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We consider propagation of high-energy earth-skimming taus produced in interactions of astrophysical
tau neutrinos. For astrophysical tau neutrinos, we take generic power-law flux, E−2 and the cosmogenic
flux initiated by the protons. We calculate tau energy loss in several approaches, such as dipole models and
the phenomenological approach in which parametrization of the F2 is used. We evaluate the tau neutrino
charged-current cross section using the same approaches for consistency. We find that uncertainty in the
neutrino cross section and in the tau energy loss partially compensate giving very small theoretical
uncertainty in the emerging tau flux for distances ranging from 2 to 100 km and for the energy range
between 106 and 1011 GeV, focusing on energies above 108 GeV. When we consider uncertainties in the
neutrino cross section, inelasticity in neutrino interactions and the tau energy loss, which are not correlated,
i.e. they are not all calculated in the same approach, theoretical uncertainty ranges from about 30% and
60% at 108 GeV to about factors of 3.3 and 3.8 at 1011 GeV for the E−2 flux and the cosmogenic flux,
respectively, for the distance of 10 km rock. The spread in predictions significantly increases for much
larger distances, e.g., ∼1; 000 km. Most of the uncertainty comes from the treatment of photonuclear
interactions of the tau in transit through large distances. We also consider Monte Carlo calculation of the tau
propagation and we find that the result for the emerging tau flux is in agreement with the result obtained
using analytic approach. Our results are relevant to several experiments that are looking for skimming
astrophysical taus, such as the Pierre Auger Observatory, HAWC and Ashra. We evaluate the aperture for
the Auger and discuss briefly application to the other two experiments.
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I. INTRODUCTION

Astrophysical sources that produce observed high-energy
cosmic rays and photons should also be sources of neutrinos
(see, e.g., Refs. [1–3]). While individual neutrino sources
have not yet been detected, the IceCube Neutrino
Observatory has evidence of a diffuse flux of neutrinos that
lies above the background of neutrinos produced in the
atmosphere for neutrino energies above ∼105–106 GeV [4].
Further characterization of the diffuse flux is underway at
IceCube and at underwater observatories [5].
Detection of neutrinos from astrophysical sources is

expected to reveal details about the site of cosmic ray
acceleration and about the propagation of cosmic rays
through the thermal cosmic background. The feature that
neutrinos can escape sources without interacting and are

not affected by magnetic fields translates to a challenge in
neutrino detection. The underground observatories in ice
and water instrument a large volume of target material that
is transparent to the light signals that neutrino weak
interactions produce. At higher energies, the neutrino
interaction probabilities increase, however, the expected
flux of neutrinos decreases more quickly as a function of
energy, requiring even larger target volumes.
A well-known technique to overcome the problem of

large target volumes for ultrahigh energy neutrinos has
been explored for detecting astrophysical tau neutrinos in
air shower experiments. The idea is to use the Earth as a
neutrino converter then to use an emerging tau decay into a
shower to detect the ultrahigh energy tau neutrino flux
[6–16]. Currently, the Pierre Auger Observatory has set
limits on the tau neutrino flux in the energy range
2 × 108 GeV up to 2 × 1010 GeV [17,18] using this tech-
nique. The potential to use the volcano adjacent to HAWC
as the neutrino converter has also been explored [19]. In
addition, there is a proposal for the Ashra detector that
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would also use a mountain as a neutrino converter, for
example Mauna Kea [20].
Among the uncertainties in these tau neutrino flux limits

or eventual observation are three elements: the uncertainty
in the high-energy neutrino cross section [21–29] required
to convert the tau neutrino to the tau lepton in the Earth, the
inelasticity for neutrino scattering with isoscalar nucleons
(how much of the neutrino energy is transferred to the tau)
and the tau electromagnetic loss [30–35] as the tau transits
the remaining rock before it emerges to decay into an air
shower.
Tau energy loss is through electromagnetic interactions

via ionization, bremsstrahlung, pair production and photo-
nuclear interactions, e.g., see Refs. [30–39]. At high ener-
gies, the ionization energy loss is negligible. For taus, the
photonuclear and pair production processes are much larger
than bremsstrahlung, and as the energy increases, the
photonuclear interaction dominates. For muons, bremsstrah-
lung, pair production and photonuclear interactions give
comparable contributions to the electromagnetic energy loss
[37]. The uncertainties in the high-energy behavior of the
photonuclear interaction depend on the parametrizations
and assumptions about the nucleon structure. The neutrino
cross section uncertainties are also related to the nucleon
structure at higher momentum transfers.
In this paper, we focus on two goals. The first is to

evaluate the theoretical uncertainties in the photonuclear
energy loss, neutrino cross sections and neutrino inelastic-
ity in a way that correlates the assumptions about the
nuclear structure for both scattering processes. We consider
energies between 106–1012 GeV, for taus and their corre-
sponding neutrinos that come from cosmic sources and
focus more on energies above 108 GeV. We use an input
spectrum of neutrinos scaling with energy as E−2 as a
representative neutrino flux. In addition, we consider a
cosmogenic neutrino flux which is the flux from the
interactions of cosmic rays with the cosmic neutrino
background (GZK neutrinos). Cosmic rays have been
detected up to 3 × 1020 eV ¼ 3 × 1011 GeV [40], and
the shape of the cosmogenic neutrino flux is deduced from
those observations.
Our second goal is to provide a semianalytic approxi-

mation to the stochastic evaluation of first, the neutrino
interaction, then the tau energy loss in matter. Uncertainties
from a continuous versus stochastic treatment of the tau
energy loss are discussed here (see also [34]). We examine
the impact of stochastic versus approximate treatments of
the neutrino interaction itself as well. The semianalytic
treatment reliably allows a survey of the impact on the tau
flux of multiple approaches to calculating the neutrino
(differential) cross section and tau energy loss.
We begin the paper with a summary of electromagnetic

energy loss of charged leptons, focusing on the photo-
nuclear process and the range of predictions that come from
different approaches to modeling the electromagnetic

structure function F2 beyond the range of experimental
measurements. To exhibit the effectiveness of analytic
approximations to the tau energy loss we show an example
for an incident tau lepton flux given by power-law, E−2.
Section III connects F2 from electromagnetic scattering of
charged leptons to the high-energy neutrino cross section.
In Sec. IV, we show results for incident neutrino fluxes
characterized by a power law and for a representative
cosmogenic neutrino flux. We discuss applications to the
Pierre Auger Observatory in Sec. V. Our conclusions are
in Sec. VI.

II. ELECTROMAGNETIC ENERGY LOSS
OF CHARGED LEPTONS

A. Average energy loss

The propagation of charged leptons through materials
can be described through the average energy loss through
electromagnetic processes. The average energy loss is
usually written as

�
dE
dX

�
¼ −ðαþ βEÞ; ð1Þ

in terms of the column depth

XðDÞ ¼
Z

D

0

ρðlÞdl ð2Þ

for density ρ and distance D. The parameter α describes
ionization energy loss from the Bethe-Block formula [41],
weakly dependent on energy, and at high energies, weakly
dependent on lepton mass ml. For E ¼ 106–109 GeV,
α ¼ 3.1–3.6 × 10−3 GeVcm2=g. At high energies, above a
muon energy E ∼ 103 GeV and tau energy E ∼ 104 GeV,
one can ignore the energy independent ionization energy
loss, which we will do here.
The three contributions from electromagnetic energy loss

to β come from bremsstrahlung, electron-positron pair
production and the photonuclear (inelastic scattering)
processes. They are written as

β ¼ βbrem þ βpair þ βnuc; ð3Þ

where β is calculated for each process by

βðEÞ ¼ N
A

Z
dyy

dσðy; EÞ
dy

ð4Þ

in terms of the inelasticity parameter y ¼ ðE − E0Þ=E for
incident energy E and outgoing energy E0. As discussed
below, βðEÞ depends on the charged lepton, so we label it
with βl for l ¼ μ or l ¼ τ.
We evaluate the bremsstrahlung energy loss following

Petrukhin and Sestakov [42]. Pair production energy loss
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follows Ref. [43]. As shown in Ref. [35] (see also
Ref. [44]), suppression of pair production and bremsstrah-
lung by the Landau-Pomeranchuk-Migdal and Ter-
Mikaelian effects from coherence effects and dielectric
suppression do not affect muon (and tau) energy loss below
El ¼ 1012 GeV, so we do not discuss it here. Scaling of the
energy loss dependence on the charged lepton mass is
discussed in Refs. [45,46]. For bremsstrahlung, βl ∼ 1=m2

l,
while for pair production, βl ∼ 1=ml.
The photonuclear process also scales as βl ∼ 1=ml. The

photon exchange between charged lepton and nucleon
probes the nucleon structure. The differential cross section
in Eq. (4) depends on the nucleon structure functions
F1ðx;Q2Þ and F2ðx;Q2Þ which depend on the lepton four
momentum transfer squared Q2 ¼ −ðl − l0Þ2 ¼ −q2 and
x ¼ Q2=ð2p · qÞ for

lþ NðpÞ → l0 þ X; q ¼ l − l0: ð5Þ

The differential distribution for the photonuclear interac-
tion is

d2σnuc

dxdQ2
¼ 4πα2

Q4

��
1 − y −

Mxy
2E

�
F2ðx;Q2Þ

x

þ
�
1 −

2m2

Q2

�
y2F1ðx;Q2Þ

�

¼ 4πα2

Q4

F2ðx;Q2Þ
x

�
1 − y −

Mxy
2E

þ
�
1 −

2m2

Q2

�
y2

2

×

�
1þ 4M2x2

Q2
−
FLðx;Q2Þ
F2ðx;Q2Þ

��
; ð6Þ

FL ¼
�
1þ 4M2x2

Q2

�
F2 − 2xF1: ð7Þ

The full x and Q2 dependence of F2ðx;Q2Þ in the photo-
nuclear electromagnetic interaction gives an energy
dependence to βnucl ðEÞ [30].
The dependence on the structure functions, in particular

at small values of x and low Q2, introduces an uncertainty
in βnucl . One option is to use a direct parametrization of
F2ðx;Q2Þ, and to use the leading order Callan-Gross
relation 2xF1 ¼ F2 to obtain F1ðx;Q2Þ. Corrections can
be implemented with R ¼ FL=ð2xF1Þ. The dependence of
the photonuclear energy loss on a reasonable range of R
was shown to be small in Ref. [35]. In the cases of direct
parametrizations, we set R ¼ 0. Using structure functions
based on parton model evaluations is not possible here,
even with small-x extrapolations, because of the low Q2

required.
Photonuclear interactions, in general, consist of the soft

component (nonperturbative) and the hard component
(perturbative). Early evaluations (see, e.g., Ref. [37]) of
βnucl relied on a Q-independent parametrization by

Bezrukov and Bugaev in Ref. [47]. Bezrukov and Bugaev
modeled the soft component of the structure functions with a
modified generalized vector dominance model. In Ref. [30],
the impact of the full range of Q2 in the evaluation of βnucl
was discussed using the structure functions parametrization
of Abramowicz et al. (ALLM) [48,49]. A similar para-
metrization of Butkevich and Mikhailov [50] based on the
Capella et al. model (CKMT) [51] has been used in
Ref. [31,35]. The Bezrukov and Bugaev result was aug-
mented by mass corrections and a hard component that
depends on Q2 in Ref. [52], giving similar results to the
ALLM parametrization. More recently, a new parametriza-
tion of F2 by Block et al. (BDHM) [53], guided by unitarity
considerations [54,55], has been provided. It has a somewhat
different behavior at low-x than the ALLM parametrization.
We show below that the difference in small-x behavior of the
BDHM and ALLM parametrizations of F2 have implica-
tions for the high-energy flux of taus emerging from
the Earth.
A QCD-motivated approach to the photonuclear electro-

magnetic interactions has the photon, given its wave
function, split into a qq̄-pair which then interacts with
the nucleon nonperturbatively for the case when their
transverse separation is large and perturbatively when it
is small. This so-called dipole model [56,57], while based
on perturbation theory, can be used as an approximate
calculation even at lowQ2. The structure function therefore
depends on the photon wave function (squared) which itself
depends on the transverse separation r and longitudinal
momentum fraction z, and the dipole cross section σdip,
implicitly summed over quark flavors:

F2ðx;Q2Þ ¼ Q2

4π2α

Z
d2r

Z
dz½jψγ

Lðz; rÞj2

þ jψγ
Tðz; rÞj2�σdipðx; rÞ: ð8Þ

Formulas for the wave functions squared are listed in the
appendix. In the dipole model, the longitudinal structure
function can be included explicitly as well. Different
models are used to provide the dipole cross section. We
use the dipole cross section of Soyez [58]. The Soyez
dipole cross section is based on a functional form discussed
by Iancu, Itakura and Munier [59] from an approximate
solution to the nonlinear Balitsky-Kovchegov (BK) equa-
tions [60,61]. Dipole cross section parameters were fit to F2

data using Eq. (8) for 0.045 GeV2 ≤ Q2 ≤ 150 GeV2 and
10−6 ≤ x ≤ 10−2. Similar results are obtained with the
dipole of Albacete et al. (AAMQS) [28]. The AAMQS
dipole includes further theoretical improvements to the
approximate solution to the BK equations including the
running coupling constant.
Each of the approaches gives a prediction for the

small-x electromagnetic structure function for x below
the measured regime. Fig. 1 shows four approaches for
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Q2 ¼ 0.25 GeV2 and Q2 ¼ 1.5 GeV2, along with HERA
data combined from H1 and ZEUS [62]. The ALLM
parametrization of F2 has a steeper growth with small-x
than the other approaches. The BDHM parametrization, the
Soyez dipole and AAMQS dipole do well in comparison
with the small-x HERA data and have similar small-x
behaviors. Since the Soyez and AAMQS dipoles have
similar small-x behavior, we use the Soyez dipole as
representative of dipole models in our evaluation of the
tau fluxes below.
It may be eventually possible to distinguish between the

ALLM parametrizations and other approaches from LHC
data for low invariant mass and forward rapidity kinematic
regions. These data constrain low-x parton distribution
functions, as discussed in, e.g., Ref. [63]. At least for
sufficiently large Q2, the parton distribution functions can
be combined to form the electromagnetic structure func-
tions at smaller x values than accessible with HERA, where
the ALLM curve is distinct from the other curves in Fig. 1.
For βnucl for rock, with Z ¼ 11 and A ¼ 22, nuclear

corrections are required. One can define

SðA; x;Q2Þ ¼ FA
2 ðx;Q2Þ

AF2ðx;Q2Þ ; ð9Þ

the nuclear structure function normalized by A times the
proton structure function. For the ALLM and BDHM
parametrizations, we use a shadow factor of the form
SðA; x;Q2Þ≃ SðA; xÞ,

SðA; xÞ ¼

8>><
>>:

A−0.1 x < 0.0014

A0.069log10xþ0.097 0.0014 < x < 0.04

1 0.04 < x

based on Fermilab E665 data [64–66]. For the dipole
model, one can use the Glauber-Gribov (GG) prescription
to incorporate the dipole cross section for protons to the one
for nuclei, where

σAdipðx; rÞ ¼
Z

d2b⃗σAdipðx; r; bÞ; ð10Þ

σAdipðx; r; bÞ ¼ 2

�
1 − exp

�
−
1

2
ATAðbÞσdipðx; rÞ

��
: ð11Þ

This requires the nuclear density ρA and nuclear profile
TAðbÞ, normalized to unity, with

ρAðz; b⃗Þ ¼
1

π3=2a3
e−r

2=a2 ; r2 ¼ z2 þ b⃗2 ð12Þ

TAðbÞ ¼
Z

dzρAðz; b⃗Þ; ð13Þ
Z

d2b⃗TAðbÞ ¼ 1; ð14Þ

and a2 ¼ 2R2
A=3. The quantity RA is the nuclear radius

RA¼1.12A1=3–0.86=A1=3 fm. Finally, for the Soyez dipole,
nuclear effects can be included with a modification of the
saturation scale as discussed by Armesto, Salgado and
Wiedemann (ASW) [67].
Our focus is on tau energy loss, however, we show the

muon βμðEÞ to show the differences between approaches.
In Figs. 2 and 3, we show the photonuclear contributions to
βl for muons and taus as a function of energy for rock. For
comparison, we also show the Bugaev and Shlepin evalu-
ation of βnucl [52], an update of [47] with both soft and hard
contributions, and the pair production and bremsstrahlung
(muons only) contributions to βl. For muons, the BDHM
and Soyez evaluations of βnucμ fall in a similar range, while
the ALLM and Bugaev-Shlepin results for βnucμ rise more
quickly with energy. For taus, again the ALLM para-
mterization and Bugaev-Shlepin result for βnucτ rises more
steeply with energy than the dipole model and BDHM
parametrization results. In our discussion below, we will

FIG. 1. The electromagnetic structure function F2ðx;Q2Þ for
Q2 ¼ 0.25 GeV2 (upper) and 1.5 GeV2 (lower) evaluated using
the ALLM [49], and BDHM [53] parametrizations, and two
dipole models (Soyez [58] and AAMQS [28]). The data are
combined HERA data from H1 and ZEUS [62].
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use the ALLM parametrization as representative of the
steeper growth of βnucτ with tau energy.
As noted above, for the dipole model, we can

evaluate the nuclear correction with a shadow factor and
Glauber-Gribov (GG) correction. The shadow function
or GG correction reduces the unshadowed energy loss
photonuclear βnucμ by a factor of 0.73–0.75 for E ¼
106–1012 GeV. For the Soyez dipole model, we can also
use the ASW prescription, which reduces βnucμ by a factor of
about 10% relative to the uncorrected value, for the same
energy range. We note that the Soyez-ASW βnucμ coincides
with the AAMQS result using the GG correction or shadow
factor. For taus, a similar nuclear suppression is obtained: a
factor of 0.73–0.79 for βnucτ with the shadow function or

GG correction, and 0.90–0.94 for the ASW correction for
the same energy range for the Soyez dipole cross section.
For taus, energy loss effects can be largely determined

by βτ rather than a full Monte Carlo when considering
incident tau neutrino fluxes [31,32,35], as we discuss
below. In Ref. [32], we found that a reasonable para-
metrization of βτ is

βfitτ ðEÞ ¼ β0 þ β1 lnðE=E0Þ; ð15Þ

for E0 ¼ 1010 GeV and initial tau E ¼ 108–1012 GeV. The
bremsstrahlung and pair contributions in this energy range
are essentially constant, so β0 ¼ βbrem0 þ βpair0 þ βnuc0 and
β1 ¼ βnuc1 . Parametrizations for βnucτ are listed in Table I. In
this energy range, the Soyez and BDHM results are such
that the ratio of the numerical evaluation to the fit form
gives 0.97 < βnucτ =βfit;nucτ < 1.06. The fits are best above
E ¼ 109 GeV, within �3%. We have also included in the
Table the parametrization of βnucτ for the AAMQS dipole
calculation of the average energy loss of the tau. The
ALLM βnucτ is not well fit with two parameters. A three
parameter fit to βnucτ is a better match to the calculated βnucτ

for all the models, as discussed in Appendix B. For the
ALLM evaluation of βnucτ , the three parameter fit does well
for E ¼ 108–1011 GeV. We focus our discussion in the text
on the two parameter fit. For the flux results below, the
inclusion of β2 in the fit does not impact flux predictions
except for the ALLM case. We use the three parameter fit
for the ALLM case.

B. Survival probability and average range

We start with discussion of the average lepton range to
allow for comparisons with other authors. It has been
known for a long time that approximating

�
dE
dX

�
≃ dE

dX
ð16Þ

does not accurately represent the average muon range
because of the effect of energy fluctuations in electromag-
netic interactions [36]. Muons are essentially stable at these

FIG. 2. For muons, βμ vs the energy of the muon E for rock.
The βnucμ for the dipole model (Soyez) is shown using dashed
lines, and parametrizations of F2 by ALLM (dotted), and BDHM
(solid). The dot-dashed line comes from Bugaev and Shlepin
[52]. The pair production βpairμ and bremsstrahlung βbremμ are
also shown with the upper and lower dotted lines, respectively.
For bremsstrahlung, βbremμ ¼ 1.67 × 10−6 cm2=g and for pair

production, βpairμ ¼ 2.35 × 10−6 cm2=g, essentially independent
of energy for this energy range.

FIG. 3. As in Fig. 2, for taus in rock. The bremsstrahlung
contribution to βτ is lower than the scales shown in this plot.

TABLE I. Fit to βnucτ in [10−6 cm2=g] using Eq. (15) for
E¼108–1012GeV. For bremsstrahlung, βbrem0 ¼7.9×10−9 cm2=g

and pair production, βpair0 ¼ 0.148 × 10−6 cm2=g, essentially inde-
pendent of energy for this energy range.

Model βnuc0 β1

Soyez-Shadow 0.380 3.21 × 10−2

Soyez-ASW 0.471 3.91 × 10−2

Soyez-GG 0.383 3.07 × 10−2

AAMQS-GG 0.433 3.46 × 10−2

BDHM-Shadow 0.435 4.04 × 10−2
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energies, however, the tau’s lifetime is important here.
Following the prescription described in [36] and others
[31,34,35,38,39], we use a Monte Carlo program to
evaluate the tau survival probability. For y < 10−3, the
energy loss is evaluated in the continuous approxi-
mation, but for y > 10−3, it is evaluated stochastically.
The average range RðEi

τÞ, the average distance the tau
travels, is determined by integrating the survival probability
PsurvðEi

τ; XÞ as a function of column depth for taus with an
initial energy Ei

τ that survive to an energy larger than Ef
τ ,

RðEi
τÞ ¼

Z
dXPsurvðEi

τ; XÞ: ð17Þ

In the Monte Carlo evaluation of the average range, we
use Ef

τ ¼ 50 GeV for the tau, however, the short lifetime
of the τ dominates its range below Ei

τ ∼ 108 GeV. Our
Monte Carlo evaluation of the average tau range is shown
in Fig. 4 and in Table II. Our results, based on our
Monte Carlo developed for Ref. [30] are in good agreement
with Ref. [34]. They are in qualitative agreement with
those in Refs. [31,35] where energies over many orders of
magnitude are shown. For incident tau neutrino fluxes that

fall with energy, the average range, without detailed final
energy information, is less relevant than the survival
probability as a function of final energy, as we discuss
in Sec. IV.
In the approximations of Eqs. (15) and (16), just

accounting for energy loss over a distance x ¼ X=ρ, the
initial tau energy Ei

τ, final tau energy Eτ and distance
traveled are related by integrating dE=dX to get

EτðEi
τ; xÞ≃ exp

�
−
β0
β1

ð1 − e−β1ρxÞ þ lnðEi
τ=E0Þe−β1ρx

�
E0

ð18Þ

for the 2 parameter fit to βτðEÞ. For our discussion of tau
fluxes, it will be useful to also write Ei

τ in terms of the final
Eτ after travelling distance x:

Ei
τðEτ; xÞ≃ exp

�
−
β0
β1

ð1 − eβ1ρxÞ þ lnðEτ=E0Þeβ1ρx
�
E0:

ð19Þ

Appendix B shows the relation between Eτ, Ei
τ and x for the

three parameter fit.
With the lifetime, one can approximate the survival

probability [34,68],

PsurvðEi
τ; zÞ ¼ exp

�
−
Z

z

0

dx
cττEτðEi

τ; xÞ=mτ

�
: ð20Þ

An explicit expression for the survival probability for the
two parameter fit to βτðEÞ, in the first order expansion in
terms of β1=β0, is shown in Ref. [32]. In this paper, we
present the survival probability for the three parameter fit
in Appendix B. Integration of Eq. (20) to get an approxi-
mation to the average tau range, as in the muon case,
overestimates the average range. Nevertheless, as we
discuss below, the flux of tau is well approximated by
using the analytic formulas for the survival probability.
We remark that the tau weak interaction energy losses

are small compared electromagnetic energy loss except
at the very highest energies. Above approximately
E ¼ 1010 GeV, tau charged current interactions are more
important than tau decays for eliminating taus from the
flux; however, in this regime, electromagnetic energy loss
dominates the tau interactions. Weak neutral current con-
tributions to the tau energy loss are quite small [69].
We include weak interaction effects in the Monte Carlo
program for tau propagation. Without the tau charged
current interaction, the tau range is between 1.3%–8%
(0.8%–3.5%) higher for Eτ ¼ 108–1012 GeV for the evalu-
ation of the energy loss using the BDHM (ALLM)
parametrization.

FIG. 4. The average tau range in rock in km evaluated using the
transport Monte Carlo with ALLM, BDHM and Soyez models
for electromagnetic energy loss. Here, Eτ denotes the initial tau
energy.

TABLE II. The average tau range [km] in rock as a function of
initial tau energy using our tau transport Monte Carlo.

Shadow Shadow Shadow GG
Energy BDHM ALLM Soyez Soyez

108 3.46 3.22 3.49 3.46
109 12.7 10.1 13.1 12.8
1010 25.0 16.9 26.4 25.6
1011 35.9 21.5 38.4 37.2
1012 44.1 24.2 47.2 45.9
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C. Charged lepton spectra

Before turning to the full process of tau neutrino
conversion to taus, followed by tau propagation to exit
the Earth, we use a tau flux as a proxy for the neutrino flux,
as was done in Ref. [34]. This is a useful exercise to see
the features of the tau propagation without the additional
element of neutrino interactions, energy transfer and
neutrino flux attenuation. Our results confirm the conclu-
sions of Ref. [32,34], namely, that except at high energy,
evaluations of the propagation of taus using the analytic
survival probability and Eq. (19) reliably reproduce the
results of the full Monte Carlo propagation for an incident
ðEi

τÞ−2 flux propagating over distances of 1–20 km.
In Fig. 5, we show the tau flux with an ðEi

τÞ−2 incident
spectrum scaled by E2

τ (solid line), and the resulting flux
after propagation of 1 km, 2 km, 10 km and 20 km of rock
with the BDHM parametrization of the photonuclear
contribution (dotted and dashed lines). The Monte Carlo
results are shown with dashed lines, which cut off at high
energies compared with the analytic approximation shown
with the dotted lines. The Monte Carlo generated an input
spectrum for Ei

τ ¼ 108–1012 GeV. Our transport code was
developed with look-up tables that extend to 1012 GeV, so
the resulting tau flux from the Monte Carlo propagation
shown here comes from an input flux with a sharp cutoff
at Ei

τ ¼ 1012 GeV.
The dotted lines in the figure show the analytic formula

for the propagated flux at column depth X:

dN
dEτ

¼ KðEi
τÞ−2PsurvðEi

τ; EτÞ
Ei
τ

Eτ
eβ1X; ð21Þ

where Ei
τ comes from Eq. (19) in the 2 parameter model for

βτ. Here, we show the analytic result for the ðEi
τÞ−2 tau flux

without a cutoff. A sharp cutoff for Ei
τ translates directly to

a sharp cutoff in Eτ for a fixed distance. The colored dots in
Fig. 5 show Emax

τ ðEimax
τ ; xÞ for x ¼ 1, 2, 10 and 20 km in

rock for a sharp cutoff at Eimax
τ ¼ 1012 GeV, the same

cutoff used in the Monte Carlo. If one would impose the
same sharp cutoff in analytic evaluation as was done in our
MC, the tau flux would have a steep drop for energies
above those labeled with the colored dots. For Eτ > Emax

τ ,
E2
τdN=dEτ → 0 in the analytic evaluation with a cutoff

for Ei
τ.

Fig. 5 shows the role of the lifetime, which suppresses
the lowest energy. With increasing depth, the flux becomes
steeper. A priori, the agreement between the analytic and
the Monte Carlo results is not obvious for energies between
where the lifetime does not dominate and sufficiently lower
than shown by the colored dots in Fig. 5. The Monte Carlo
results include energy fluctuations, and as noted above, the
average range evaluated from the Monte Carlo is shorter
than what would be calculated by integrating the survival
probability.
The agreement between the analytic and Monte Carlo

evaluations comes from competing effects, including the
fact that the flux decreases with energy. For a fixed incident
tau energy and propagation distance, the Monte Carlo
transport yields a slightly higher average final tau energy
than the analytic final energy evaluated with Eq. (18). Fig. 5
shows the flux as a function of the final tau energy, so
instead, the comparison should be of the initial tau energy.
The average corresponding incident tau energy in the
Monte Carlo approach is lower than the corresponding
analytic value [see Eq. (19)]. The survival probability as
evaluated by the Monte Carlo approach is also lower than
from the analytic formula in Eq. (20). Schematically,
Eq. (21) shows that decreases in the incident tau energy
and survival probability will tend to compensate. Our
numerical comparison shows that this is the case for the
ðEi

τÞ−2 incident flux. Thus comparison of the tau flux (i.e.
final tau energy) in the two approaches effectively corre-
sponds to different values of the Ei

τ and somewhat different
survival probabilities.
To evaluate the tau flux due to incident neutrinos passing

through a depth of rock, we need the neutrino cross section,
and the differential cross section as a function of y. In the
next section we show results for neutrino cross sections as
evaluated by different models, then use the Monte Carlo to
propagate the neutrinos and produced taus through rock.

III. NEUTRINO CROSS SECTIONS

The flux of taus coming from tau neutrino conversions in
the Earth depends on the neutrino cross section, both
for neutrino attenuation and for neutrino conversion to
taus, and on the differential distribution as a function of

FIG. 5. The number of taus per unit energy, assuming an initial
flux scaling like ðEi

τÞ−2, propagated with the Monte Carlo
transport program through 1, 2, 10 and 20 km of rock in
descending order in the figure (dashed), compared with the
analytic results from Eq. (21) with β0 ¼ 0.591 × 10−6 cm2=g,
β1 ¼ 0.0404 × 10−6 cm2=g from the BDHM parametrization of
the energy loss (dotted). The colored dots show the maximum Eτ

for the analytic approach with Ei
τ < 1012 GeV. The solid line

shows the input tau flux to the Monte Carlo program.
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inelasticity y. As shown in Sec. II, different models for the
electromagnetic structure function F2 have different low-x
predictions. The neutrino cross sections at high energies
probe the low-x behavior of the weak structure functions,
albeit at a higher value of Q2, namely Q2 ∼M2

W (see, e.g.,
Refs. [21,22]).
For a fixed column depth, considering both the proba-

bility for neutrino interactions to produce the tau lepton,
and the tau lepton energy loss, there are competing effects
due to the low-x behavior of the structure functions. For
the ALLM parametrization, the neutrino cross section is
enhanced relative to the BDHM parametrization result, as
shown in Fig. 6 with the dotted and solid lines. However,
there is also a greater energy loss of the tau at high energies
because of the same small-x enhancement. For the results
below, we keep the same model for both the neutrino
interaction and the tau interaction.
Detailed formulas for the neutrino weak interactions are

shown in Appendix C. For the dipole model, the wave
functions for W or Z fluctuations to a quark-antiquark pair
are functions of the quark masses [26,29,70,71]. We
include them in Appendix C, along with the relevant
couplings. Given, e.g., the Soyez dipole cross section,
the ultrahigh energy neutrino cross section is predicted, as
shown in Fig. 6 with the (green) dashed curve.
For E > 107 GeV, valence contributions, neglected

here, are small. Fig. 6 shows that these three approaches
yield nearly the same neutrino-nucleon cross sections at
Eν ¼ 106–107 GeV. As noted in Ref. [33], the ALLM
electromagnetic structure function lies somewhat below the
HERA data for Q2 ∼ 200–8000 GeV2 and x > 10−2. We
note that measurements of the neutral current structure
function at Q ∼MW are available only for x > 0.1 [62], the
scale relevant to the ultrahigh energy neutrino cross section
[21]. The ALLM parametrization yields neutrino cross
sections that are too low below Eν ∼ 105 GeV. Since we

focus here on energies even higher than 106 GeV, we are
probing very small-x values where the ALLM parametri-
zation is useful as a contrast to other approaches with its
stronger dependence on x.
The explicit inclusion of quark channels in the dipole

model through the wave function squared cannot be done
with the electromagnetic structure function parametriza-
tions of ALLM and BDHM. Instead, we rescale the
electromagnetic structure function by the sum of electric
charges squared for five quark flavors, to yield

FCC
2 ≃ 45

11
Fγ
2 ð22Þ

FNC
2 ≃

�
45

22
−
41

11
sin2 θW þ 4 sin4 θW

�
Fγ
2: ð23Þ

We use the Callan-Gross relation 2xF1 ¼ F2 and set
F3 ¼ 0 for neutrino interactions when we use the
BDHM and ALLM parametrizations of F2. The charged
current cross sections for these models are also shown in
Fig. 6, along with the next-to-leading order perturbative
evaluation of the neutrino charged-current cross section
from Ref. [23]. At Eν ¼ 106 GeV, the cross sections are
within �5% of each other, increasing to �12% for
Eν ¼ 108 GeV. As the neutrino energy further increases,
the spread in cross sections increase to a factor of ∼1.7 for
the BDHM and Soyez approach compared to the ALLM
extrapolation at 1012 GeV. For reference, recent evalua-
tions of the neutrino cross sections with a broader range of
models [25–28] show a similar spread in cross sections at
these energies.
The tau flux also requires a knowledge of the energy

transferred from the neutrino to the tau, namely, the
distribution as a function of y≡ ðEν − EτÞ=Eν. The aver-
age y as a function of energy is shown in Fig. 7. We note

FIG. 6. The neutrino-nucleon charged current interaction σνN as
a function of neutrino energy Eν from NLO perturbative QCD
[23] (dot-dashed), using the Soyez dipole (dashed) and the
BDHM (solid) and ALLM (dotted) parametrizations.

FIG. 7. The mean inelasticity hyi for neutrino scattering
with isoscalar nucleons as a function Eν using the Soyez
dipole (dotted) and parametrizations of BDHM (dashed) and
ALLM (solid).
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that the average y varies from −3% to 7% at 106 GeV and
−15% to 23% at 1011 GeV with respect to the values from
the Soyez approach. This range of the average y represents
theoretical uncertainty in the elasticity due to different
approaches that we consider. In the Monte Carlo evalu-
ation, we use look-up tables for the neutrino cross section
and distribution in y up to a maximum Eν ¼ 1012 GeV,
however, we also do a semianalytic evaluation using hyi.
We show in the next section that hyi and a parametrization
of the neutrino cross section works well to reproduce the
Monte Carlo results. We include here a parametrization of
the neutrino charged current cross section and average y.
For BDHM and Soyez, we find

σðEÞ ¼ ½σ0 þ σ1 lnðEÞ þ σ2ln2ðEÞ� × 10−31 cm2; ð24Þ

while for ALLM and a NLO perturbative evaluation (JR in
Ref. [23]),

σðEÞ ¼ σ0Eσ1 × 10−35 cm2; ð25Þ

for E in GeV. The average y can be written as

hyðEÞi ¼ y0 þ y1 lnðEÞ þ y2ln2ðEÞ: ð26Þ

The parameters σi and yi are shown in Tables III and IV.
The cross section parametrizations reproduce the charged

current cross sections to within�5%. The parametrizations
reproduce hyi to within �1%.
In evaluating the tau neutrino induced tau flux, we also

need the neutrino neutral current cross section for the
attenuation factor. For the range of Eν ¼ 108–1012 GeV,
the ratio of the neutral current to charged current cross
section ranges between 0.42–0.44 for the BDHM para-
metrization, 0.44–0.45 for the Soyez dipole, and 0.41–0.42
for the ALLM parametrization.

IV. RESULTS

We begin this section by comparing a Monte Carlo
evaluation of neutrino interactions followed by tau propa-
gation through rock of various depths. To quantify the
effects of the neutrino cross section to produce taus,
attenuation of the neutrino flux and tau energy loss, we
plot the ratio of the emerging tau flux to the incoming
neutrino flux—the transmission function FðτÞ=FðνÞ—
where

FðiÞ ¼ dN
dEi

is the number of leptons per unit energy per unit area
per sec, assuming an isotropic incident flux. We only show
results for incident neutrinos. ForEν larger than∼107 GeV,
σνN ≃ σν̄N to a very good approximation.
In the next section, we consider distances less than

10 km, relevant to using mountains as neutrino converters.
In Section IV.B, we evaluate the transmission functions for
larger distances where neutrino attenuation effects come
into play.

A. Distances less than 10 km

In Fig. 8, we present the results from the analytic
evaluation and Monte Carlo evaluation for the depths of
2, 5, and 10 km of the standard rock (ρ ¼ 2.65 g=cm3) for
all models considered here. The incident neutrino flux is
assumed to have E−2

ν spectrum. The analytic calculation
uses the survival probability for the tau lepton [Eq. (B3)]
for the three parameter fit to βτðEÞ written in Eq. (B1). The
tau flux, for depth D, is

FτðEτÞ ¼
Z

D

0

dz
Z

dy expð−zσtotðEνÞρNAÞFνðEν; 0Þ

× NAρ
dσCCðEν; yÞ

dy
Eν

Ei0
τ
PsurvðEτ; Ei0

τ Þ

× δðEτ − EτðEi0
τ ; D − zÞÞdEi0

τ ; ð27Þ

where Eν ¼ Ei
τ=ð1 − yÞ. While evaluating the analytic

fluxes, we extended the neutrino cross sections for the
energies above 1012 GeV, while for the Monte Carlo
results, the neutrino flux is cut off at 1012 GeV, leading

TABLE III. Parameters for the charged current neutrino cross
sections from Eq. (24) and (25).

Model E [GeV] σ0 σ1 σ2

BDHM 106 ≤ E ≤ 109 0.310 −4.45 × 10−2 1.63 × 10−3

E > 109 1.32 −0.141 3.92 × 10−3

Soyez 106 ≤ E ≤ 109 0.269 −3.80 × 10−2 1.37 × 10−3

E > 109 2.30 −0.230 5.91 × 10−3

ALLM 106 ≤ E ≤ 109 0.460 0.361 −
E > 109 1.05 0.321 −

JR [23] 108 ≤ E ≤ 1010 0.718 0.348 −
E > 1010 1.78 0.308 −

TABLE IV. Parametrizations of hyi using Eq. (26). The values
of hyi from these parametrizations have less than 1% error
between E ¼ 106–1013 GeV.

Model E [GeV] y0 y1 y2

BDHM 106 ≤ E ≤ 108 0.909 −5.95 × 10−2 1.17 × 10−3

108 < E ≤ 1013 0.654 −3.35 × 10−2 5.01 × 10−4

Soyez 106 ≤ E ≤ 108 1.08 −8.55 × 10−2 2.07 × 10−3

108 < E ≤ 1013 0.478 −2.05 × 10−2 2.98 × 10−4

ALLM 106 ≤ E ≤ 108 1.17 −9.99 × 10−2 2.59 × 10−3

108 < E ≤ 1013 0.356 −1.25 × 10−2 2.27 × 10−4
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to tau fluxes that start to steeply decrease at energies that
depend on the depth, as shown in Fig. 8.
Monte Carlo results are well matched to the analytic

calculations for energies below the maximum tau energy in
the analytic approach. There are less than 10% errors for
E ≤ 1011 GeV for the BDHM and the Soyez dipoles,

where the impact of the neutrino energy cutoff at
1012 GeV starts to become evident in the Monte Carlo
evaluation. For the ALLM parametrization, the similar
difference appears between the Monte Carlo and analytic
results at 1010 GeV. The lower energy of the onset of the
cutoff for the ALLM parametrization comes from the
higher level of electromagnetic energy loss in this model.
Since the Monte Carlo results are so well represented by the
analytic approximation below E ∼ 1010–1011 GeV depend-
ing on the depth, we do the rest of our analysis using the
analytic tau survival probability integrated with the neu-
trino differential cross section and the attenuation factor.
By comparing the Monte Carlo results (dashed curves) with
the analytic curves with no neutrino energy cutoff (solid
lines), Fig. 8 clearly shows a feed-down effect of the
neutrino energy cutoff at Eν ¼ 1012 GeV. At these short
distances, the cutoff effect will scale with the cutoff energy.
In the remaining figures in Sec. IVA, we use the analytic
approximation without a cutoff for the evaluation of the
transmission function.
In the previous section, we presented the parametriza-

tions of hyi and the neutrino charged current cross sections.
For reference, we compare the resulting tau fluxes using
hyðEÞi and the parametrized cross section with the numeri-
cal evaluation of the neutrino differential cross sections.
We evaluate hyðEÞi using E ¼ Eτ. The tau fluxes with
the parametrizations deviate from the fully evaluated
fluxes by at most 4% using Eq. (26) for hyi and by at
most �5% using both the parametrized hyðEÞi and σνNðEÞ
between E ¼ 107–1012 GeV.
One of the features of the analysis presented here is that

the neutrino cross section evaluations use the same form for
the small-x behavior as the evaluation of the electromag-
netic energy loss. At fixed depth, one can see evidence of
this effect in Fig. 9. The solid lines in the figure show the
ratio of the outgoing tau flux to the incoming tau neutrino
flux when the parametrization (BDHM for upper curves
and ALLM for lower curves) is used for both effects. The
dashed curves have the BDHM or ALLM parametrizations
used for the electromagnetic energy loss, but where the
neutrino cross section is evaluated using NLO perturbative
QCD [23]. The impact of the perturbative QCD choice is
significant in the flux ratio at high energies when combined
with the BDHM parametrization, since the small-x behav-
iors are so different. The ALLM electromagnetic energy
loss with the perturbative neutrino cross section shows less
variation with a complete ALLM evaluation because the
ALLM structure function and parton distribution function
small-x extrapolations are similar. We discuss the impact of
using the perturbative QCD neutrino-nucleon cross section
below, however, for the remainder of this section, we keep
consistent the approach to the small-x behavior for both tau
energy loss and neutrino-nucleon scattering.
Fig. 10 compares the flux ratio from the different

approaches for the various depths. The HAWC [19] and

FIG. 8. The ratio of outgoing tau flux to incident tau neutrino
flux with an incident flux that scales as E−2

ν for a depth of 2, 5
and10 km rock, as a function of lepton energy, using the BDHM
(upper), Soyez (middle) and ALLM (lower) approaches to both
tau energy loss and the tau neutrino cross section. The solid lines
use the analytic survival probability and the numerical differential
neutrino cross section. The dashed lines use a Monte Carlo
evaluation of the neutrino interaction and the tau energy loss, with
a tau neutrino energy cutoff of Eν ¼ 1012 GeV.
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Ashra [20] configurations are sensitive to Earth skimming
tau neutrinos at lower energies than the Pierre Auger
Observatory. For example, the tau neutrino energy range
for the proposed Ashra experiment is PeV–EeV. Therefore,
we extend our results to lower energies, i.e., 106 GeV,
for those experiments. In the low energy range, below
108 GeV, the tau decay process dominates, and the fluxes
are hardly affected by the energy loss. Therefore, the
difference of the fluxes in this energy range reflects mostly
the ratio of the neutrino cross sections from the different
models.
As presented in Fig. 10, the BDHM and the Soyez

dipoles give the comparable results all over the energy
range. There is at most a 25% difference, which is its
maximum at E ¼ 108 GeV. The wider error band from all
the different models depends on the behavior of the fluxes
from the ALLM model compared to the BDHM/Soyez
approaches. For the Soyez dipole, we only show the results
with nuclear shadowing included by a multiplicative factor,
the same factor also used with the BDHM and ALLM
models. It is almost the same as the predicted flux ratio with
GG nuclear effects. The ASW nuclear corrections for the
Soyez flux evaluation yield results at most 10% higher.
As shown in Fig. 3, the energy loss from the ALLM

parametrization increases more quickly with energy than
the other models. This reduces the tau flux at high energies
with a higher rate, and its effect appears more significantly
at larger depth. Thus, the uncertainty range is the largest at
1012 GeV for the 10 km depth, where the flux from the
Soyez dipole is the largest. It is 83% higher than that from
the ALLM parametrization. For shorter depths, tau energy
loss is less important, so the higher neutrino cross section
from the ALLM parametrization shown in Fig. 6 results in
the higher flux ratio for the ALLM evaluation.

In Fig. 11, we present the tau fluxes produced from a
representative incident cosmogenic neutrino flux. The
figure is in the same format as Fig. 10. We take the
cosmogenic neutrino flux from the pure proton cosmic
ray model with the AGN evolution scenario shown in
Ref. [72]. Other assumptions about the cosmic ray
composition and evolution scenarios primarily change
the overall normalization of the neutrino flux, so
FðτÞ=FðνÞ is representative for all of the cosmogenic
neutrino fluxes in Ref. [72]. The tau fluxes from the
BDHM and Soyez models have the similar relations to the

FIG. 9. The ratio of outgoing tau flux to incident tau neutrino
flux for a depth of 10 km rock, as a function of lepton energy,
using the BDHM (upper) and ALLM (lower) tau energy loss
parametrizations. The solid lines use neutrino-nucleon cross
sections based on the same BDHM and ALLM parametrizations,
while the dashed lines show the flux ratio if the perturbative NLO
neutrino-nucleon cross section is used.

FIG. 10. The ratio of outgoing tau flux to incident tau neutrino
flux for depths of 2, 5 and 10 km rock, as a function of lepton
energy, using the BDHM, Soyez and ALLM parametrizations
and an incident neutrino flux scaling as E−2

ν .
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case of the E−2 flux for incident neutrinos. However, the
ALLM transmission function is relatively lower, and it
gives rise to the larger uncertainty for the depths of 5 km
and 10 km, with the largest error is still about a factor of
2. In this case, the Soyez dipole approach yields a factor
of 2.1 larger flux than the ALLM approach at the highest
energies.
Figs. 8–11 show the neutrino propagation through short

distances relative to the tau range. The tau range goes up to
∼50 km for tau propagation in rock for Ei

τ < 1012 GeV, as
shown in Fig. 4. Requiring the emerging tau to have at least
10% of the incident tau energy reduces the tau range to

∼10 km at Ei
τ ¼ 1012 GeV. The tau lifetime sets another

distance scale, namely, γcτ ¼ 4.9 km · ðE=108 GeVÞ.
For distances less than 10 km in rock, the increase in

distance in rock translates to an increase in number of
targets for neutrino interactions. At a distance of 10 km
of rock, the transmission function for an incident E−2

ν flux
is a factor of between 2.6–3.2 larger than for 2 km of rock
for the BDHM parameters. Tau energy loss and decay,
depending on the energy, account for the discrepancy
between the transmission function and a factor of 5 coming
from the ratio of the two depths, 2 and 10 km. Neutrino
attenuation is not significant, even at the highest energies,
since the interaction length in rock is ∼1; 500 − 150 km
for Eν ¼ 108–1012 GeV.
Figure 12 shows the overall uncertainties on the ratio of

the emerging tau flux to the incident neutrino flux from the
different approaches for the neutrino cross section, the tau
energy loss and the neutrino inelasticity, where a single
approach is not used consistently for both the weak and
electromagnetic structure functions. The solid curves are
calculated in consistent approaches, hence the yellow
and the orange bands present the uncertainties by the
approaches as in Fig. 10 and Fig. 11. We also investigated
how big is the difference on the results due to the neutrino

FIG. 11. The ratio of the emerging tau flux to an incident
cosmogenic neutrino flux from the pure proton cosmic ray model
with the AGN evolution scenario of Ref. [72].

FIG. 12. Uncertainties of the transmission function for 10 km
rock due to the cross section and the inelasticity for neutrino
interaction and the tau energy loss.
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cross section and the inelasticity from the different
approaches using their different combinations. In the figures,
we present the results that give the largest differences, with
the dashed curves for the respective models. The largest
contribution to the uncertainties due to the evaluation in the
mixed approaches is from the neutrino cross section. The
range of neutrino cross sections results in 30% (50%)
contribution towards the transmission function uncertainty
at E ¼ 108 GeV (E ¼ 1011 GeV), while the mean neutrino
interaction inelasticity gives about 5% and 10% difference at
the same energies. The overall uncertainties are about 30%
(60%) at 108 GeV and a factor of 3.3 (3.8) at 1011 GeV for
the diffuse E−2 flux (cosmogenic flux).

B. Larger distances

For depths larger than 10 km, one begins to see a
saturation in the transmission function, then attenuation
effect for even larger depths. In this section, we use the E−2

ν

flux to demonstrate these effects.
In the upper plot of Fig. 13, we show with the dashed

lines the Monte Carlo result for 30 (upper), 50 (middle) and
100 km (lower) for E−2

ν with Emax
ν ¼ 1012 GeV using the

BDHM approach. For an energy ∼108 GeV, the trans-
mission function is nearly equal for 30, 50 and 100 km of
rock. For this energy, the transmission function is domi-
nated by the decay length λτðEÞ. For much larger distances,
the produced tau will decay inside the rock. The relevant
target column depth for the incident neutrino is ∼ρλτðEÞ
which grows linearly with energy. As the tau energy and
decay lengths increase, tau energy loss becomes more
important. Then the relevant neutrino target column depth
is ∼RτðEÞρ. The transmission function for 30–50 km at
E ∼ 109–1010 GeV is nearly the same, growing with
energy because the neutrino cross section increases with
energy faster than the energy loss effects degrade the tau
energy. For 100 km of rock, neutrino attenuation comes in
as well, so that the transmission function is ∼10%–20%
reduced relative to 30–50 km. At higher energies, the
curves for transmission function begin to further separate as
more neutrinos interact before the final column depth
of ∼RτðEÞρ.
The dotted lines in the upper plot of Fig. 13 show the

evaluation of the transmission function where the
Monte Carlo program is used only for the neutrino
interaction and the maximum neutrino energy is
Eν ¼ 1012 GeV. The tau energy Ei

τ is generated stochas-
tically, smearing the initial tau energy and therefore the
maximum Eτ for the analytic survival probability calcu-
lation. For these three distances, the dotted lines match the
Monte Carlo results to within 10%. This hybrid method of
Monte Carlo simulation for the neutrino interaction and
analytic result for the tau propagation speeds up the
numerical comparisons for longer distances, where most
of the taus do not emerge after longer distances.

The lower plot in Fig. 13 shows the transmission
function for three different approaches to the energy loss:
BDHM, Soyez and ALLM. Increased tau energy loss and
some attenuation come into play in the ALLM evaluation
compared to the BDHM and Soyez evaluations.
The Monte Carlo results are in good agreement with the

results obtained analytically, within about 5% and 10% at
E ¼ 1010 GeV for the BDHM and Soyez approaches,
respectively. Above 1010 GeV, the Monte Carlo results
start decreasing due to the cutoff of Emax

ν ¼ 1012 GeV: the
difference between Monte Carlo and analytic evaluations
with no cutoff, at E ¼ 1011 GeV, is about 20% for BDHM
and about 35% for Soyez.
Fig. 14 shows the transmission function calculated

analytically for the incident cosmogenic neutrino flux.
For the 100 km, the neutrino attenuation results in the

FIG. 13. The ratio of the emerging tau flux to an incident
neutrino flux scaling as E−2

ν , using the BDHM energy loss and
neutrino cross section (upper) and all three approaches (lower). In
the upper figure, the dashed lines are from the Monte Carlo
simulation of neutrino interactions and tau propagation with
Emax
ν ¼ 1012 GeV, while the dotted lines use the Monte Carlo

program only for the neutrino interaction, for 30 (upper), 50
(middle) and 100 (lower curves) km. In the lower figure, we show
the BDHM (dashed), Soyez (dot-dashed) and ALLM (solid)
approaches for the same distances.
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decrease of the transmission function at the high energies
relative to 30 km.
Figure 15 shows the overall uncertainties on the ratio

of the emerging tau flux to an incident neutrino flux as
in Fig. 12, but for the larger distance of 100 km. The band
shows the impact of including the range of neutrino cross
sections and neutrino inelasticity obtained in all three

approaches for the tau energy loss obtained with the
Soyez approach. The overall uncertainties in this figure,
for the energy range of 108 GeV ≤ E ≤ 1011 GeV, are
within 35% for both E−2

ν and cosmogenic neutrino fluxes.
The largest difference is at energy of about 1010 GeV,
about 32% and 34% for E−2

ν and cosmogenic neutrino
fluxes. At E ¼ 1011 GeV, the uncertainty reduces to 24%
and 30%, respectively. From Fig. 13 we note that for E−2

ν

neutrino flux and distance of 100 km rock, the different
approaches to tau energy loss give larger uncertainty than
the uncertainty due to neutrino cross section or inelasticity.
For E ¼ 108 GeV, the transmission functions differ by a
factor of 1.3, while for E ¼ 1010 GeV, the BDHM gives a
factor of 2.0 larger result that the one evaluated in ALLM
approach.
A distance of 100 km of rock corresponds to an angle

of approximately 0.5° below the horizon. Fig. 16 shows
schematically the chord length D as a function of nadir
angle θ, where

D ¼ 2R⊕ cos θ: ð28Þ

For a nadir angle of 85°, the chord length is more than
1,000 km. For neutrinos with energies larger than a few
times 108 GeV, the neutrino interaction length is smaller
than the chord length for nadir angles much less than 85°,
so the transmission function will be appreciable only for
nadir angles close to 90°. We define the angle α relative to
the horizon:

α ¼ π

2
− θ: ð29Þ

FIG. 14. The transmission function calculated analytically for
incident cosmogenic neutrino flux and with tau energy loss in the
Soyez approach, for a depth of 30 and 100 km rock.

FIG. 15. Uncertainties of the transmission function for 100 km
rock due to the neutrino cross section and the neutrino inelasticity
for the tau energy loss obtained in Soyez approach.

FIG. 16. Chord length through the EarthD for nadir angle θ and
radius of the Earth R⊕.
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For reference, we show the chord lengths and maximum
depth of the neutrino/tau trajectory below the Earth’s
surface (sagitta) in Table V.
In Fig. 17, we show a plot of FðτÞ=FðνÞ for

different angles α relative to the horizontal using R⊕ ¼
6.37 × 103 km. The surface rock-mantle interface is several
hundred kilometers below the Earth’s surface [16], so for
α ≤ 6°, ρ ¼ 2.65 g=cm3 is a good approximation for a
detector on land. Each curve represents the transmission
function for a given approach and the shaded band shows
the spread in predictions for FðτÞ=FðνÞ for tau neutrinos
skimming with α ¼ 1°, 2°, 4° and 6° below the horizon.
Similar to the shorter trajectories, the span of predictions at
E ¼ 108 GeV is less than at E ¼ 1010 GeV and higher. At
E ¼ 108 GeV, FðτÞ=FðνÞ from the BDHM approach is a
factor of 1.2–1.4 higher than for the ALLM calculation for
all of the angles shown. By E ¼ 1010 GeV, the BDHM
transmission function is a factor of 2.2(1°) to 13(6°)
higher.
How the uncertainty in the transmission function trans-

lates to a particular measurement depends on the relative
importance of different energy regions and angles. If one
considers air showers that must develop before an altitude
h ¼ 20 km and taking the time dilated decay length as the
distance the tau travels after emerging from the Earth at an

angle α ¼ 1°–6°, then Eτ < 8.3 × 109 GeV. For neutrino
fluxes that decrease with energy, there is a further sup-
pression of the high-energy regime.
Before we turn to the specific example of the Pierre

Auger Observatory, we discuss the impact of different
spectral indices on the range of predictions for the trans-
mission function. In Fig. 18, we present the transmission
function for the incident neutrino fluxes scaling as E−2.5

ν

and E−2
ν taking the Soyez approach for the reference. The

transmission function for the steeper neutrino flux is
smaller. For example, the E−2.5

ν incident neutrino flux gives
transmission function about 23% (33%) lower than in case
of incident neutrino flux being E−2

ν at E ¼ 108 GeV for the
10 km (100 km) distance. This reduction effect becomes
larger as energy increases, at E ¼ 1011 GeV it is about
30% (40%). We find effect to be the same for the BDHM
approach, while for the ALLM approach it is 27% (45%) at
the corresponding energies for the 10 km distance.

V. APPLICATION: PIERRE AUGER
OBSERVATORY

Our results are directly applicable to an approximate
evaluation of the effective aperture of the Pierre Auger
Observatory. Following Refs. [15,17,73], we use the
analytic survival probability for the kernel KðEν; D; EτÞ,
involving an integration of Eq. (27) to get

FτðEτ; DÞ ¼
Z

dEνFνðEν; 0ÞKðEν; D; EτÞ: ð30Þ

To simplify the expression, we use hyi ¼ y0 ¼ 0.15 for all
energies. The δ functions relating initial and final tau
energies and the neutrino energy to the initial tau energy
simplify the expression of the kernel. The kernel for the
2-parameter fit of β appears in Appendix B.
The aperture depends on the tau energy and lifetime.

Reference [17] suggests that the relevant altitude for
detection is about x0 ¼ 10 km along the shower axis from

TABLE V. Path length and sagitta to correspond to the angle α
relative to the horizon.

α [°] Sagitta [km] Path length [km]

1 0.97 222
2 3.88 445
3 8.73 667
4 15.5 889
5 24.2 1,110
6 34.9 1,330

FIG. 17. The transmission function for an incident neutrino flux
scaling as E−2

ν for Eν < 1012 GeV for α ¼ π=2 − θ ¼ 1°, 2°, 4°
and 6° for the BDHM, Soyez and ALLM approaches.

FIG. 18. Comparison of the transmission functions for incident
neutrino flux scaling as E−2.5

ν and E−2
ν for 10 km and 100 km.
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the point of the tau decay. The kernel is translated to the
effective aperture (approximately) by first evaluating the
differential probability to have a tau decay a distance x − x0
from exiting from the Earth, as a function of altitude h
above the Earth’s surface at x. The configuration is shown
schematically in Fig. 19.
The distance x and altitude h are related to the nadir

angle θ, as is the chord length D that first the tau neutrino,
then the tau, travels through the Earth. We take a constant
Earth density ρ ¼ 2.65 g=cm3 for the angles of relevance,
namely θ ¼ π=2 − α → π=2 for α ¼ 0.1 rad. The distances
x and h, and nadir angle θ, are related by

ðR⊕ þ hÞ2 ¼ R2
⊕ þ x2 þ 2R⊕x cos θ: ð31Þ

The probability density is

d2PτðEν; Eτ; cos θ; hÞ
dEτdh

¼ KðEτ; cos θ; EνÞ
e−

ðx−x0Þ
λdec

λdecay

hþ R⊕ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊕cos

2θ þ h2 þ 2R⊕h
q

where λdec ¼ Eτcττ=mτ is the usual decay length.
We evaluate the effective aperture by integrating over the

fraction of the solid angle that is important, over the tau
energies and over altitudes weighted by an approximate
efficiency for detection, a product of the identification and
trigger efficiencies. The maximum efficiency for identifi-
cation and trigger is each at 0.84 since the muonic decay of
the tau does not produce a shower. In Ref. [17], efficiencies
for selected energies are shown and described as being
primarily functions of altitude and tau energy. We approxi-
mate the effective efficiency by an energy dependent step
function for h,

ϵeffðEτ; hÞ≃ 0.64θðhmaxðEτÞ − hÞ
hmax ¼ 0.5 log10ðEτ=108 GeVÞ:

This gives the effective aperture in the analytic approxi-
mation,

ApðEνÞ¼2πA
Z

sinθcosθdθ
Z

dEτ

Z
dh

d2Pτ

dEτdh
ϵeffðEτ;hÞ:

The evaluation of the effective apertures for the Pierre
Auger Observatory with A ¼ 3; 000 km2 are shown with the
solid lines for Soyez, BDHM and ALLM approaches from
top to bottom in Fig. 20. Our results here, with the crude
approximation for the efficiency, are within a factor of ∼4 of
those of Ref. [73], where a careful accounting of the local
topography near the Observatory was included. Our approx-
imations serve to test the impact of the different approaches
to energy loss and neutrino cross sections. In the range of
Eν ¼ 109–1012 GeV, the Soyez and BDHM evaluations
differ by between 2%–7%. At E ¼ 109 GeV, the ALLM
curve is about 6% lower; however, ALLM aperture drops
with higher energies, so that the Soyez aperture is a factor of
1.7 times larger than the ALLM aperture.
The dashed lines in the figure show the impact of

including a parametrized NLO perturbative neutrino-nucleon
cross section from Ref. [23]. For Eν ¼ 109–1012 GeV, the
ratios of Soyez to ALLM apertures are from 1.04 to 2.0. For
the event rates for an E−2 incident tau neutrino flux, the peak
of the differential event rate is at Eτ a few times 108 GeV,
where differences in the approaches are small. Our approxi-
mate calculations have the total event rates differing by only
a few percent.

VI. CONCLUSIONS

We have calculated the emerging tau flux generated from
tau neutrino interactions followed by the tau propagation
through rock. We have evaluated neutrino charged current
cross section and the tau energy loss in various QCD-
motivated approaches, such as dipole approach as well as
the more phenomenological approach that determines

FIG. 19. The geometry used to approximate the Auger aperture.
Here, h is the altitude a distance x0 from the tau decay point, for
taus emerging from the Earth with a nadir angle θ.

FIG. 20. The effective aperture for the Pierre Auger Observa-
tory for A ¼ 3; 000 km2 using the analytic approximation to the
tau survival probability in rock and an approximate efficiency for
detection, for Soyez, BDHM and ALLM models for both energy
loss and neutrino cross section (solid line), and with the NLO
perturbative neutrino cross section substituted (dashed lines).
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neutrino cross section using the same F2 parametrization
used in evaluating the tau energy loss parameter βnucτ . Our
comparisons of results obtained analytically with those
obtained with the Monte Carlo treatment of the tau energy
loss show good agreement for fluxes that scale like E−2

ν .
While not a fundamental result, the analytic treatment of
tau propagation in materials is a useful tool to survey
different approaches to calculate tau electromagnetic
energy loss. We find that the tau electromagnetic energy
loss at PeV range can be well described by βfitðEÞ ¼
β0 þ β1 lnðE=E0Þ þ β2ln2ðE=E0Þ with the parameters
in Tables I and VI. For the BDHM and dipole model
treatment of electromagnetic energy loss, β2 ≃ 0 is a good
approximation.
We have also parametrized our results for the neutrino

charged current cross section for each approach we
considered, reproducing the numerical result to within
�5%. Finally, comparisons of the ντ fluxes after propaga-
tion over various distances in rock, between Monte Carlo
simulations and analytic calculations for each theoretical
approach, are in good agreement in the energy regime
where the Monte Carlo upper limit on the neutrino energy
has no impact. The parametrization of the survival prob-
ability and energy relations are useful tools to determine
the implications of newmodels or approaches without a full
Monte Carlo simulation.
The different approaches to the tau energy loss calculation

have larger impacts at high energies and longer trajectories in
the Earth. For example, different approaches to electromag-
netic energy loss can give transmission functions that differ
by a factor of ∼10 for D ∼ 1; 000 km. Nevertheless, our
results for the Pierre Auger Observatory aperture, with a
simplified efficiency, show that event rates with an E−2

ν

incident neutrino flux are minimally uncertain due to the
energy loss and the neutrino cross section, because at
Eτ ≃ 109 GeV, the approaches considered here give very
similar results.
In addition to applying our results to evaluating the

effecting aperture for the Pierre Auger Observatory, our
results can be applied to the High Altitude Water
Cherenkov (HAWC) observatory and the All-sky Survey
High Resolution Air-shower detector (ASHRA). For
HAWC, the propagation distance is 0.35 to 6 km (width
of the volcano at summit and at the observatory elevation)
[19]. We have compared results using the Monte Carlo
simulation to analytic calculation of the tau flux exiting the
Earth performed using the approaches presented in this
paper for the above distances. Additionally, one can also
consider the effective aperture for HAWC, given the
approximate distance of 4 km from the edge of the volcano
to the HAWC array and the array surface area of 22,000m2.
Since HAWC is sensitive to showers that pass through
detector elements coming from neutrino conversions in the
volcano, the effective solid angle is much smaller than for
the Pierre Auger Observatory. Similar conditions can be

found in the Ashra configuration proposed to be 30 km
from Mauna Kea, with a propagation distance of approx-
imately 20 to 25 km. One can adopt our Auger aperture
calculation with βτ parametrizations along with the analytic
computations for the tau neutrino propagation to predict the
induced events at the detector arrays. The calculational
technique discussed here could also be applied to a space-
based telescope pointing towards the Earth as discussed in,
e.g., Ref. [74].
By using a consistent low-x treatment of both energy loss

and the cross section, we have shown that the different
parametrizations of F2 and dipole approach yield similar
emerging tau fluxes for short distances and for tau energies
∼108–109 GeV. By using a separate NLO parton model
calculation of the neutrino cross section, the range of
emerging tau flux predictions is broader for the approaches
considered here. Overall, for large distances, the differences
in modeling the tau energy loss account for most of the
differences in the calculated transmission functions. As
forward, low invariant mass processes are studied in more
detail, small-x parton distribution functions will help
constrain F2 at Q2 values where the parton model applies.
The ALLM parametrization gives a larger tau energy loss at
high energies than the dipole model or BDHM paramet-
rization. If the ALLM parametrization or the BDHM
parametrization were ruled out experimentally, the theo-
retical uncertainty associated with ultrahigh energy skim-
ming tau neutrinos would be reduced.
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APPENDIX A: DIPOLE MODEL

In the dipole model, the electromagnetic structure
function F2ðx;Q2Þ is written in terms of the photon wave
functions and the dipole cross section [56],

F2ðx;Q2Þ ¼
X
f

Q2

4π2αem

Z
d2r

Z
1

0

dz½jΨðfÞ
L ðr; z;Q2Þj2

þ jΨðfÞ
T ðr; z;Q2Þj2�σdipðr; xÞ: ðA1Þ

The photon wave functions, in terms of the transverse
separation r and the fractional momentum z, are given by

jΨðfÞ
L ðr; z;Q2Þj2 ¼ e2f

αemNc

2π2
4Q2z2ð1 − zÞ2K2

0ðrQ̄fÞ
ðA2Þ
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jΨðfÞ
T ðr; z;Q2Þj2 ¼ e2f

αemNc

2π2
ð½z2 þ ð1 − zÞ2�Q̄2

fK
2
1ðrQ̄fÞ

þm2
fK

2
0ðrQ̄fÞÞ; ðA3Þ

using the modified Bessel functions K0 and K1, the quark
electric charge ef and mass mf. Here, Q̄2

f ¼ zð1 − zÞQ2þ
m2

f, and we use mu¼md¼ms¼0.14GeV, mc ¼ 1.4 GeV
and mb ¼ 4.5 GeV. The electromagnetic fine-structure
constant is labeled αem and Nc ¼ 3 is the number of colors
in Eqs. (A2)–(A3). For the dipole cross section, σdipðr; xÞ,
we use the parametrization in Ref. [58] by Soyez.

APPENDIX B: THREE PARAMETER
FIT TO βτðEÞ

In order to extend our investigation to lower energies, a
better parametrization for the energy loss βτ than Eq. (15) is
useful. Adding a ln2 E term, we use

βnucτ ðEÞ ¼ β0 þ β1 lnðE=E0Þ þ β2 ln2ðE=E0Þ ðB1Þ

with E0 ¼ 1010 GeV. Results for the parameters are in
Table VI. The results for the BDHM and Soyez approaches
are matched well with the output from the direct calcu-
lation. The differences are mostly less than 1% between
E ¼ 106–1012 GeV. The ALLM fit is not as good as the
other models, especially at low energies, but it works well,
to within 5% betweenE ¼ 2 × 107–5 × 108 GeV. Between
E ¼ 5 × 108–1011 GeV, it works better, to within 3%.
Starting from the energy dependence of βτ, the relation

between the initial tau energy Ei
τ and distance traveled z0 to

the final tau energy Eτ is

Eτ ¼ exp

�
−

1

2β2

�
β1 þ B tan

�
1

2
Bρz0

− tan−1
�
β1 þ 2β2 ln ðEi

τ=E0Þ
B

����
E0; ðB2Þ

with B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0β2 − β21

p
. The survival probability for the

three parameter fit to βτ is

PsurvðEτ; Ei
τÞ ¼ exp

�
mτeðβ1−BÞ=2β2

cτρE0B

�	
Ei

�
−
β1 − B
2β2

− ln

�
Ei
τ

E0

��
− Ei

�
−
β1 − B
2β2

− ln

�
Ei
τ

E0

��


− eB=β2
	
Ei

�
−
β1 þ B
2β2

− ln

�
Ei
τ

E0

��
− Ei

�
−
β1 þ B
2β2

− ln

�
Ei
τ

E0

��
��
; ðB3Þ

where the exponential integral EiðxÞ ¼ −
R
∞
x e−t=tdt.

Setting β2 ¼ 0 and dσCCðEνÞ=dEτ ¼ σCCðEνÞ×
δðEτ − ð1 − y0ÞEνÞ, the expression for the kernel for the
effective aperture is

KðEν; D; EτÞ ¼
NAσCCðEνÞ

β0Eτ½1þ β1
β0
lnðEτ

E0
Þ� e

−DσtotρNAðF Þξ

× Psurvðð1 − y0ÞEν; EτÞ ðB4Þ

where

F ðEν; EτÞ≡ β0 þ β1 lnðð1 − y0ÞEν=E0Þ
β0 þ β1 lnðEτ=E0Þ

ðB5Þ

ξ≡ σCCðEνÞNA

β1
: ðB6Þ

APPENDIX C: WEAK INTERACTIONS

It is convenient to write the differential neutrino-nucleon
cross section as

dσ ¼ G2
Fs
4π

�
M2

V

Q2 þM2
V

�
2

½YþFV
2 − y2FV

L � Y−xFV
3 �

¼ G2
Fs
4π

�
M2

V

Q2 þM2
V

�
2

½2ð1 − yÞFV
S þ FV

TYþ

þ ð1 − ð1 − yÞ2ÞxFV
3 �; ðC1Þ

TABLE VI. βnucτ in [10−6 cm2=g] using Eq. (B1) for
E ¼ 106–1012 GeV.

Model βnuc0 β1 β2

BDHM 0.425 4.04 × 10−2 1.12 × 10−3

Soyez 0.371 3.20 × 10−2 9.54 × 10−4

Soyez-ASW 0.461 3.90 × 10−2 1.13 × 10−3

ALLM 1.02 0.210 1.51 × 10−2

TABLE VII. Couplings for neutrino charged current (V ¼ W)
and neutral current (V ¼ Z) scattering.

Process m1 m2 gVv gVa

V ¼ W md, ms, mb mu, mc, mt 1 1
V ¼ Z md, ms, mb md, ms, mb

ffiffiffi
2

p ð− 1
2
þ 2

3
sin2 θWÞ −

ffiffiffi
2

p
=2

V ¼ Z mu, mc, mt mu, mc, mt
ffiffiffi
2

p ð1
2
− 4

3
sin2 θWÞ

ffiffiffi
2

p
=2
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where FV
T ¼ ðFV

L þ FV
RÞ=2, and 2xFV

3 ¼ FV
L − FV

R . The
relative coupling of the W and Z are absorbed into the
definition of the structure functions for the Z. For weak
interactions, λ ¼ L, R, S with

FV
λ ¼ Q2

4π2

Z
1

0

dz
Z

d2rjψV
λ ðz; rÞj2σdipðx; rÞ: ðC2Þ

For the dipole model [26,29,70,71], where z̄ ¼ 1 − z and
Q̄ ¼ zz̄Q2 þm2

1zþm2
2z̄,

jψV
L j2¼

NC

2π2
½½ðgVv −gVa Þ2z̄2þðgVv þgVa Þ2z2�Q̄2K2

1ðrQ̄Þ
þ½gVv ðzm1þ z̄m2Þ−gVa ð−zm1þ z̄m2Þ�2K2

0ðrQ̄Þ�

jψV
Rj2¼

NC

2π2
½½ðgVv þgVa Þ2z̄2þðgVv −gVa Þ2z2�Q̄2K2

1ðrQ̄Þ
þ½gVv ðzm1þ z̄m2ÞþgVa ð−zm1þ z̄m2Þ�2K2

0ðrQ̄Þ�

jψV
S j2¼

NC

2π2Q2
½½ðgVv Þ2ð2Q2zz̄þðm1−m2Þðzm1− z̄m2ÞÞ2

þðgVa Þ2ð2Q2zz̄þðm1þm2Þðzm1þ z̄m2ÞÞ2�K2
0ðrQ̄Þ

þ½ðgVv Þ2ðm1−m2Þ2þðgVa Þ2ðm1þm2Þ2�Q̄2K2
1ðrQ̄Þ�

ðC3Þ
with the couplings presented in Table. VII. In Table. VIII,
we show the cross sections for charged and neutral current
weak interaction for the BDHM and Soyez approaches.
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