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We study rapidly rotating hybrid stars with the Dyson-Schwinger model for quark matter and the
Brueckner-Hartree-Fock many-body theory with realistic two-body and three-body forces for nuclear
matter. We determine the maximum gravitational mass, equatorial radius, and rotation frequency of stable
stellar configurations by considering the constraints of the Keplerian limit and the secular axisymmetric
instability, and compare with observational data. We also discuss the rotational evolution for constant
baryonic mass and find a spin-up phenomenon for supramassive stars before they collapse to black holes.
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I. INTRODUCTION

Neutron stars (NS) are among the densest objects known
in the Universe. They contain an extreme environment
shaped by the effects of the four fundamental interactions.
NS have a typical massM ∼ 1.4 M⊙ and radius R∼10 km.
Therefore, the mean particle density can reach ð2–3Þρ0,
and the core density ∼10ρ0 [1–5], where ρ0 ¼ 0.17 fm−3 is
the so-called nuclear saturation density. At this density,
the nucleons might undergo a phase transition to quark
matter (QM), and a hybrid NS (HNS) with a QM core is
formed [6,7]. This makes NS ideal astrophysical labora-
tories to study hadronic interactions over a wide range of
densities [8].
Unfortunately, as a key ingredient of the investigation of

NS, the equation of state (EOS) remains uncertain. The
microscopic theory of the nucleonic EOS has reached a
high degree of sophistication [1,9–22], but the QM EOS is
poorly known at zero temperature and at the high baryonic
density appropriate for NS, because it is difficult to perform
first-principle calculations of QM.
Therefore one can presently only resort to more or less

phenomenological models for describing QM, such as
the MIT bag model [23], the Nambu–Jona-Lasinio model
[24–27], the quasiparticle model [28,29], or the quark-
meson model [30]. Dyson-Schwinger equations (DSE)
provide a nonperturbative continuum field approach to
QCD that can simultaneously address both confinement
and dynamical chiral symmetry breaking [31,32]. In
Refs. [33–35] we developed a Dyson-Schwinger quark
model (DSM) for deconfined QM based on the DSE
formalism, which was combined with a Brueckner-
Hartree-Fock (BHF) approach for the hadronic phase in
order to model NS. In those works, we considered static

and spherical symmetric HNS, whereas in this paper we
include the effects of rotation.
(Fast) rotation and related phenomena of NS could be

important features in the sense that they might eventually
allow us to deduce properties of the underlying EOS, e.g.,
the question of whether or not QM is present in the interior
of NS. Several phenomena have been proposed in this
regard, e.g., the possible existence of “twin” NS configu-
rations with the same mass but different radii [36–41], the
“backbending” or spin-up phenomenon caused by the onset
of the quark phase [42,43], or the onset of the phase
transition and associated energy release in decelerating fast
pulsars [42–45].
Rotation is a common property of NS. Of the thousands

of currently observed pulsars, the fastest one has been
discovered in the globular cluster Terzan 5 with a frequency
of 716 Hz [46]. At this rapid rotation, a NS would
be flattened by the centrifugal force, and the Tolman-
Oppenheimer-Volkoff equation, suitable for a static and
spherically symmetric situation, cannot describe correctly
the rotating stellar structure. In the present paper we
approximate the NS as an axisymmetric and rigid rotating
body, and resort to Einstein’s theory of general relativity
for a rapidly rotating star. Numerical methods for an
(axisymmetric) rotating stellar structure have been
advanced by several groups [47–51]. In this work we
utilize the KEH method [47] to obtain the properties of
rapidly rotating HNS.
This paper is organized as follows. In Sec. II we briefly

discuss the construction of the EOS of a HNS. In Sec. III
we present the rotation effects on the HNS; the allowed
ranges of gravitational mass, equatorial radius, and Kepler
frequency are discussed in this section and compared with
observational data. The rotational evolution for a constant
baryonic mass is also analyzed. Section IV contains our
conclusions.*huanchen@cug.edu.cn
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II. THE EQUATION OF STATE

A. Nuclear matter

For nuclear matter we resort to the BHF many-body
theory with realistic two-body and three-body nucleonic
forces, which has been extensively discussed in Ref. [52].
We recall that this theory has also been extended with the
inclusion of hyperons, which might appear in the core of a
NS. The hyperonic EOS turns out to be very soft, and this
results in too low NS maximum masses [53], well below
the current observational limit of about two solar masses
[54–56]. The presence of strange baryonic matter also often
inhibits the appearance of QM [57]. In this work we do not
discuss this aspect, but limit ourselves to consider only
nucleons and leptons in the hadronic phase.
In the BHF theory the energy per nucleon of nuclear

matter is given by

B
A
¼ 3

5

k2F
2m

þ 1

2ρ

X
k;k0<kF

hkk0jG½eðkÞ þ eðk0Þ; ρ�jkk0iA; ð1Þ

where G½W; ρ� is the solution of the Bethe-Goldstone
equation

G½W; ρ� ¼ V þ
X

ka;kb>kF

V
jka; kbiQhka; kbj
W − eðkaÞ − eðkbÞ

G½W; ρ�; ð2Þ

V is the bare nucleon-nucleon (NN) interaction, ρ is the
nucleon number density, and W the starting energy. The
single-particle energy

eðkÞ ¼ eðk; ρÞ ¼ k2

2m
þUðk; ρÞ ð3Þ

and the Pauli operator Q determine the propagation of
intermediate baryon pairs. The BHF approximation for the
single-particle potential using the continuous choice is

Uðk; ρÞ ¼
X
k0≤kF

hkk0jG½eðkÞ þ eðk0Þ; ρ�jkk0iA: ð4Þ

Due to the occurrence of UðkÞ in Eq. (3), the above
equations constitute a coupled system that has to be solved
in a self-consistent manner for several momenta of the
particles involved, at the considered densities. The only
input quantities of the calculation are the NN two-body
potentials. In this work we present results obtained with the
Bonn-B (BOB) potential [58] as input, supplemented with
compatible three-body forces [16,59,60]. The associated
EOS yields fairly large maximum masses of about 2.5 M⊙
for purely nucleonic NS (NNS).
For the calculation of the energy per nucleon of

asymmetric nuclear matter, we use the so-called parabolic
approximation [11],

B
A
ðρ; xÞ ¼ B

A
ðρ; x ¼ 0.5Þ þ ð1 − 2xÞ2EsymðρÞ; ð5Þ

where x ¼ ρp=ρ is the proton fraction and EsymðρÞ is the
symmetry energy, which can be expressed in terms of the
difference of the energy per nucleon of pure neutron matter
(x ¼ 0) and symmetric matter (x ¼ 0.5):

EsymðρÞ ¼
B
A
ðρ; x ¼ 0Þ − B

A
ðρ; x ¼ 0.5Þ: ð6Þ

The parametrized results of pure neutron and symmetric
matter with different interactions can be found in Ref. [16].
The energy density of baryon/lepton matter as a function of
the different partial densities is then

εðρn; ρp; ρe; ρμÞ ¼ ðρnmn þ ρpmpÞ þ ðρn þ ρpÞ
B
A
ðρn; ρpÞ

þ εeðρeÞ þ εμðρμÞ; ð7Þ

where εeðρeÞ and εμðρμÞ are the energy densities of
electrons and muons. Once the energy density is known,
the chemical composition of the beta-equilibrated matter
can be calculated and finally the EOS,

P ¼ ρ2
d
dρ

εðfρiðρÞgÞ
ρ

¼ ρ
dε
dρ

− ε: ð8Þ

B. Quark matter

The quark propagator based on the Dyson-Schwinger
equation at finite quark chemical potential μ assumes a
general form with rotational covariance,

Sðp; μÞ−1 ¼ iγpþ iγ4ðp4 þ iμÞ þmq þ Σðp; μÞ ð9Þ

≡ iγpAðp2; p · uÞ þ Bðp2; p · uÞ
þ iγ4ðp4 þ iμÞCðp2; p · uÞ; ð10Þ

where mq is the current quark mass, u ¼ ð0; iμÞ, and
possibilities of other structures, e.g., color superconduc-
tivity [61–63], are disregarded. The quark self-energy can
be obtained from the gap equation,

Σðp; μÞ ¼
Z

d4q
ð2πÞ4 g

2ðμÞDρσðp − q; μÞ

×
λa

2
γρSðq; μÞ

λa

2
Γσðq; p; μÞ; ð11Þ

where λa are the Gell-Mann matrices, gðμÞ is the coupling
strength, Dρσðk; μÞ the dressed gluon propagator, and
Γσðq; p; μÞ the dressed quark-gluon vertex at finite chemi-
cal potential.
For the quark-gluon vertex and the gluon propagator we

employ the widely used “rainbow approximation” [33,64],
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Γσðq; p; μÞ ¼ γσ; ð12Þ

and assume the Landau gauge form for the gluon propa-
gator, with an infrared-dominant interaction modified by
the chemical potential [33,65]

g2ðμÞDρσðk; μÞ ¼ 4π2d
k2

ω6
e−

k2þαμ2

ω2

�
δρσ −

kρkσ
k2

�
: ð13Þ

The various parameters can be obtained by fitting meson
properties and chiral condensate in vacuum [66,67], and we
use ω ¼ 0.5 GeV, d ¼ 1 GeV2. The phenomenological
parameter α represents a reduction (screening) of the
effective interaction with increasing chemical potential.
This parameter cannot yet be fixed independently and its
value has been amply discussed in previous works [33–35].
Knowing the quark propagator, the EOS of cold QM can

be obtained via the momentum distribution [33,64,68],

fqðjpj; μÞ ¼
1

4π

Z
∞

−∞
dp4trD½−γ4Sqðp; μÞ�; ð14Þ

ρqðμÞ ¼ 6

Z
d3p
ð2πÞ3 fqðjpj; μÞ; ð15Þ

PqðμqÞ ¼ Pqðμq;0Þ þ
Z

μq

μq;0

dμρqðμÞ: ð16Þ

The total density and pressure for pure QM are given by
summing the contributions of all flavors. In addition, we
define the phenomenological bag constant

BDS ≡ −
X

q¼u;d;s

Pqðμq;0Þ; ð17Þ

which corresponds to the bag constant of the MIT bag
model in the limit α → ∞. In this work we set it to a rea-
sonable value BDS ¼ 90 MeV fm−3 (B1=4

DS ≈ 160 MeV); see
the discussion in [33–35]. We remark that in our approach
BDS cannot be smaller than about 50 MeV fm−3 ≈
ð140 MeVÞ4, which poses the lower limit for the stability
of ordinary 2QM nuclear matter [35]. These are typical
values used also in other quark models [30,38].

C. Construction of the hybrid star EOS

In order to study the properties of a rapidly rotating HNS,
we should first construct the EOS of the star. In principle
the EOS should be calculated in a unified consistent way
from the same theory. However, the treatment of baryonic
correlations in the DSE is still quite rudimentary [69–73],
and therefore we resort to the usual separate modeling of
the hadronic and quark phase within different theoretical
approaches. Both phases are then joined by a thermody-
namic phase transition.

We assume that the hadron-quark phase transition is of
first order, and perform the Gibbs construction [74], thus
imposing that nuclear matter and QM are beta stable and
globally charge neutral. This is at variance with the
Maxwell construction, where the two phases must be
separately charge neutral. However, in our approach the
Maxwell construction produces instable stellar configura-
tions at the onset of the QM phase; see [33]. We remark that
recently [36–41] an exotic scenario with an unstable mass
gap and existence of stable twin NS configurations was
proposed. However, that requires very special conditions
(extremely stiff hadronic EOS giving very large NS radii,
and a very strong first-order Maxwell construction to QM),
which are not features of our EOSs; see also a recent
discussion in [30].
We also recall that Maxwell and Gibbs constructions

are the extremes of the generalized Gibbs construction
taking into account finite-size effects [1,74–76], which
are however currently quantitatively unknown due to
missing input information. Therefore neither pure
Maxwell nor pure Gibbs constructions are expected to
be realized in nature.
In the purely nucleonic phase, which consists of baryons

(n, p) and leptons (e, μ), the conditions of beta stability and
charge neutrality can be expressed as

μn − μp ¼ μe ¼ μμ; ð18Þ

ρp ¼ ρe þ ρμ; ð19Þ

where μi are the chemical potentials and ρi the particle
number densities. Similarly the pure QM phase, which
contains three-flavor quarks (u, d, s) and leptons (e, μ),
should satisfy the constraints of beta stability and charge
neutrality:

μu þ μe ¼ μu þ μμ ¼ μd ¼ μs; ð20Þ

2ρu − ρd − ρs
3

− ρe − ρμ ¼ 0: ð21Þ

According to the Gibbs construction, there is a mixed
phase where the hadron and quark phases coexist, and both
phases are in equilibrium with each other [1]. This can be
expressed as

μi ¼ biμB − qiμe; pH ¼ pQ ¼ pM; ð22Þ

where bi and qi denote baryon number and charge of the
particle species i ¼ n; p; u; d; s; e; μ in the mixed phase. To
solve those equations, we also need the global charge
neutrality condition

χρQc þ ð1 − χÞρHc ¼ 0; ð23Þ
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where ρQc and ρHc are the charge densities of quark and
nuclear matter, and χ is the volume fraction occupied by
QM in the mixed phase. From these equations, we can
derive the energy density εM and the baryon density ρM of
the mixed phase as

εM ¼ χεQ þ ð1 − χÞεH; ð24Þ

ρM ¼ χρQ þ ð1 − χÞρH: ð25Þ

In the upper panel of Fig. 1 we show the pressure vs
baryon chemical potential μB ¼ μn ¼ μu þ 2μd. The solid
black curve represents the calculation for beta-stable and
asymmetric nuclear matter with BOB EOS; the curves
labeled DSα are for pure QM with several choices of the
phenomenological parameter α. In the lower panel the
complete EOSs of HNS are shown, i.e., pressure vs baryon
density. We can see that the EOS contains three sections: a
pure hadronic phase at low density, followed by a mixed

phase, and a pure quark phase at high density. We note that
the onset of the phase transition is determined by the value
of the parameter α; larger α produces an increasingly softer
QM EOS with a lower phase transition onset density. For
high values of α we find that QM appears quite early, e.g.,
for α ¼ 10 at a baryon density ρ < ρ0.
For completeness, we mention that for the calculation of

the stellar structure we use the EOSs by Feynman et al. [77]
and Baym et al. [78] for the outer and inner crusts,
respectively.

III. RESULTS AND DISCUSSION

The structure of a rapidly rotating NS is different from
the static one, since the rotation can strongly deform the
star. We assume NS are steadily rotating and have axisym-
metric structure. Therefore the space-time metric used to
model a rotating star can be expressed as

ds2 ¼ −eγþρdt2 þ e2βðdr2 þ r2dθ2Þ
þ eγ−ρr2sin2θðdϕ − ωdtÞ2; ð26Þ

where the potentials γ, ρ, β, ω are functions of r and θ only.
The matter inside the star is approximated by a perfect fluid
and the energy-momentum tensor is given by

Tμν ¼ ðεþ pÞuμuν − pgμν; ð27Þ

where ε, p, and uμ are the energy density, pressure, and
four-velocity, respectively. In order to solve Einstein’s field
equation for the potentials γ, ρ, β, and ω, we adopt the KEH
method [47] and use the public RNS code [79] for
calculating the properties of a rotating star.

A. Keplerian limit

The rotational frequency is a directly measurable quan-
tity of pulsars, and the Keplerian (mass-shedding) fre-
quency fK is one of the most studied physical quantities for
rotating stars [30,40,49,80–84]. In Fig. 2 we show the
gravitational NS mass as a function of the central baryon
density (left panel) and of the equatorial radius (right
panel), using the EOSs displayed in Fig. 1. Results are
plotted for both the static configurations (thin curves) and
for the ones rapidly rotating at Keplerian frequency (bold
curves).
In all cases the maximum masses of HNS are lower than

those of NNS, because the appearance of QM in the core of
the star results in a softening of the very hard nucleonic
EOS. Comparing Keplerian and static sequences, rotations
increase the maximum mass and equatorial radius sub-
stantially. The maximum masses of the static and Keplerian
sequences with various EOSs, as well as the corresponding
equatorial radii and central densities, are listed in Table I.
The maximum masses increase by about 20% from the
static to the Keplerian sequence. According to the current

FIG. 1. Upper panel: Pressure vs baryon chemical potential
for beta-stable and asymmetric nuclear matter and QM. The solid
curve denotes nuclear matter using the BOB EOS, and the
broken curves labeled DSα represent the DSM EOS for different
choices of α. Lower panel: Complete EOS of HNS with the Gibbs
phase transition construction. The lower and upper limits of the
mixed phase (bars) as well as the central densities of maximum-
mass HNS configurations (triangles nonrotating, squares at
Kepler frequency; see Table I) are marked.
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observations of massive pulsars [54–56], the DSM EOSs
with α≳ 2 are ruled out. (The frequencies of PSR J1614-
2230 [54,56] and PSR J0348+0432 [55] are 317 Hz and
26 Hz, respectively, which are both too small to substan-
tially increase the maximum mass due to rotation.) In
Table I we list also the densities at the lower and upper
boundaries of the mixed phase, and it can be seen that a
pure quark phase cannot be reached in the HNS under the
constraint of Mmax > 2 M⊙.
In Fig. 3 we present the Keplerian frequency as a

function of gravitational mass for some selected EOSs.
We observe that it increases monotonically both for NNS
and HNS. The Keplerian frequency of HNS increases more
rapidly after QM onset, and is larger than the one of a NNS
with the same gravitational mass, because the stellar radius

is smaller in the former case due to the presence of a very
dense QM core. However, due to the lower maximum mass
of HNS, the maximum Keplerian frequency of HNS is
lower than the one of NNS, as also listed in Table I for the
various EOSs discussed above. Our results satisfy the
constraint from the observed fast-rotating pulsar PSR
J1748-2446ad with 716 Hz [46] or the even more severe
constraint from XTE J1739-285 with 1122 Hz [85], which
has not been confirmed, however.
We compare our results with the empirical formula

fK ¼ f0

�
M
M⊙

�1
2

�
Rs

10 km

�
−3
2

; ð28Þ

proposed in [86], where M is the gravitational mass of the
Keplerian configuration, Rs is the radius of the nonrotating
configuration of mass M, and f0 is a constant, which does
not depend on the EOS. In Ref. [83] an optimal prefactor

FIG. 2. Gravitational mass (in units of the solar mass
M⊙ ¼ 2 × 1033 g) vs the central baryon density (left panel)
and vs equatorial radius (right panel) for different EOSs. Thin
(bold) curves denote static (Keplerian) sequences. The end points
of Keplerian sequences are marked by open circles, with proper-
ties listed in Table I. The observational data are discussed in
Sec. III B.

FIG. 3. Precise (bold curves) and approximated [thin solid
curve according to Eq. (28)] values of Keplerian frequency vs the
gravitational mass for NNS (BOB) and HNS (DSα).

TABLE I. Several properties of static and rotating NS for the selected EOSs: maximum gravitational mass Mmax, corresponding
equatorial radius Req, central baryon density ρc, and the maximum Keplerian frequency fK, together with the approximate value fmax

according to Eq. (29). The lower and upper boundaries ρ1, ρ2 of the Gibbs mixed phase are also reported.

EOS BOB DS1 DS2 DS3 DS4

Static Mmax=M⊙ 2.51 2.30 2.02 1.79 1.60
Req (km) 11.32 12.13 11.95 11.72 11.38
ρc (fm−3) 0.887 0.843 0.915 0.999 1.013

Keplerian Mmax=M⊙ 2.99 2.82 2.47 2.19 1.95
Req (km) 14.83 16.17 16.28 16.00 15.74
ρc (fm−3) 0.768 0.753 0.789 0.863 0.927
fKðHzÞ 1653 1461 1399 1346 1316
fmaxðHzÞ 1641 1419 1360 1319 1257

Mixed phase ρ1 (fm−3) 0.566 0.425 0.340 0.287
ρ2 (fm−3) 1.617 1.284 1.081 0.938
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f0 ¼ 1080 Hz in the range 0.5 M⊙ < M < 0.9Mstatic
max was

obtained. Rotating HNS with masses in that range are
characterized by a purely nucleonic phase, and therefore
the empirical formula cannot be applied. This is at variance
with NNS configurations. As displayed in Fig. 3, our
results for NNS below 2.1 M⊙ can be fitted well with the
same parameter f0 ¼ 1080 Hz, as shown by the thin curve.
A further interesting empirical formula for the absolute

maximum of the Kepler frequency for a given EOS is [43]

fmax ¼ 1220 Hz

�
Mstat

max

M⊙

�1
2

�
RMstat

max

10 km

�
−3
2

: ð29Þ

In Table I we also list the corresponding values for our
selected EOSs and observe a fair agreement within a few
percent with the numerical results.

B. Stability analysis

In order to complete the description of Figs. 2 and 3, one
should pay attention to the stability criteria of stars. It is
well known that the onset of the instability of the static
sequence is determined by the condition dM=dρc ¼ 0, i.e.,
the curve should stop at its mathematical maximum, which
thus gives the maximum mass of the static stable sequence.
In the rotating case, the above criterion has to be gener-
alized; i.e., a stellar configuration is stable if its mass M
increases with growing central density for a fixed angular
momentum J [2]. Therefore the onset of the instability,
which is called secular axisymmetric instability (SAI), is
expressed by

∂M
∂ρc

����
J
¼ 0: ð30Þ

The configurations in the Keplerian sequences shown in
Fig. 2 have different angular momenta, and thus the curves
do not stop at the mathematical maximum. In the upper
panel of Fig. 4 we show, for some selected EOSs, the
gravitational mass for the Keplerian sequence vs the
angular momentum (solid black curves), along with
the SAI condition, Eq. (30), represented by the dashed
red curves. Thus the Keplerian sequence should stop at the
intersection with the SAI curves, which is indicated by an
open circle. This constraint determines the corresponding
end points of the curves in Figs. 2 and 3.
Some enlarged details are shown in the insets of Fig. 4.

For a given mass M, there are two possible values of
angular momentum J, which correspond to two possible
values of radius R in Fig. 2. In the case of NNS with the
BOB EOS, the branch with the lower R has larger values of
J ∼MR2fK , because the Kepler frequency fK increases
faster than R2 diminishes on the Keplerian sequence. In the
case of HNS, the situation is opposite: the branch with the
lower R has also a lower value of J. Therefore for NNS
the Kepler curve meets the SAI at large R, before it reaches

the mathematical maximum of the mass. This is different
from the case of HNS, whose curves extend a little further
on the unstable branch after they reach their mathematical
maximum, before meeting the SAI, and thus the maximum
mass of the stable configurations coincides with the
mathematical maximum value. The maximum mass and
maximum angular momentum, as well as the end point
given by the SAI constraint, are obtained with different
stellar configurations, and are labeled by the open squares,
triangles, and circles, respectively. The discussed effects are
however very small, of the order of 0.01 M⊙ at most.
In order to visualize better the intricate relations among

M, R, and fK , we present in Fig. 5 the mass-radius relations
of NS with EOS BOB (upper panel) and DS2 (lower panel)
at various fixed rotation frequencies (dashed-dotted olive
curves). The stable configurations are constrained by the
Kepler and SAI conditions at large and small radius,
respectively. At a low frequency (f ¼ 480 Hz for HNS),
the lower boundary of M is fixed by the Kepler condition
and the upper boundary by the SAI condition. As the
frequency increases (f ¼ 796, 1082, 1194 Hz), the SAI
mark point moves more and more to the left side of the
mathematical maximum (MaM), and the upper boundary of
M is now fixed by the MaM, which is larger than the mass

FIG. 4. Gravitational mass (upper panel) and radius (lower
panel) vs angular momentum of the Keplerian sequence (solid
black curves) and SAI (dashed red curves) for some selected
EOSs. The open circles represent the SAI onset on the Keplerian
sequence.
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at the SAI radius. This is indicated by the dotted blue curve
that passes through the MaMs for fixed frequency. As the
frequency increases further (f ¼ 1273 Hz), the lower
(upper) boundary values of M are fixed by the SAI
(Kepler) conditions. Finally, at the maximum frequency
the Kepler and SAI conditions meet at the same point.
In Fig. 6 we present the allowed domain of NNS and

HNS in the Req–f plane (upper panel) and the M–f plane
(lower panel), together with some observational data. We
use the same conventions as in Fig. 5, i.e., dotted blue
curves, dashed green curves, and short-dashed red curves
represent the MaM, mass-shedding, and SAI limits. The
allowed region of HNS with the DS2 EOS is the grey area
delimited by the dashed-dotted lilac curve (PT), which
represents the onset of the phase transition. One interesting
feature we should mention here is that at high rotation
frequency the mass range is small, while the range of radii
is still large, corresponding to a flat top of theMðRÞ curves
in Fig. 2. This means the radii are very sensitive to the mass
at high rotating frequency.
As discussed above, the current observations on pulsar

masses constrain our parameter to α < 2; hence we present

the results of HNS with the EOS DS2. For smaller α the
corresponding (shaded) area of HNS will shrink and move
towards the lower (upper) boundary of NNS in the upper
(lower) panel. The minimum (maximum) mass of HNS
with EOS DS2 is 1.68 (2.02)M⊙ in the static sequence, and
increases as the rotation frequency increases, while the
range concentrates to a single value 2.47 M⊙ at the
maximum frequency f ¼ 1.4 kHz. Therefore, in the lower
panel of Fig. 6, the three stars with lower masses should be
conventional NS, and the others could be HNS in our
DS2 model.
The observational data of the radius still suffer large

uncertainties. In the upper panel we include the sources
4U1820-30 and SAXJ1808.4-3658, whose mass, radius,
and spin are available. One can see that according to their
small radii both sources should preferably be high-mass
compact HNS in our model, whereas their masses in the
lower panel identify them as preferably “low-mass” NNS.
This can also be seen in Fig. 2, where the same data
points are reproduced. However, within their large error
bars, both data are still consistent with our model. We
expect more accurate observations (in particular precise

FIG. 5. Mass-radius relations of NS with the EOS BOB (upper
panel) and DS2 (lower panel) at various fixed rotation frequencies
f (dashed-dotted olive curves) or fixed baryonic massMB (dotted
black curves, discussed with Fig. 9). The positions of the maxima
of the fixed-f curves are joined by the dotted blue curves. The
dashed-dotted lilac line (PT) indicates the onset of the quark
phase with the DS2 EOS.

FIG. 6. The possible values of equatorial radius (upper panel)
and gravitational mass (lower panel) of NS for the EOS DS2
(bold curves) and BOB (thin curves), respecting the mass-
shedding (dashed green lines) and SAI limits (short-dashed
red lines). The maximum-mass curves of Fig. 5 are also shown
(MaM, dotted blue lines). The dashed-dotted lilac line (PT)
indicates the onset of the quark phase with the DS2 EOS. The
markers represent observational data [87].
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radius measurements by future satellite missions NICER,
SKA, Athena [88–90]) to constrain our parameters or rule
out the model.

C. Phase transition caused by rotational evolution

The possibility of a phase transition to QM caused by
rotational evolution has been widely discussed in the
literature [42–45]. For a constant baryonic mass, a rotating
star loses its rotation energy by magnetic dipole radiation,
which makes the star spin down and the central density
increase. When the central density of a NNS reaches a
critical value, the phase transition from hadronic matter to
QM will take place, and the star converts to a HNS. As the
star continues spinning down and the central density
continues increasing, more and more QM appears in the
core of the HNS.
This is clearly shown in Fig. 7, where we display the

change of the number density of all particle species with
rotational frequency in the interior of a star with baryonic
mass MB ¼ 2.0 M⊙ for the DS2 EOS (corresponding to
M ¼ 1.74 M⊙ in the static sequence and M ¼ 1.80 M⊙ at
the Kepler frequency fK ¼ 1018 Hz; see the lower panel of
Fig. 5). One notes that this star at Keplerian frequency has

no QM core, but as it spins down, it is compressed to a
smaller volume, which enhances the central density, and the
star is converted into a HNS. As the frequency decreases
further, the QMmixed phase extends outward from the core
and the region occupied by the pure hadron phase gets
narrower. At the same time, the radius of the star is
decreasing.
A pure QM phase in the core is never reached in our

calculations with the Gibbs construction and α ¼ 2. This is
at variance with models employing Maxwell constructions,
e.g., [30,40,45], which obviously exhibit a very different
interior structure. Nevertheless global NS properties like
the maximum mass or radius are usually not strongly
affected by the type of phase transition employed; see
[75,76] for a comparison of different phase transition
constructions. We reiterate that both types of phase tran-
sitions are idealizations.
In Fig. 8 we present the stellar models with DS2 EOS in

the f–MB plane, where the same labels as in Fig. 6 are
used; i.e., the dash-dotted lilac curve represents the onset of
conversion from a NNS to a HNS. It can be seen that the
conversion is possible only in the baryon mass range
1.84 < MB=M⊙ < 2.37. Examples could be the pulsars
J1903+0327 and 4U1820-30, located at the edge of the
phase transition boundary in Fig. 6. Above that range, even
the fastest rotating stars are already HNS. In addition, when
the star’s baryonic mass is larger than 2.35 M⊙, the static
configuration is unstable, and the star will collapse to a
black hole as it loses angular momentum and meets the SAI
borderline (dashed red curve). These are supramassive stars
[3,49,50] that will be discussed in more detail in the
following. The maximum baryonic mass for the DS2
EOS is 2.87 M⊙. The various limits are indicated by
vertical lines in Fig. 8.
For further illustration, we show in the upper panel of

Fig. 9 the fraction of QM in HNS as a function of the
rotation frequency for several choices of fixed baryonic

FIG. 7. Equatorial profiles of particle number densities of a
rotating NS of baryonic mass MB ¼ 2.0 M⊙ at various rotation
frequencies with the DS2 EOS. The vertical solid lines represent
the interface of the two phases.

FIG. 8. The allowed domain of HNS with the EOS DS2 in the
f–MB plane. The legend is as in Fig. 6.
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mass with the DS2 EOS. The trajectories in the M–Req
plane for the same values of MB are reported in Fig. 5.
Usually the QM fraction increases with decreasing fre-
quency due to the increasing density and extension of the
QM domain in the star; see Fig. 7. The maximum value of
8.39% is reached for the heaviest possible static NS with
MB ¼ 2.35 M⊙; see Fig. 8. This value can be increased by
choosing larger values of α in the DSM, but then the
maximum HNS mass falls below two solar masses.
Supramassive HNS (MB > 2.35 M⊙) have no static limit
and collapse when reaching the (dashed red) SAI line. Their
QM fraction remains below the maximum static value.
In the lower panel of Fig. 9 we show the angular

momentum as a function of rotation frequency for NNS
and HNS. The conversion points between NNS and
HNS are indicated by markers in some cases. Normal
HNS (MB < 2.35 M⊙) are spinning down when losing
angular momentum in the evolution, whereas supramassive
(e.g.,MB ¼ 2.6 M⊙) stars spin up close to the SAI collapse
[49]. A similar backbending phenomenon is often related to

the onset of the phase transition from hadronic matter to
QM [42,43], but here it only occurs for both HNS and NNS
in supramassive configurations close to the collapse, in the
case of NNS for 3.10 < MB=M⊙ < 3.59; see Fig. 8.
In more detail, for example for the MB ¼ 2.6 M⊙

trajectory in Fig. 9, Fig. 5, and the inset of Fig. 8, the
HNS spins down until it reaches the minimum of the fixed
rotation frequency curve (f ¼ 1082 Hz) at the MaM curves
(dotted blue curves in Figs. 5 and 8). Then it spins up until
the final SAI point. In fact, in the evolution the maximum
angular momentum is given at the Kepler sequence and the
minimum angular momentum at the static sequence or the
SAI line. Therefore, if the lower boundary of the frequency
in Fig. 8 is not at the static sequence or the SAI line, i.e.,
when the MaM lines (dotted blue lines) split from the SAI
lines (short-dashed red lines) in Figs. 5, 6, and 8, the loss of
angular momentum will cause a spin-up.
Quantitatively, the difference of angular momentum

between NNS and HNS with equal baryonic mass and
frequency is slight at lower baryon mass (MB < 2.35 M⊙),
but becomes important for larger masses, where the QM
content increases and only HNS exhibit the spin-up
phenomenon.

IV. CONCLUSIONS AND OUTLOOK

We have investigated the properties of rotating hybrid
neutron stars, employing an EOS constructed with the BHF
approach for nucleonic matter and the Dyson-Schwinger
model for quark matter, and assuming the phase transition
under the Gibbs construction. We computed the properties
of hybrid stars in the Keplerian sequence, respecting the
secular axisymmetric instability constraint.
Hybrid stars are more compact and have lower maximum

masses and maximum Kepler frequencies than ordinary
neutron stars, which would provide a theoretical possibility
to exclude the existence of hybrid stars (taking our
nucleonic and quark matter EOSs for granted). However,
this would require the detection of extremely massive and
rapidly rotating stars, whereas for the moment our results
for the maximum mass, maximum rotation frequency, and
the equatorial radius range of either nucleonic or hybrid
stars fulfill the current constraints by observational data of
the fastest rotating pulsars.
A more immediate progress could be the future meas-

urement of sufficiently precise neutron star radii or even
MðRÞ relations, which would directly single out or reject
EOSs and thus discriminate between pure neutron stars or
hybrid stars, for example. In this regard, twin neutron stars
require very special conditions, difficult to reconcile with
current radius measurements, in particular. They do not
exist in our approach.
We also investigated the phase transition induced by the

spin-down of pulsars with a constant baryonic mass. We
showed the variation of the quark matter content under
rotational evolution and found that the quark ratios are

FIG. 9. Mass fraction of QM (upper panel) and angular
momentum (lower panel) as a function of rotation frequency
for several fixed values of MB. Bold curves are for HNS with the
DS2 EOS and thin curves (in the lower plot) represent the results
for NNS. The markers indicate the onset of the HQ phase
transition. The Kepler, SAI, and PT lines are shown, as in Figs. 6
and 8. Note that all MB ¼ 1.40 M⊙ stars (dash-dotted pink
curve) and MB ¼ 3.50 M⊙ stars (solid black curve) are NNS
without QM content.
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small, with the maximum value about 8%, in order to
respect the current two-solar-mass lower limit of the
maximum mass. We also found that in our model the
spin-up (backbending) phenomenon is not related to
the phase transition, but happens in supramassive stars
before they collapse to black holes, which is possible in a
narrow range of large (but very different) masses for both
hybrid stars and normal neutron stars.
All results obviously depend on the chosen nucleonic

EOS and the parameters in the Dyson-Schwinger model.
For the future it will be important to establish direct
estimates of the model parameters in a more fundamental
way from QCD, to provide in this way more reliable
predictions, and also to clarify the qualitative differences

between different current theoretical quark models.
Furthermore, the hadron-quark phase transition should
be modeled more realistically, taking into account finite-
size effects.
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