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Determining the differential-rotation law of compact stellar objects produced in binary neutron stars
mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem
is important because it impacts directly on the maximum mass these objects can attain and, hence, on the
threshold to black-hole formation under realistic conditions. Using the results from a large number of
numerical simulations in full general relativity of binary neutron star mergers described with various
equations of state and masses, we study the rotational properties of the resulting hypermassive neutron
stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of
state, thus exhibiting the traits of “quasiuniversality” found in other aspects of compact stars, both isolated
and in binary systems. The distributions are characterized by an almost uniformly rotating core and a
“disk.” Such a configuration is significantly different from the j-constant differential-rotation law that is
commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass
contained in such a disk can be quite large, ranging from≃0.03 M⊙ in the case of high-mass binaries with
stiff equations of state, up to≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on
the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be
conjectured on the basis of our simulations.

DOI: 10.1103/PhysRevD.96.043004

I. INTRODUCTION

A number of catastrophic astrophysical events, such as
the collapse of the iron core in Type-II supernovae or the
merger of a binary system of neutron stars, lead to the
formation of a compact object with a large amount of
angular momentum. Clearly, uniform rotation is not an
efficient way of sustaining such large rotation rates, and it is
far easier to obtain an equilibrium by distributing the
angular momentum differentially in radius. At the same
time, for a given amount of mass involved in the event, the
knowledge of the law of differential rotation is important in
establishing how close or how far the equilibrium con-
figuration attained is from the instability threshold of the
gravitational collapse to a black hole. On the basis of these
considerations, it is clear that the problem of determining
the law of differential rotation produced in these events is
an important one.
Over the last 15 years, a large number of works have

explored this problem in full general relativity, either
through the construction of equilibrium configurations
[1–8] or through their dynamical production in core-
collapse supernovae (see [9] for an overview) or in binary
neutron star mergers (see [10] for a recent review). Lacking

a physically motivated law of differential rotation, essen-
tially all of these works have assumed that the rotation law
is particularly simple and such that the specific angular
momentum j ≔ huϕ is constant, with h being the specific
enthalpy and uϕ the covariant azimuthal component of the
four-velocity. This law obviously satisfies the Rayleigh
criterion for local dynamical stability against axisymmetric
perturbations, dj=dΩ < 0, where Ω is the angular velocity.
More importantly, however, it has the advantage of being
analytically simple, with the angular velocity decreasing
monotonically from the center of the star and with the
degree of differential rotation being regulated by a single
dimensionless parameter (normally referred to as ~A). Only
recently, Ref. [6] has made the first attempts to generalize
the space of equilibria by considering more general
prescriptions for the law of differential rotation, using
however analytical simplicity as the guideline.
Overall, all the studies carried out so far on equilibrium

sequences of stationary models agree that when using a
j-constant law of differential rotation, several different
solutions are possible for a given degree of differential
rotation [5,8] and that the maximum mass depends on both
the degree of differential rotation and on the type of
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solution, reaching values as large as 4 times that of the
maximum mass of nonrotating configurations MTOV [5,8].
This is to be contrasted with what happens in the case of
uniformly rotating models, where the maximum mass has
recently been found to be only 20% larger thanMTOV, quite
independently of the equation of state (EOS) [11].
While the j-constant law of differential rotation has been

useful so far to explore the equilibria of differentially
rotating compact stars, it is also hard to justify on physical
grounds, in particular when considering the results of
numerical simulations of merging binary neutron stars.
A number of studies in this direction, in fact, have shown
that although the merger normally leads to the formation of
a hypermassive neutron star (HMNS), that is, a neutron star
whose mass exceeds the maximum mass of a uniformly
rotating star, the law of differential rotation is rather
different [12–18]. Hence, the need to determine a law of
differential rotation that, albeit not simpler, does reflect the
hydrodynamical equilibrium that is attained in HMNSs
produced in binary neutron-star mergers. Clearly, deter-
mining such a law of differential rotation is important since
it has direct impact on the maximum mass these objects can
attain and, hence, on the threshold to black-hole formation
under astrophysically realistic conditions.
A first step in this direction has been taken in

Refs. [19,20], where the properties of the angular-velocity
distribution in the merged object have been analyzed in
detail, although only for a very limited number of binaries.
In agreement with the previous simulations of Ref. [4],
these more recent works have found that the angular-
velocity profile of the HMNS shows a slowly rotating core
and an envelope that rotates at angular frequencies that
scale as r−3=2, where r is the radial coordinate in our
coordinate system. This holds true both when the initial
data is that of irrotational binaries and when the binaries are
artificially spun-up as done in Ref. [21].
Here, we adopt a more systematic approach and study

the rotational properties of the HMNSs produced by the
merger of binary neutron stars described with various EOSs
and masses, and as computed via a large number of
numerical simulations in full general relativity. Besides
confirming the more specific results of Refs. [4,19,20], our
most interesting finding is arguably that the angular-
velocity distribution shows only a modest dependence
on the EOS, thus exhibiting the traits of “quasiuniversality”
that have been found in other aspects of compact stars,
both when isolated [11,22–27] and in binary systems
[22,28–30]. More specifically, the EOS-independent angu-
lar-velocity distributions we find are characterized by an
almost uniformly rotating core and a “disk” with angular
frequencies ΩðrÞ ∝ r−3=2.
Having a “disk” in the outer regions of the HMNS is

important for two reasons, at least. Firstly, the disk
surrounding the HMNS will accrete onto the uniformly
rotating core of the star only on a dissipative timescale, thus

not affecting its long-term stability. Secondly, once the core
of the HMNS eventually collapses to a rotating black hole,
the presence of a certain amount of mass on stable orbits
will guarantee that the black hole will not be “naked,” but
surrounded by a torus, as expected when the collapse to a
black hole is prompt [13]. Both of these considerations are
important within the proto-magnetar model for short
gamma-ray bursts [31–33] and the subsequent extended
x-ray emission [34] (see also [35] for a similar model).
The paper is organized as follows: Section II is dedicated

to a brief overview of the mathematical and numerical setup
employed in our simulations, while in Secs. III and IV we
illustrate the results obtained when modelling high- and
low-mass binaries, respectively. We focus, in particular, on
the distributions of rest-mass density and angular velocity,
and illustrate our approach to obtain time and azimuthally
averaged profiles. Section V focuses on the use of tracer
particles to disentangle the physically meaningful results
from the possible contamination of gauge effects, while
Sec. VI discusses the “quasiuniversal” features of the
angular-velocity profiles and how to correlate them with
the properties of the progenitor stars in the binary. Also
discussed in Sec. VI are the amount of mass in the disk and
the influence of the thermal component of the EOS on the
results presented. Finally, in Sec. VII we present a summary
of our findings and the impact they have on the stability of
differentially rotating compact stars. Appendix A provides
a discussion in terms of the dynamics of tracers on the
conservation of the Bernoulli constant in the quasiequili-
brium of the HMNS. Appendix B provides a discussion of
the effects of resolution and symmetries on the lifetime and
evolution of the HMNS.
Hereafter, we will use a spacelike signature ð−;þ;þ;þÞ

and a system of units in which c ¼ G ¼ M⊙ ¼ 1 unless
stated differently.

II. GENERAL FRAMEWORK

A. Mathematical and numerical setup

The mathematical and numerical setup used for the
simulations reported here is the same discussed in
Refs. [29,36] and presented in greater detail in other papers
[13,37,38]. For completeness we review here only the basic
aspects, referring the interested reader to the papers above
for additional information.
Our simulations are performed in general relativity using

the fourth-order finite-differencing code McLachlan
[39,40], which is part of the publicly available
Einstein Toolkit [41]. This code solves a conformal
traceless formulation of the Einstein equations [42–44],
with a “1þ log” slicing condition and a “Gamma-driver”
shift condition [45,46]. Correspondingly, the evolution of
the general-relativistic hydrodynamics equations is done
using the finite-volume code Whisky [47], which has been
extensively tested in simulations involving the inspiral and
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merger of binary neutron stars [13,37,48,49]. The hydro-
dynamics equations, expressing the conservation of energy,
momentum and rest mass [50], are cast in the conservative
Valencia formulation [51]. Their numerical solution is
obtained employing the Harten-Lax-van Leer-Einfeldt
[52] approximate Riemann solver [52] in conjunction with
the piecewise parabolic method [53] for the reconstruction
of the evolved variables. For the time integration of the
coupled set of hydrodynamic and Einstein equations we use
the Method of Lines with an explicit fourth-order Runge-
Kutta method. Our simulations use a CFL number of 0.35
to compute the timestep.
An adaptive mesh refinement (AMR) approach based on

the Carpet mesh-refinement driver [54] is used to both
increase resolution and extend the spatial domain, placing
the outer boundary as close as possible to the wave
zone. The grid hierarchy consists of six refinement levels
with a grid resolution varying from Δh5 ¼ 0.15 M⊙ (i.e.,
≃221 m) for the finest level to Δh0 ¼ 4.8 M⊙ (i.e.,
≃7.1 km) for the coarsest level, whose outer boundary
is at 514 M⊙ (i.e., ≃759 km). To reduce computational
costs, a reflection symmetry across the z ¼ 0 plane and a
π-symmetry condition across the x ¼ 0 plane has been
adopted (see Appendix B for a discussion of the influence
on the results of this resolution and of the symmetry
assumed). The initial configuration for the quasiequili-
brium irrotational binary neutron stars has been generated
with the use of the LORENE-code [55] and an initial
coordinate separation of the stellar centers of 45 km has
been used for all binaries. For each EOS, we have
considered equal-mass binaries where each star has initial
gravitational masses that are either M ¼ 1.25 M⊙ (low-
mass binaries; cf. Sec. IV) or 1.35 M⊙ (high-mass binaries;
cf. Sec. III) at infinite separation.
A quantity that is particularly important in our analysis is

the angular velocity, Ω, which is defined as the amount of
coordinate rotation

Ω ≔
dϕ
dt

¼ dxϕ

dt
¼ uϕ

ut
; ð1Þ

where uϕ and ut are components of the four-velocity vector
uμ. The corresponding three-velocity as measured by the
same Eulerian observer is then defined as

vi ≔
γiμuμ

−nμuμ
¼ 1

α

�
ui

ut
þ βi

�
; ð2Þ

where α is the lapse function, βi is the shift vector, nμ is the
unit timelike vector normal to a constant t hypersurface,
and γij is the three-dimensional metric. With the above
definition the angular velocity within the 3þ 1 split can be
expressed as

Ω ¼ αvϕ − βϕ; ð3Þ

where

vϕ ¼ xvy − yvx

x2 þ y2 þ z2
; ð4Þ

βϕ ¼ xβy − yβx

x2 þ y2 þ z2
; ð5Þ

are the three-velocity and shift vector components as
computed from the Cartesian grid with coordinates
(x; y; z). Written in this form, we can interpret Ω as
consisting of a lapse-corrected part of the ϕ-component
of the three-velocity, minus a frame-dragging term pro-
vided by the ϕ-component of the shift vector.

B. Microphysical matter treatment

To close the set of evolution equations an EOS is needed
and which provides a relation among the thermodynamical
properties of the neutron-star matter. A general EOS
describes the pressure as a function of the rest-mass density,
particle composition and temperature. However, for certain
parts of the merger, simplified versions can be used. In
particular, during the inspiral, a “cold”, i.e., temperature
independent, EOS is sufficient to represent the state of the
neutron-star matter prior to merger. After contact, when the
HMNS is formed, large shocks will increase the temper-
ature and to account for this additional heating a full
temperature dependent nuclear-physics EOS is required.
As the number of such EOSs is unfortunately still limited,
we include thermal effects by adding an ideal-fluid com-
ponent that accounts for the shock heating. The pressure p
and the specific internal energy ϵ are therefore composed of
a cold nuclear-physics part and of a “thermal” ideal-fluid
component.1 [56]

p ¼ pc þ pth; ϵ ¼ ϵc þ ϵth; ð6Þ

where p and ϵ are the pressure and specific internal energy,
respectively. We model the cold part pc, ϵc with five
different nuclear-physics EOSs. Two of such EOSs, namely
APR4 [57] and SLy [58], belong to the class of variational-
method EOSs and the underlying particle composition
within these models consists mainly of neutrons with little
admixtures of protons, electrons and muons. Additionally,
two more EOSs, i.e., GNH3 [59] and H4 [60], are built
using relativistic mean-field models which include, above a
certain rest-mass density, hyperonic particles.
In contrast, the fifth EOS, namely ALF2 [61], is more a

model for hybrid stars than for neutron stars because it
implements a phase transition to color-flavor-locked quark

1This class of EOSs is referred in the literature as the so-called
“hybrid EOS” [50] and should not be meant to indicate that the
star is composed of a hybrid hadron-quark matter present in
hybrid stars.
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matter. Within this model, the hadronic particles begin
to deconfine to quark matter above a certain transition rest-
mass density ρtrans¼3ρnuc, where ρnuc≔2.705×1014g=cm3

is the nuclear-matter rest-mass density. Assuming a mod-
erate surface tension of the quark matter droplets, a phase
transition is implemented by using a Gibbs-construction.
As charge neutrality is only globally conserved within this
construction, a mixed-matter phase exists in the rest-mass
density range 3ρnuc ≤ ρ ≤ 7.8ρnuc.
We note that all of the EOSs used in our calculations

satisfy the current observational constraint on the observed
maximum mass in neutron stars, i.e., 2.01� 0.04 M⊙ [62].
Instead of using the data tables of the various EOSs, we
have found it more suitable to convert them to piecewise
polytropes [63]. Each EOS has been parametrized, based
on specifying its stiffness in three rest-mass density
intervals i ¼ 2, 3, 4, measured by the adiabatic index
Γi ¼ d log p̄i=d log ρ̄i. Additionally, a unique polytrope
with Γ1 ¼ 1.357 has been added for all of the used EOS
to account for the star’s low rest-mass density region
ρ ≤ ρnuc.
The “cold” nuclear-physics contribution to each EOS is

obtained after expressing the pressure and specific internal
energy ϵc in the rest-mass density range ρi−1 ≤ ρ < ρi as
(for details see [36,64–66])

pc ¼ Kiρ
Γi ; ϵc ¼ ϵi þ Ki

ρΓi−1

Γi − 1
: ð7Þ

For an overall consistency, the rest-mass density ranges
used for the piecewise polytropes have been chosen to be
the same for the different EOSs (ρ2 ¼ 5.012 × 1014 g=cm3

and ρ3 ¼ 1015 g=cm3). The transition densities ρ1 to the

low rest-mass density polytrope and the EOS-dependent
adiabatic indexes Γi are summarized in Table 2 of [66]. Due
to the implementation of the hadron-quark phase transition,
the ALF2 EOS has the largest softening at the rest-mass
density boundary ρ2 (Γ1 ¼ 4.070 and Γ2 ¼ 2.411). Finally,
the “thermal” part of the EOS is given by

pth ¼ ρϵthðΓth − 1Þ; ϵth ¼ ϵ − ϵc: ð8Þ

where the last equality in (8) is really a definition, since ϵ
refers to the computed value of the specific internal energy.
In all of the simulations reported hereafter we use Γth ¼ 2.0
(see [36,66] for an analysis of the effect of different Γth and
Sec. VIC for a discussion of the impact of Γth on the results
presented here). Detailed information on all the binaries
and their properties is collected in Table I.
Finally, we note that in order to verify our hybrid-EOS

approach and numerical setup and contrast the results with
an alternative one, an additional simulation has been
performed using the “hot”, i.e., temperature dependent,
Lattimer-Swesty (LS220) EOS [67]. For this simulation the
hydrodynamic equations are solved employing the
WhiskyTHC code [68,69] and the BSSNOK formulation
of the Einstein equations [70].

III. HIGH-MASS BINARIES

The main results concerning the evolution of the char-
acteristic properties of the HMNSs are presented in this and
the following section. To explain the procedure of how the
HMNS properties and rotational profiles are calculated in
our approach, we start by describing in this section the
dynamics of a representative “high-mass binary” focusing

TABLE I. All binaries evolved and their properties. The various columns denote the gravitational massM of the binary components at
infinite separation, the corresponding radius R, the ADMmassMADM of the binary system at the initial separation, the baryon massMb,
the compactness C ≔ M=R, the orbital frequency forb at the initial separation, the total angular momentum J at the initial separation, the
dimensionless moment of inertia I=M3 at infinite separation, the l ¼ 2 dimensionless tidal Love number k2 at infinite separation, and
the dimensionless tidal deformability λ=M5 defined by λ ≔ 2k2R5=3.

Model EOS M ½M⊙� R [km] MADM ½M⊙� Mb ½M⊙� M=R forb [Hz] J ½M2⊙� I=M3 k2 λ=M5

GNH3-M125 GNH3 1.250 13.817 2.4780 1.3464 0.13358 273.29 6.4067 18.890 0.11753 1842.4
GNH3-M135 GNH3 1.350 13.777 2.6746 1.4641 0.14468 281.58 7.2766 16.450 0.10841 1139.9

H4-M125 H4 1.250 13.533 2.4780 1.3506 0.13638 273.25 6.4058 18.610 0.12361 1746.5
H4-M135 H4 1.350 13.550 2.6746 1.4687 0.14711 281.61 7.2770 16.344 0.11483 1111.1

ALF2-M125 ALF2 1.250 12.276 2.4779 1.3672 0.15034 273.16 6.4014 16.455 0.13049 1132.6
ALF2-M135 ALF2 1.350 12.353 2.6746 1.4877 0.16136 281.42 7.2708 14.581 0.12037 733.63

SLy-M125 SLy 1.250 11.469 2.4779 1.3720 0.16092 273.04 6.3977 14.000 0.10266 634.27
SLy-M135 SLy 1.350 11.465 2.6745 1.4946 0.17386 281.34 7.2663 12.309 0.092993 390.29

APR4-M125 APR4 1.250 11.052 2.4779 1.3783 0.16700 273.05 6.3973 13.226 0.099787 512.14
APR4-M135 APR4 1.350 11.079 2.6746 1.5020 0.17992 281.37 7.2665 11.720 0.090990 321.78

LS220-M132 LS220 1.319 12.775 2.6127 1.4360 0.15108 278.68 6.9891 15.113 0.099289 840.93
LS220-M135 LS220 1.350 12.750 2.6740 1.4733 0.15638 281.29 7.2656 14.112 0.096575 688.26
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on the ALF2-M135 run, that is, a binary described by the
ALF2 EOS and with total gravitational mass of
2 × 1.35 M⊙; in the following section, we describe instead
the ALF2-M125 run as an illustrative case of “low-mass
simulations”.
We recall that with the exception of the APR4 and LS220

EOSs, four of the six binaries with high masses (M ¼
1.35 M⊙) collapse to a black hole within the simulated
timescale, while for the low-mass cases (M ¼ 1.25 M⊙)
none of the simulations show a gravitational collapse
within our simulation time domain (see Figs. 1 and 7).
Before the merger, the maximum (central) value of the

rest-mass density ρmax is essentially constant in time and
the minimum (central) value of the lapse function α
decreases only slightly (see Fig. 1 for t < 0, where we
define as t ¼ 0 ≔ tM the time of merger or, equivalently,
the time of the first maximum in the gravitational-wave
amplitude). The differences of the values of ρmax and αmin
before merger are due to the softness/stiffness properties of
the underlying EOSs, which determine the HMNS indi-
vidual compactness. Although the HMNS is formed at the
merger time, the rest-mass density profile at tM ¼ 0 still has
two distinct maxima that correspond to the tidally deformed
individual stars of the late inspiral phase. In the transient
postmerger phase (i.e., t ∈ ½0; 4� ms), irregular and strong
fluctuations of ρmax and αmin occur, which are due to the
violent and shock-dominated dynamics right after the
merger. Within this early postmerger stage, the rest-mass
density profiles of the HMNSs have two distinct maxima
(the so-called “double-core” structure), which indicates that
ρmax and αmin no longer correspond to the central HMNS

values, respectively, (see Ref. [66] for a simple mechanical
toy model that describe this phase of the postmerger).
At later times (i.e., t≳ 4 ms) the two maxima merge to

one single maximum at the HMNS’s center. This feature
holds for all performed simulations with different EOSs
and masses, and is in accordance with many other works
(e.g., [13,71]). Within this “post-transient” phase, ρmax

(αmin) show a quite regular oscillating behavior with an
average increasing (decreasing) value. Additionally, it is
possible to note a continuous decrease in the oscillation
frequency, which signals the approaching of the “zero-
frequency” limit and, hence, the quasiradial stability limit
to gravitational collapse [72]. The lifetime of the HMNSs is
different for the various EOSs and the collapse to the final
black hole can be easily seen in Fig. 1 as a sudden singular
increase in ρmax (sudden decrease in αmin).

A. Density evolution and gravitational-wave emission

Before merger, the two individual stars of the
ALF2-M135 binary have a central rest-mass density
ρmax ≃ 2.17ρnuc that is below the onset of a hadron-quark
phase transition, ρ < 3ρnuc. Hence, all of the matter inside
the HMNS at merger time is mainly composed of neutrons
with little admixtures of protons and electrons [61]. Within
the early transient postmerger phase, ρmax reaches values
above 3ρnuc, but due to the strongly oscillating nature of the
double core structure, the deconfined mixed phase does not
remain in the HMNS and confines again to hadronic matter.
Nevertheless, a considerable amount of hadronic matter
deconfines in this transient postmerger phase to quark
matter and in less than 0.5 ms it confines again to hadronic
matter. We recall that under the “strange matter hypoth-
esis”, the strange-quark phase is the true ground state of
matter and the whole neutron star would then transform
into a pure-quark star after exceeding a certain deconfine-
ment barrier [73–76]. During such a process a significant
amount of energy would be released in the form of
neutrinos and gamma-rays [77]. The quark-matter nucle-
ation process, which takes place in the highly dynamical
interior region of the HMNS, depends on various poorly
known factors (e.g., the surface tension). In the ALF2 EOS,
the strange-matter hypothesis has not been adopted and as a
consequence, stable hybrid stars can be formed, having a
inner core of deconfined strange matter.
In some other EOS-models of this kind, e.g., [78–82],

there exist however parameter ranges where “twin stars”
solutions are present [73] and transitions between these
twins could likewise produce neutrino and even short
gamma-ray bursts, which we do not account for in these
simulations. Approximately 5 ms after merger, ρmax is
permanently above the phase-transition threshold and the
HMNS contains an inner region of deconfined mixed-phase
matter. A pure-quark phase appears only during the short
collapse phase to black hole and finally this free quark

FIG. 1. Minimum value of the lapse function αmin (upper panel)
and maximum of the rest-mass density ρmax in units of the
nuclear-matter rest-mass density ρnuc (lower panel) versus time in
milliseconds after the merger for the high-mass simulations. All
models collapse to a black hole except for the APR4 and
LS220 EOSs.
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matter will be macroscopically deconfined by the growth of
the event horizon inside the collapsing HMNS.
For the gravitational-wave amplitudes hþ and h× we

consider only the ðl; mÞ ¼ ð2; 2Þ mode, which has been
found to be the most dominant (for details see [66,83]).
Figure 2 shows the gravitational-wave amplitude
jhj ≔ ðh2þ þ h2×Þ1=2 and hþ at a distance of 50 Mpc as a

function of time. The absolute maximum of jhj corresponds
to the time of merger for all of the different simulation runs.
The last peak of hþ corresponds approximately to the time
when the black hole is formed (i.e., tBH ¼ 14.16 ms),
which we have defined as the time when the apparent
horizon is first detected. In order to compare the structural
properties of the different HMNSs in the postmerger phase,
we will later define a time-averaging procedure of the
rotation profiles. This averaging time interval is already
shown in Fig. 2 as a gray region.
The upper row of panels in Fig. 3 shows the evolution of

the HMNS rest-mass density during the postmerger phase.
The three different snapshots have been taken at t ¼ 1=4,
1=2 and 3=4tBH. The left panel, in particular, which
visualizes the rest-mass density distribution at tI ¼ tBH=4≈
3.6 ms, shows that the overall rest-mass density of the
HMNS is much higher than the rest-mass density at merger
time. The double-core structure in the inner area of the
HMNS is right on the verge of merging to a single core and
the maximum rest-mass density reached, ρmax ≃ 3.1ρnuc, is
slightly above the onset of the underlying hadron-quark
phase transition. In the central and right upper panels of
Fig. 3 (tII ¼ tBH=2 ≈ 7.1 ms and tIII ¼ 3tBH=4 ≈ 10.7 ms)
the double-core structure is no longer present. The value of
the central rest-mass density maximum ρc ≃ 3.8ρnuc at tII is
clearly above the onset of the underlying hadron-quark
phase transition. Since the ALF2 EOS uses a Gibbs
construction for the modelling of the phase transition
(see Sec. II), the inner core (r≲ 3 km) of the HMNS
contains a crystalline structure of mixed phase matter,
which might have additional effects on the evolution of
the HMNS.

FIG. 2. Gravitational-wave amplitude jhj (black line) and
strain amplitude in the þ polarisation hþ (green line) for the
ALF2-M135 binary at a distance of 50 Mpc. Shaded in gray is
the portion where a time average is performed, while the arrows
indicate the times when representative distributions of the rest-
mass density and angular velocity are shown in Fig. 3. Finally, the
dotted vertical lines mark the time of merger and the first
detection of an apparent horizon.

FIG. 3. Distributions of the rest-mass density (upper row, log scale) and of the fluid angular velocity (lower row) in the (x, y) plane
for the ALF2-M135 binary at three different postmerger times as indicated in Fig. 2. The isocontours have been drawn at
logðρÞ ¼ 13.6þ 0.2n (upper row) and Ω ¼ f0; 0.5; 1.0; 1.5; 2.0g kHz (lower row), n ∈ N.
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B. Angular-velocity evolution: 2D slices

In the following, and to contrast the description made
above of the rest-mass density, we will concentrate on the
evolution in the postmerger phase of the angular velocity Ω
[see Eq. (3)], which plays a particularly important role in
our analysis. The lower panels of Fig. 3 display the
distribution of Ω in the (x, y) plane at the same times
shown for the rest-mass density in the upper panels. In the
first two milliseconds after the merger the time variation of
Ω is very rapid, with two inner maxima placed between the
double-core rest-mass density maxima (left lower panel).
In the intermediate part of the postmerger (i.e., for
t ∈ ½3 ms; tBH�), Ω has a roughly time independent global
structure in a frame corotating at half the frequency of the
gravitational-wave emission, ΩGW (see Sec. V); this struc-
ture remains stationary for several milliseconds (right lower
panel). Approximately two milliseconds before black hole
formation, Ω largely increases in the center of the HMNS
(not shown in Fig. 3.)
Note that also the angular-velocity distribution exhibits a

clearm ¼ 2 distribution, where the two maxima rotate with
the same frequency ≃1.4 kHz around the center of the
HMNS as the nonaxisymmetric m ¼ 2 perturbations of the
rest-mass density (see upper middle panel of Fig. 3). Both
maxima appear at a radial distance of≃6 km, which is still
clearly within the star’s high rest-mass density range, but
are outside the region where the hadron-quark phase
transition appears. The maxima in Ω are also accompanied
by two minima in the inner regions of the HMNS, where
the angular velocity can even become negative, i.e., with
the minima counter-rotating relative to the outer layers of
the HMNS. The largest gradients in theΩ-profile take place
at ≃3 km from the center. Although both ρ and Ω have
marked m ¼ 2 distributions, it is also clear that there is an
evident phase offset of ≃90 degrees between them. This
feature is very robust and is present in all of the binaries we
have simulated. However, to the best of our knowledge, this
has not been reported before in the literature. This phase
offset can be explained rather simply in terms of an

extension of Bernoulli’s theorem for which areas of low
(pressure) rest-mass density are accompanied by regions of
large velocity; this is in essence what the upper and lower
panels of Fig. 3 express. A more detailed discussion of this
point will be presented in Appendix A, when analyzing the
conservation of the Bernoulli constant associated to rep-
resentative tracers.
A question that arises when investigating the spatial

properties of the angular velocity Ω is whether such
properties are physical and not just a gauge artefact given
that Ω is, after all, a gauge-dependent quantity. Although
the influence of gauge deformations has already been
assessed to be small in a study performed with very similar
gauges and physical conditions [20], we have performed a
number of additional investigations to rule this out. Firstly,
we have investigated the evolution of the relevant compo-
nents of the spatial three-metric (namely, γrr, γϕϕ and γrϕ)
and did not find a corresponding structure which could
have produced the properties discussed above for the
spatial distribution of Ω. Secondly, we have investigated
the properties of the various quantities that contribute to the
angular velocity, namely, the frame dragging provided by
the shift component −βϕ and the azimuthal fluid velocity
αvϕ [cf. Eq. (3)], together with the radial component of the
three-velocity vr.
Figure 4 shows the equatorial structure of these three

quantities at time tIII. The left panel, in particular, displays
αvϕ, and has almost the same global structure as that shown
by Ω (see lower right panel of Fig. 3), with the only
(obvious) difference that the maximum and minimum
amplitudes are smaller. The central panel of Fig. 4 shows
the shift component βϕ with the same colorcode, indicating
that it not only has a similar spatial structure to the rest-
mass density, but it is also considerably smaller, becoming
essentially zero in the outer layers of the HMNS (i.e., for
r≳ 15 km). Both of these facts indicate that the influence
of gauge quantities on the values of Ω cannot be respon-
sible for the 90-degrees phase shift, which has instead a
rather intuitive explanation given above.

FIG. 4. Distributions on the (x, y) plane for the ALF2-M135 binary at tIII of the two contributions to the angular velocity Ω. The left
and central panels refer to the quantities αvϕ and −βϕ, respectively [cf. Eq. (3)]. The right panel shows instead the distribution of the
radial component of the fluid three-velocity vr.
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In addition, the right panel of Fig. 4 shows the radial
component of the three-velocity vr, with red regions
indicating fluid cells with outward radial motion, while
blue regions refer to fluid moving inward. Note that at the
outer parts of the HMNS (i.e., for r≳ 15 km) the flow is
mostly outwards along the two dense spiral arms. These
will feed the matter ejected dynamically that will eventually
lead to the production of heavy elements [84,85]. On the
other hand, the distribution of the radial velocity in the
inner parts of the HMNS (i.e., for r≲ 10 km) shows a clear
quadrupolar structure produced by the propagation of the
m ¼ 2 rest-mass density perturbation. To clarify the proper-
ties of this structure it is sufficient to imagine an l ¼ m ¼ 2
tidal wave moving along the surface of an otherwise
spherical star. The local velocity will be a l ¼ 2, m ¼ 4
succession of positive and negative radial velocities as the
tidal wave sweeps through the surface. Additional consid-
erations along these lines will be made when discussing the
motion of tracer particles in Sec. V.
In summary, all the analyses discussed so far indicate

that the m ¼ 2 distribution of the angular velocity pre-
sented in Fig. 3 is not contaminated by gauge effects and it
can be interpreted in terms of the physical manifestation of
the Bernoulli theorem.
Before concluding this section, we should remark that all

the results presented above have been focused on the
equatorial plane; however, the extensions to planes at
nonzero elevation is straightforward. More specifically,
we have found that the structure of the rest-mass density
and rotation profiles do not change significantly for
z < 8 km, although the m ¼ 2 deformation tends to be
less marked. Moving further away from the equatorial
plane, the angular velocity becomes almost axisymmetric,
being small in the core of the HMNS, but growing to larger
values in the outer layers, i.e., for z > 11 km. At these
heights, the rest-mass density has decreased considerably
and the HMNS smoothly blends in with the outward-
moving wind of the dynamically ejected matter and which
will represent an important element of pollution of the
interstellar medium [86,87].

C. Angular-velocity evolution: azimuthal averages

As discussed before, for high-mass binaries the angular-
velocity distribution exhibits an m ¼ 2 deformation that
persists over long timescales (this is however not the case for
low-mass binaries; see Sec. IV). Because the spacetime
reaches rather quickly a stationary evolution and the
deformation is progressively washed out, it is reasonable
to consider azimuthal averages that, by reducing the problem
to a one-dimensional one, can help compare angular-
velocity profiles across different EOSs. Furthermore, as
wewill discuss in Sec. IV, the approximation of an azimuthal
average becomes increasingly good as the mass of the
system decreases and the m ¼ 2 deformation is more
rapidly lost.

We define therefore the time- and azimuthally averaged
angular velocity Ω̄ðr; tÞ as

Ω̄ðr; tÞ ≔
Z

tþΔt=2

t−Δt=2

Z
π

−π
Ωðr;ϕ; t0Þdϕdt0: ð9Þ

and show its evolution in Fig. 5 for the ALF2-M135
binary. Note that to better illustrate the time dependence, a
small time averaging domain (Δt ¼ 1 ms) has been used.
Six representative time segments, which span almost the
whole HMNS lifetime from merger to gravitational col-
lapse, are visualized in Fig. 5.
Soon after merger (i.e., for t≲ 3 ms), the angular-

velocity profile varies considerably as angular momentum
is transferred from the central region to the outer layers
(light-shaded blue lines). As a result, the angular velocity
decreases significantly in the inner regions, quickly creating
a large gradient with the more rapidly rotating outer layers.
The time variation of the azimuthal average is much smaller
as time progresses and the HMNS reaches a stationary
configuration. Blue curves with increasing shading in Fig. 5
show the rotation profiles for later time segments; clearly
the qualitative global structure of all of these curves is very
similar. While the inner parts (r≲ 3 km) of the HMNS
rotate rather slowly (∼1.0 kHz), a sharp increase takes
place in a narrow region between 4 km and 5.5 km,
resulting in an absolute maximum value at radii between
7–8 km. For larger radii, the angular velocity decreases
monotonically tending to a r−3=2 law for r≳ 15 km (see
discussion in Sec. VI).
The black curve in Fig. 5 describes the rotation profile of

the HMNS at the brink of collapsing to a Kerr black hole
(t≃ 13.7 ms) and can therefore be taken as the stationary

FIG. 5. Averaged fluid angular velocity Ω̄ðrÞ=ð2πÞ kHz on the
equatorial plane for the ALF2-M135 binary as averaged at
different times and with intervals of length Δt ¼ 1 ms. Shown as
a thick dashed black line is a reference profile scaling like r−3=2.
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azimuthally averaged angular-velocity profile. About
two milliseconds before black-hole formation, the angu-
lar-velocity profile increases and the position of the
maximum moves inwards as a result of angular-momentum
conservation.

D. Temperature evolution

Reference [20] has recently studied in great detail the
temperature distribution and the fluid trajectories of a
HMNS produced by a binary neutron star merger obeying
the Shen, Horowitz and Teige EOS [88,89]. Although
Ref. [20] concentrates on one EOS only, their results are in
very good agreement with those presented so far. We next
make a closer comparison with [20] by considering the
evolution of a quantity we have not yet discussed, namely,
the fluid temperature. In particular, we will concentrate on
the binary LS220-M132, which is the only one of our set
described by an EOS with a consistent temperature, where
the simulations have been performed with the WhiskyTHC
code [68,69].
Figure 6 shows the equatorial distributions of the

temperature at t ¼ 6.71 ms (left panel) and at t ¼
23.83 ms (right panel; note that the representative
ALF2-M135 binary has already collapsed at this time)
when observed in a “corotating frame”, that is, in a frame
that is rotating at a frequency that is half of the instanta-
neous gravitational-wave frequency. In agreement with
Ref. [20], two “hot spots” are found after the early
postmerger phase (see left panel of Fig. 6) which remain
stable for approximately 12 ms. The fluid trajectories (not
reported in Fig. 6 but analyzed in Sec. V) indicate that the
hot spots also represent vortices around which fluid
elements rotate. Furthermore, the temperature distribution
on the equatorial plane bears a remarkable similarity with
the corresponding distribution of the angular velocity as
reported in Fig. 3. In particular, the position of the hot spots

overlaps closely with the position of the maxima in the
angular-velocity distribution. This is not surprising as in
these regions the fluid flow has the largest shear and
compression, which are ultimately responsible for the local
increase of the temperature.
Stated differently, regions of relatively smaller pressure

(and rest-mass density) should also coincide with regions of
larger temperature, which is what can be verified by
comparing the rest-mass distribution in the left panel of
Fig. 10, with the temperature in the left panel of Fig. 6,
which refers to the same time. To the best of our knowl-
edge, this is the first time this explanation is provided for
the presence of the two “hot spots”.
In addition to the hot spots, the temperature distribution

shows local increases along the edges of the m ¼ 2 density
perturbation (again where the fluid shear is largest in the
corotating frame) and along the spiral arms, where outward
moving material is ejected dynamically from the HMNS.
Finally, we note that as time progresses and the HMNS
reaches a stationary state, the two hot spots disappear and the
temperature distribution reaches an axisymmetric pattern
(see right panel of Fig. 6). Interestingly, however, the high-
temperature region is not the central one, which is slowly
rotating and comparatively colder, but, rather, an annular
region at about 7–8 km from the center, where the (axisym-
metric) angular-velocity distribution varies more rapidly.
Although the discussion in this section has mainly

focussed on the ALF2-M135 and LS220-M132 binaries,
the results are qualitatively similar for all of the high-mass
binaries of our sample. Of course, small quantitative
differences in terms of the maximum angular velocity, or
the precise position of the maxima of the m ¼ 2 deforma-
tions in ρ andΩwill depend on the stiffness of the EOS, but
these still obey the overall behavior discussed so far; a more
detailed comparison of the angular-velocity profiles across
the various EOSs is presented in Sec. VI.

IV. LOW-MASS BINARIES

We turn now our attention to low-mass binaries. For this
case, we take the ALF2 EOS as a representative EOS and
concentrate on an equal-mass binary with total mass
2 × 1.25 M⊙, i.e., ALF2-M125. In analogy with Fig. 1,
we show in Fig. 7 the evolution of the minimum value of
the lapse function and of the maximum rest-mass density
for our five EOSs. None of the resulting HMNS collapses
to a black hole within the simulated time range because of
the smaller initial mass of the binaries (they will likely
collapse on timescales of ∼100 ms; see [13] and the
discussion in Appendix of Ref. [48]). It is also interesting
to note that the postmerger oscillations in the maximum
rest-mass density are all suppressed within about 10–15 ms
from the merger, with stiffer EOSs (e.g., GNH3) requiring
more time than the softer ones (e.g., APR4).
Similarly, we display in Fig. 8 the emitted gravitational

waves of the late inspiral, merger and postmerger, which

FIG. 6. Distributions on the (x, y) plane and in a corotating
frame of the temperature for the LS220-M132 binary at
t ¼ 6.71 ms (left panel) and at t ¼ 23.83 ms (right panel).
The isocontours correspond to T ¼ f10; 20; 30; 40; 50g MeV.
Note the presence in the left panel of two hot spots, which do not
coincide with the maximum rest-mass density (see also Fig. 10,
which reports other quantities relative to this binary).
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should be contrasted with the corresponding emission for
the high-mass binary shown in Fig. 2. Note that the
gravitational-wave amplitude peak at the merger is com-
parable with that of the high-mass run, but also that, within
the first 10 ms after merger, it decreases considerably to
become only about 20% of that in the late inspiral. This is

due to the rapid disappearance of the nonaxisymmetric
deformation of the rest-mass density in the HMNS, which
attains an almost axisymmetric distribution within≃20 ms
after the merger (see upper panels in Fig. 9). The three
different times indicated in Fig. 8 refer to t ¼ 1=4, 1=2 and
t ¼ 3tfin=4, where tfin ¼ 40.38 ms is the time when the
simulation is terminated.
Figure 9 reports the distributions on the equatorial plane

of the rest-mass density (upper panels) and of the angular
velocity (lower panels) at the three different times indicated
in Fig. 8. This figure should be compared with Fig. 3,
which refers to a high-mass binary of the same (ALF2)
EOS. Note that for t≲ 16 ms, the rotation profile (see
lower left panel in Fig. 9) shows the same qualitative
structure as for the high-mass case, even though the overall
values of Ω are somewhat lower (note the different color
scale in Figs. 3 and 9). Although in a weaker form, the low-
mass binary also shows the 90-degree shift between the
m ¼ 2 deformation in the rest-mass density and in the
angular velocity, which we have discussed in Sec. III B in
terms of the manifestation of the Bernoulli theorem
[cf. Eq. (A1)]. Furthermore, for t≳ 16 ms (see middle
and right panels in Fig. 9) the rest-mass density and the
rotation profile have reached a stationary state in which a
small m ¼ 2 perturbation is still present, but is subdomi-
nant when compared to the overall axial symmetry. The
inner part of the HMNS (r ≤ 6 km) is where the rest-mass
density is the largest, but is also rotating rather slowly
(Ω≃ 0.5 kHz); this region is much broader than in the
high-mass binary and the sharp transition to a r−3=2 outer
profile takes place at a larger radius (6.5≲ r≲ 8.5 km).
The panels on the right column of Fig. 9 clearly indicate
that at later times the HMNS has reached a high degree of
axial symmetry, although not a complete one, since
gravitational waves are still being emitted (cf. Fig. 8).
As discussed in Sec. III for the high-mass binaries, here

too we can comment that the analysis carried out on the
equatorial plane remains qualitatively valid also at nonzero
elevations, with the rest-mass density and rotation profiles
not varying significantly for z≲ 9 km, and maintaining the
overall axisymmetry. Furthermore, as the HMNS reaches
rest-mass densities that are comparable with that of the
outgoingwind, for z≳ 10 km, the angular velocity increases
in the central regions, where it has the largest values.
Finally, we conclude this section remarking that much of

the properties discussed so far for the ALF2-M125 binary
remain qualitatively true for all of the low-mass binaries
considered in our sample of models. Once again, small
quantitative differences do appear when considering the
maximum angular velocity, or the precise position of the
maxima of the m ¼ 2 deformations in ρ and Ω, which
obviously depend on the stiffness of the EOS. However, the
overall behavior discussed so far can be taken to be
representative for binaries with these masses and a large
class of EOSs.

FIG. 7. Minimum value of the lapse function αmin (upper panel)
and maximum of the rest-mass density ρmax in units of ρnuc (lower
panel) versus time in milliseconds after the merger for the low-
mass simulations; this figure should be contrasted with Fig. 1.

FIG. 8. Gravitational-wave amplitude jhj (black line) and
strain amplitude in the þ polarisation hþ (green line) for the
ALF2-M125 binary at a distance of 50 Mpc. Shaded in gray is
the portion where a time average is performed, while the arrows
indicate the times when representative distributions of the rest-
mass density and angular velocity are shown in Fig. 9. Finally, the
dotted vertical line marks the time of merger. This figure should
be contrasted with the equivalent one, Fig. 2, for the high-mass
binaries.
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V. TRACER PARTICLES EVOLUTION

To further strengthen the conclusions reached above
about the physical significance of the properties of the
angular-velocity distribution discussed in the previous
section, we present below a complementary analysis mak-
ing use of the flowlines tracked by massless tracer particles
that are advected in the flow (this is not the first time tracer
particles are used in fully general-relativistic simulations
and recent related work can be found in Refs. [20,90]).
More specifically, we concentrate on the binary LS220-
M132, as evolved with the WhiskyTHC code [68,69].
Details on our implementation of tracers can be found in
[90], while subtleties of the information that can be derived
from them will be presented in a related work [91].
The upper panels of Fig. 10 report, for the LS220-

M132 binary and at time t ¼ 6.7 ms, the rest-mass density
ρ (left panel), the angular velocityΩ in the corotating frame
(middle panel) and in the Eulerian frame (right panel).
Similarly, the bottom row of panels in Fig. 10 shows the
same quantities, but for a later time of t ¼ 23.8 ms. The
times shown are representative ones but the dynamics for
this EOS is qualitatively very similar to those presented in
Secs. III and IV. The only difference is that although the
binary LS220-M132 belongs to the high-mass class, its
evolution does not lead to a collapse to a black hole over the
timescale during which the simulations have been carried
out, i.e., ∼27.3 ms after merger.
Also shown in Fig. 10 are the flowlines of several tracer

particles that remain close to the (x, y) plane (i.e., with

small velocity in the z direction) and for which we
introduce a novel visualization technique. More specifi-
cally, we show only the final part of the flowlines (i.e., for
the last ≃0.285 ms), using small dots to indicate the
particle position at the time indicated in the frame.
Furthermore, the initial parts of the trajectories have
increasing transparency so as to highlight the final part
of the trajectories. This approach has at least two advan-
tages. First, it provides a measure of the linear velocity
(faster tracers leave longer tracks); second, the presence of
the filled dots and the increasing transparency allow one to
read-off the direction of motion.
The top panels in Fig. 10 show the dynamics of the fluid

in the inner parts of the HMNS and highlight that two
distinct regions can be identified. The first region is in the
core of the HMNS, where there is an ellipsoidal structure
orthogonal to the angular-velocity distribution. Within this
ellipsoid, fluid elements essentially move clockwise along
isobaric surfaces, with linear velocities that are rather small
in the inner regions. In addition to this ellipsoidal motion,
the tracers also show the presence of two small “vortices,”
i.e., regions of increased vorticity in this frame, which also
coincide with the regions of highest angular velocity, and
which border the areas where velocity drops almost to zero
(in this frame). Note that it appears that the tracers that are
“trapped” in these vortices where they remain without
traversing the boundary to the central ellipsoid and where
they have an inverse sense of rotation (counter-clockwise).
Stated differently, the vorticity distribution in the corotating
frame would show two islands of vorticity with different

FIG. 9. Distributions of the rest-mass density (upper row, log scale) and of the fluid angular velocity (lower row) in the (x, y) plane
for the ALF2-M125 binary at three different postmerger times as indicated in Fig. 8. The isocontours have been drawn at
logðρÞ ¼ 13.6þ 0.2n (upper row) and Ω ¼ f0; 0.5; 1.0; 1.5; 2.0g kHz (lower row), n ∈ N.
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signs, referring to clock and counterclock wise rotation.
Tracers in one region do not migrate to the other region.
This is mostly the result of using a corotating frame in a
flow that is differentially rotating. It is quite intuitive, in
fact, that ifΩ is positive but not uniform, the transformation
to a corotating frame amounts to a net subtraction of a
positive amount of angular velocity, hence leading to areas
of now negative angular velocity. This becomes more
apparent when considering the corresponding picture in
the Eulerian frame, as shown in the right panels of Fig. 10.
The bottom panels of Fig. 10, on the other hand, refer to

a much later stage of the HMNS evolution (i.e.,
t ¼ 23.83 ms) and clearly show that by this time the
HMNS has attained an almost axisymmetric structure,
combined with a much smaller m ¼ 2 perturbation. As
discussed in the previous cases, also here the rotational
profile of the HMNS contains an inner area with r≲ 5 km
which is rotating slowly and almost uniformly at
Ω ≈ 0.5 kHz, followed by a sharp increase at 5≲ r≲
7 km reaching a maximum value Ω ≈ 1.5 kHz at
r ≈ 8 km and decreasing continuously for r≳ 8 km.2

Since this behavior follows the one described previously
for hybrid EOSs, it suggests that both the rest-mass density
and the angular-velocity distributions are preserved when
using a fully three-dimensional EOS and radiative losses
are taken into account. In turn, this confirms that an
analysis carried out with piecewise polytropes and a
thermal component does not introduce a bias in the results.
The tracers in the lower panels of Fig. 10 further

illustrate the axisymmetric nature of the flow, with the
fluid moving along essentially circular orbits that are
tangent to isobaric surfaces. The quasicircularity is shown
in the spacetime diagram reported in Fig. 11, where we
show the worldlines of selected tracers in the relevant
region of the HMNS and after passing them through a
running-average window of 5 ms to remove the high-
frequency jitter. Note that after the transient period, where
angular momentum is transferred out and particles move to
lower rest-mass density regions, the tracers remain at
essentially constant radial coordinates.
It is interesting to note that because the angular

velocity refers to the corotating frame and because this
frame is rotating at half the gravitational-wave frequency
(ΩGW=2 ≈Ω2=2 ≈Ωmax, see Fig. 13 of Sec. VI), tracers in
the inner and outer regions of the HMNS will be both
rotating clockwise while tracers belonging to the inter-
mediate regions are almost at rest (white regions). Only
those tracers that are trapped in the vortices are moving
counter-clockwise (light red regions).

FIG. 10. Distributions on the (x, y) plane and in the corotating frame of the rest-mass density (left panels), and of the angular velocity
(middle panels) for the LS220-M132 binary, where Ωco ≔ Ω − Ωf where Ωf ¼ 1.368 kHz (top), 1.425 kHz (bottom). Shown instead
in the right panels is the distribution of the angular velocity, Ω, in the Eulerian frame. The top row refers to t ¼ 6.71 ms, while the
bottom one to t ¼ 23.83 ms. Also shown are portions of the flowlines of several tracer particles that remain close to the (x, y) plane and
for which we show only the final part of the flowlines (i.e., for the last ≃0.285 ms), using small dots to indicate the particle position at
the time indicated in the frame. In addition, the initial parts of the trajectories have increasing transparency so as to highlight the final part
of the trajectories.

2Note that the angular-velocity distribution in the lower central
panel of Fig. 10 refers to the corotating frame and that this frame
is rotating at half the angular frequency of the emitted gravita-
tional waves,ΩGW. Because the maximum of the angular velocity
Ωmax is of the order of ΩGW=2 (cf. left panel of Fig. 13), the ring
structure in this panel is approximately at zero angular velocity.
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To recap, the analysis of the motion of tracer particles
discussed in this section indicates that the angular-velocity
distributions presented so far are not contaminated by
gauge effects, but rather reflect physically meaningful
quantities. The angular-velocity Ω is defined directly in
terms of the lapse and shift, which are gauge-dependent
quantities and could potentially change the behavior of the
angular-velocity depending on the gauge selected. The
evolution of the tracers are comoving with the fluid
elements [91] and thus they follow the fluid evolution.
As shown, they exhibit behavior as predicted by the gauge-
dependent quantities and illustrate the robustness of our
results to the choice of gauge. An additional use of the
tracers, explained in detail in Appendix A, will further
illustrate the origin of the phase offset demonstrated
in Fig. 3.

VI. “QUASIUNIVERSAL” BEHAVIOR

A. Averaged profiles

A particularly interesting result of our analysis emerges
when comparing the time- and azimuthally averaged
profiles of the angular velocity across the various EOSs
and masses. We recall that the averaging procedure has
been discussed in Sec. III C and requires a proper choice of
the integration interval, which is different in the case of
high-mass binaries (where the HMNS collapses to a black
hole) and that of low-mass binaries (where the HMNS
survives through all the simulated time). To maintain a
certain consistency across these two cases, we have
performed the time averages across a time interval Δt
[see Eq. (9)] centered around tfin=2 and with extent tfin=3,

where tfin corresponds either to the time of black-hole
formation (in the case of high-mass binaries) or to the final
time of the simulation (in the case of low-mass binaries).
These time intervals have been indicated with gray-shaded
regions in Figs. 2 and 8, respectively (see Appendix B for a
discussion on the impact of resolution on the lifetime of the
HMNS and on the averages).
Figure 12 shows the results of the time- and azimuthally

averaged angular-velocity profiles as described above and
as computed for the high and low-mass simulations with
different EOSs. Besides being in good agreement with the
results of previous works where a much smaller number of
EOSs was investigated [19,20], the overall behavior of the
angular-velocity profiles shown in Fig. 12 hints at a
behavior that is only weakly dependent on the EOS and
could therefore be considered “quasiuniversal.”
More specifically, all profiles show the presence of a

slowly and essentially uniformly rotating inner core, which
is then joined by a rapidly rotating outer region, hence
decreasing outwards as r−3=2, and where the rest-mass
density is that typical of neutron-star crusts (see also Fig. 14
and the discussion below). The transition between the slow
inner core and the rapidly rotating exterior takes place
across a narrow region which is only 3–4 km wide. It is
across this layer that shear forces are the largest and
consequently local temperature increases are present (see
Fig. 6). This differential rotation profile is rather different
from the one normally considered in the literature, i.e., the
j-constant law that has been explored in the past both in
equilibrium configurations [3–8] and in dynamical ones
[92–102].
Although very robust, small differences do appear within

this “quasiuniversal” behavior. In particular, the spatial size

FIG. 11. Worldlines of selected tracers in the outer regions of
the HMNS where the angular frequencies scale like r−3=2. Note
how in these regions the tracers remain at essentially constant
radial coordinates; the gray-shaded area shows the region where
ΩðrÞ ∝ r−3=2 (see Sec. VI A for a definition and discussion).

FIG. 12. Comparison of the time- and azimuthally averaged
rotation profiles for different EOSs. Solid curves show the
profiles for high-mass runs (M ¼ 1.35 M⊙), whereas dashed
curves refer to low-mass simulations (M ¼ 1.25 M⊙). Shown as
a thick dashed black line is a reference profile scaling like r−3=2.
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of the slow inner core depends both on the EOS and on the
initial mass of the binary, with smaller-mass binaries
having in general larger slower cores; as an example, for
the high-mass run of the GNH3 and SLy EOS the slowly
rotating core is rather small (r≲ 4 km) while for the low-
mass run of the ALF2 EOS it extends up to r≲ 7 km. In
addition, the maximum angular velocity attained in the
outer region also depends weakly on the EOS, being
naturally higher for soft EOSs and smaller for stiff EOSs.
Inspired by the approach suggested in Refs. [30,36,

64–66], we next discuss how to relate the “quasiuniversal”
features of the averaged angular-velocity profiles with
some of the properties of the merging neutron stars, such
as the mass and radius, when they are at infinite separation.
Such correlations are summarised in Fig. 13. We start by
considering how the maximum angular velocityΩmax of the
averaged profiles relates to the angular frequency corre-
sponding to the largest peaks of the postmerger power
spectral density Ω2 ≔ 2πf2 (left panel of Fig. 13; see
[30,36,66] for a definition and discussion of the various
frequencies of the postmerger signal). This frequency is
customarily interpreted as twice the spinning frequency of
the m ¼ 2-deformed HMNS [66,103] and is therefore not
surprising that it should tightly correlate with the maximum
angular frequency of the averaged angular-velocity pro-
files. What is less obvious is that the value of Ωmax reported
in Fig. 13 does not change significantly with time and is
therefore also the value of Ωmax at the end of the
simulations, when the m ¼ 2 deformation has either been
washed out or is small. Stated differently, when the HMNS
has reached an almost axisymmetric configuration, the
gravitational-wave frequency ΩGW ≃Ω2 can still be used
to measure the maximum angular velocity of the fluid. In
addition, it is worth remarking that the correlation shown
between Ωmax and Ω2 provides an additional confirmation
that the measurements of the angular-velocity distributions
discussed in the previous section (see discussion in Sec. III)

is physically meaningful. While in fact Ωmax is gauge
dependent, Ω2 is one of the few gauge-independent
quantities of our simulations.
Shown instead in the central and right panels of Fig. 13

are the correlations of Ωmax with the average rest-mass
density ρ̄ ≔ M=R3 and the stellar compactness C ≔ M=R.
Also in this case, an essentially linear correlation exists,
which is easy to explain. Stiffer EOSs will lead to HMNSs
that have comparatively larger radii and, hence, smaller
average densities; in turn, smaller angular velocities will be
necessary to attain a quasistationary hydrostatic equilib-
rium for the HMNS. Furthermore, for a given EOS, low-
mass binaries will have comparatively smaller average
densities, thus explaining why, for the same EOS, binaries
reported with triangles have systematically lower averaged
maximum angular velocities (cf. central panel of Fig. 13).
Finally, the line of arguments described above for the
average densities applies unmodified also for the stellar
compactness (cf. right panel of Fig. 13).
We have already commented, when discussing Fig. 12,

that the fluid flow in the outer regions of the HMNS, i.e.,
for r≳ 15 km, exhibits a profile scaling like r−3=2. To
substantiate this claim we recall that if, at the time the
HMNS has reached a quasistationary configuration, we
assume the spacetime at sufficiently large radii to be
sufficiently close to that of a Kerr black hole, so that the
geodesic motion of fluid elements on the equatorial plane
will have orbital angular frequencies given by Kepler’s
expression [50]

ΩKepðrÞ ¼
ffiffiffiffiffi
M

p
ffiffiffiffiffi
r3

p
þ a

ffiffiffiffiffi
M

p ; ð10Þ

where a ≔ J=M is the spin parameter of the Kerr black
hole, J is the total angular momentum, and M is the total
gravitational mass. Of course this approximation is very
crude since the HMNS’s spacetime is not that of a Kerr

FIG. 13. Left panel: maximum valueΩmax of the time- and azimuthally averaged rotation profiles (see Fig. 12) as a function of (half of)
the main gravitational-wave frequency of the emitted by the HMNS Ω2. Middle panel: Ωmax as a function of the average rest-mass
density ρ̄ ≔ M=R3 relative to the initial stellar models. Right panel: Ωmax as a function of the initial stellar compactness C ≔ M=R.
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black hole, indeed the low-mass models do not collapse,
and the fluid motion is not entirely geodetic, but it is also
true that this approximation is very helpful to characterise
the fluid motions in the outer regions. We can therefore
introduce the quantity

χðrÞ ≔ Ω2ðrÞr3; ð11Þ

which would tend asymptotically to the mass of the black
hole if Ω ¼ ΩKep, if the motion was a geodetic one, and if
this was a Kerr spacetime; obviously, none of these
conditions are actually met here. However, as we discuss
below, we can use the radial dependence of this quantity to
measure where the flow starts having angular frequencies
scaling like r−3=2.
This is shown in Fig. 14, which reports the behavior of

χðrÞ for the binaries simulated. Clearly, all of the profiles
converge to a rather constant value for large radii, thus
indicating that indeed the low rest-mass density regions of
the HMNS exhibit an a flow with angular frequencies
scaling like r−3=2. In order to determine where this happens,
we follow a very phenomenological approach and compute
the scale height of χ, that is, χ0=χ ≔ ðdχ=drÞ=χ. Since
χ → const for a flow with ΩðrÞ ∝ r−3=2, χ0=χ will be zero
when this happens. Of course, χ → const only asymptoti-
cally and so we approximate the location of the transition to
a disk as the place where the monotonically decreasing
function χ0=χ reaches a sufficiently small value, which we
here choose to be χ0=χ ≤ 0.05.
The importance of having a disk in the outer regions of

the HMNS is at least twofold. First, since a flow with
Ω ∝ r−3=2 satisfies the Rayleigh criterion of rotating fluids

against axisymmetric perturbations,3 the differentially
rotating “disk” surrounding the HMNS will probably
accrete onto the uniformly rotating core of the HMNS
only on a dissipative timescale. Therefore, it is possible that
it will not affect the long-term stability required in the
proto-magnetar model for short gamma-ray bursts [31–33]
and the subsequent extended x-ray emission [34]. Second,
once the core of the HMNS eventually collapses to a
rotating black hole, the presence of a certain amount of
mass on stable orbits will guarantee that the black hole will
not be “naked,” as suggested in Ref. [104], but rather
surrounded by a torus, which would then lead to the
potential formation of a relativistic jet. We will discuss
this point in more detail in the following section.

B. Mass in the “disk”

The distribution of rest mass in the HMNS is of great
astrophysical importance as it regulates the amount of mass
that is ejected in the merger and that can subsequently
feed r-process nucleosynthesis and an electromagnetic
counterpart to the merger via the radioactive decay of
by-products of the r-process (i.e., via a macronova) (see,
e.g., [85,105–114]). In addition, and as mentioned in the
previous section, the knowledge of the rest-mass distribu-
tion in the HMNS, and in particular of the portion of it in
the disk, is important to determine how much of the HMNS
will “survive” the process of gravitational collapse of the
HMNS to a black hole and end up in building a torus
around the black hole.
As a result, we have computed the rest-mass distribution

as a function of the radial distance from the origin as

Mbð~rÞ ≔
Z

2π

0

Z
π

0

Z
~r

0

ffiffiffi
γ

p
Wρr2 sinðθÞdrdθdϕ; ð12Þ

withW ¼ αut being the Lorentz factor. Figure 15 illustrates
the radial dependence of the total rest mass in the HMNSs
when normalised with the total initial rest mass 2Mb;0. Note
that both for the high- and low-mass binaries the distribu-
tions refer to times which are in the middle of the averaging
intervals in Figs. 2 and 8 (i.e., at t ¼ tBH=2 for the high-
mass binaries and at t ¼ tfin=2 for the low-mass binaries).
Irrespective of the EOS and initial mass, all of the rest-

mass distributions indicate that the rest mass MbðrÞ does
not change significantly for r≳ 15 km, so that the missing
amount of rest mass is the one that has been ejected
dynamically soon after the merger; note that largest
majority of this ejected matter is gravitationally bound
and only a very small fraction of it will be ejected and
unbound [84,85]. Figure 15 also shows a somewhat
expected result, namely, that binaries with softer EOSs

FIG. 14. Radial dependence of the quantity χðrÞ ≔ Ω̄2r3 for all
of the simulated binaries. Note that all profiles reach an almost
constant value for r ≳ 25 km. The gray-shaded area shows the
region where the flow starts to having angular frequencies scaling
like r−3=2; see Table II for the exact values of Rdisk for the
various EOSs.

3We recall that this classical-physics criterion can also be seen
as requiring that the specific angular momentum j ¼ ΩðrÞr2
increases outwards for a stably rotating fluid configuration.
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(e.g., APR4 or SLy) have considerably more compact rest-
mass distributions, reaching 80% of the total within only
r≲ 7.5 km, quite independently of the initial mass of the
binary. By contrast, binaries with stiffer EOSs (e.g., GNH3
or H4) have less compact distributions, reaching 80% of the
total only for r≲ 10 km, and a bit less for low-mass
binaries.
Another useful measure of the rest-mass distribution is

that of the mass in the “disk”, which we define to be the rest
mass confined in the region of the HMNS in the disk. More
specifically, if Rdisk is the radial location (on the equatorial
plane) where the disk starts (i.e., where χ0=χ ≤ 0.05), then
we define the rest mass in the disk asMb;disk ≔ 2Mb;0 −Mb

(Rdisk). Another interesting notion of mass is that is inside
the maximum value of the averaged angular-velocity
profile. After defining RΩmax

as the location where the

angular-velocity profile reaches its maximum, and recalling
that i.e., RΩmax

< Rdisk, we can calculate the mass inside
RΩmax

using the same expression (12); we refer to this mass
as to Mb;Ωmax

. The masses in the disk surrounding the
quasiuniformly rotating inner core of the HMNS and that
outside the angular-velocity maximum are summarised in
Table II for all of the binaries simulated. Overall, they
indicate that the mass outside RΩmax

and the mass outside
Rdisk are rather similar (the former being slightly larger
since RΩmax

≲ Rdisk) and can be quite large, being almost
0.3 M⊙ for some of the soft-EOS low-mass binaries and of
the order of 0.1 M⊙ for the other binaries. Long-term
angular-momentum transport and neutrino radiation will
change quantitatively these values, but we do not expect
them to change the qualitative picture that low-mass soft-
EOS binaries will have comparatively larger disks.

C. Influence of the thermal component

The final section of this paper is dedicated to assessing
the impact of the thermal component of the EOS on the
results presented so far, further extending the discussion
made in Sec. V. We recall, in fact, that with the exception of
the LS220 EOS, all of our EOSs do not have a nuclear-
physics thermal component and that thermal effects are
accounted for via a hybrid EOS in which an ideal-fluid
contribution is added to the total pressure (see Sec. II B for
details). The choice of the adiabatic index Γth is somewhat
arbitrary (the only mathematical constraint being that
1 ≤ Γth ≤ 2, but see discussion in [50]). Since the value
of Γth regulates the amount of thermal pressure produced
after merger and, hence, to some extent, the equilibrium
properties of the HMNS, it is worth investigating its effects
on the rest-mass density and angular-velocity distributions.
This is shown in Fig. 16 for the ALF2-M125 binary, but

the results are similar for other binaries. We indicate with
green (black) solid, dashed and dotted lines the averaged
angular velocity (rest-mass density) profiles for Γth ¼ 2.0,

FIG. 15. Integrated rest mass MbðrÞ as function of the radial
coordinate and normalised with the total initial rest mass. The
gray shaded area shows the region where the disk starts; see
Table II for the exact values of Rdisk for the various EOSs.

TABLE II. Summary of the HMNS properties. The various columns denote the radial position RΩmax
of the maximum of the averaged

angular-velocity profiles Ωmax, the total rest mass inside RΩmax
, i.e.,Mb;Ωmax

≔ MbðRΩmax
Þ, the radial position Rdisk where the disk starts,

and the total rest mass outside Rdisk, i.e., Mb;disk ≔ 2Mb;0 −MbðRdiskÞ.

Model RΩmax
[km] Ωmax [kHz] Mb;Ωmax

[M⊙] Mb;Ωmax
=ð2Mb;0Þ [%] Rdisk [km] Mb;disk [M⊙] Mb;disk=ð2Mb;0Þ [%]

GNH3-M125 7.92 1.04 1.56 57.89 18.96 0.10 3.79
GNH3-M135 5.19 1.25 0.97 33.12 19.27 0.05 1.65

H4-M125 9.98 1.02 1.99 73.70 17.08 0.26 9.66
H4-M135 8.36 1.20 2.18 74.20 17.07 0.12 4.10

ALF2-M125 9.04 1.23 2.04 74.49 15.71 0.32 11.73
ALF2-M135 6.20 1.31 1.46 49.35 16.39 0.04 1.35

SLy-M125 7.31 1.51 2.13 77.44 14.15 0.10 3.63
SLy-M135 6.43 1.63 2.16 72.17 15.05 0.09 3.01

APR4-M125 7.57 1.52 2.15 78.49 14.56 0.12 4.43
APR4-M135 6.76 1.59 2.30 76.40 14.70 0.18 5.85
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1.8 and 1.6, respectively. The curves are obtained after
averaging in the azimuthal direction and over a time
interval [1=3tfin, 2=3tfin]. Figure 16 shows that a larger
value of Γth yields a larger pressure support and, hence,
prevents the matter in the HMNS to reach large values of
compression. This explains why the maximum rest-mass
density is larger for smaller values of the thermal adiabatic
index (see black lines). In turn, since a larger pressure
support implies that the HMNS is less compact (com-
pressed) and since the angular momentum is essentially the
same for the binaries with different Γth considered here, it is
not surprising that the maximum value of the averaged
angular velocity increases as the contribution of the thermal
component is decreased (see green lines).
What is possibly more important to note is that the

changes induced by the different values of Γth are quanti-
tative only and also rather small, i.e., with relative varia-
tions of ≲10% in the angular velocity. The qualitative
behavior, however, remains unchanged, most notably, in
the disk, thus removing the influence of the thermal
component of the EOS as a potential bias in our analysis.

VII. CONCLUSIONS

Establishing the long-term stability properties of astro-
physical compact objects produced in catastrophic events,
such as in Type-II core collapse supernovae or in the merger
of binary systems of neutron stars, is an old and important
problem. While it is clear that the large angular momentum
that these objects attain cannot be sustained via uniform
rotation, far less clear is what is the law of differential
rotation that is reached in quasistationary equilibria. More
importantly, it is not yet known whether this law depends

sensitively on the EOS of the compact object or is instead
“universal”.
Notwithstanding these conceptual obstacles, a large bulk

of literature has developed over the last decade to explore
this problem in full general relativity, either through the
study of equilibrium configurations or via numerical
relativity simulations that produce these objects dynami-
cally. Works in the first class have commonly modelled
differential rotation through a particularly simple law
expressing that the specific angular momentum is constant
on cylinders. In this j-constant law, angular velocity
decreases monotonically from the center of the star and
the degree of differential rotation is expressed via a single
dimensionless parameter. However, a number of simula-
tions of merging binary neutron stars have given evidence
that the angular-velocity profile of the HMNS produced at
the merger is characterized by a slowly rotating core and an
envelope that rotates at frequencies scaling like r−3=2.
This is very different from what is expected when using
a j-constant law of differential rotation.
To shed some light on these differences, and to obtain a

comprehensive picture of the rotational properties of
HMNSs from binary neutron-star mergers, we have carried
out a large number of numerical simulations in full general
relativity of binary neutron stars described with various
EOSs and masses. We have been able to confirm the
earlier results of Refs. [4,19,20], but, more importantly, to
show that the angular-velocity distribution shows only a
modest dependence on the EOS, thus exhibiting the
traits of “quasiuniversality.” More specifically, the EOS-
independent angular-velocity distributions we find are
characterized by an almost uniformly rotating core and a
“disk.” The rest mass contained in such disk can be quite
large, ranging from ≃0.03 M⊙ in the case of high-mass
binaries with stiff EOSs, up to ≃0.2 M⊙ for low-mass
binaries with soft EOSs.
The presence of a disk in the outer regions of the HMNS

implies that the disk will only accrete onto the uniformly
rotating core on a dissipative timescale, thus not affecting
the long-term stability of the latter4 The final fate of this
disk when the lifetime of the HMNS is expected to be very
large (i.e., larger than 10 s and up to 104 s [115]) is hard to
assess through self-consistent numerical simulations.
However, its dynamics has been recently conjectured
within the “two-winds” model presented in Ref. [34] to
explain the extended x-ray emission observed in a class of
short gamma-ray bursts. In essence, the expectation is
that because the material in the outer regions is on stable
orbits, it could be subject to a magnetorotational instability
[116–118] and, hence, behave as a standard accretion disk
onto a rapidly rotating magnetized star. In this case, the

FIG. 16. Time- and azimuthally averaged rest-mass density
profiles (black lines) and angular-velocity profiles (green lines) of
the ALF2-M125 binary for different values of the thermal
adiabatic index Γth. The time and azimuthal averages have been
performed in the same manner as in Fig. 12.

4By long-term stability we here refer to a timescale which is
much longer than the uncertainty in the lifetime of the HMNS due
to a finite numerical resolution.
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differential rotation will not brake the rotation but transport
angular momentum outwards. A good fraction of the
material in this disk will therefore remain on quasicircular
orbits. Once the uniformly rotating core has collapsed, the
material in the disk that was not able to accrete before
because of the presence of the inner-core “surface”, will
accrete onto the black hole on the timescale set by the most
efficient dissipative mechanism removing angular momen-
tum. Clearly, if the mass in the torus is very small, then it
will become difficult to find the energy reservoir needed to
launch and sustain the jet that is required in the two-winds
model. However, given that at least 10% of a solar mass is
present in the disk after 20 ms after the merger, it is
sufficient that only 10% of this mass is channelled into a
torus around the newly formed black hole to provide a
sufficient amount of energy to power a relativistic jet. More
work is needed to fully explore the consequences of this
scenario and also to assess the impact that neutrino-driven
winds may have on the survival of the disk [119].
On a final note, we should also draw attention to various

limitations of the work presented here. First, all of the
binaries considered here have the same mass; although the
masses in observed neutron-star binaries do not differ
significantly, it is unlikely that they are exactly the same.
Fortunately, it seems that this systematic bias in our sample
may not be a serious one since the results presented in
Ref. [120] for unequal-mass binaries show very similar
angular-velocity profiles. Second, our simulations do not
account for neutrino transfer; this is mostly because the
neutrino-diffusion timescale is at least one order of mag-
nitude larger than the one considered here [121] and a
complete investigation of the rotational properties of the
HMNS when varying the EOS and the neutrino transport
are still prohibitive. Hence, we have preferred to consider
here a more controlled scenario in which we evaluate only
the impact of the EOS. Third, our simulations have
neglected magnetic fields, even though we do expect
magnetic fields to impact the dynamics of the HMNS by
transferring angular momentum from the inner regions of
the HMNS out to the more external ones. This transfer will
take place on an Alfvén timescale, which is much longer
than the one considered here. In this sense, the quasiuni-
versal behavior reported here should be taken as represen-
tative of the first few tens of milliseconds after the merger
and recent work in Ref. [120] indicates that our results
should remain valid also in the presence of magnetic fields
and at least within ∼40 ms after merger. The importance of
magnetic fields in the postmerger dynamics has been
discussed in recent works [17,122–127]. During merger
a vortex sheet develops where the tangential component of
the velocity is discontinuous. Such a shear interface is
unstable to perturbations and can develop the so-called
Kelvin-Helmholtz instability. If the magnetic-field of the
merging neutron stars is poloidal, this instability may lead
to an exponential growth of their toroidal component

[13,17,122,123,128,129], curling poloidal field lines and
generating a turbulent flow. Resolving the growth and
saturation of the Kelvin-Helmholtz instability is a chal-
lenging computational issue, especially for realistic (pulsar-
like) magnetic field strengths. The latest, highest resolution
simulations to date of [123] for initial magnetic fields of
moderate strength (1013 G) show that the amplification
factor of the field is ∼103 at ∼4 ms after merger, with a
saturation magnetic field-energy≳4 × 1050 erg, i.e.,≳10−3
of the bulk kinetic energy of the merging neutron stars.
Although the magnetic energy is still much smaller than the
bulk kinetic energy and unable to produce significant
changes in the inspiral [130], these results and the pos-
sibility that even stronger amplification could be achieved,
suggest the importance to consider strong magnetic fields
for modelling the postmerger evolution of binary neutron
stars. Finally, our investigation has been concentrated
mostly on “cold” EOSs, where a thermal contribution
has been added in a way that is “ad-hoc”, albeit quite
customary [cf. Eq. (6)]. It is therefore reassuring that two of
the 12 binaries simulated here, and for which a “hot” EOS
has been employed, show a behavior for the angular
velocity that is very similar to that encountered for the
cold EOSs. Overall, the caveats listed above represent
strong motivations to further refine the study carried out
here and advance our understanding of the rotational
properties of the HMNSs produced in binary neutron-star
mergers.
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APPENDIX A: ON THE BERNOULLI CONSTANT

As discussed in Sec. III B, the evident π=2 phase
difference in the distribution of the angular velocity and
of the density, so that areas of low pressure (rest-mass
density) are accompanied by regions of large velocity, can
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be explained in terms of the manifestation of the Bernoulli
theorem. To show this, we will consider a rather idealised
description of the quasistationary equilibrium of the HMNS
and make a series of assumptions that will simplify the
mathematical treatment and hopefully improve our physical
understanding.
We therefore start by recalling that in relativistic hydro-

dynamics and for a perfect fluid with four-velocity u, the
quantity hðu · ξÞ is Lie-dragged along u [50]

Luðhu · ξÞ ¼ 0; ðA1Þ

where h ≔ ðeþ pÞ=ρ is the specific enthalpy, e ≔ ρð1þ
ϵÞ is the total energy density, and ξ is a Killing vector of the
spacetime and also a generator of the symmetry obeyed by
the fluid. A direct consequence of Eq. (A1) is that in the
case in which the spacetime admits a timelike Killing
vector, then the quantity B ≔ hut is a constant of the fluid;
this is the general-relativistic extension of the classical
Bernoulli theorem.
Of course, the assumption of a stationary spacetime

during the evolution of the HMNS is not true and the
HMNS is emitting gravitational waves, which are the most
evident manifestation of a nonstationary spacetime. Yet,
because at least energetically these modulations of the
spacetime are small when compared with the total bulk
(kinetic) energy of the system, we can consider the
assumption not to be unreasonable even though it is
evidently not strictly true.

In its classical limit, Eq. (A1) becomes

�
1þ ϵþ p

ρ

��
1þ ϕþ 1

2
v⃗2
�

¼ const; ðA2Þ

where ϕ is the gravitational potential and where v is the
local fluid velocity. When neglecting higher-order terms,
expression (A2) further reduces to

�
1

2
v⃗2 þ ϕþ ϵþ p

ρ

�
¼ const; ðA3Þ

which coincides with the classical expression for the
Bernoulli constant [50]. Next, to translate into a classical
Newtonian language our assumption on the existence of a
timelike Killing vector we can take the gravitational
potential to be independent of time and essentially constant
across the HMNS, so that Bernoulli’s theorem effectively
reduces to the well-known condition that, along a fluidline,

�
1

2
v⃗2 þ ϵþ p

ρ

�
¼ const: ðA4Þ

To validate whether or not the classical Bernoulli
constant (A4) is actually a constant along a fluidline we
have calculated it for a number of tracer particles and show
it for three representative fluidlines in Fig. 17 for the
LS220-M132 binary. These tracers have been selected
because they are originally in the equatorial plane and have

FIG. 17. Top panels: evolution of the radial positions for tracers in the LS220-M132 binary that are eventually either in the inner
regions of the HMNS (left panel), or at some distance from the rotation axis (central panel), or in outer regions of the HMNS (right
panel). Bottom panels: evolution of the classical Bernoulli constant (A4) relative to these tracers (blue solid lines), and its main
contributions. The gray-shaded area refers to the postmerger transient when the HMNS is far from an equilibrium.
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an essentially zero velocity in the vertical rotation, hence
representing particles that are genuinely moving in the
equatorial plane. The three panels in the top row of Fig. 17
show the evolution of the radial positions for tracers that at
the end of the simulation are either in the inner regions of
the HMNS [i.e., rðt ¼ tfinÞ ¼ 4 km, left panel], or at some
distance from the rotation axis [i.e., rðt ¼ tfinÞ ¼ 8 km,
central panel], or in outer regions of the HMNS [i.e.,
rðt ¼ tfinÞ ¼ 12 km, right panel]. The gray-shaded area
refers to the postmerger transient when the HMNS is far
from an equilibrium. Note that these selected particles can
experience large excursions from their original positions
(shown as dashed horizontal lines) due to the complex
motion around the core per Fig. 10, but that on average they
do not stride too far away.
The panels in the bottom row of Fig. 17 show instead the

values of the classical Bernoulli constant (A4) relative to
the corresponding tracers in the top row (blue solid lines),
but also the two main quantities contributing to it, namely:
ϵþ p=ρ (green solid lines)5 and v2=2 (red solid lines).
While the values of (A4) are strictly not constant in time
(especially in transient postmerger phase indicated with the
gray-shaded areas), they also do not vary significantly
around the initial values. More importantly, it is very clear
that there is a phase opposition in the evolution of the
pressure term ϵþ p=ρ and of the kinetic term v2=2, so that
large values of the former correspond to low values of the
latter and viceversa. This is exactly what one would expect
in the presence of a fluid satisfying Bernoulli’s theorem,
hence supporting the explanation of the phase difference in
the distribution of angular velocity, recalling that v ∼ Ωr,
and density being a result of the conservation of the
Bernoulli quantity B ¼ h ut. All that has been discussed
above for our three representative tracers holds true for all
others that are taken in the neighborhood of the equato-
rial plane.

APPENDIX B: TIME-AVERAGING,
SYMMETRIES, AND RESOLUTIONS

In this Appendix we consider the impact that the time-
averaging techniques, the use of a π-symmetry and the
chosen spatial resolution have on the robustness of our
results. We recall that all the simulations reported here have
used six refinement levels and a rather high spatial
resolution, namely, Δh5 ¼ 0.15 M⊙ ≈ 221 km on the fin-
est refinement level. Furthermore, to reduce computational
costs, we have employed a reflection symmetry across the
z ¼ 0 plane and for most simulations a π-symmetry
condition across the x ¼ 0 plane.

1. Impact of time-averaging techniques

The choice of the origin and length of the time-averaging
window has been guided by two principal considerations:
avoiding the initial postmerger phase and avoiding the
phase briefly preceding the collapse to a black hole.
Avoiding the initial postmerger phase is important because
the HMNS is rapidly changing in its attempt to reach an
equilibrium; the matter dynamics in this phase is quite
irregular, as can be seen in the gravitational waves [30], and
differs significantly from the evolution at later times when
the system reaches a more equilibrium state. On the other
hand, avoiding the stage preceding the collapse to a black
hole is important because again in such a stage the
dynamics is far from equilibrium and any information
on the angular velocity does not reflect a quasistationary
solution.
Within these constraints, there are two free parameters in

performing the time averages: the initial time of the
averaging window and its width. We recall that, in the
previous section, we have chosen a time-averaging centered
about tfin=2 with a width of tfin=3 where tfin is the time to
collapse to a black hole in the high-mass cases and the end
of the simulation in the low-mass cases. These values
ensure that the above mentioned considerations are realised
and have no influence on the angular-velocity profiles.
Although these constraints may appear restrictive, we
consider next different times and how they influence the
averaging procedure.
To this end, we have chosen several initial and final

values of the averaging procedure and plotted the results in
Fig. 18. More precisely, the top panels of Fig. 18 report the
angular-velocity profiles when the initial time of the
averaging window is taken to be 6 ms after the merger,
independently of the EOS and mass of the binary.
Furthermore, the different panels from left to right refer
to different lengths of the window, namely, 5, 7, 9 ms, so
that the windows data refer to time windows ½6; 11�; ½6; 13�
and [6, 15 ms], respectively. Clearly, independent of the
window length, the qualitative features are essentially
identical, exhibiting a slowly rotating core, followed by
an increase to a maximum, followed by a decrease to a flow
with ΩðrÞ ∝ r−3=2.
The bottom panels of Fig. 18, on the other hand, show a

similar information in that the initial time is still fixed to 6ms,
but the averaging window is not the same for the different
EOSs and masses. Rather, it is determined by the gravita-
tional-wave frequency f2 ¼ Ω2=ð2πÞ, which is related to the
maximum of the angular velocity Ωmax (cf. Fig. 13). In this
way, each binarywill have an averagewindowwhich is set to
be a multiple of the spinning frequency of the HMNS. In
practice we have set the averaging window to be Δt ¼
½12; 18; 24� × 1=f2 in the panels from left to right, respec-
tively. Also in this case, the qualitative behavior of the
various angular-velocity profiles is the same and the
differences are of a few percent at most.

5Note that ϵ≃ p=ρ at all times and, hence, they are not shown
separately.
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As a final variant of the possible way of performing the
time averages, we report in Fig. 19 the angular-velocity
profiles when the averaging windows is set to be 7 ms for
all EOSs and masses, but where the initial averaging time is

varied and set to be 5,6,7 and 8 ms, respectively. As a result,
the four lines reported in each panel refer to averaging
windows given by [5, 12], [6, 13], [7, 14], and [8, 15] ms,
respectively; note that the top part of each panel refers to

FIG. 18. Comparison of different averaging techniques for the time- and azimuthally averaged angular-velocity profiles for different
EOSs. The beginning of the averaging window has been fixed at 6 ms. Top panels: For all EOSs and masses, the different panels refer to
different lengths of the window, namely, 5, 7, 9 ms, so that the from left to right the data refer to time windows [6, 11], [6, 13] and
[6, 15] ms, respectively. Bottom panels: The same as above but when the averaging window is not the same for the different EOSs and
masses but is determined by the gravitational-wave frequency f2 ¼ Ω2=ð2πÞ. As a result, from left to right the averaging windows are:
½12; 18; 24� × 1=f2, respectively.

FIG. 19. Averaged angular-velocity profiles when the avering windows is set to be 7 ms for all EOSs and masses, but where the initial
averaging time is varied and set to be 5 (red line), 6 (blue line), 7 (green line), and 8 ms (black line), respectively. The four lines refer to
averaging windows given by [5, 12], [6, 13], [7, 14], and [8, 15] ms, respectively; note that the top part of each panel refers to the low-
mass binary, while the bottom one to the high-mass one.
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the low-mass binary, while the bottom one to the high-mass
binary. Also when considering this different technique it
emerges rather clearly that the averaging procedure has
little influence on the angular-velocity distribution.
However, two exceptions are also equally clear and for
obvious reasons. The first one is offered by the binary
ALF2-M135 case, whose HMNS collapses at approxi-
mately 15 ms (cf. Fig. 2) and whose “late-time” averaging
window is obviously spoiled by the large increase in Ω
occurring before the collapse. The second exception is
given instead by the binary GNH3-M135, which has
instead a long-lasting transient postmerger phase, with
the two stellar cores still clearly visible. Also in this, the
“early-time” averaging is not representative of a quasista-
tionary stage. Excluding these two obvious pathological
averaging windows, the maximum angular-velocity
changes by 5% at most for all masses and EOSs.

2. Impact of π-symmetry

We next consider the impact of having imposed a π-
symmetry in our simulations. While this is a perfectly
reasonable option in view of the considerable savings in
computational costs, it also blinds us to the development of
an m ¼ 1 instability that has been reported by a number of
groups [131–133]. While the gravitational-wave signal
associated with the instability is always smaller than the
dominant one coming from the m ¼ 2 deformations in the
HMNS, so that its observation by current generation
detectors is unlikely and will require third-generation
detectors [132], it is useful to verify whether the presence

of the one-arm instability would leave an imprint on the
angular-velocity profiles despite the azimuthal average.
To this scope we have considered the evolution of an

equal-mass binary with the LS220 EOS and a gravitational
mass of 2 × 1.350 M⊙ (cf. binary LS220-M135 in
Table I), evolved with and without π-symmetry to inves-
tigate the influence of the instability on the rotation
profiles. The corresponding angular-velocity distribution
on the equatorial plane for the simulation without the
π-symmetry is shown in the left panel of Fig. 20 at four
representative times after the merger and when the HMNS
has reached a quasistationary state. Comparing such a panel
with the bottom rows of Figs. 3 and 9, where the
π-symmetry is imposed, highlights the presence of a small
m ¼ 1 deformation. The right panel of Fig. 20, on the other
hand, reports the corresponding azimuthal and time-aver-
aged profile for two simulations. The black dashed line
refers to the π-symmetric run, while the black solid line to
the run without π-symmetry; in both cases the average is
done between t ¼ 5 ms and t ¼ 12 ms.
Clearly, no sign of the m ¼ 1 deformation is present, as

one would expect from an averaging process; rather, the
angular velocity shows similar quantitative behavior with
and without the use of π-symmetry. The greatest difference
is in the very centre of the HMNS where the angular
velocity is higher with π-symmetry than without. The
maximum angular velocity is 1% larger with π-symmetry
and the location of the maximum is slightly shifted to larger
radii. Both runs exhibit quasicircular orbits at larger radii.
We conclude that in the very interior of the HMNS, the use
of π-symmetry plays a small role, but also that outside a

FIG. 20. Left panel: angular velocity distribution on the equatorial plane at four representative times for a binary with the LS220 EOS
evolved without π-symmetry; note the appearance of an m ¼ 1 deformation in addition to the larger m ¼ 2 deformation. Right panel:
corresponding azimuthal and time-averaged profile for the same binary with π-symmetry (black dashed line) and without (black solid
line) at a resolution of Δx ¼ 0.15. Additionally, low resolution runs of Δx ¼ 0.20 (red solid line) and Δx ¼ 0.25 (green solid line) are
shown. All resolutions exhibit the same behavior already discussed above.
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core region of≃5 km the influence is minimal and does not
affect our conclusions.

3. Impact of grid resolution

Since the stability properties of the HMNS phase depend
on the resolution (see [37] where this was first investigated
systematically), the determination of its lifetime against
gravitational collapse requires a systematic and very careful
resolution study. At the same time, because of the develop-
ment of large shocks, the convergence order after the
merger is inevitably very low (i.e., of order unity or less),
so that a strict convergence study of this stage is of little use
and certainly beyond the scope of this paper. In fact,
different resolutions would mostly produce phase
differences in the dynamics of the fluid and spacetime
variables, hence with only a small impact on our results that
are expressed in terms of time and azimuthal averages.
Notwithstanding these considerations, it is reasonable to

ask how significant are the changes in the angular-velocity
profiles when the simulations are performed at different
resolutions. Such a resolution study would then provide
confidence on the robustness of the results presented here.
We also recall that in Ref. [36] we have considered the
influence of the resolution on the dynamics of the HMNS
by using three different resolutions for a binary described
by an ideal-fluid EOS. As remarked in [36], the rather high
resolution employed here on the finest refinement level,
i.e., Δh5 ¼ 0.15 M⊙, provides a description of the HMNS

which is very close to that obtained with an even higher
resolution of Δh5 ¼ 0.125 M⊙.
The results of our resolution study are summarized in the

right panel of Fig. 20 for the LS220-M135 binary. More
specifically, in the right panel of Fig. 20 we plot the
averaged angular velocity for the binary LS220-M135 for
three different resolutions on the finest refinement level,
i.e., Δh5 ¼ 0.15; 0.20; 0.25 M⊙ ≈ 221; 295; 369 m, and
which we dub as “high”, “medium” and “low resolution,”
respectively. All simulations do not use a π-symmetry,
except where noted. We also remark that although a
resolution of Δx ¼ 0.25 M⊙ may appear coarse, it is
routinely used in numerical-relativity simulations of binary
neutron stars (see, e.g., [18,134,135]) and has been shown
to be high enough to provide physically robust results (see
[18] for an extensive discussion).
Clearly, at all resolutions the profile of the angular-

velocity is similar, namely, showing a slowly rotating core,
rising to a maximum around 8 km before decreasing to a
r−3=2 profile. The largest differences between resolution are
in the centre of the HMNS, where the rest-mass densities
are the highest and the metric functions show the largest
gradients. Despite this, all resolutions reach a maximum
angular-velocity at around 8 km with a variation with
resolution that is at most 5%. This small variance demon-
strates the robustness of the maximum angular-velocity and
illustrates that quasiuniversal relations proposed in Sec. VI
are a robust feature of the HMNS.
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