

t νg1 τg1 νf τf νp1
τp1

M R

0.2 662.9 3.07 1020 6.83 1440 0.997 1.5519 28.240
0.3 709.0 2.72 997.3 5.89 1494 0.919 1.5495 27.040
0.4 753.6 2.52 976.8 4.56 1555 0.846 1.5471 26.001
0.5 792.9 2.64 962.0 3.06 1618 0.787 1.5448 25.029
0.6 819.9 3.71 959.7 1.86 1680 0.745 1.5424 24.138
0.7 827.0 8.06 977.4 1.25 1743 0.717 1.5401 23.325
0.8 818.3 21.6 1012 0.988 1809 0.701 1.5379 22.547
0.9 802.1 55.8 1055 0.838 1879 0.699 1.5356 21.818
1.0 782.9 132 1102 0.728 1956 0.708 1.5334 21.124
2.0 606.4 5.3 × 104 1473 0.315 3237 1.24 1.5140 15.752
4.0 426.3 1.3 × 105 1657 0.245 4586 2.17 1.4924 12.975
5.0 374.9 9.2 × 106 1687 0.237 4825 2.44 1.4860 12.678
10.0 � � � � � � 1742 0.225 5304 3.03 1.4670 12.201
15.0 � � � � � � 1755 0.223 5452 3.19 1.4568 12.081
20.0 � � � � � � 1757 0.224 5510 3.25 1.4500 12.032
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