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We derive analytic approximations for the neutrino luminosities and the heat capacities of neutron stars
with isothermal nucleon cores as functions of the mass and radius of stars. The neutrino luminosities are
approximated for the three basic neutrino emission mechanisms, and the heat capacities for the five basic
combinations of the partial heat capacities. The approximations are valid for a wide class of equations of
state of dense nucleon matter. The results significantly simplify the theoretical interpretation
of observations of cooling neutron stars as well as of quasistationary thermal states of neutron stars in
x-ray transients. For illustration, we present an analysis of the neutrino cooling functions of nine isolated
neutron stars taking into account the effects of their magnetic fields and of the presence of light elements in
their heat blanketing envelopes. These results allow one to investigate the superfluid properties of neutron
star cores.
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I. INTRODUCTION

Modeling the thermal evolution of isolated neutron stars
as well as neutron stars in x-ray transients (XRTs) and
comparing the results with observations is known to give a
viable method to probe superdense matter in neutron star
interiors (e.g., Refs. [1–5] and references therein).
The cooling of isolated neutron stars proceeds through

the neutrino emission from the entire stellar volume and
through the heat conduction to the surface and subsequent
thermal surface emission of photons. Young and middle-
aged isolated neutron stars (of age t≲ 105 yr) cool mostly
via neutrino emission from their internal layers. Initially, at
t ∼ 10–100 yr after their birth, neutron stars are noniso-
thermal inside; their cores stay colder than the crust because
of the stronger neutrino emission from the cores and the
lower thermal conduction in the crust (e.g., Ref. [6] and
references therein). However, when the initial period of
internal thermal relaxation is over, the interior of the star
becomes nearly isothermal. It has the same internal temper-
ature ~T which gradually decreases with time as the star
cools. With account for the effects of general relativity, ~T
should be the temperature redshifted for a distant observer
(not the local temperature of the matter; see below). A
substantial temperature gradient remains only in the outer
heat blanketing envelope of the star (not deeper than a few
hundred meters under the surface [7]). The cooling of
isolated neutron stars with an isothermal interior at the
neutrino cooling stage is governed (e.g., Ref. [3]) by the
ratio L∞

ν ð ~TÞ=Cð ~TÞ, where L∞
ν ð ~TÞ is the neutrino luminosity

of the star (the superscript∞means that it is redshifted for a
distant observer) and Cð ~TÞ is the heat capacity. Both,
L∞
ν ð ~TÞ andCð ~TÞ, are mainly determined by the neutron star

core and can be calculated as

L∞
ν ð ~TÞ ¼

Z
Rcore

0

Qðρ; TÞ expð2ΦÞ4πr2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Gm=ðrc2Þ

p ; ð1Þ

Ccoreð ~TÞ ¼
Z

Rcore

0

ccoreðρ; TÞ
4πr2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Gm=ðrc2Þ
p : ð2Þ

Here, Qðρ; TÞ and ccoreðT; ρÞ are the neutrino emissivity
[erg cm−3 s−1] and the specific heat capacity [erg cm−3 K−1]
in the core, respectively; ρ is the mass (energy) density,

T ¼ ~T expð−ΦÞ is the local temperature in the stellar
matter, Rcore is the core radius, m ¼ mðrÞ is the gravita-
tional mass inside a sphere of circumferential radius r, and
Φ ¼ ΦðrÞ is the metric function determined by the equa-
tion (e.g., chapter 6 of Ref. [8])

dΦ
dr

¼ −
1

Pþ ρc2
dP
dr

; ð3Þ

with P being the pressure.
Isolated neutron stars with 10–100 yr ≲ t≲ 105 yr have

isothermal interiors and cool mainly from inside via
neutrino emission (e.g., Refs. [3–5]). To study their cool-
ing, one needs L∞

ν ð ~TÞ andCcoreð ~TÞ. Later, at t≳ 105 yr, the
neutrino emission weakens and the stars cool mostly via
heat conduction to the surface and the surface thermal
emission. In order to investigate their cooling at this stage,
one needs Ccoreð ~TÞ.
Cooling theory is also used to analyze thermal states of

neutron stars in XRTs (e.g., Ref. [3]), which are compact
binaries containing a neutron star and a low-mass star.
These old systems show active periods (days, weeks, or
months) of accretion from the low-mass companion to the
neutron star through an accretion disk. The active periods
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are superimposed by quiescent periods (months or years)
when the accretion stops.
During an active period, a huge amount of gravitational

energy is released when the matter falls onto the neutron
star surface. This makes XRTs bright x-ray sources. In
addition, the accreted matter burns in thermonuclear
reactions in the surface layers which intensifies the surface
x-ray emission. The ashes of the thermonuclear burning are
further compressed under the weight of the newly accreted
material and undergo nuclear transformations (pycnonu-
clear reactions, electron captures, and neutron emission or
absorption) producing the deep heating of the neutron star’s
crust [9–12] with an energy release of about 1–2 MeV per
accreted nucleon. This heat, whose power is proportional to
the accretion rate, is mainly conducted into the core, warms
it up and is radiated by neutrinos from there. As episodes of
heating due to the accretion and subsequent quiescence
with neutrino cooling proceed, the neutron star interior
reaches a state of thermal quasiequilibrium. Then the
source operates in a quasistationary regime and the interior
of the star remains isothermal because of the large internal
thermal conduction. The internal temperature ~T does not
show noticeable variations since the star is thermally
inertial. The star stays thermally balanced being heated
during accretion episodes but cooled during quiescent
states. In quiescence, the violent processes of surface
energy release stop, and the surface temperature drops,
but its decrease is limited because the star is still warm
inside. Thus the star can produce an intense and detectable
quiescent surface emission [12]. The internal temperature ~T
of this star is determined by its neutrino luminosity L∞

ν ð ~TÞ
and by the deep crustal heating power (e.g., Ref. [3]).
If accretion episodes are long or intense, the crustal

heating can drive the crust out of the thermal balance with
the core. This balance is restored later, during subsequent
quiescent states. Observations of the relaxation of such
neutron stars combined with observations of an accretion
outburst allow one to estimate a lower limit to the heat
capacity of the neutron star core [13].
Therefore, the thermal evolution of isolated and accreting

neutron stars is largely regulated by L∞
ν ð ~TÞ and Cð ~TÞ which

are the quantities we analyze below. While modeling the
thermal evolution, it is often time consuming to calculate
L∞
ν ð ~TÞ and Cð ~TÞ directly from Eqs. (1) and (2). We will

obtain convenient analytic fits which considerably simplify
the calculations and interpretation of observational data.
Note that some fits to L∞

ν ð ~TÞ=Cð ~TÞ were obtained in
Refs. [14,15]; they are in good agreement with the present
results but less complete. Preliminary results of this inves-
tigation have been presented in Ref. [16].

II. BASIC CASES

The quantities L∞
ν ð ~TÞ and Cð ~TÞ in question are deter-

mined (i) by an equation of state (EOS) of superdense

matter for the neutron star core and an appropriate neutron
star model (for given mass M and radius R) and (ii) by the
neutrino emissivity Qðρ; TÞ and the specific heat capacity
ccoreðρ; TÞ in the core. To be specific, we will restrict
ourselves to the case in which the core consists of strongly
degenerate neutrons (n), protons (p), electrons (e), and
muons (μ), and consider a number of different EOSs of
npeμ matter. As a rule, neutrons are the most abundant
particles (e.g., Ref. [8]). Neutrons and protons constitute a
strongly interacting Fermi liquid; in the cores of massive
neutron stars, these particles become mildly relativistic. As
for electrons and muons, they constitute a weakly interact-
ing Fermi gas; the electrons are ultrarelativistic while the
muons are typically mildly relativistic.
Even in this simplest case, the problem of calculating

L∞
ν ð ~TÞ and Cð ~TÞ is strongly complicated by possible

superfluidities of neutrons and protons. The critical temper-
atures for such superfluidities are difficult to calculate
exactly (e.g., Ref. [17] and references therein). Neutron
and/or proton superfluids affect L∞

ν ð ~TÞ and Cð ~TÞ because
of the onset of energy gaps in the nucleon dispersion
relations. Strong superfluidity exponentially suppresses the
neutrino emissivities for the neutrino processes involving
superfluid particles and the partial heat capacities for
superfluid particles (as reviewed in Ref. [6]). In addition,
it creates a new specific mechanism of neutrino-pair
emission due to the Cooper pairing of nucleons (see
Refs. [4,5,18,19] and references therein). If the superfluid
critical temperatures were known, one could in principle
numerically compute L∞

ν ð ~TÞ and Cð ~TÞ; this could be a
good project for the future.
Here, we will follow the strategy used previously in

Refs. [14,15,20–22] for analyzing the observations of some
selected neutron stars. First, we calculate the partial
contributions to L∞

ν ð ~TÞ and Cð ~TÞ for the most important
cases neglecting the effects of superfluidity. We will
approximate these contributions by analytic expressions
and use them as the basis for the neutrino luminosities
and heat capacities. The actual Lνð ~TÞ and Cð ~TÞ can be
expressed as sums over the contributions from the various
species. However if one of them is strongly superfluid then
the contribution is strongly reduced (either completely or
by an unknown reduction factor). By comparing the theory
with observations using this procedure one can try to
constrain the superfluid properties of neutron stars.
Our three basic cases for L∞

ν ð ~TÞ are presented in Table I,
where N denotes a nucleon, and l is either an electron or a
muon. The first column labels the cases, the second one
shows the temperature dependence of the corresponding
neutrino luminosities L∞

ν ð ~TÞ, the third presents the leading
neutrino reaction and the last column indicates the super-
fluid state of the neutron star core at which the given L∞

ν ð ~TÞ
is the leading one. The first case is the most powerful direct
Urca (DU) neutrino cooling process [23] (a sequence of
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neutron decay and inverse reactions producing an electron
or a muon neutrino pair). The DU process can be open only
in the inner cores of massive neutron stars with those EOSs
which predict a sufficiently large fraction of protons. The
second case corresponds to a less powerful neutrino cooling
due to the modified Urca (MU) process (e.g. Ref. [6] and
references therein). This process is considered as standard
in not very massive nonsuperfluid neutron stars. Finally, the
last case nn is for the neutrino-pair bremsstrahlung due to
neutron-neutron collisions (reviewed, e.g., in Ref. [6]). In a
nonsuperfluid star it is weaker than the MU, but if protons
are strongly superfluid, MU and DU processes are greatly
suppressed and the neutrino-pair bremsstrahlung becomes
the leading neutrino cooling process.
Table II presents the five basic cases of partial (non-

superfluid) heat capacities Ccoreð ~TÞ in neutron star cores.
Case n refers to the heat capacity of neutrons, case p to the
heat capacity of protons, case l to the sum of heat
capacities of electrons and muons, case tot to the sum
of the heat capacities of all constituents of the matter, and
case nl to the heat capacity of neutrons, electrons and
muons. Case tot gives the total heat capacity of a non-
superfluid core. Other cases can be useful in the presence of
superfluidity of nucleons. For instance, case nl corre-
sponds to a strong superfluidity of protons, while case l
corresponds to a strong superfluidity of neutrons and
protons. All basic heat capacities are proportional to ~T
because of the strong degeneracy of all fermions in the
neutron star cores (e.g., Ref. [6]).

A. Neutrino luminosities

Let us outline the neutrino emissivities Qðρ; TÞ for the
three basic neutrino emission cases in Table I (e.g., Ref. [6]).

For the MU process,

QMU ¼ QMU 0

�
np
n0

�
1=3

T8
9Ωðnn; np; ne; nμÞ; ð4Þ

where nα is the number density of particles α ¼ n;…; μ;
n0 ¼ 0.16 fm−3 is the standard number density of nucleons
in saturated nuclear matter, T9 is the local temperature T
expressed in 109 K and Ω ∼ 1 is a dimensionless factor to
account for the different branches of the process (e.g.,
Refs. [6,24]). Here we only need the main dependence
QMU ∝ n1=3p . The factor QMU 0 ≈ 1.75 × 1021 erg cm−3 s−1
(as well as similar factors for other processes) is calculated
under the assumptions described in Ref. [6], with the
effective masses of nucleonsm�

p ¼ 0.7mp andm�
n ¼ 0.7mn.

The difference between the effective and bare masses of
nucleons in neutron star cores is mainly determined by the
many-body effects.
In the case of the DU process,

QDU ¼ QDU 0

�
ne
n0

�
1=3

T6
9ðΘnpe þ ΘnpμÞ; ð5Þ

where QDU 0 ≈ 1.96 × 1027 erg cm−3 s−1. The factors Θnpe
and Θnpμ are equal to 1 (open the electron and muon
processes, respectively) if the Fermi momenta of the
reacting particles satisfy the corresponding triangle con-
dition; otherwise, these factors are zero. Because of the
triangle conditions, the electron and muon DU processes
have thresholds and can operate only in the central regions
of massive neutron stars.
In the case nn (of strongly superfluid protons; e.g.,

Ref. [15]),

Qnn ¼ Qnn0

�
nn
n0

�
1=3

T8
9; ð6Þ

with Qnn0 ≈ 1.77 × 1019 erg cm−3 s−1.

B. Heat capacities

Now we outline the specific heat capacities in neutron
star cores for the basic cases listed in Table II using
the well-known expressions presented, for instance,
in Ref. [3].
The total specific heat is

ctot ¼ cn þ cp þ ce þ cμ: ð7Þ

For any fermion species α ¼ n;…μ,

cα ¼
k2B
3ℏ3

Tm�
αpFα; ð8Þ

where kB is the Boltzmann constant; m�
α and pFα are,

respectively, the effective mass and the Fermi momentum

TABLE I. Three basic neutrino processes.

Case L∞
ν ð ~TÞ Neutrino process Superfluids (SF)

DU ~T6 n → pl~νl; pl → nνl None
MU ~T8 nN → pNl~νl; pNl → nNνl None
nn ~T8 nn → nnν~ν Strong p SF

N ¼ n or p; l ¼ e or μ

TABLE II. Five basic heat capacities.

Case Ccoreð ~TÞ
n Cn
p Cp

l Cl ¼ Ce þ Cμ

tot Ctot ¼ Cn þ Cp þ Ce þ Cμ

nl Cnl ¼ Cn þ Ce þ Cμ
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of the particles α. Note that the main contributions to the
heat capacity of nonsuperfluid cores come from the
neutrons and protons (e.g., Ref. [25]). Assuming again
m�

n ¼ 0.7mn and m�
p ¼ 0.7mp, we obtain

cN ≈ c0

�
nN
n0

�
1=3

T9; ð9Þ

with c0 ¼ 1.12 × 1020 erg cm−3 K−1.
The effective mass of ultrarelativistic, nearly ideal

electrons m�
e ¼ pFe=c is determined by the relativistic

effects. Then

ce ≈ 0.355c0

�
ne
n0

�
2=3

T9: ð10Þ

Since the muons are mildly relativistic, the expression for
cμ is more complicated but the muon contribution in Eq. (7)
can be roughly taken into account by an artificial ampli-
fication of ce.

III. GRID OF EQUATIONS OF STATE

In order to calculate L∞
ν and Ccore, we have selected nine

EOSs of matter in neutron star cores. They are listed in
Table III and illustrated in Figs. 2 and 3. The NL3ωρ and
DDME2 EOSs were described in Ref. [26] and in refer-
ences therein. The SLy EOS was calculated in Ref. [27].
The PAL4-240 EOS was constructed using the results of
Ref. [28] but with a different compression modulus of
symmetric nuclear matter at saturation, K0 ¼ 240 MeV
(this EOS was also presented in Appendix D of Ref. [8]
where it was called the PAPAL EOS). The HHJ II EOS was
introduced in Ref. [29] (where it was called the APR II
EOS). The BSk20 and BSk21 EOSs have been detailed and
parametrized in Ref. [30]. The HHJ IV EOS was built in
Ref. [31]. The APR EOS was constructed in Ref. [32]. Let
us stress that the selected EOSs are based on essentially

different many-body theories of dense matter. We have
selected them to extend a class of basically different EOSs.
To construct neutron star models, one needs also an EOS

in the crust. For the SLy, BSk20 and BSk21 models, the
EOSs in the crust and the core have been calculated in a
unified way. The crustal EOSs for the NL3ωρ and DDME2
models were described in Ref. [26]. The APR EOS,
originally valid in the core only, has been supplemented
with the crustal part of the BSk21 EOS. For the other
models, a crust EOS with a smooth composition [8] has
been used.
The selected EOSs [P ¼ PðρÞ] in the neutron star cores

are plotted in Fig. 1. Near the saturation density ρ0 of the
standard symmetric nuclear matter, ρ ∼ ρ0 ¼ 2.8 ×
1014 g cm−3 (the dotted vertical line), they are not very
different. This is because the EOSs are usually constructed
in such a way to reproduce the properties of saturated
nuclear matter which are well studied in the laboratory.
The most important parameters of neutron stars for the

selected EOSs are listed in Table III. TheMðRÞ relations for
the neutron star models with these EOSs are plotted in
Fig. 2. Since we have chosen EOSs which are sufficiently
diverse and have different stiffnesses at ρ≳ 2ρ0, they result
in different MðRÞ relations and cover a large part of the
M − R plane. The squares in Fig. 2 correspond to the most
massive stable neutron stars. The selected EOSs are
consistent with the recent discoveries [33–35] of two
massive (M ≈ 2M⊙) neutron stars. Circles mark the con-
figurations where the DU process becomes allowed in the
neutron star center. Only three EOSs from Table III prohibit
the DU process for all stable neutron stars.
Figure 3 illustrates another important property of the

selected EOSs: the relation between the proton np and the

TABLE III. The basic parameters of neutron stars for the
selected EOSs; Mmax and Rmin refer to the most massive stable
stars; MDU and RDU refer to the stars where the DU process
becomes allowed; M⊙ is the mass of the Sun.

EOS Mmax, M⊙ Rmin, km MDU, M⊙ RDU, km

NL3ωρ 2.75 13.00 2.60 13.79
PAL4-240 1.93 10.24 1.64 11.93
BSk21 2.27 11.01 1.59 12.59
BSk20 2.16 10.10 � � � � � �
SLy 2.05 9.91 � � � � � �
HHJ II 1.92 10.20 1.89 10.83
HHJ IV 2.16 10.82 1.73 12.48
DDME2 2.48 12.07 � � � � � �
APR 2.21 10.00 2.01 10.95

FIG. 1. Plots of the selected EOSs, P ¼ PðρÞ, in neutron star
cores. Squares mark the maximum central densities of stable
neutron stars. See text for details.
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total baryon nb ¼ nn þ np number densities. The spread of
the curves for the different EOSs is the thinnest at nb ∼ n0
(the dotted vertical line). It is a consequence of the
calibration of the EOSs to the standard nuclear theory
(see above). The straight thick shaded strip corresponds to
the relations np ∝ n1.65b . In this way we improve the
formula npðnbÞwith the np ∝ n2b dependence characteristic
of the free Fermi gas model with nonrelativistic nucleons
(e.g., Refs. [36,37]). A smaller power-law index effectively
accounts for nucleon interactions. According to Fig. 3, this

simple approximation is qualitatively accurate; it appears
sufficient for our analysis.
Note that we do not intend to accurately fit the EOSs or

number densities of the different particles. Our aim is to
suggest some simple scaling expressions for these quan-
tities and use them to describe the integral quantities, Ccore
and L∞

ν . One can treat these scaling expressions as purely
phenomenological but we prefer to introduce them on
physical grounds. We will see that the integration over the
core absorbs the inaccuracy of the scaling expressions and
helps to accurately describe Ccore and L∞

ν as functions ofM
and R for the entire collection of EOSs.

IV. CALCULATION OF THE NEUTRINO
LUMINOSITY AND HEAT CAPACITY

A. Basic remarks

We have numerically calculated L∞
ν ð ~TÞ and Ccoreð ~TÞ

from Eqs. (1) and (2) for the three basic models of neutrino
emission (Table I) and the five basic models of heat
capacity (Table II). We have used a dense grid of neutron
star models with different M for all nine EOSs from our
collection (Sec. III, Table III). In the calculations, we have
used accurate expressions for Qðρ; TÞ and ccoreðρ; TÞ from
Ref. [14] which are also employed in our standard cooling
code [38] (taking m�

N ¼ 0.7mN , to be specific).
Our calculation of L∞

DUð ~TÞ deserves a comment. As
discussed above, the DU process opens only at high
densities in the inner cores of massive stars. To simplify
our analysis, we have used Q ¼ QDU throughout the entire
neutron star core (to avoid complications with the intro-
duction of the DU threshold). This simplification is
qualitatively justified because, typically, QDU ∼ 106QMU
(e.g., Ref. [6]), and even a small central kernel with the
allowed DU process makes L∞

DUð ~TÞ much larger than
L∞
MUð ~TÞ. However, it somewhat overestimates L∞

DUð ~TÞ
and only gives its firm upper limit. With this simplification,
in all our basic cases L∞

α ð ~TÞ and Cαð ~TÞ have a predeter-
mined ~T dependence (Sec. II), so it is enough to choose one
value of ~T and calculate L∞

α ð ~TÞ and Cαð ~TÞ for the different
masses M and EOSs. The selected grid of masses was
M ¼ 1.0 M⊙; 1.1 M⊙;…Mmax. As mentioned above,
while calculating L∞

DU we have extended QDU over the
entire core, but in this case we have not used stellar models
with M < 1.5 M⊙ because MDU > 1.5 M⊙ for all our
models (Table III).

B. Analytic approximations for L∞
ν and Ccore

The exact analytic integration in Eqs. (1) and (2) is not
possible. Instead, let us derive some approximate expres-
sions for L∞

ν ð ~TÞ and Ccoreð ~TÞ and calibrate them using
numerical results.
The first step is to assume that the main contribution

to the baryon number density nb ¼ nn þ np is provided

FIG. 2. M − R relations for the EOSs from Fig. 1. Filled
squares mark the maximum masses of stable neutron stars; filled
circles mark the threshold masses of stars in which the DU
process is open (Table III).

FIG. 3. np − nb relations for the selected EOSs. Squares mark
the maximum nb in stable neutron stars. The thick shaded strip
corresponds to the power-law models np ∝ n1.65b . See text for
details.
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by the neutrons. Using a simple model np ∝ n1.65b ,
we get

nn ≈ nb; np ≈ ne ≈ an0

�
nb
n0

�
1.65

: ð11Þ

Here a is a dimensionless constant which we treat as a value
averaged over all selected EOSs. The approximation ne ≈
np can be significantly violated at very high densities at
which nμ ∼ ne (in central regions of massive neutron stars).
Their contributions to the integrated neutrino luminosities
and heat capacities can be approximately described by an
artificial amplification of the electron contributions. For
L∞
DUð ~TÞ, the contributions of the muon and electron DU

processes are just equal.
According to Table I, we study the three cases (α ¼ nn,

MU and DU) of L∞
α ð ~TÞ in Eq. (1). To find an approximate

expression for L∞
nnð ~TÞ, we take Q ¼ Qnn from Eq. (6). In

the second case (α ¼ MU) we employ QMU from Eq. (4)
with Ω ¼ const. In the case α ¼ DU we use Eq. (5) but
replace the sum of Θ functions by a factor of 2. Since
typical densities at which the DU processes operate are so
high that the muons appear, this simplification is
reasonable.
Then L∞

ν ð ~TÞ can be evaluated with the midpoint method,
taking the integrand at some fixed value of r ¼ r� between
0 and Rcore,

L∞
ν ¼ Q0R3 ~Tn

9 × a0
�
Rcore

R

�
3 ðnb�=n0Þk=3 exp½ð2 − nÞΦ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Gm�=ðr�c2Þ
p :

ð12Þ

Here k ¼ 1, n ¼ 8 and Q0 ¼ Qnn0 for α ¼ nn; k ¼ 1.65,
n ¼ 8 and Q0 ¼ QMU 0 for α ¼ MU; k ¼ 1.65, n ¼ 6 and
Q0 ¼ QDU 0 for α ¼ DU. In Eq. (12) we have introduced a
dimensionless constant a0 to absorb the inaccuracy of L∞

ν

due to our approximations of npðnbÞ and Ω in the DU and
MU cases; in the nn case, a0 ¼ 1. The midpoint values nb�,
Φ� and m� are taken at a spherical shell with r ¼ r�.
The five basic cases of heat capacity (Table II) can be

presented in a similar way,

Ccore¼ c0R3 ~T9×b0
�
Rcore

R

�
3 ðnb�=n0Þk=3 expð−Φ�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−2Gm�=ðr�c2Þ
p : ð13Þ

According to Eq. (9), in the case of Cn we have k ¼ 1 and
b0 ¼ 1. In the case of Cp from Eq. (11) we employ
k ¼ 1.65. As for the case of Cl, we assume that the main
contribution comes from the electrons [Eq. (10)]; using
Eq. (11) we set k ¼ 2 × 1.65 ¼ 3.30. The constants b0 in
the two latter cases are thought to absorb the inaccuracies of
these analytic approaches. The heat capacities Ctot and Cnl

are thought to be mainly determined by the neutrons. Then
we set k ¼ 1 for both cases and assume that tuning b0 will
make the approximations sufficiently accurate.
The next step is to consider a polytropic EOS model,

P ¼ Kργ , which is a primitive but useful approximation.
Since all particles in the core are strongly degenerate,

P ¼ c2n2b
dðρ=nbÞ
dnb

: ð14Þ

Then, using the polytropic relation and assuming the
boundary condition dρ=dnb ¼ m0 at the neutron star sur-
face we get, for catalyzed neutron star matter,

nb ¼
ρ

m0

�
1þ K

c2
ργ−1

�
−1=ðγ−1Þ

: ð15Þ

Here m0 is the mass per baryon in the 56Fe atom. For any
neutron star, we can find ρ�, K and γ to evaluate nb� needed
in Eqs. (12) and (13). Note that γ is specific to a given star;
it can vary with growing M.
Now we are ready to evaluate the relation between Φ�

and ρ�. Using Eq. (15) one can solve Eq. (3) and obtain

Φ ¼ 1

2
lnð1 − xgÞ − ln

�
Pþ ρc2

m0c2nb

�
: ð16Þ

Here we have used the boundary value Φs ¼ 1
2
lnð1 − xgÞ at

the stellar surface, with xg ¼ 2GM=ðRc2Þ. The polytropic
approach yields

expΦ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − xg

p �
1þ K

c2
ργ−1�

�
−γ=ðγ−1Þ

: ð17Þ

The quantity ξðM;RÞ ¼ R=Rcore can be taken from
Refs. [39,40] as

ξðM;RÞ≡ R
Rcore

¼ 1=xg − expð−2χccÞð1=xg − 1Þ; ð18Þ

where χcc ¼
R Pcc
0 dP=ðPþ ρc2Þ is an integral over the crust

and Pcc is the pressure at the core/crust interface. For
catalyzed matter, one has expðχccÞ ¼ μcc=m0c2, where μ is
the baryon chemical potential. The value χcc slightly varies
from one EOS to another. Here we adopt χcc ¼ 0.03 as a
unified value for all the EOSs of our study.
To approximate L∞

ν ð ~TÞ and Ccoreð ~TÞ we should sub-
stitute Eqs. (15), (17) and (18) into Eqs. (12) and (13)
and fix a0, b0, ρ�, m�, r�, γ and K. Let us introduce
xρ ¼ M=ðρ0R3Þ and assume that ρ� ∼M=R3

core. Thus the
approximations are
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�
a0

b0

��
ρ�

m0n0

�
k=3

→ a1ξkx
k=3
ρ ; ð19aÞ

Kργ−1� =c2 → ða2xρξ3Þγ−1; ð19bÞ

γ →
a3

1þ a4ξ
ffiffiffiffiffiffiffiffiffiffiffi
x5g=xρ

q ; ð19cÞ

2Gm�
r�c2

→ a5xg; ð19dÞ

where a1;…; a5 are the fit parameters to be optimized.
They are expected to be different for the different quantities
(for L∞

ν due to different neutrino processes, and for Ccore
due to different particle fractions).
Note that the expression for γ is quite arbitrary to account

for the fact that more massive and, consequently, denser
stars should contain softer matter. In Eq. (19c), γ depends

actually on ξ
ffiffiffiffiffiffiffiffiffiffiffi
x5g=xρ

q
∝ M2=Rcore, which ensures its rea-

sonable dependence.
It is convenient to introduce

JkpðM;RÞ ¼ a1ξk−3
xk=3ρ ½1þ ða2xρξ3Þγ−1�

pγ−k=3
γ−1

ð1 − xgÞp=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a5xg

p ð20Þ

with ξ given by Eq. (18) and γ by Eq. (19c). Finally, the
approximations take the forms

�
L∞
ν ð ~TÞ

Ccoreð ~TÞ

�
¼

�
Q0

c0

�
R3 ~Tn

9JkpðM;RÞ: ð21Þ

The values n, p and k are taken from Eqs. (12) and (13) and
listed in Table IV. The dimensionless parameters a1;…; a5
in Eq. (20) will be obtained by the calibration to numerical
calculations.

C. Calibration to numerical calculations

Our numerical results (Sec. IVA) are shown by different
symbols in Figs. 4–6. We have obtained 123 values of L∞

α

(for each α ¼ nn and MU) as well as 123 values of Cα (for
each α ¼ n; p;l; tot; nl). For L∞

DU, we have excluded 45
values with M < 1.5 M⊙. The trial functions L∞

ν ðM;RÞ
and CcoreðM;RÞ [Eqs. (20) and (21)] have been calibrated
to these data sets. The target function to be minimized has
been the relative root mean square (rms) error. We present
also the maximum relative fit errors over the same data sets.
The parameters Q0, c0, n, p and k have been taken fixed
from the consideration presented above. We have varied
a1;…; a5 to minimize the rms error. We present the values
of these parameters with the minimum number of digits
which do not change the rms error taken with two
significant digits. The optimized values of a1;…; a5 as
well as the corresponding fit errors are listed in Table IV.
Figures 4–6 compare the fits with numerical calculations.
Let us discuss the approximations of L∞

ν . They are the
most precise for the nn-bremsstrahlung; the rms error
appears to be the lowest here because Qnn is independent
of the fractions of charged particles in dense matter. The
largest errors occur for the MU case due to a strong
dependence of QMU on the fractions of charged particles
through the factor Ω. The approximation of L∞

DU is more
accurate than that of L∞

MU because QDU depends on ne in a
relatively simple way.
The importance of the charged particle fractions can be

demonstrated by the instructive examples of the BSk20 and
HHJ IV EOSs. In Figs. 2–4 the corresponding curves are
plotted by the black short-dashed (BSk20) and black dot-
dashed (HHJ IV) lines. The numerical data in Fig. 4 are
displayed by the black squares (BSk20) and black triangles
(HHJ IV). According to Fig. 2, these EOSs result in very
close maximum masses, but the stars with the BSk20 EOS
are more compact, i.e. they have smaller radii than the HHJ
IV stars of the same M. Roughly speaking, the M − R
relations for these EOSs differ by a shift along the R axis.
This means that a BSk20 star is denser than an HHJ IV star,

TABLE IV. Parameters of the approximations (20) and (21) for the three basic models of neutrino luminosity L∞
ν and the five basic

models of heat capacity Ccore.

L∞
ν or Ccore Case Q0

a or c0
b n k p a1 a2 a3 a4 a5 rms max error

L∞
ν nn 1.77 × 1019 8 1 6 3.54 0.0125 2.73 4.33 0.509 0.05 0.17

MU 1.75 × 1021 8 1.65 6 2.05 0.0125 2.58 4.40 0.480 0.15 0.42
DU 1.96 × 1027 6 1.65 4 1.80 0.0070 2.62 4.80 0.501 0.08 0.20

Ccore n 1.12 × 1020 1 1 1 2.86 0.0119 2.49 3.68 0.408 0.0084 0.025
p 1.12 × 1020 1 1.65 1 0.781 0.0069 2.70 5.75 0.657 0.062 0.17
l 1.12 × 1020 1 3.30 1 0.0823 0.0033 2.60 5.00 0.800 0.14 0.31
tot 1.12 × 1020 1 1 1 4.17 0.0130 2.59 3.50 0.800 0.023 0.075
nl 1.12 × 1020 1 1 1 3.01 0.0130 2.59 3.50 0.799 0.015 0.047

aerg cm−3 s−1.
berg cm−3 K−1.
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and, therefore, has larger L∞
ν . This is really true for L∞

nn
(Fig. 4): the squares (for the BSk20 EOS) lie higher than
the triangles (for the HHJ IV EOS). This feature is well
reproduced by the corresponding black dashed and dot-
dashed lines, which show the approximations (21) for these
EOSs. In contrast, the MU and DU luminosities are
sensitive to the npðnbÞ relations. According to Fig. 3,
the values of np for the HHJ IV EOS are noticeably higher
than for the BSk20 EOS. The opposite effects of the
two factors, the greater compactness of the BSk20 stars and
the larger np for the HHJ IV stars, lead to their compensa-
tion. Accordingly, the DU as well as the MU neutrino

luminosities for these EOSs appear to be close enough (the
corresponding triangles and squares in the middle and left
panels of Fig. 4 overlap). Because the approximation (21) is
derived using a not very accurate description of the proton,
electron and muon fractions, it cannot reproduce this effect
exactly; an approximate expression gives L∞

DU and L∞
MU

higher than the numerical values for the BSk20 EOS and
lower than for the HHJ IV EOS. Moreover, the MU and DU
luminosities of the BSk20 and SLy stars are systematically
overestimated by the approximation (21) as these EOSs
have essentially smaller charged particle fractions than the
other EOSs.

FIG. 4. L∞
ν −M relations for the nine selected EOSs at ~T ¼ 109 K. Lines show the approximation (21); squares, circles and triangles

show numerical calculations. For L∞
DU, the DU process is artificially extended over the entire core, but the calculations are performed

only at M ≥ 1.5 M⊙. The bottom panels display the relative fit errors. See text for details.

FIG. 5. Ccore −M relations for the nine selected EOSs at ~T ¼ 109 K, with Cα39 ¼ Cα=ð1039 ergK−1Þ for α ¼ n, p and l. Lines show
the approximation (21); squares, circles and triangles show numerical calculations. The bottom panels display the relative fit errors. See
text for details.

D. D. OFENGEIM et al. PHYSICAL REVIEW D 96, 043002 (2017)

043002-8



Now let us outline the approximations of the heat
capacity (Figs. 5 and 6). The neutron contribution (the
left panel of Fig. 5) is accurately reproduced by the
approximation (21). It is precise enough to distinguish
between very close Cn −M relations for different EOSs.
On the contrary, the approximations hardly resolve the
different curves for Cp and Cl. The fit errors are about 7
times larger for Cp and 12–15 times larger for Cl since the
details of the npðnbÞ and neðnbÞ relations cannot be well
reproduced by the functions which depend on M and R
only. Similarly to L∞

MU and L∞
DU, the numerical values of Cp

and Cl for the BSk20 and SLy stars are systematically
smaller than the fitted values. Nevertheless, since Cn
dominates over the other contributions, the approximation
)21 ) almost precisely reproduces Ctot and Cn (Fig. 6). The

difference between the a1 values shows that switching off
the proton contribution reduces Ccore by about 25%, in
agreement with the results of Ref. [25]. Note that the sum of
the fits Cn þ Cp þ Cl gives 1–2% larger errors than Ctot,
with the parameters from the last two lines in Table IV.
Let us mention several common features of our approx-

imations. First, the index γ given by Eq. (19c) with the
values of a3 and a4 from Table IV ranges from 2.3–2.5 for
low-mass stars to 1.7–1.9 for high-mass stars. This seems
realistic for the considered set of EOSs. Second, the fit
errors increase with growing M (except for the almost
precise approximation of the neutron heat capacity),
because the higher the density, the stronger the difference
between the EOS models.
Our grid of selected EOSs is wide but nevertheless

restricted. For instance, MDU > 1.5 M⊙ for all of them

(Table III), which seems reasonable (e.g., Ref. [41] and
references therein) but is not strictly proven. To check the
“universality” of our fits we have taken the NL3 EOS [26]
(with MDU ¼ 0.84 M⊙ and Mmax ¼ 2.77 M⊙). Some fit
errors appear to be somewhat higher while others are
somewhat lower than for the selected EOSs; nevertheless
they seem acceptable. For instance, the maximum relative
errors in the nn, MU and DU cases for stars with the NL3
EOS appear to be 0.07, 0.39 and 0.22, respectively, while
for the selected EOSs we had 0.17, 0.42, and 0.29
(Tables III and IV). For the heat capacities n, l, p, tot,
nl we now obtain the maximum errors 0.09, 0.22, 0.47,
0.09, and 0.07 versus 0.025, 0.17, 0.31, 0.075, 0.047 for the
selected EOSs.

V. IMPORTANCE OF REDSHIFT
IN NEUTRON STAR INTERIOR

While calculating L∞
ν and Ccore, it is important to include

the proper temperature and emissivity redshifts in a neutron
star core.
For instance, Fig. 7 shows the neutrino emissivity Q ¼

QMUðρÞ of the standard neutrino candle (due to the MU
process) in the nonsuperfluid isothermal core of a neutron
star. The star is assumed to have the BSk21 EOS and
the mass M ¼ 1.4 M⊙. The isothermal core temperature
is taken to be 109 K (just for example). The black line
is calculated correctly, with ~T ¼ 109 K and the local

FIG. 6. Ccore vs M for the nine selected EOSs at ~T ¼ 109 K;
Ccore 39 ¼ Ccore=ð1039 ergK−1Þ. The legend is the same as in Fig. 5.
The “nþ pþ eþ μ” ¼ “tot” curves correspond to the fully non-
superfluid core. The “nþ eþ μ” ¼ “nl” curve is for the corewith
strongly superfluid protons but normal neutrons. See text for details.

FIG. 7. Logarithm of the neutrino emissivity Q ¼ QMU (stan-
dard neutrino candle) versus ρ14 ¼ ρ=ð1014 g cm−3Þ in the core
of a 1.4 M⊙ neutron star with three different EOS models. The
core is isothermal, with ~T ¼ 109 K. The upper (black) lines are
calculated using the correctly redshifted local temperature T of
the matter. The lower (gray) lines are calculated neglecting the
gravitational redshift, that is with T ¼ ~T. A jump of Q at lower ρ
is due to the appearance of muons. Filled circles mark Q and ρ in
the center of the star.
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temperature of the matter T ¼ ~T expð−ΦÞ which is higher,
than the isothermal temperature ~T. The gray line is
calculated neglecting the gravitational redshift, using (erro-
neously and intentionally) a constant local temperature
T ¼ 109 K throughout the core. A kink of the neutrino
emissivity at lower ρ is caused by the appearance of muons
and the associated muonic MU process (e.g., Ref. [6]). One
can see that the general-relativistic redshift is very signifi-
cant for correctly calculating the neutrino luminosity L∞

ν . It
greatly increases the local temperature and the neutrino
emissivity in the core. This effect becomes stronger near the
center of the star (where the redshift is larger). Therefore,
the redshift effect strongly intensifies the integrated neu-
trino luminosity L∞

ν and increases the contribution of the
central part of the core to L∞

ν .
In order to demonstrate this we have calculated the

integrals (1) and (2) ignoring all the factors exp Φ.
Specifically, this means that we use the “Newtonian”
thermodynamic equilibrium, T ¼ const. We will call such

artificial quantities “Newtonian,” LðNewtÞ
ν and CðNewtÞ

core , while
the true quantities (1) and (2) will be called “relativistic.”
Figure 8 plots the nn and MU “Newtonian” luminosities.

Comparing them with the left and middle panels of Fig. 4

we see that L∞
ν and LðNewtÞ

ν differ as functions of M. If M
varies from 1 M⊙ to ∼3 M⊙, the “Newtonian” ones change
only by a factor of 2 or 3, while the “relativistic”
luminosities change by 2 orders of magnitude. More-

over, LðNewtÞ
nn becomes nonmonotonic near the maximum

masses due to a dramatic decrease of the stellar radius. This
phenomenon vanishes for the “relativistic” nn luminosity
because the total redshift factor expð−6ΦÞ in the integrand
of Eq. (1) becomes very large (∼10–100) for high-mass
stars. Another feature is an inverted ordering of the
“Newtonian” L∞

nn with respect to the “relativistic” ones
for a fixed value of M. Note that this ordering completely

breaks for LðNewtÞ
MU because it depends on the fraction of

charged particles. It is rather close to the ordering of the
proton number densities at a fixed nb in Fig. 3.
Nevertheless, the ordering of the “relativistic” MU lumi-
nosities in Fig. 4 does not correlate with the ordering of
np − nb curves in Fig. 3.
Note that the neutron contribution to CðNewtÞ

core is given by

the same integral as LðNewtÞ
nn but with Q0nn from Eq. (6)

replaced by the expression for c0 from Eq. (9). Thus the

bottom panel of Fig. 8 looks like CðNewtÞ
n . Its difference

from the “relativistic” quantity (the left panel of Fig. 5) is
not so dramatic as for neutrino luminosities, but Ccore given
by Eq. (2) has a concave-shaped mass dependence, while
the curves of the “Newtonian” heat capacity–mass relation
are convex.
Our analysis shows that the true “relativistic” luminos-

ities and heat capacities are dominated by the general-
relativistic redshift, as well as by the effects of nuclear and
particle physics, like the np − nb relation and the emissivity
dependence on particle number densities.

VI. ILLUSTRATIVE EXAMPLES

To illustrate our results let us outline a scheme for a
possible interpretation of the observations of neutron stars.

FIG. 8. LðNewtÞ
ν vs M for nn-bremsstrahlung (the bottom panel,

in 1038 erg s−1) and MU (the top panel, in 1040 erg s−1) processes
for the nine selected EOS models at ~T ¼ 109 K.

TABLE V. Observational data on nine selected isolated neutron stars which are at the neutrino cooling stage.

Name t [kyr] T∞
s [MK] M [M⊙] R [km] B [TG] References

PSR J0205þ 6449 (in 3C 58) 0.82–5.4 < 1.02 1.4 12 3.6 [42,43]
PSR B0531þ 21 (Crab) 1.0 < 2.0 1.4 12.14 3.8 [20,44]
PSR J1119 − 6127 0.8–3.2 1.02–1.48 1.4 10 41 [45]
RX J0822 − 4300 (in Pup A) 3.6–5.2 1.6–1.9 1.4 10 0.033 [46–48]
PSR J1357 − 6429 3.65–14.6 0.68–0.86 1.4 10 7.8 [49]
PSR B0833 − 45 (Vela) 11–25 0.65–0.71 1.4 10 3.4 [50]
PSR B1706 − 44 8.5–34 0.48–0.83 1.4 12 3.1 [51]
PSR J0538þ 2817 26–34 0.71–1.07 1.4 10.5 0.7 [52]
PSR B2334þ 61 20.5–82 0.55–0.84 1.4 10 9.9 [45]
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We have selected nine isolated middle-aged cooling neu-
tron stars listed in Table V. They are PSR J1119 − 6127
(hereafter J1119), RX J0822 − 4300 (in Pup A), PSR
J1357 − 6429 (J1357), PSR B0833 − 45 (Vela), PSR
B1706 − 44 (B1706), PSR J0538þ 2817 (J0538), PSR
B2334þ 61 (B2334), PSR B0531þ 21 (Crab) and PSR
J0205þ 6449 (in 3C 58).
For each of these stars, the ages t and the effective

surface temperatures T∞
s have been estimated or con-

strained. These observational data are presented in
Table V together with the references from which the data
are taken. Note that the surface temperature of the Crab
pulsar and the pulsar in 3C 58 is an upper limit only. The
surface temperatures have been inferred from the observed
spectra of neutron stars using either a blackbody model, or
hydrogen atmosphere models (magnetic or nonmagnetic
ones). In performing such analyses we have adopted certain
values of the neutron star mass M and radius R which are
also listed in the table. Finally, the magnetic fields of these
stars have been mainly estimated from the standard
magnetic braking measurements. The values of the surface
equatorial magnetic field B were taken from the ATNF
pulsar catalogue1 [53].
All these neutron stars are thought to be at the neutrino

cooling stage with isothermal interiors. Their cooling is
regulated by the neutrino cooling function L∞

ν ð ~TÞ=Ccoreð ~TÞ
which can be easily calculated from our approximations of
L∞
ν ð ~TÞ and Ccoreð ~TÞ (Sec. IV). Here we adopt the minimal

cooling paradigm [54,55], according to which neutron star
cores consist of nucleons, muons and electrons (our main
assumption throughout this paper) and the DU process is
not open there. Following the method developed in our
previous studies [14,15,20,22], we can assume certain
values of t, T∞

s , M, R, and the mass ΔMacc of light
elements in the heat blanketing envelope and infer the
dimensionless cooling function of the neutron star we are
studying,

fl ¼ L∞
ν =Ccore

L∞
MU=Ctot

; ð22Þ

which is the ratio of the actual cooling function to the
function for the standard neutrino candle (that is a star of
the same mass, radius and EOS but without superfluidity in
the core). The magnitude of fl is a fundamental parameter
of the superdense matter in neutron stars. For a standard
candle, fl ¼ 1. Its realistic minimal value is fl ∼ 0.01. It is
realized in the presence of strong proton core superfluidity
that drastically suppresses the MU process (leaving the nn
bremsstrahlung to be the leading neutrino emission mecha-
nism in the core). Its realistic maximum value fl ∼ 100 is
realized in the presence of triplet-state neutron pairing
which is accompanied by a strong Cooper pairing neutrino

emission. Note that the method of extracting fl from the
observations is not very accurate because of the strong
temperature dependence of L∞

ν =Ccore [15].
Therefore, the realistic values of fl range from ∼0.01 to

∼100. Since we do not consider the DU process, in many
cooling scenarios fl is (almost) independent of the time
[14] (being just a number that reflects superfluid properties
of a cooling neutron star). If fl is evaluated for a number of
neutron stars, one can generally compare their superfluid
properties on the same footing (regardless of their ages)
which is a great advantage of this method.
In order to use the method and determine the internal

temperature of a star ~T from the surface temperature T∞
s ,

we need to specify the mass of light elements (hydrogen,
helium and carbon) in the heat blanketing envelope of the
star [56]. The matter composed of lighter elements has a
larger thermal conductivity (is more heat transparent)
which has to be taken into account. Since we would like
to account for the effects of the surface magnetic fields B of
neutron stars, we employ the ~T − Ts relation calculated in
Ref. [57] for neutron stars with dipole magnetic fields in the
heat blanketing envelopes. In such a case, for a given
internal temperature, the surface temperature varies along
the neutron star surface, and T∞

s means a properly averaged
surface temperature that determines the photon thermal
luminosity of the star.
The results for nine neutron stars (Table V) are plotted in

Fig. 9. Each panel corresponds to one of the selected stars
and shows allowable values of fl vs (unknown) values of
ΔMacc. The horizontal thin hatched lines (log fl ¼ 0) refer
to standard candles (to guide the eye). The hatched regions
fl ≲ 0.01 and fl ≳ 100 have to be excluded because they
seem unrealistic from the theoretical point of view (see
above). The regions ΔMacc ≳ 10−7 M⊙ are also not real-
istic [56]; the mass of light elements ΔMacc cannot be too
large (otherwise light elements at the bottom of the heat
blanketing envelope will transform into heavier ones under
the effect of electron captures and pycnonuclear reactions).
In order to plot Fig. 9, the values of M, R, T∞

s , t and B
have been taken from Table V. The grayed regions in the
allowable range 0.01 ≤ fl ≤ 100 are mainly limited by
the two thick solid lines calculated including the effects of
the magnetic fields. The upper line corresponds to the
maximum T∞

s and t from Table V, while the lower line is for
the minimal T∞

s and t. In the cases when the upper line goes
much higher than the realistic values of fl, it is not plotted,
and the grayed regions are limited by fl ¼ 100. The thick
long-dashed lines are the same as the solid lines but
neglecting the effects of the magnetic fields. One can
see that the effects are not monotonic and not too strong.
These conclusions naturally follow from the results of
Ref. [57]. As explained there, the nonmonotonic effects
come from the competition of the classical and quantum-
mechanical effects of the magnetic field on the thermal
conductivity in the heat blanketing envelope of a star.1www.atnf.csiro.au/people/pulsar/psrcat/.
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Let us analyze briefly the results of Fig. 9. First, the mass
ΔMacc of light elements in the surface layer of a star is very
important for inferring fl [20]. The higher ΔMacc, the
higher fl that is required for the same surface temperature
and age. Depending on the (generally unknown)ΔMacc, the
same star can be a stronger (fl > 1) or weaker (fl < 1)
neutrino emitter than the standard neutrino candle which
would lead to diverging conclusions on its superfluid
properties.
Among the nine selected stars, the Crab pulsar gives less

restrictive results to this analysis (Fig. 9). It is young; its
thermal surface emission is hidden by a surrounding nebula
so that only the upper limit on T∞

s has been established

[20]. The solid and long-dashed lines correspond to this
upper limit. These results allow the pulsar to have actually
any amount of light elements in the surface layers except
for a rather large ΔMacc ≳ 10−10 M⊙ at a small neutrino
cooling function fl ≲ 0.1. These results are in line with
those obtained previously in Ref. [20].
For the five other sources (J1357, Vela, B1706, B2334,

3C 58) we obtain fl > 1, i.e. a stronger neutrino emission
than for the case of a standard candle. This situation can
occur in the presence of the triplet-state pairing of neutrons
in the cores of the five neutron stars. All these stars cannot
have a sufficiently large ΔMacc (otherwise they would have
been too cold). The most restrictive among them is the Vela

FIG. 9. Neutrino cooling function fl vs mass ΔMacc of light accreted elements for nine isolated neutron stars at the neutrino cooling
stage (Table V). The hatched regions exclude too low (fl < 0.01) and too high (fl > 100) neutrino emission levels which are
unreasonable from the theoretical point of view. The short dashed lines refer to the standard neutrino emission level (standard neutrino
candle). The grayed regions (restricted mainly by the thick solid lines) show the theoretically accessible ranges of fl and ΔMacc
calculated taking into account the surface magnetic fields. The thick long-dashed lines display the same bound as the thick solid lines but
neglecting the effects of B fields. See text for details.
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pulsar. It is so cold that its neutrino cooling function should
be close to the maximum theoretical limit, and the amount
of light elements in Vela’s envelope has to be small. Similar
conclusions have been mentioned in Ref. [58].
The other three neutron stars (J1119, Pup A and J0538),

depending on ΔMacc, can have either fl < 1 (which can be
explained by rather strong proton superfluidity in their
cores) or fl > 1 (which is typically associated with the
triplet-state neutron pairing in the bulk of the core).
It is natural to assume that all neutron stars have the same

EOS in the core and the same critical temperature profiles,
TcnðρÞ and TcpðρÞ, for the onset of neutron and proton
superfluidities there. Certainly, they can have different
masses, radii, ΔMacc, and magnetic fields. Changing M,
we vary the widths of the neutron and proton superfluidity
layers, and, therefore, L∞

ν ð ~TÞ, Ccoreð ~TÞ and fl. Changing
ΔMacc and B, we modify ~T for a given T∞

s which also
affects fl. Therefore, one cannot expect the same ΔMacc
and fl for all neutron stars. By studying the ΔMacc − fl
diagrams, one can investigate statistical distributions of the
important parameters of cooling neutron stars.
Nevertheless, note that according to Fig. 9, all the selected
neutron stars are allowed to have 1≲ fl ≲ 100. In the latter
case their neutrino emission is stronger than that due to the
MU process, and it is consistent with that due to the triplet-
state pairing of neutrons in the core. Therefore, no DU
process is required to explain the selected cooling neutron
stars which is in line with the use of the minimal cooling
paradigm. The great advantage of our approach is that it is
almost independent of the nucleon EOS in the neutron star
core and that it allows us to analyze neutron stars with
different T∞

s on the same footing.
If we assumed the operation of the DU processes in the

selected neutron stars, our results would be less restrictive.
The results would also be different if neutron star cores
contain hyperons or exotic matter (like free quarks, or pion
or kaon condensates).

VII. CONCLUSIONS

We have calculated the neutrino luminosities L∞
ν ð ~TÞ and

the heat capacities Ccoreð ~TÞ in isothermal cores of neutron
stars with redshifted internal temperatures ~T for nine EOSs
(Table III) of superdense matter composed of neutrons,
protons, electrons, and muons. We have considered three
basic cases of neutrino luminosities (Table I) and five basic
cases of heat capacities (Table II). For any case and any
EOS, we have calculated L∞

ν ð ~TÞ and Ccoreð ~TÞ for a wide
range of masses of neutron stars. The results of these
calculations have been approximated by the analytic
equations (21) with the parameters given in Table IV; these
parameters are independent of the specific EOS. We have
shown that L∞

ν ð ~TÞ and Ccoreð ~TÞ are strongly affected by the
effects of general relativity (Sec. V).

Although our analytic approximations are formally
independent of EOSs in neutron star cores, they are
certainly not exact and could be improved in the future.
Let us warn that they were obtained for nucleon matter in
neutron star cores and cannot be used for the cores with a
more complicated composition (containing, for instance,
hyperons). Even for the nucleon cores, the approximations
are based on a restricted grid of the EOSs and we cannot
guarantee that they are sufficiently accurate for many other
EOSs. Moreover, our calculations were done using fixed
effective masses of nucleons and model expressions for the
neutrino emissivities and specific heat capacities. More
advanced and reliable calculations of these quantities could
change the integrated neutrino luminosities and heat
capacities. It is possible that the updated approximations
of L∞

ν and Ccore will have the same form [Eq. (21)] but with
somewhat different fit parameters. The fit parameters,
improved in this way, may depend on specific EOS, which
might be taken into account by choosing different param-
eters (e.g., a1;…; a5) for different EOSs, but this is a
problem for the future. We think, that even now, by a
careful analysis of realistic uncertainties introduced by the
effects of nuclear physics, one can estimate allowable
variations of fit parameters under these effects, but such
a complicated problems is beyond the scope of this paper.
For illustration, we have used the approximated L∞

ν ð ~TÞ
and Ccoreð ~TÞ to analyze the most important neutrino cool-
ing functions fl, Eq. (22), of nine selected isolated neutron
stars (Table V) from observations of their thermal surface
emission. We have adopted the minimal cooling paradigm
[54,55] and have determined the allowable ranges of fl
(Fig. 9) of these stars as functions of the mass ΔMacc of
light elements in the heat blanketing envelopes of neutron
stars and neutron star magnetic fields B. While the
dependence of fl on ΔMacc is crucial, the dependence
on B turns out to be less important. We have found that the
typical values of fl for the majority of these stars are higher
than 1 (that is higher than for the standard neutrino candle)
but lower than 100 (the maximum fl that can be provided
by the enhanced neutrino emission due to the triplet-state
Cooper pairing of neutrons).
Our analysis of observations is definitely incomplete in

many respects. We have considered only nine ordinary,
middle-aged, isolated neutron stars whose thermal surface
emission and age have been measured (constrained); the
total number of detected objects of this type is larger than
20. All the selected stars are at the neutrino cooling stage
while some others have already passed to the photon
cooling stage. We have taken fixed values of M and R
which were mostly assumed to determine T∞

s while fitting
the observed spectra with neutron star atmosphere models.
It would be more instructive to consider a grid of M and R
for each neutron star and use the obtained confidence
ranges ofM, R, and T∞

s (just as in analyzing the data on the
neutron star in HESS J1731–347 [15,22]). This may result
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in more accurate values of T∞
s and it may give, additionally,

some estimates on M and R. Moreover, we could go
beyond the minimal cooling paradigm and allow for the
appearance of the DU process in massive neutron stars; we
could also consider neutron star cores of exotic composi-
tion. However, all these problems are beyond the scope of
our paper.
The results of the paper can also be used to investigate

the thermal states of accreting neutron stars in XRTs
(Sec. I).
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