
Vacuum topology and the electroweak phase transition

Yiyang Zhang,1 Francesc Ferrer,2 and Tanmay Vachaspati3
1Physics Department and McDonnell Center for the Space Sciences,

Washington University, St. Louis, Missouri 63130, USA
2Physics Department, Arizona State University, Tempe, Arizona 85287, USA

3Maryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742, USA
(Received 19 June 2017; published 30 August 2017)

We investigate if the topology of pure gauge fields in the electroweak vacuum can play a role in classical
dynamics at the electroweak phase transition. Our numerical analysis shows that magnetic fields are
produced if the initial vacuum has nontrivial Chern-Simons number, and the fields are helical if the
Chern-Simons number changes during the phase transition.

DOI: 10.1103/PhysRevD.96.043014

I. INTRODUCTION

An explanation for the observed cosmic matter-
antimatter asymmetry likely requires CP violating particle
interactions at energies at or above the electroweak scale, at
an epoch when the Universe was out of thermal equilibrium
[1]. Models of matter genesis, more specifically, baryo-
genesis or leptogenesis, also necessarily involve the vio-
lation of the baryon plus lepton (Bþ L) number through
anomalous quantum processes. Several studies have now
shown that the anomalous violation of Bþ L at the time of
electroweak symmetry breaking, when the Higgs (Φ)
acquires a nonvanishing vacuum expectation value (VEV),
leads to the production of helical magnetic fields [2,3]. The
connection of matter genesis and magnetogenesis offers a
means to probe fundamental particle interactions by the
observation of magnetic fields in the Universe.
In hindsight it is not difficult to intuitively understand the

production of helical magnetic fields when Bþ L is violated
by anomalous processes. To change Bþ L requires a change
in the Chern-Simons number of the electroweak gauge fields
and, post electroweak symmetry breaking, this requires
passage through a “sphaleron” [4] that has the interpretation
of a twistedmagneticmonopole-antimonopole configuration
[5–7] The decay of the sphaleron corresponds to the
annihilation of the monopole and antimonopole, with the
release of helical magnetic fields [8,9].
In the present paper, we address a related question—can

the topology of the electroweak vacuum play a role in the
dynamics of the electroweak phase transition? A hint that
the answer is in the affirmative is suggested by the work of
Jackiw and Pi [10], where they consider a pure vacuum
SU(2) gauge field configuration that has a nonvanishing
Chern-Simons number. They then project the gauge field
configuration onto a fixed isospin direction to simulate the
effects of the Higgs field VEV, and then evolve and
calculate the helicity in the electromagnetic (EM) field.
Jackiw and Pi find a nonvanishing EM helicity and further
provide the neat result that the EM helicity at late times is
1=2 of the helicity at early times.

As originally discussed in Ref. [10], the Jackiw-Pi
result depends crucially on their model for projection of
the gauge fields in isospin space. For example, note that
the initial gauge configuration is pure gauge and has zero
energy, while the final configuration with helical magnetic
fields has nonzero energy. Clearly energy is introduced
by the act of projecting the non-Abelian gauge fields to the
Abelian component, and it is assumed that the projection
somehow mimics electroweak symmetry breaking. In a
more realistic setting, the projection will be achieved by
the process by which the Higgs field acquires a VEV, and
the precise projection in isospin space depends on the
dynamics of the Higgs field as it interacts with the gauge
(and other) fields.
In this paper we will resolve the effect of isospin

projection on the gauge fields by studying the full dynamics
of the Higgs field and the electroweak gauge fields. Our
first analysis corresponds to the dynamics during a first-
order electroweak phase transition. We will set up a pure
gauge field configuration in a spherical region with a
vanishing Higgs VEV, surrounded by the true vacuum of
the model where the Higgs has already acquired a VEV as
shown in Fig. 1. As the spherical region with vanishing
Higgs shrinks, the electroweak gauge fields will get
projected on to the EM field and presumably some
magnetic field will be generated. We calculate the energy
and helicity of the magnetic field as a function of time, for
several different values of the initial Chern-Simons number.
We also examine the case of a second-order electroweak

phase transition, as shown in Fig. 2. Here the Higgs VEV
vanishes everywhere at the initial time but its time
derivative is nonvanishing.
We start in Sec. II by describing the electroweak model

and the initial conditions that we will use to study the
evolution. We describe our numerical results in Sec. II
both for a first-order transition (Sec. III A) and for a
second-order transition (Sec. III B). We conclude in
Sec. IV. Further details of our numerical setup are
provided in the appendixes.
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II. MODEL DETAILS

The bosonic electroweak variables are the Higgs field Φ,
the SU(2) valued gauge fieldsWa

μ and the U(1) hypercharge
gauge field Bμ, with Lagrangian

L ¼ jDμΦj2 − 1

4
Wa

μνWaμν −
1

4
BμνBμν − λðjΦj2 − η2Þ2;

ð1Þ

where

Dμ ¼ ∂μ − i
g
2
σaWa

μ − i
g0

2
Bμ ð2Þ

is the covariant derivative; σa (a ¼ 1, 2, 3) the Pauli spin
matrices; and Wa

μν, Bμν are the field strengths. We describe
the resulting equations of motion and our numerical
techniques to solve them in Appendixes A and B.
The initial conditions for the gauge fields are always pure

gauge but can have a nontrivial Chern-Simons number. As
described in [10], these are

Wμ ≡ σa

2i
Wa

μ ¼
1

g
U−1∂μU; Bμ ¼ 0; ð3Þ

where

U ¼ cos
fðrÞ
2

þ iσ · ω̂ sin
fðrÞ
2

; ð4Þ

and the unit vector ω̂ ¼ x̂ points in the radial direction and
r ¼ jxj is the radial spherical coordinate. The function fðrÞ
is chosen to be

fðrÞ ¼ 2πn tanhðr=RgÞ; n ¼ 0; 1; 2;… ð5Þ

Therefore the profile function fðrÞ satisfies the boundary
conditions fð0Þ ¼ 0 and fð∞Þ ¼ 2πn. The time derivatives
of all gauge fields are taken to vanish at the initial time
t ¼ 0.
The Chern-Simons number is defined as

NCSðtÞ ¼
NF

32π2
ϵijk

Z
d3x

�
−g02BijBk

þ g2
�
Wa

ijW
a
k −

g
3
ϵabcWa

i W
b
jW

c
k

��
; ð6Þ

where NF is the number of fermion families. In the rest of
the paper, we will choose NF ¼ 1. The initial gauge field
configuration described in Eq. (3) has a Chern-Simons
number

NCS ¼ −n: ð7Þ

For the first-order phase transition set up shown in Fig. 1,
the Higgs doublet is given by

Φðt ¼ 0; rÞ ¼ η

2

�
1þ tanh

�
r − R0

w

���
0

1

�

_Φðt ¼ 0; rÞ ¼ 0; ð8Þ

where R0 > Rg is the initial size of the false vacuum region
(the bubble), and w ≪ R0 is the width of the transition

FIG. 2. As a second-order electroweak phase transition pro-
ceeds, Φ ¼ 0 everywhere but _Φ ≠ 0. (This is a simplification of
the second-order phase transition dynamics but one that is
sufficient for our purposes.) The drawing shows a spatial slice
over which Φ ¼ 0 and with a localized region of pure gauge field
with nonvanishing Chern-Simons number (red region). The blue
arrows in the vertical direction illustrate the initial growth of the
Higgs field VEV as in Eq. (9). As the VEV of Φ grows, pure
gauge field configurations get projected into massless EM fields
and massive gauge fields.

FIG. 1. In a first-order electroweak phase transition, bubbles of
true vacuum (jΦj ¼ η) will grow and encapsulate regions of false
vacuum (Φ ¼ 0), within which gauge fields with a localized
nontrivial Chern-Simons number, NCS, may exist. With time, the
bubbles of true vacuum will grow and complete the phase
transition, forcing a projection of the gauge fields within the
region of radius Rg (shown as an orange disk) in the false vacuum
onto the EM field. In studying this process, we will replace the
complicated geometry of the symmetric phase by a spherical
bubble of radius R0 (thick solid circle) and thickness w.
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region from true to false vacuum, i.e. the bubble wall
thickness.
One question that arises in the setup of the first-order

phase transition is that it should be possible to study the
evolution after performing a large gauge transformation
that makes the gauge fields trivial, Wi ¼ 0. If there is
exactly zero overlap between the scalar and gauge profiles,
such a gauge transformation will not affect the Higgs field
(up to an overall sign). However, for profile functions that
are analytic, such as the ones in Eqs. (5) and (8), there is
always some overlap between the gauge fields and nonzero
Higgs VEV. In this region jDiΦj ≠ 0 even for i in the
angular directions. The large gauge transformation that sets
Wi ¼ 0 will also twist the Higgs. In fact, the electroweak
model has two distinct and independent winding numbers:
the gauge winding of Eq. (6) and the Higgs winding, Nw,
e.g. as defined in [11], and the difference of the two
windings is invariant even under large gauge transforma-
tions. By gauging away the gauge winding, we will induce
a corresponding Higgs winding. We have explicitly
checked that the overlap between the Higgs and the gauge
fields plays a crucial role in the evolution by also consid-
ering nonanalytic profile functions, i.e. where the interior
of the bubble has exactly Φ ¼ 0 and the exterior of the
gauge configuration has exactly Wi ¼ 0. Such nonanalytic
profiles are not expected to be relevant in a physical setting
but they do show that no magnetic energy is produced if
there is no overlap. The importance of the overlap will also
be seen for analytic profiles when we demonstrate that the
magnetic field energy grows with larger Rg.
For a second-order phase transition, the Higgs doublet is

initially taken to be

Φðt ¼ 0; rÞ ¼ 0

_Φðt ¼ 0; rÞ ¼ γη2
�
0

1

�
; ð9Þ

where γ is a dimensionless parameter denoting the speed
with which the uniform Higgs is rolling off the top of the
potential. Our modeling of the second-order phase tran-
sition is not completely accurate, since we hold the Higgs
field at the origin until the potential has reached its zero
temperature form. A more realistic treatment would take
into account the temperature evolution of the potential over
time scales set by the Hubble expansion, which is ∼1017
times slower than the electroweak time scale that deter-
mines the dynamical evolution rate of the fields in our
simulations. We leave a more detailed investigation of these
effects for future work. Nevertheless, we expect our treat-
ment to fit more closely the actual cosmological phase
transition than the sudden projection of the Chern-Simons
vacuum onto massive and massless gauge field components
that was used in Ref. [10].
Once the Higgs has left the symmetric phase, Φ ¼ 0, we

can track the EM magnetic field. The EM field potential is
generally defined by

Aμ ¼ sin θwnaWa
μ þ cos θwBμ; ð10Þ

and the EM field strength follows the definition in [12],

Aμν ¼ sin θwnaWa
μν þ cos θwBμν

− i
2

gjΦj2 sin θw½ðDμΦÞ†ðDνΦÞ − ðDνΦÞ†ðDμΦÞ�;

ð11Þ

where θw is the Weinberg angle, and na is the unit vector in
SU(2) isospace defined by the direction of the Higgs field,

na ¼ −
Φ†σaΦ
jΦj2 : ð12Þ

These expressions are only defined when jΦj ≠ 0. We shall
alter them slightly so that the definition makes sense for all
Φ and coincides with the usual definition in the symmetry
broken phase. The expressions we use are

Aμ ¼ sin θwNaWa
μ þ cos θwBμ ð13Þ

Aμν ¼ sin θwNaWa
μν þ cos θwBμν

− i
2

gη2
sin θw½ðDμΦÞ†ðDνΦÞ − ðDνΦÞ†ðDμΦÞ�;

ð14Þ

where

Na ¼ −
Φ†σaΦ
η2

: ð15Þ

We will also calculate the magnetic energy in the EM
field,

Eem ¼ 1

2

Z
d3xB2; ð16Þ

and the magnetic helicity

Hem ¼
Z

d3xA · B: ð17Þ

Our numerical scheme is based on a lattice implemen-
tation of the electroweak equations as described in [13].
The numerical details are listed in Appendix B. We adopt
phenomenological values of all parameters: g ¼ 0.65,
sin2 θw ¼ 0.22, g0 ¼ g tan θw, η ¼ 1, λ ¼ 0.129. The Higgs
mass is mH ¼ 2η

ffiffiffi
λ

p ¼ 125 GeV; therefore η ¼ 174 GeV,
which means one unit of energy in our simulation is
equivalent to 174 GeV. One unit of length is
1.13 × 10−16 cm, and one unit of time is 3.78 × 10−27s.
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We use absorbing boundary conditions (ABC) to mini-
mize effects from lattice boundaries and to ensure that
negligible contributions enter from outside the finite lattice
box. It should be noted that the specific form of the ABC
varies, depending on the initial conditions, as described in
Appendix C. We run our simulation as long as the gauge
fields are confined within the lattice box. Conservation of
total energy and fulfillment of Gauss constraints are two
nontrivial checks that wemonitor in the simulation. The total
energy is conserved within 1%, while the Gauss constraints
given in Eq. (B13) are satisfied to an even higher accuracy.
Notice that both sets of initial conditions considered in this
paper automatically satisfy the Gauss constraints, and thus
should be preserved during the evolution in the bulk of the
lattice; there may be small violations due to the boundary
conditions on the lattice as discussed in Appendix B.
As a final check of our code, we have compared some

results with a completely separate evolution code [14] and
obtained consistent results.

III. RESULTS

We will now describe the results of our simulations, first
for the first-order phase transition setup of Fig. 1, and then
for the second-order phase transition setup of Fig. 2.

A. First-order phase transition

The Higgs field configuration at the initial time is given
by Eq. (8). For our simulations we will set the false vacuum
bubble radius to be R0 ¼ 8.0 and the bubble wall width
to be w ¼ 0.4. At the center of the bubble we start with a
pure gauge configuration as given in Eq. (3) with radius
Rg ¼ 6.0. We denote the initial Chern-Simons number
by −n. The case with n ¼ 0 has trivial evolution and no
gauge fields are excited by the bubble collapse. The results
for n ¼ 1, 2, 3 are nontrivial and are shown in Fig. 3 where
we plot the evolution of the Chern-Simons number, the EM
magnetic helicity defined in Eq. (17) and the EM magnetic
energy defined in Eq. (16). We have tested the evolution
with the definition of EM given in Eqs. (10) and (11) and
find agreement at late times where these expressions are
well-defined.
The total energies in our three runs with n ¼ 1, 2, 3 are

about 964, 1083 and 1250, respectively, and are well above
the sphaleron barrier, which is Esph ≈ 9 TeV [4,15] or about
52 in lattice units. So there is ample energy in the simulations
for theChern-Simons number to change.Nevertheless, being
above the sphaleron energy barrier is a necessary but not
sufficient condition for the change in Chern-Simons number.
Also note that the Chern-Simons number is an integer only
for the vacuum; a nonvacuum configuration may have a
noninteger value of the Chern-Simons number. Indeed, the
plots in Fig. 3 show noninteger values of the Chern-Simons
number as we always have some energy in the lattice.

In all our runs, there is some energy transferred from the
false vacuum bubble to the gauge sector during evolution.
This is seen in the plots of the EM energy, which is
nonvanishing after the collapse of the bubble is complete.
A nonvanishing positive helicity is obtained for the n ¼ 2,
3 cases but not for the n ¼ 1 case for which the Chern-
Simons number remains roughly constant. A rough fit to
the data in Table I gives

FIG. 3. Plots of the Chern-Simons number (blue dashed
curve), magnetic helicity (red solid curve), and magnetic energy
(green dotted-dashed curve) for initial Chern-Simons number
n ¼ 1 (top), n ¼ 2 (middle), and n ¼ 3 (bottom) in the first-order
phase transition case. Note the different scale bars for the EM
energy (in lattice units) shown on the right-hand side of the plot.
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jHemj ≈ 56ðΔNCSÞ2 ð18Þ

where ΔNCS is the change in the Chern-Simons number,
and n is the initial Chern-Simons number. Further, the sign
of magnetic helicity is the same as the sign of the change in
the Chern-Simons number.
In Fig. 4 we show the electromagnetic energy as a

function of time for several different values of the initial
gauge radius Rg. The electromagnetic energy is larger for
larger Rg. This is consistent with our expectations as
discussed below Eq. (8) since larger Rg provides greater
overlap of the initial gauge fields and the imploding bubble.

B. Second-order phase transition

The Higgs is now initially assumed to be in the
symmetry unbroken phase everywhere but in the process
of rolling down the potential toward the true vacuum [see
Fig. 2 and Eq. (9)]. In this case we need to specify the initial
velocity of the Higgs field, the extent of the gauge field
configuration, and the initial Chern-Simons number. We set
the velocity parameter γ ¼ 0.4 and the radius of the gauge
field configuration Rg ¼ 6.0. Three different initial Chern-
Simons numbers are considered: n ¼ 1, 2, 3. As in the first-
order phase transition case, the evolution for n ¼ 0 is
trivial.
The results for the second-order phase transition are very

different from the results of the first-order phase transition.

The oscillatory features can be understood by realizing that
the Higgs field oscillates about the true minimum, as is clear
from the oscillations in the Higgs kinetic energy curve in
Fig. 5. We see the general feature that the Chern-Simons
number, magnetic helicity, and magnetic energy all grow at
late times, when the kinetic energy of the Higgs also starts
dissipating. We can also understand the oscillatory behavior
by noting that the Higgs field oscillates in the potential (light
grey curve in Fig. 5). The growth of the Chern-Simons

TABLE I. n, ΔNCS and Hem for the first-order phase transition
simulations. For n ¼ 1, ΔNCS and Hem are consistent with zero.

n ΔNCS Hem

1 0.044 −0.20
2 0.31 5.4
3 0.77 33

FIG. 4. Plot of EM energy generated during a first-order phase
transition for different Rg. The initial conditions are given by
Eqs. (3) and (8). Here, R0 ¼ 8.0, w ¼ 0.4, n ¼ 2.

FIG. 5. Plots of the Chern-Simons number (blue dashed
curve), magnetic helicity (red solid curve), and magnetic energy
(green dotted-dashed curve) for initial Chern-Simons number
n ¼ 1 (top), n ¼ 2 (middle), and n ¼ 3 (bottom) in the second-
order phase transition case. The kinetic energy of the Higgs is
also shown in grey. Note the different scale bar for the EM energy
shown in lattice units on the right-hand side of the plot.
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number, magnetic helicity, and energy is more rapid for
larger values of n. We expect the growth to saturate once the
energy is evenly distributed between the scalar and gauge
field sectors. However, to see this would require very long
run times and very large lattices.
Our results show that even in the case of a second-order

phase transition, energy is transferred during the phase
transition to EM magnetic fields with nontrivial helicity if
the gauge fields initially have a nonvanishing Chern-
Simons number. As in the first-order phase transition case,
the sign of magnetic helicity is the same as the sign of the
change in the Chern-Simons number.

IV. CONCLUSIONS

We have investigated the effects of pure gauge fields and
their topology on the electroweak phase transition. The
creation of magnetic fields from the gauge vacuum was
anticipated in Ref. [10], treating the phase transition as a
mathematical projection of the gauge fields into massive
and massless components. In this paper we have numeri-
cally examined the classical dynamics of the electroweak
symmetry breaking for different gauge vacua. Our results
broadly agree with the analysis of Ref. [10] in that the
evolution can lead to the creation of helical magnetic fields.
The details of the evolution are more involved. In the

present work, we have explored the evolution and magnetic
field generation during processes that can occur during a
first-order phase transition that proceeds by bubble nucle-
ation, and also during a second-order phase transition that
proceeds by a continuously rolling Higgs field. In cases
where the initial Chern-Simons number is zero and we set
the gauge fields to zero, the evolution is trivial, the Chern-
Simons number continues to be zero, and magnetic fields
are not produced. If the initial Chern-Simons number is
nonzero but does not change during evolution (see the
n ¼ 1 case in Fig. 1), even then helicity is not generated
though magnetic fields are produced. This may be related to
the generation of magnetic fields at the electroweak phase
transition due to nonvanishing gradient energy of the Higgs
as was discussed in Refs. [16,17]. (For this reason we also
expect magnetic fields to be produced in the zero Chern-
Simons case if initially the gauge fields are not zero.) If the
initial Chern-Simons number is large—greater than equal to
2 for the other parameters in our runs—the Chern-Simons
number changes during evolution and magnetic helicity is
produced. The connection between changes in the Chern-
Simons number and magnetic helicity production, and the
relation with changes in the baryon number via a quantum
anomaly, has been pointed out in Refs. [8,18,19]. Thus there
are several lines of reasoning that point to the production of
magnetic fields at the electroweak phase transition.
Based on early arguments we would expect that the

magnetic helicity is directly proportional to the change in
Chern-Simons number [18,19]. In our runs, this simple
relationship does not bear out. Instead we observe that the
magnetic helicity goes as the square of the change in

Chern-Simons number [Eq. (18)]. This result should be
considered tentative because we have only been able to run
our simulations for a few values of the initial Chern-Simons
number. Finer lattices and longer runs will be necessary to
study a greater range of initial Chern-Simons number.
Quantitative estimates of the magnetic field produced at
the electroweak phase transition will require further work
along the lines of [11].
Finally we also mention that a non-Abelian vacuum

consisting of a periodic array of pure gauge vortices has
been proposed in Ref. [20]. It is argued that spontaneous
symmetry breaking in such a vacuum can also generate
magnetic fields [21,22]. It would be worthwhile to study a
dynamical phase transition in this vacuum just as we have
done for the Chern-Simons vacua in this paper.
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APPENDIX A: ELECTROWEAK CONTINUUM
EQUATIONS

The classical electroweak equations of motion that result
from the bosonic electroweak Lagrangian in Eq. (1) are

DμDμΦþ 2λðjΦj2 − η2ÞΦ ¼ 0

∂μBμν ¼ g0Im½Φ†ðDνΦÞ�
∂μWaμν þ gϵabcWb

μWcμν ¼ gIm½Φ†σaðDνΦÞ�:
In a numerical simulation, it is convenient to use the

temporal gauge, Wa
0 ¼ 0 and B0 ¼ 0. Then, the equations

of motion become

∂2
0Φ ¼ DiDiΦ − 2λðjΦj2 − η2ÞΦ

∂2
0W

a
i ¼ −∂kWa

ik − gϵabcWb
kW

c
ik þ gIm½Φ†σaðDiΦÞ�

∂2
0Bi ¼ −∂kBik þ g0Im½Φ†ðDiΦÞ�; ðA1Þ

along with two Gauss constraints,

∂0∂jBj − g0Im½Φ†∂0Φ� ¼ 0

∂0∂jWa
j þ gϵabcWb

j∂0Wc
j − gIm½Φ†σa∂0Φ� ¼ 0: ðA2Þ

We have implemented a discretized version of these
equations following Ref. [14] as a check of our main
results that were obtained using the lattice formulation of
Appendix B.
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APPENDIX B: LATTICE IMPLEMENTATION

Our lattice implementation of the electroweak evolution
equations follows closely the discussion in Ref. [13].
We introduce the lattice-based fields Uμðt; xÞ and

Vμðt; xÞ, which are related to the continuum gauge fields
through

Uiðt; xÞ ¼ exp

�
−
i
2
gΔxσaWa

i

�

U0ðt; xÞ ¼ exp

�
−
i
2
gΔtσaWa

0

�

Viðt; xÞ ¼ exp

�
−
i
2
gΔxBi

�

V0ðt; xÞ ¼ exp

�
−
i
2
gΔtB0

�
: ðB1Þ

The discretized action in terms of these fields is

S ¼
X
x;t

ΔtΔx3
�
ðD0ΦÞ†ðD0ΦÞ −

X
i

ðDiΦÞ†ðDiΦÞ

− UðΦÞ þ
�

2

gΔtΔx

�
2X

i

�
1 −

1

2
TrU0i

�

þ
�

2

g0ΔtΔx

�
2X

i

ð1 − ReV0iÞ

−
2

g2Δx4
X
i;j

�
1 −

1

2
TrUij

�

−
2

g02Δx4
X
i;j

ð1 − ReVijÞ
�
; ðB2Þ

where Φðt; xÞ is the Higgs field doublet defined on each
lattice site; Uiðt; xÞ and Viðt; xÞ are the SU(2) and U(1)
link fields, respectively, defined on the link between the
neighboring sites x and xþ i; and for the U(1) link field we
take the real part rather than the trace as in Ref. [13]. Also,
U0ðt; xÞ ¼ I2 and V0ðt; xÞ ¼ 1 consistent with (B1) and
our choice of temporal gauge. Note that throughout
this appendix latin indices take values i, j, k ¼ 1, 2, 3
and repeated indices are not summed over.
Here, we adopt the conventional interpretation that

Uiðt; xÞ, Viðt; xÞ parallel transport the fields at site xþ i

back to site x; then U†
i ðt; xÞ, V†

i ðt; xÞ parallel transport the
fields at site x to xþ i. Then, the covariant derivative of
Φðt; xÞ that enters in Eq. (B2) has the components

DiΦ ¼ 1

Δx
½Uiðt; xÞViðt; xÞΦðt; xþ iÞ −Φðt; xÞ�

D0Φ ¼ 1

Δt
½U0ðt; xÞV0ðt; xÞΦðtþ Δt; xÞ −Φðt; xÞ�:

Finally, the plaquette fields can be seen as the discretized
version of the magnetic fields:

Uijðt; xÞ ¼ Ujðt; xÞUiðt; xþ jÞU†
jðt; xþ iÞU†

i ðt; xÞ
Vijðt; xÞ ¼ Vjðt; xÞViðt; xþ jÞV†

jðt; xþ iÞV†
i ðt; xÞ:

The fields Φðt; xÞ, Uiðt; xÞ and Viðt; xÞ are defined at
the time steps tþ Δt; tþ 2Δt;…, while the conjugate
momentum fields, Πðtþ Δt=2; xÞ, Fðtþ Δt=2; xÞ and
Eðtþ Δt=2; xÞ, are defined at time steps tþ Δt=2;
tþ 3Δt=2;… They are related by

Φðtþ Δt; xÞ ¼ Φðt; xÞ þ ΔtΠðtþ Δt=2; xÞ ðB3Þ

Viðtþ Δt; xÞ ¼ 1

2
g0ΔxΔtEiðtþ Δt=2; xÞViðt; xÞ ðB4Þ

Uiðtþ Δt; xÞ ¼ gΔxΔtFiðtþ Δt=2; xÞUiðt; xÞ: ðB5Þ

The equations of motion that result from setting the
functional derivative of the action to zero are

ΠðtþΔt=2; xÞ ¼ Πðt−Δt=2; xÞ

þΔt
�

1

Δx2
X
i

½Uiðt; xÞViðt; xÞΦðt; xþ iÞ

− 2Φðt; xÞ þU†
i ðt; x− iÞV†

i ðt; x− iÞ

×Φðt; x− iÞ� − ∂U
∂Φ†

�
ðB6Þ

Im½Ekðtþ Δt=2; xÞ� ¼ Im½Ekðt − Δt=2; xÞ� þ Δt
�
g0

Δx
Im½Φ†ðt; xþ kÞU†

kðt; xÞV†
kðt; xÞΦðt; xÞ�

−
2

g0Δx3
X
i

Im½Vkðt; xÞViðt; xþ kÞV†
kðt; xþ iÞV†

i ðt; xÞ

þ Viðt; x − iÞVkðt; xÞV†
i ðt; xþ k − iÞV†

kðt; x − iÞ�
�

ðB7Þ

VACUUM TOPOLOGY AND THE ELECTROWEAK PHASE … PHYSICAL REVIEW D 96, 043014 (2017)

043014-7



Tr½iσmFkðtþ Δt=2; xÞ� ¼ Tr½iσmFkðt − Δt=2; xÞ� þ Δt
�

g
Δx

Re½Φ†ðt; xþ kÞU†
kðt; xÞV†

kðt; xÞiσmΦðt; xÞ�

−
1

gΔx3
X
i

Tr½iσmUkðt; xÞUiðt; xþ kÞU†
kðt; xþ iÞU†

i ðt; xÞ

þ iσmUkðt; xÞU†
i ðt; xþ k − iÞU†

kðt; x − iÞUiðt; x − iÞ�
�
; ðB8Þ

In Eq. (B6), the term U†
i ðt; x − iÞV†

i ðt; x − iÞΦðt; x − iÞ
corrects the corresponding Eq. (A17) in Ref. [13], where it
is written without the −i.
The remaining components, ReðEkÞ and TrðFkÞ, can be

found by using

jEj ¼ 2

g0ΔxΔt
; detðFÞ ¼

�
1

gΔxΔt

�
2

; ðB9Þ

where the square in the second equation corrects a typo
in Ref. [13].
The lattice action (B2) is invariant under gauge trans-

formations,

Φðt; xÞ → Ω1ðt; xÞΩ2ðt; xÞΦðt; xÞ
Uiðt; xÞ → Ω2ðt; xÞUiðt; xÞΩ†

2ðt; xþ iÞ
Viðt; xÞ → Ω1ðt; xÞViðt; xÞΩ†

1ðt; xþ iÞ
Ω2 ∈ SUð2Þ; Ω1 ∈ Uð1Þ;

which imply the following Gauss constraints:

GU1ðxÞ≡ 1

Δx

X
i

Im½Eiðtþ Δt=2; xÞ−Eiðtþ Δt=2; x − iÞ�

− g0Im½Π†ðtþ Δt=2; xÞΦðt; xÞ� ¼ 0 ðB10Þ

Gk
SU2ðxÞ≡ 1

Δx

X
i

Trfiσk½Fiðtþ Δt=2; xÞ − U†
i ðt; x − iÞ

× Fiðtþ Δt=2; x − iÞUiðt; x − iÞ�g
− gRe½Π†ðtþ Δt=2; xÞiσkΦðt; xÞ� ¼ 0: ðB11Þ

If the initial time is t0 ¼ 0, our initial conditions should
specify Φð0; xÞ, Uið0; xÞ, Við0; xÞ, as well as ΠðΔt=2; xÞ,
FiðΔt=2; xÞ, EiðΔt=2; xÞ. This is consistent with the
requirements for second-order differential equations. As
mentioned in [23], there is no conserved quantity that can
be identified as energy, but we can construct a quantity that
approaches the conserved energy in the small Δt limit:

E ¼
X
x

Δx3
��

Πðtþ Δt=2; xÞ þ Πðt − Δt=2; xÞ
2

�†�Πðtþ Δt=2; xÞ þ Πðt − Δt=2; xÞ
2

�

þ
X
i

½DiΦðt; xÞ�†½DiΦðt; xÞ� þ UðΦðt; xÞÞ

þ
�

2

gΔtΔx

�
2 1

2

X
i

��
1 −

gΔxΔt
2

TrFiðtþ Δt=2; xÞ
�
þ
�
1 −

gΔxΔt
2

TrFiðt − Δt=2; xÞ
��

þ
�

2

g0ΔtΔx

�
2 1

2

X
i

��
1 −

g0ΔxΔt
2

ReEiðtþ Δt=2; xÞ
�
þ
�
1 −

g0ΔxΔt
2

ReEiðt − Δt=2; xÞ
��

þ 2

g2Δx4
X
i;j

�
1 −

1

2
TrUijðt; xÞ

�
þ 2

g02Δx4
X
i;j

ð1 − ReVijðt; xÞÞ
�
: ðB12Þ

There are two checks that can be made to ensure the
simulation is running correctly. The first one is conserva-
tion of total energy. Given a localized configuration, the
total energy inside the lattice box should be fixed before
this configuration reaches the boundary. The second check
is that the Gauss constraints should be satisfied. Following
Ref. [13], we introduce a “Hamiltonian”

H¼ðΔxÞ3
2

X
x

½GU1ðxÞGU1ðxÞþGk
SU2ðxÞGk

SU2ðxÞ� ðB13Þ

as a measure of the violation of the Gauss constraints.
Numerically, the value of Eq. (B13) should be very close to
zero. As pointed out in [23], the Gauss constraints are
preserved by the evolution algorithm as long as they are
satisfied by the initial conditions. However, we are using
ABC to evolve the fields at the boundaries. The ABC
equations, discussed in the following appendix, do not in
general preserve the Gauss constraints. We find that our
simulations satisfy the constraints to a very high accuracy,
which is a nontrivial check that the boundary conditions are
appropriate.
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APPENDIX C: ABSORBING BOUNDARY
CONDITIONS

To implement absorbing boundary conditions in our
simulations, we extend the results in [24–26] as described
below.
Neglecting for the moment interactions with gauge

fields, the equation of motion for the Higgs can be written as

½∂2
t −∇2 þ JðΦÞ�Φ ¼ 0; ðC1Þ

where JðΦÞ ¼ 2λðjΦj2 − η2Þ.
We can formally decompose Eq. (C1) at a boundary as

h
n ·∇ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
t − ∂2⊥ þ JðΦÞ

q i
h
n ·∇þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
t − ∂2⊥ þ JðΦÞ

q i
Φ ¼ 0; ðC2Þ

where n is the outward pointing unit normal vector of the
boundary, and ∂⊥ ≡ ∇ − nðn ·∇Þ.
To prevent exterior waves from entering the simulation

lattice, while allowing outgoing waves to leave the box, we
require

h
n ·∇þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
t − ∂2⊥ þ JðΦÞ

q i
Φ ¼ 0: ðC3Þ

To find a local approximate form of Eq. (C3) that is suitable
for numerical implementation, we need to expand the
square root in a power series.
If ∂2

t is the dominant term, then −∂2⊥ þ JðΦÞ can be
treated as a small perturbation. This approximation will be
most accurate for waves that hit the boundary perpendicu-
larly, with negligible ∂2⊥Φ and negligible JðΦÞ. Keeping
terms that are linear in the perturbation, Eq. (C3) becomes

�
n · ∇þ ∂t

�
1 −

∂2⊥ − JðΦÞ
2∂2

t

��
Φ ¼ 0; ðC4Þ

which can be simplified as

∂2
tΦ ¼ −n ·∇∂tΦþ 1

2
∂2⊥Φ −

1

2
JðΦÞΦ: ðC5Þ

We use this approximation when simulating a first-order
phase transition, as JðΦÞ can then be neglected at the
boundary.

In the case of a second-order phase transition, even for
t ¼ 0 the potential is not small at the boundary. Therefore
we treat ∂2

t þ JðΦÞ as the dominant term and ∂2⊥ as a
perturbation. Now Eq. (C3) becomes
�
n · ∇þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
t þ JðΦÞ

q �
1 −

∂2⊥
2ð∂2

t þ JðΦÞÞ
��

Φ ¼ 0:

ðC6Þ
Assuming that ∂2

t ≫ JðΦÞ ≫ ∂2⊥, we can further simplify
the above equation as

∂2
tΦ ¼ −n ·∇∂tΦþ 1

2
∂2⊥Φ − JðΦÞΦ: ðC7Þ

Although this scheme can be extended to include higher
order terms in the perturbation, we find that Eqs. (C5) and
(C7) are accurate enough for our purpose.
To take into account the coupling of the Higgs to the

gauge fields, the spatial derivatives in Eq. (C1) should be
replaced with covariant derivatives. We start by writing
Eq. (C1) as

½∂2
t −∇2 þ∇2 −D2 þ JðΦÞ�Φ ¼ 0; ðC8Þ

where D denotes the covariant derivative. Then the pre-
vious discussion still holds if we use the current
J0ðΦÞ≡∇2 −D2 þ JðΦÞ, which now includes the gauge
interactions.
To evolve the gauge fields at the boundary, we use the

lowest order absorbing boundary conditions:

ET ¼ −n × B: ðC9Þ

In principle, higher order corrections could be included
along similar lines as for the scalar wave equation.
However, it has been argued in [26] that they may give
rise to numerical instabilities.
We stress that implementing the ABC for gauge fields on

the lattice requires us to make some compromises that
cannot always be rigorously justified. We use a scheme that
only requires two time slices and the nearest neighboring
spatial points, which roughly speaking is robust as long as
the gauge fields on the boundary are small. As shown by
the energy and Gauss constraint checks, they are adequate
for our purposes.
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