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With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion
propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization
conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions
with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the
quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit
solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé
approximation for the spectral functions is also investigated.
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I. INTRODUCTION

The Bethe-Salpeter/Faddeev approach to hadronic
physics requires quark and gluon propagators as input
conditions [1–3]. These propagators can, in principle, be
solved from their Schwinger-Dyson equations (SDEs)
[4–6]. The gluon self-coupling inevitably complicates
the QCD equations [7]. Therefore we take a more tractable
approach by studying general structures and solutions
in strongly coupled QED, particularly for the fermion
propagator.
The SDEs for the fermion propagator involve the

photon propagator and the fermion-photon vertex. Since
through its own SDE, the fermion-photon three-point
function couples to higher n-point functions, solving the
propagator equations requires an ansatz for the vertex in
order to truncate the infinitely coupled system. The rain-
bow-ladder [8] truncation, although simple and intuitive,
fails to respect the Ward-Green-Takahashi identity (WGTI).
The Ball-Chiu vertex [9], with the correct longitudinal
components of the three-point function, respects the WGTI,
but violates multiplicative renormalizability. Adding trans-
verse pieces to the Ball-Chiu vertex recovers multiplicative
renormalizablity [10,11], but does not ensure gauge covar-
iant solutions for the propagator SDEs [12].
Importantly, the WGTI, multiplicative renormalizability

and gauge covariance provide principles for a consistent
truncation of the SDEs for propagators of gauge theories.
To these we add the analytic structure of the fermion
propagator which constrains the singularities of the

fermion-photon vertex. It is therefore highly desirable to
obtain one set of illustrative solutions to the propagator
SDE in four dimensions with the correct analytic structure.
We do this here in a modeling with a purely “longitudinal”
vertex [13–16] in quenched QED. The advantage with this
modeling is that solutions can be found explicitly in
analytic form. However, such an ansatz is known to violate
gauge covariance [17–21]. Consequently, the resulting
SDEs for the fermion propagator can only be renormalized
on-shell in one particular gauge. Moreover, solutions in
different gauges will not be consistent with each other.
Nevertheless, having one analytic solution is instructive.
This article is organized as follows. Section II introduces

the spectral representation for the fermion propagator
with its two scalar spectral functions. Section III discusses
the requirement for removing loop divergences in the
fermion propagator SDEs by renormalization conditions.
Section IV applies the on-shell renormalization conditions,
and solves for the fermion propagator spectral functions in
the Landau gauge. Section V provides an approximation
for the solutions obtained in Sect. IV. In Sect. VI we
summarize.

II. SPECTRAL REPRESENTATION
FOR PROPAGATORS

A. Scalars

A knowledge of analytic properties of propagators is
required in order to solve the Schwinger-Dyson equations
(SDEs) for the propagators in Minkowski space analyti-
cally. Alternatively, numerical solutions can be obtained by
solving the SDEs for the propagators in the complex
momentum plane directly. One example of such numerical
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study can be found in Ref. [7], which suggests that
singularities of the propagator functions reside in the
timelike region. Let us begin with the Källén-Lehmann
spectral representation for scalar particle propagators
Dðp2Þ. Dðp2Þ is real for spacelike momentum p2 < 0.
When p2 > 0, Dðp2Þ becomes complex due to the pro-
duction of real particles through quantum loop corrections.
The spectral representation is obtained by noting that the
dressed propagator Dðp2Þ can be written as a linear
combination of free-particle propagators with different
mass, so that

Dðp2Þ ¼
Z

∞

m2

ds
ρðsÞ

p2 − sþ iε
; ð1Þ

where ρðsÞ is the spectral function of Dðp2Þ. The iε is
essential as the propagator is expected to develop a branch
cut for p2 > m2. For the bare spectral function, canonical
quantization requires [22]Z þ∞

m2

dsρðsÞ ¼ 1: ð2Þ

Assuming the renormalization for this scalar propagator
relates the bare to renormalized quantity by DBðp2Þ ¼
ZDRðp2Þ, one can easily derive that for the renormalized
spectral function

Rþ∞
m2 dsρRðsÞ ¼ Z−1. For Eq. (1) to

converge, ρðsÞ must go to zero as jsj → ∞. If this integral
does not converge, one can make subtractions by writing
for instance

Dðp2Þ ¼ Dðp2
0Þ −

Z
∞

m2

ds
ðp2 − p2

0ÞρðsÞ
ðp2 − sþ iεÞðp2

0 − sþ iεÞ :

ð3Þ

Though in the cases we study here, renormalization ensures
the integrals converge and no subtraction is needed. One
can safely assume that the propagator function Dðp2Þ is
holomorphic everywhere for complex p2 except for the
branch cut and perhaps a finite number of poles on the
positive real axis, as illustrated in Fig. 1.
To understand such structures, consider perturbative

calculations, which have been performed to all orders.
Since Feynman rules apply for each diagram encountered,
we can use standard techniques to combine all denomi-
nators. Then after evaluating the loop integrals, the result-
ing functions are expressed as integrations over the
Feynman parameters. The propagator is singular when
the combined denominator vanishes. This corresponds to
p2 > p2

th, where p2
th is the particle production threshold.

The numerators do not modify the singularities because
they are only polynomials of p2. The propagator function
Dðp2Þ and its spectral function ρðsÞ are naturally inter-
connected. The spectral function ρðsÞ is given by a sum of

delta functions representing single particle poles plus the
discontinuity of the propagator function Dðp2Þ across its
right hand cut:

ρðsÞ ¼ −
1

2πi
½Dðsþ iεÞ −Dðs − iεÞ�

¼ −
1

π
ImfDðsþ iεÞg: ð4Þ

The advantage of the spectral representation is that it
determines the propagator function everywhere in the
complex momentum plane, up to a possible subtraction
constant Dðp2

0Þ, as in Eq. (3).

B. Fermions

The Dirac structure of a fermions means its propagator
involves both the unit and γ matrices. The algebra defined
by fγμ; γνg ¼ 2gμν with gμν the metric tensor, is usually
represented by n × n matrices (with n ¼ 4) in 3 and 4-
dimensions. The fermion propagator carrying momentum
p, denoted by SFðpÞ, is generally written in terms of two
scalar functions, the wavefunction renormalization F ðp2Þ
and the mass function Mðp2Þ, or equivalently in terms of
functions Aðp2Þ and Bðp2Þ, such that

SFðpÞ ¼
F ðp2Þ

=p −Mðp2Þ ; ð5Þ

S−1F ðp2Þ ¼ Aðp2Þ=pþ Bðp2Þ: ð6Þ

The bare propagator is the special case with F ¼ 1 and
M ¼ m. To replicate this Dirac structure requires two
spectral functions, ρjðsÞ with j ¼ 1, 2, so that:

0 Re(z)

Im(z)

FIG. 1. Illustration of the analytic structure of the propagator
function with dimensionless variables in the complex plane. The
contour corresponds to evaluating Eq. (1) using the Cauchy
integration theorem.
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SFðpÞ ¼ =pS1ðp2Þ þ S2ðp2Þ

¼ =p
Z

∞

m2

ds
ρ1ðsÞ

p2 − sþ iε
þ
Z

∞

m2

ds
ρ2ðsÞ

p2 − sþ iε
: ð7Þ

Following Ref. [13], we take the square root of the
integration variable such thatW ¼ ffiffiffi

s
p

. Information carried
by ρ1ðsÞ and ρ2ðsÞ can then be combined into one function,
which is particularly convenient for calculating loop
integrals,

ρðWÞ ¼ signðWÞ½Wρ1ðW2Þ þ ρ2ðW2Þ�: ð8Þ

Then, the spectral representation of the fermion propagator
can be written as

SFðpÞ ¼
Z þ∞

jWj≥m
dW

ρðWÞ
=p −W þ iε signðWÞ : ð9Þ

Because the quenched approximation will be used through-
out this article, the issue of the spectral representation for
the photon propagator need not be discussed.
The fermion spectral function ρðWÞ is renormaliza-

tion scheme dependent. Using the Gauge Technique in
its original form [13] (to be discussed in more detail in the
next section), and a renormalization scheme corresponding
to

1 ¼ Z2

Z
dWρðWÞ; mZm ¼ Z2

Z
dWWρðWÞ; ð10Þ

the fermion propagator spectral function ρðWÞ ¼
δðW −mÞ þ rðWÞ has been solved. The result is given
by Eq. (20) of Ref. [13] as

rðWÞ ¼ −signðWÞθðW2 −m2Þ 2a
W

�
W2 −m2

μ2

�−2a

×
m2

W2 −m2

�
2F1

�
−a;−a;−2a; 1 −

W2

m2

�

þW
m 2F1

�
−a; 1 − a;−2a; 1 −

W2

m2

��
; ð11Þ

where a ¼ 3α=ð4πÞ. Equation (11) results in momentum
space functions more singular than the free-particle propa-
gators. This can be verified by applying Eq. (15.3.6) of
Ref. [23] to Eq. (21) of Ref. [13] in the p2 → m2 limit. In
the next two sections, using an on-shell renormalization
scheme with a modification to the Gauge Technique
required by renormalizability, a different solution for
rðWÞ is obtained. For the study of the fermion propagator
spectral function in the Bloch-Nordsieck model of QED in
the Feynman gauge, see Ref. [24]. Within the same model,
results at finite temperature are presented in Refs. [25,26].

III. RENORMALIZATION OF FERMION
PROPAGATOR SDE LOOP INFINITIES

A crucial relation between the fermion propagator and
the fermion-boson vertex is imposed by gauge invariance in
the form of the Ward-Green-Takahashi identity. This
requires that Γμðk; pÞ, the grey vertex in Fig. 2, satisfies

qμΓμðk; pÞ ¼ S−1F ðkÞ − S−1F ðpÞ; ð12Þ

with q ¼ k − p. Importantly, this has a nonsingular limit
when q → 0, viz. the Ward identity, so that Γμðp; pÞ ¼
∂S−1F ðpÞ=∂pμ. As is well-known these constraints are
satisfied by the Ball-Chiu vertex, Γμ

BCðk; pÞ, [9] where

Γμ
BCðk; pÞ ¼

1

2

�
1

F ðk2Þ þ
1

F ðp2Þ
�
γμ

þ 1

2

�
1

F ðk2Þ −
1

F ðp2Þ
� ð=kþ =pÞðkþ pÞμ

k2 − p2

−
�
Mðk2Þ
F ðk2Þ þMðp2Þ

F ðp2Þ
� ðkþ pÞμ

k2 − p2
: ð13Þ

To this any transverse vertex Γμ
Tðk; pÞ can be added,

provided it satisfies qμΓ
μ
Tðk; pÞ ¼ 0 and Γμ

Tðp; pÞ ¼ 0.
One specific spectral construction of the vertex satisfying

the longitudinal Ward-Green-Takahashi identity is pro-
vided by the Gauge Technique [13]. This ansatz is naturally
linear in the spectral function ρðsÞ:

SFðkÞΓμðk; pÞSFðpÞ ¼
Z

dW
1

=k −W
γμ

1

=p −W
ρðWÞ:

ð14Þ

Aside from the WGTI, renormalizability also constrains
the vertex. While multiplicative renormalizability condi-
tions are rather strong, the ability to remove divergences
from the loop integral in the fermion propagator SDE,
Fig. 2, also constrains the fermion-photon vertex in a
weaker sense. To differentiate this from multiplicative
renormalizability, we call this loop-renormalizability.

p p k p

q

p p k p

q

1=

= −

−

1−1−

−1

FIG. 2. Diagrammatic representation of fermion propagator
SDE in propagator form (upper) and spectral form (lower).
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The fermion propagator satisfies the SDE displayed in
the upper half of Fig. 2. This requires that

S−1F ðpÞ ¼ S0−1F ðpÞ þ ie2
Z

dkγνSFðkÞΓμðk; pÞDμνðqÞ;

ð15Þ

where dk ¼ ddk=ð2πÞd in d-dimensions, and Dμν is the
photon propagator carrying momentum q ¼ k − p as in
Fig. 2. The fermion self-energy functions, Σjðp2Þ (j ¼ 1,
2), are commonly defined by writing the one loop integral
in this equation as pΣ1ðp2Þ þ Σ2ðp2Þ. In the quenched
approximation, we have

DμνðqÞ ¼
1

q2 þ iε

�
gμν þ ðξ − 1Þ qμqν

q2

�
; ð16Þ

in a covariant gauge specified by the parameter ξ.
Multiplying Eq. (15) throughout by the full fermion-

propagator, we have

1 ¼ ð=p −mÞSFðpÞ

þ ie2
Z

dkγνSFðkÞΓμðk; pÞSFðpÞDμνðqÞ ð17Þ

as displayed diagrammatically in the lower half of Fig. 2. A
spectral representation such as Eq. (14) allows the loop
integral in Eq. (17) to be evaluated exactly. Substituting the
ansatz Eq. (14) of the Gauge Technique into Eq. (17) yields

1 ¼ ð=p −mÞSFðpÞ þ ie2
Z

dk
Z

dWγν
1

=k −W

× γμ
1

=p −W
DμνðqÞρðWÞ: ð18Þ

We now usefully define the nonperturbative one-loop
contributions to this equation in terms of functions σjðp2Þ
which are linear in the spectral function ρðWÞ,

σ1ðp2Þ þ =pσ2ðp2Þ

¼ ie2
Z

dk
Z

dWγν
1

=k −W
γμ

1

=p −W
DμνðqÞρðWÞ:

ð19Þ

Clearly these are related to the fermion self-energy
by σ1ðp2Þ ¼ =pσ2ðp2Þ ¼ ½=pΣ1ðp2Þ þ Σ2ðp2Þ�SFðpÞ.
Adding transverse pieces to Eq. (14) has the potential to

modify the divergences in Eq. (19). After renormalization,
Eq. (18) becomes

Z−1
2 þmZmS2ðp2Þ ¼ p2S1ðp2Þ þ σ1ðp2Þ ð20aÞ

mZmS1ðp2Þ ¼ S2ðp2Þ þ σ2ðp2Þ: ð20bÞ

Equation (20) couples the fermion propagator functions
Sjðp2Þ. In order to derive the corresponding equations for
the spectral functions ρjðsÞ, we need to find out how to
generate these p2 dependences in Eq. (20) from the free-
particle propagator by taking imaginary parts. However, as
will be demonstrated in the following section, we are faced
with a more immediate problem that the Gauge Technique
ansatz for the fermion-photon vertex yields σjðp2Þ, with
divergent parts that cannot be removed by renormalization
conditions.
It is a fundamental principle that QED is renormalizable.

This serves as an important criterion for truncating the
fermion SDE [10]. As already remarked, the Ball-Chiu
vertex [9], being only longitudinal, although satisfying
the Ward-Green-Takahashi identity for fermion-photon
vertex, fails to ensure multiplicative renormalizability.
While the ansatz of the Gauge Technique does not fulfill
this requirement either, we can make the solutions satisfy
the weaker condition of loop-renormalizability, which we
now introduce.
The principle of loop-renormalization is best illustrated

by considering the SDE for propagator functions. We note
the fermion self-energy can be expressed as

Σ1ðp2Þ=pþ Σ2ðp2Þ ¼ ðσ1 þ =pσ2ÞS−1F
¼ σ1S1 − σ2S2

p2S21 − S22
=pþ p2S1σ2 − σ1S2

p2S21 − S22
:

ð21Þ
In terms of the previously introduced dressing functions in
Eq. (5), we have p2S21ðp2Þ−S22ðp2Þ¼F ðp2ÞS1ðp2Þ. Next,
using the Gauge Technique in the quenched approximation,
we evaluate the integrals as functions of d ¼ 4 − 2ϵ, and
expand the answers in powers of ϵ. Then the divergent parts
of the fermion self-energy are given by

Σ1ðp2Þ ¼ −
3α

4πϵ

�
1 −

ð1þ ξ=3Þ
Z2F ðp2Þ

�
þOðαϵ0Þ; ð22aÞ

Σ2ðp2Þ ¼ −
3α

4πϵ

ð1þ ξ=3ÞMðp2Þ
Z2F ðp2Þ þOðαϵ0Þ: ð22bÞ

Recall the renormalized SDE for the fermion propagator in
its original form is given by

1

Z2F ðp2Þ ¼ 1þ Σ1ðp2Þ; ð23aÞ

Mðp2Þ
Z2F ðp2Þ ¼ mRZm − Σ2ðp2Þ: ð23bÞ

At first sight, one might renormalize Eq. (23a) by multi-
plying by F ðp2Þ to give an expression for Z−1

2 . Since Z2 is
momentum independent, it is fixed by its value at p2 ¼ μ2,
to give
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F ðμ2Þ
F ðp2Þ ¼

1þ Σ1ðp2Þ
1þ Σ1ðμ2Þ

: ð24Þ

However, this equation has divergences that have not been
removed. Substituting Eq. (22a) into the right-hand side of
Eq. (24) fails to reproduce the left-hand side in the small ϵ
limit. Thus the fermion SDE with the Gauge Technique
Eq. (19) is not loop-renormalizable.
Let us imagine that instead of Eq. (22) the divergences

for the fermion self-energy can be written as

Σ1ðp2Þ ¼ αξ

4πϵ

1

Z2F ðp2Þ þ Σ̄1ðp2Þ þOðαϵ1Þ; ð25aÞ

Σ2ðp2Þ ¼ −
αξ

4πϵ

Mðp2Þ
Z2F ðp2Þ þ Σ̄2ðp2Þ þOðαϵ1Þ; ð25bÞ

where Σ̄jðp2Þ are finite, hence are Oðϵ0Þ. Here the
coefficients for the divergent terms are chosen to agree
with the perturbative one-loop calculation. Notice that from
Eq. (25a), the divergent part of Σ1 is homogeneous with
respect to 1=Z2F ðp2Þ, i.e. the propagator term in the
renormalized SDE. Such a form, Eq. (25a), can be achieved
by adding transverse terms to the Gauge Technique.
Satisfying Eq. (25a) will make Eq. (23a) loop-renormaliz-
able. Equation (25a) allows us to rewrite Eq. (23a) as�

1 −
αξ

4πϵ

�
1

Z2F ðp2Þ ¼ 1þ Σ̄1ðp2Þ: ð26Þ

Now we can use renormalization conditions to eliminate
½1 − αξ=ð4πϵÞ�Z−1

2 and obtain

F ðμ2Þ
F ðp2Þ ¼

1þ Σ̄1ðp2Þ
1þ Σ̄1ðμ2Þ

; ð27Þ

which is free from any divergences.
As for the other component of the renormalized SDE,

combining Eq. (23a) with Eq. (23b) produces,

mRZm ¼ Mðp2Þ þ Σ1ðp2ÞMðp2Þ þ Σ2ðp2Þ; ð28Þ

Next, using Eq. (25), the loop divergence is given by

Σ1ðp2ÞMðp2Þ þ Σ2ðp2Þ ¼ 0þOðαϵ0Þ: ð29Þ

This cancellation ensures Mðp2Þ is finite. Therefore,
evaluating Eq. (28) at p2 ¼ μ2 specifies mRZm.
Consequently we have

Mðp2Þ ¼ 1þ Σ̄1ðμ2Þ
1þ Σ̄1ðp2ÞMðμ2Þ þ Σ̄2ðμ2Þ − Σ̄2ðp2Þ

1þ Σ̄1ðp2Þ : ð30Þ

Summarizing the previous discussion, in order to ensure
the renormalized SDE for fermion propagator, Eq. (23),

being renormalizable by eliminating renormalization
constants Z2 and Zm at μ2, divergent parts of fermion
selfenergy Σ1 and Σ2 have to be homogeneous with
respect to the propagator contribution in the SDE and
cancel each other after decoupling Mðp2Þ from the Dirac
scalar equation. Therefore Eq. (25) needs to be satisfied.
Unlike Eq. (19), substituting Eq. (25) into the right-hand
side of Eq. (24) reproduces the left-hand side.
Notice that the fermion self-energy differs from the

σjðp2Þ by the fermion propagator, as specified by Eq. (21).
Because the fermion propagator can be viewed as a linear
transform with finite matrix elements, the renormalizability
conditions Eq. (25) indicate

σ1ðp2Þ ¼ p2Σ1ðp2ÞS1ðp2Þ þ Σ2ðp2ÞS2ðp2Þ

¼ αξ

4πϵ
Z−1
2 þ σ̄1ðp2Þ; ð31aÞ

σ2ðp2Þ ¼ Σ1ðp2ÞS2ðp2Þ þ Σ2ðp2ÞS1ðp2Þ
¼ σ̄2ðp2Þ; ð31bÞ

where σ̄jðp2Þ are the finite parts for σjðp2Þ. Therefore
we have translated Eq. (25) into Eq. (31) as the loop-
renormalizability requirement for σjðp2Þ. Notice the diver-
gence in Eq. (31a) vanishes in the Landau gauge, as
expected. This does not, however, ensure all ansätze in
the Landau gauge satisfy Eq. (31).

IV. SOLUTIONS FOR THE FERMION
PROPAGATOR SPECTRAL FUNCTIONS

A. Renormalizable modification to the Gauge
Technique

To obtain knowledge of the fermion propagator spectral
functions without complicating their SDEs, let us return to
Eq. (19) and first consider the Gauge Technique in the
quenched approximation. The loop integral of the fermion
propagator SDE, that gives the forms of Eq. (22), can easily
be calculated explicitly by applying well-established per-
turbative procedures. After Feynman parameterization and
dimensional regularization with d ¼ 4 − 2ϵ, we obtain

σ1ðp2Þ ¼ −
3α

4π

Z
ds

sKðp2; sÞ
p2 − s

ρ1ðsÞ þ
αξ

4π

×
Z

ds

�
Cdiv þ 1þ ln

μ2

s − p2

�
ρ1ðsÞ ð32aÞ

σ2ðp2Þ ¼ −
3α

4π

Z
ds

Kðp2; sÞ
p2 − s

ρ2ðsÞ þ
αξ

4π

×
Z

ds
1

p2

�
−1þ s

p2
ln

s
s − p2

�
ρ2ðsÞ; ð32bÞ

where
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Kðp2; sÞ ¼ Cdiv þ
4

3
þ ln

μ2

s − p2
−

s
p2

ln
s

s − p2
; ð33Þ

with μ giving the dimension of the coupling constant,
which is eventually set to the fermion on-shell mass: m.
Meanwhile, Cdiv ¼ 1=ϵ − γE þ ln 4π. To make this satisfy
the loop-renormalizability requirement specified by
Eq. (31), modifications are to replace Kðp2; sÞ by

K̄ðp2; sÞ ¼ 4

3
þ
�
1 −

s
p2

�
ln

s
s − p2

: ð34Þ

As discussed this can be accomplished by adding
transverse vectors to Eq. (14). Within the MS scheme,
1=ϵ − γE þ ln 4π terms in σj are removed altogether. Then,
based on the definition of σ̄j by Eq. (31), Eq. (20) become

�
1 −

αξ

4πϵ

�
Z−1
2 þmZmS2 ¼ p2S1 þ σ̄1 ð35aÞ

mZmS1 ¼ S2 þ σ̄2; ð35bÞ

in a form like that supposed in Eqs. (26), (28). As described
in Sec. III, renormalization at p2 ¼ μ2 eliminatesmZm, Z−1

2

and αξ=ð4πϵÞ altogether, so that

S2ðp2Þ þ σ̄2ðp2Þ
S1ðp2Þ ¼ S2ðμ2Þ þ σ̄2ðμ2Þ

S1ðμ2Þ
; ð36aÞ

p2S1ðp2Þ þ σ̄1ðp2Þ − S2ðp2Þ S2ðμ
2Þ þ σ̄2ðμ2Þ
S1ðμ2Þ

¼ μ2S1ðμ2Þ þ σ̄1ðμ2Þ − S2ðμ2Þ
S2ðμ2Þ þ σ̄2ðμ2Þ

S1ðμ2Þ
: ð36bÞ

Although the resulting Eq. (36) appears nonlinear in the
spectral functions ρjðsÞ, the mass shell renormalization will
render it linear.
Within a renormalization scheme in which the fermion

mass is specified by its current mass defined in the space-
like region of the propagator (as would be appropriate in
QCD), Eq. (36) remains nonlinear in ρjðsÞ. Consequently,
wholly numerical methods may then be required to obtain
solutions. This is particularly necessary in exploring
solutions in QCD within the spectral representation frame-
work with current masses much less than ΛQCD relevant to
dynamical chiral symmetry breaking. Compared to on-shell
renormalization, off-shell renormalization conditions con-
strain the analytic structure of the fermion propagator less
directly. In particular, in QED a delta function component
for the spectral function, which is central to the on-shell
approach we now discuss, is not automatically required.

B. On-shell renormalization conditions

On-shell renormalization stipulates that propagator func-
tions evaluated near the mass shell are dominated by their
free-particle counterparts. Mathematically, we translate this
statement into

S1ðp2Þ ¼ 1

p2 −m2
þ P1ðp2Þ ð37aÞ

S2ðp2Þ ¼ m
p2 −m2

þ P2ðp2Þ; ð37bÞ

where Pjðp2Þ have to be less singular than the free-particle
propagator at least in the vicinity of m2. This requires that
the spectral functions ρjðsÞ cannot be more singular than δ-
functions when s → m2. Thus the on-shell renormalization
condition Eq. (37) indicates

ρ1ðsÞ ¼ δðs −m2Þ þ r1ðsÞ; ð38aÞ

ρ2ðsÞ ¼ mδðs −m2Þ þ r2ðsÞ; ð38bÞ

where rjðsÞ are supposed to be regular functions rather than
distributions with exotic features. Dirac delta functions
contribute to the ðp2 −m2Þ−1 singular parts of Sjðp2Þ in
Eq. (37) while rjðsÞ give rise to Pjðp2Þ, which are expected
to be at most lnðm2 − p2Þ divergent when p2 → m2. Such
regular functions allow the interchange of limits and
integrations within the spectral representation. Dirac delta
functions in the spectral functions ρj contribute to the free-
propagator terms within σ̄jðp2Þ defined by Eq. (31) from
the loop diagram in the fermion propagator SDE. Such
contributions are given by

σ̄1ðp2Þ ¼ −
λ1α

4π

m2

p2 −m2
þ q1ðp2Þ; ð39aÞ

σ̄2ðp2Þ ¼ −
λ2α

4π

m
p2 −m2

þ q2ðp2Þ; ð39bÞ

where qjðp2Þ are no more singular than ðp2−m2Þ−1 at
p2→m2. Coefficients λj are determined by thevertex ansatz.
The on-shell conditions also simplify the μ2-dependent

terms in Eq. (36). Explicit steps can be found in
Appendix A. After further separating the free-propagator
terms, we rewrite Eq. (36) into

p2P1ðp2Þ þ q1ðp2Þ þ ðλ2 − λ1Þ
α

4π

m2

p2 −m2

¼
�
1 −

λ2α

4π

�
mP2ðp2Þ þ lim

μ2→m2

�
ðλ2 − λ1Þ

α

4π

m2

μ2 −m2

�

þ
�
2 −

λ2α

4π

�
½m2P1ðm2Þ −mP2ðm2Þ�

þ q1ðm2Þ −mq2ðm2Þ ð40aÞ
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P2ðp2Þ þ q2ðp2Þ ¼
�
1 −

λ2α

4π

�
mP1ðp2Þ; ð40bÞ

as the SDEs for the theta function parts of ρjðsÞ.

C. Loop-renormalizable modification
to the Gauge Technique

To proceed further in the calculation, consider the
minimal loop-renormalizable modification to the Gauge
Technique in the quenched approximation introduced in
Eq. (34). In the case of the MS scheme:

σ̄1ðp2Þ ¼ −3α
4π

Z þ∞

m2

ds
sK̄ðp2; sÞ
p2 − s

ρ1ðsÞ

þ αξ

4π

Z þ∞

m2

ds

�
1þ ln

μ2

s − p2

�
ρ1ðsÞ ð41aÞ

σ̄2ðp2Þ ¼ −3α
4π

Z þ∞

m2

ds
K̄ðp2; sÞ
p2 − s

ρ2ðsÞ

þ αξ

4π

Z þ∞

m2

ds
1

p2

�
−1þ s

p2
ln

s
s − p2

�
ρ2ðsÞ:

ð41bÞ

From Eq. (34) one immediately sees λ1 ¼ λ2 ¼ 4. We then
separate the free-particle components in Eq. (41) using
Eqs. (38), (39). This results in

q1ðp2Þ ¼ σ̄1ðp2Þ þ λ1α

4π

m2

p2 −m2

¼ −
3α

4π

m2

p2
ln

m2

m2 − p2
þ αξ

4π

�
1þ ln

m2

m2 − p2

�

−
3α

4π

Z þ∞

m2

ds
sK̄ðp2; sÞ
p2 − s

r1ðsÞ

þ αξ

4π

Z þ∞

m2

ds

�
1þ ln

m2

s − p2

�
r1ðsÞ; ð42aÞ

q2ðp2Þ ¼ σ̄2ðp2Þ þ λ2α

4π

m
p2 −m2

¼ −
3α

4π

m
p2

ln
m2

m2 − p2

þ αξ

4π

m
p2

�
−1þm2

p2
ln

m2

m2 − p2

�

−
3α

4π

Z þ∞

m2

ds
K̄ðp2; sÞ
p2 − s

r2ðsÞ

þ αξ

4π

Z þ∞

m2

ds
1

p2

�
−1þ s

p2
ln

s
s − p2

�
r2ðsÞ:

ð42bÞ
Next, in order to deduce the equations for rjðsÞ of Eq. (38),
we reproduce the p2 dependences in Eq. (40) using a

spectral representation as shown by Eq. (A3) through
Eq. (A15). Because qjðq2Þ are corrections to the fermion
propagator, equations for rjðsÞ can also be deduced by
taking imaginary parts along the branch cuts of the
logarithmic functions directly. Both methods lead to the
following integral equations for rjðsÞ:�
1 −

α

π

�
½s2r1ðsÞ −msr2ðsÞ� þ

3α

4π

�
m2 þ

Z
s

m2

ds0s0r1ðs0Þ
�

¼ ð3 − ξÞα
2π

sþ αξ

4π

�
sþ s

Z
s

m2

ds0r1ðs0Þ
�
; ð43aÞ

�
1 −

α

π

�
½−msr1ðsÞ þ sr2ðsÞ� þ

3α

4π

�
mþ

Z
s

m2

ds0r2ðs0Þ
�

¼ αξ

4π

�
m3

s
þ 1

s

Z
s

m2

ds0s0r2ðs0Þ
�
: ð43bÞ

Equation (43) is the coupled SDE for fermion spectral
functions ρjðsÞ with a loop-renormalizable modification to
the Gauge Technique in the quenched approximation.
Because spectral variables s and s0 are separable, these
integral equations can be converted into differential equa-
tions by taking derivatives with respect to s. In the Landau
gauge, only one derivative is required. Therefore in the next
section, we discuss the solutions to Eq. (43) in this gauge.

D. Solutions in the Landau gauge

We now solve Eq. (43) in the Landau gauge. For nota-
tional convenience, we define the coupling parameter a:

a ¼ 3α=ð4πÞ
1 − α=π

: ð44Þ

After setting ξ ¼ 0 and taking one derivative with respect to
s, Eq. (43) becomes

��
s −ms

−m s

�
d
ds

þ
�
aþ 1 −m
0 aþ 1

���
sr1ðsÞ
r2ðsÞ

�

¼
�
2a

0

�
: ð45Þ

Because every term in Eq. (43) is multiplied by
θðs −m2Þ implicitly, we are solving Eq. (43) in the region
where s > m2. While the boundary values are fixed by
Eqs. (A13), (A14).
As a first step to solving Eq. (45), we remove the matrix

multiplying the derivative d=ds by acting with the inverse
matrix. We then introduce the decomposition

sr1ðsÞ ¼ f1ðsÞg1ðsÞ; r2ðsÞ ¼ f2ðsÞg2ðsÞ; ð46Þ

and multiply by diagfg−11 ðsÞ; g−12 ðsÞg to obtain coupled
differential equations for fjðsÞ:
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d
ds

�
f1ðsÞ
f2ðsÞ

�
þ

0
B@

g0
1
ðsÞ

g1ðsÞ þ aþ1
s−m2

am
s−m2

g2ðsÞ
g1ðsÞ

ðaþ1Þmg1ðsÞ
ðs−m2Þsg2ðsÞ

g0
2
ðsÞ

g2ðsÞ þ
aþ1−m=s
s−m2

1
CA� f1ðsÞ

f2ðsÞ

�

¼
 2a

ðs−m2Þg1ðsÞ
2am

sðs−m2Þg2ðsÞ

!
: ð47Þ

We fix the functions gj by requiring that the diagonal
elements of the matrix in Eq. (47) vanish, such that

g01ðsÞ
g1ðsÞ

þ aþ 1

s −m2
¼ 0;

g02ðsÞ
g2ðsÞ

þ aþ 1 −m2=s
s −m2

¼ 0: ð48Þ

Their solution is

g1ðsÞ ¼
�

m2

s −m2

�
aþ1

; g2ðsÞ ¼
�

m2

s −m2

�
a m
s
; ð49Þ

where integration constants are chosen so that the fjðsÞ are
dimensionless. Equation (47) then becomes

d
ds

f1ðsÞ þ
a
s
f2ðsÞ ¼

2a
m2

�
s −m2

m2

�
a

ð50aÞ

d
ds

f2ðsÞ þ
ðaþ 1Þm2

ðs −m2Þ2 f1ðsÞ ¼
2a

s −m2

�
s −m2

m2

�
a

: ð50bÞ

Next, taking another derivative with respect to s yields

d
ds

s
d
ds

f1ðsÞ −
aðaþ 1Þm2

ðs −m2Þ2 f1ðsÞ ¼
2aðaþ 1Þ

m2

×

�
s −m2

m2

�
a

ð51aÞ

d
ds
ðs −m2Þ2 d

ds
f2ðsÞ −

aðaþ 1Þm2

s
f2ðsÞ ¼ 0: ð51bÞ

Equations (45) are now decoupled.
The homogeneous part of Eq. (51a) can be solved by the

textbook Frobenius method described in Appendix B.
Adding an inhomogeneous term results in Eq. (B5) that
solves Eq. (51a). There is no need to solve Eq. (51b)
separately because substituting Eq. (B5) into Eq. (50a)
gives the solution to Eq. (51b) directly.
Then, with the nontrivial expression for c0 given by

Eq. (B9), combining Eqs. (46), (49), (B5), (B6) we obtain
the solution for Eq. (43) in the Landau gauge

r1ðsÞ ¼
2aθðs −m2Þ
ðaþ 1Þs

�
1þ a2

ð2aþ 1Þ

× 2F1

�
aþ 1; aþ 1; 2aþ 2;−

s −m2

m2

��
ð52aÞ

r2ðsÞ ¼ −
2a2θðs −m2Þ
ð2aþ 1Þm

× 2F1

�
aþ 1; aþ 2; 2aþ 2;−

s −m2

m2

�
ð52bÞ

for the theta function parts of the fermion propagator
spectral functions ρjðsÞ in Eq. (38). This is our main
result. These components of the spectral density are plotted
as the crosses in the plots on the left-hand side of Fig. 3
for α ¼ 3 (a ¼ 15.9) as an illustration.

V. PADÉ APPROXIMATION

The nontrivial parts of the fermion propagator spectral
functions given by Eq. (52) are hypergeometric functions.
Representing these nontrivial factors with elementary
functions simplifies calculations where the fermion propa-
gator spectral functions are used as input conditions. Since
for positive a, the hypergeometric functions in Eq. (52) are
monotonic, one natural approximation to such functions is
the Padé approximation with the denominator polynomial
being at least one degree higher than the numerator
polynomial. Since the Maclaurin series for a hypergeo-
metric function is well defined, the natural variable for the
Padé polynomials is x ¼ s=m2 − 1. However, the asymp-
totic behavior of the hypergeometric functions in Eq. (52)
cannot be reproduced by the direct application of the Padé
approximation with the variable x, as shown in Fig. 3.
The asymptotic behavior of a hypergeometric function

can be calculated using linear transformation formulae
given by Eqs. (15.3.3) to (15.3.9) of Ref. [23]. However, for
hypergeometric functions in r1ðsÞ and r2ðsÞ of Eq. (52),
integer differences in the first two parameters require Eq.
(15.3.13) and Eq. (15.3.14) to be applied respectively. Thus
asymptotically we have the following limiting behaviors:

lim
s→þ∞2F1

�
aþ 1; aþ 1; 2aþ 2; 1 −

s
m2

�

¼ Γð2aþ 2Þ
½Γðaþ 1Þ2�

�
s
m2

�
−a−1

�
ln

�
s
m2

�
þ 2γE − 2ψðaþ 1Þ

�
ð53aÞ

lim
s→þ∞2F1

�
aþ 1; aþ 2; 2aþ 2; 1 −

s
m2

�

¼ Γð2aþ 2Þ
Γðaþ 1ÞΓðaþ 2Þ

�
s
m2

�
−a−1

: ð53bÞ

Then directly from Eq. (53b), the asymptotic behavior of
r2ðsÞ in Eq. (52) is given by s−a−1. Because of the presence
of the logarithm, the behavior given by Eq. (53a) is only a
little weaker than s−a. Therefore the asymptotic behavior of
the second term of r1ðsÞ in Eq. (52) can be approximated
by s−a−1.
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The analysis above for the asymptotic behaviors sug-
gests the following approximations for rjðsÞ

r1ðsÞ≃ 2a
ðaþ 1Þsþ

1

m2

�
s
m2

�
−a N1ðxÞ

Q1ðxÞ
; ð54aÞ

r2ðsÞ≃ 1

m

�
s
m2

�
−a N2ðxÞ

Q2ðxÞ
; ð54bÞ

where NjðxÞ are polynomials of degree n − 1, while QjðxÞ
are polynomials of degree n. Equations (54a), (54b) then
allow the asymptotic behaviors of rjðsÞ in Eq. (52) to be
well approximated using the following Padé approxima-
tions. Based on Eqs. (52), (54), we have

N1ðxÞ
Q1ðxÞ

≃ 2a3

ð2aþ 1Þðaþ 1Þ ðxþ 1Þa−1

× 2F1ðaþ 1; aþ 1; 2aþ 2;−xÞ; ð55aÞ

N2ðxÞ
Q2ðxÞ

≃ −
2a2

2aþ 1
ðxþ 1Þa

× 2F1ðaþ 1; aþ 2; 2aþ 2;−xÞ; ð55bÞ

where the semi-equal represents the Padé approximations.
Since the Maclaurin series for the right-hand sides of
Eq. (55) are well defined, the standard procedure of Padé
approximations applies. One example with the coupling
α ¼ 3 (a ¼ 15.9) and quartic QjðxÞ is displayed in Fig. 3.
Here the results from directly applying the Padé approx-
imations without the factor of ðs=m2Þ−a in Eq. (55) are also
presented. One sees on the left of the figure that with or
without taking the asymptotic behavior of the hypergeo-
metric functions into consideration, both approximations
appear very good. On the right are shown the errors relative
to the exact solution. We see that the asymptotic behaviors
are represented much better with Eq. (53) compared to the
direct application of the Padé approximations.

VI. SUMMARY

Using a spectral representation for the fermion propa-
gator, we have solved its Schwinger-Dyson equation with a
form for the fermion-boson vertex given by a modification
of the Gauge Technique of Salam, Strathdee and Delbourgo
[13–16]. This modification ensures the coupled fermion
equations are loop-renormalizable in four dimensions. We
then find an analytic solution in the Landau gauge valid in
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FIG. 3. The two fermion spectral functions ρJðsÞ contain a delta-function component and a continuum rjðsÞ for s > m2, as defined in
Eqs. (38a), (38b). On the left are plotted the functions rjðsÞ multiplied by appropriate factors of the mass m to render them
dimensionless. The exact functions as given by Eq. (52) are plotted as black crosses. The blue dashed lines are Padé approximations
directly applied to these functions of Eq. (52). The red solid lines are approximations using Eq. (54). On the right are shown the relative
errors defined by Δ ¼ j½rðsÞ − pðsÞ�=rðsÞj, where rðsÞ is the exact function while pðsÞ is the approximation. There the subscript “P”
stands for the direct application of the Padé approximations, while “AP” stands for the Padé approximation after factoring out the
asymptotic behaviors as in Eq. (55), illustrating the improved accuracy this produces.
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the whole complex momentum plane for the resulting
equations. This solution involves hypergeometric functions

2F1. The two fermion spectral functions are shown to
contain delta functions required for on-shell renormaliza-
tions plus explicit theta function terms resulting from real
fermion-photon production.
On-shell renormalization relevant to QED appears to be a

crucial step in our finding an analytic form for the spectral
functions. Of course, in QCD where quarks and gluons are
not asymptotic states renormalization in the spacelike
regime is more appropriate. Then wholly numerical meth-
ods would be required to solve the relevant equations.
Having a known solution in the Abelian limit is a powerful
check on any such methods. Fermion propagators are,
particularly in QCD, a key building block for studies of
bound states, their properties and dynamics. Having rep-
resentations that are numerically reliable and easily trans-
ferable to a range of calculations are essential. Here in
quenched QED we have an exact solution, and we can use
this to test simpler numerical representations. We also show
how once the asymptotics is extracted, the spectral function
can be accurately represented by Padé approximants. This
will be useful in wider QCD studies.
Such an analytic solution serves as a basis for judging the

general form of the fermion propagator that satisfies full
multiplicative renormalizability as well as gauge covari-
ance imposed by the Landau-Khalatnikov-Fradkin trans-
formations (LKFTs), hopefully facilitating solutions
beyond the quenched approximation when fermion-anti-
fermion pairs can be produced.
With the renormalization scheme in Ref. [13], the

solutions in different gauges with the Gauge Technique
have been obtained as Eqs. (9,18,19) of Ref. [17]. Such
dependences on ξ are known to be inconsistent with LKFT
[19,20]. We therefore do not solve Eq. (43) in another
gauge. However, if one applies the LKFT for the fermion
propagator spectral functions as Eq. (21) of Ref. [20], the
on-shell delta function terms of Eq. (38) are dissolved into
theta functions with a positive ξ. While with a negative ξ,
these terms become more singular than the delta function.
In either case, the on-shell renormalization conditions are
broken. The violation of on-shell conditions is accounted
for by our model not being gauge covariant. Consequently,
it is unable to be renormalized on-shell in two different
gauges simultaneously. Ansätze compatible with the LKFT
should be devoid of such difficulties. The construction of
an anzatz that produces ρjðs; ξÞ with the correct gauge
dependence specified by the LKFT, by adding transverse
pieces to Eq. (19), is a subject of ongoing study. Because
the longitudinal vertex is fixed by the Ward-Green-
Takahashi identity, constructing such ansätze inevitably
involves the transverse vectors multiplied by gauge depen-
dent momentum factors. One possible way to calculate
such gauge dependences applies inversion methods similar
to those described in Ref. [27].
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APPENDIX A: SIMPLIFICATIONS OF THE
FERMION PROPAGATOR SDE

Knowing the behavior of propagator functions and loop
functions σ̄j at p2 ¼ m2 allows us to simplify the renor-
malized equation Eq. (36). Explicitly, on-shell conditions
simplify the renormalization constants in the following
way,

lim
p2→m2

S2ðp2Þ þ σ̄2ðp2Þ
S1ðp2Þ ¼

�
1 −

λ2α

4π

�
m; ðA1aÞ

lim
p2→m2

�
p2S1ðp2Þ þ σ̄1ðp2Þ − S2ðp2Þ

S1ðp2Þ ½S2ðp
2Þ þ σ̄2ðp2Þ�

�

¼ lim
p2→m2

�
ðλ2 − λ1Þ

α

4π

m2

p2 −m2

�
þ q1ðm2Þ −mq2ðm2Þ

þ 1þ
�
2 −

λ2α

4π

�
½m2P1ðm2Þ −mP2ðm2Þ�: ðA1bÞ

Equations (36a), (36b) then become

p2S1ðp2Þ þ σ̄1ðp2Þ

¼
�
1 −

λ2α

4π

�
mS2ðp2Þ þ lim

p2→m2

�
ðλ2 − λ1Þ

α

4π

m2

μ2 −m2

�
þ q1ðm2Þ −mq2ðm2Þ þ 1

þ
�
2 −

λ2α

4π

�
½m2P1ðm2Þ −mP2ðm2Þ� ðA2aÞ

S2ðp2Þ þ σ̄2ðp2Þ ¼
�
1 −

λ2α

4π

�
mS1ðp2Þ; ðA2bÞ

with qjðp2Þ defined in Eq. (39).
The following relations are useful in obtaining the

imaginary part of q1ðq2Þ.

s0Kðs; s0Þ
s − s0

¼ s0

s − s0

�
Cdiv þ

4

3
þ ln

ν2

s0

�
þ s0

s
ln

s0

s0 − s

ðA3Þ

−
1

π
Im

�
1

s − s0 þ iε

�
¼ δðs − s0Þ ðA4Þ
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−
1

π
Im

�Z
ds0
�
Cdiv þ 1þ ln

ν2

s0

�
ρ1ðs0Þ

�
¼ 0: ðA5Þ

Let us define z ¼ s=s0. The logarithmic terms of σ̄1 are to
be reparameterized by introducing an intermediate spectral
function κðζÞ for the nontrivial imaginary parts of kernel
functions:

s0

s
ln

s0

s0 − s
¼ 1

z
ln

1

1 − z
¼ −

Z
dζ
ζ

θðζ − 1Þ
z − ζ þ iε

ðA6Þ

ln
s0

s0 − s
¼ ln

1

1 − z
¼ −

Z
dζ

θðζ − 1Þ
z − ζ þ iε

; ðA7Þ

where θðxÞ is the step function. Notice
Im½Rþ∞

m2 ds0 lnðm2=s0Þr1ðs0Þ� ¼ 0. Then through the spec-
tral representation, κðζÞ defines another function by
fðs=s0Þ ¼ R dζκðζÞ=ðs=s0 − ζ þ iεÞ. Therefore R̄1ðsÞ, the
spectral function of q1ðp2Þ, is given by,

R̄1ðsÞ ¼ −
1

π
Imfq1ðsþ iεÞg

¼ 3α

4π

m2

s
θðs −m2Þ − αξ

4π
θðs −m2Þ

−
3α

4π

�
4

3
sr1ðsÞ −

Z
s

m2

ds0
s0

s
r1ðsÞ

�

−
αξ

4π

Z
s

m2

ds0r1ðs0Þ: ðA8Þ

Similarly with the help of

1

s

�
−1þ s0

s
ln

s0

s0 − s

�
¼ 1

s0z

�
−1þ 1

z
ln

1

1 − z

�

¼ −
1

s0

Z
dζ
ζ2

θðζ − 1Þ
z − ζ þ iε

; ðA9Þ

the spectral function of q2ðp2Þ is given by

R̄2ðsÞ ¼ −
1

π
Imfq2ðsþ iεÞg

¼ 3α

4π

m
s
θðs −m2Þ − αξ

4π

m3

s2
θðs −m2Þ

−
3α

4π

�
4

3
r2ðsÞ −

Z
s

m2

ds0
1

s
r2ðs0Þ

�

−
αξ

4π

Z
s

m2

ds0
s0

s2
r2ðs0Þ: ðA10Þ

Before deriving the SDE for functions rjðsÞ, we need to
calculate the imaginary part of inhomogeneous terms in
Eq. (40a). Although the value of θðs −m2Þ at s ¼ m2

remains undetermined, the linear combination R̄1ðm2Þ −
mR̄2ðm2Þ is free of such ambiguity:

R̄1ðm2Þ ¼ lim
s→m2

�
3α

4π
θðs −m2Þ − αξ

4π
θðs −m2Þ

�

−
α

π
m2r1ðm2Þ;

R̄2ðm2Þ ¼ lim
s→m2

�
3α

4π

1

m
θðs −m2Þ − αξ

4π

1

m
θðs −m2Þ

�

−
α

π
r2ðm2Þ;

R̄1ðm2Þ −mR̄2ðm2Þ ¼ −
α

π
½m2r1ðm2Þ −mr2ðm2Þ�:

ðA11Þ

Therefore, taking the imaginary parts of Eq. (40) produces

sr1ðsÞ þ R̄1ðsÞ ¼
�
1 −

α

π

�
mr2ðsÞ

þ 2

�
1 −

α

π

�
½m2r1ðm2Þ −mr2ðm2Þ�;

ðA12aÞ

r2ðsÞ þ R̄2ðsÞ ¼
�
1 −

α

π

�
mr1ðsÞ: ðA12bÞ

At s ¼ m2, we have

½m2r1ðm2Þ −mr2ðm2Þ�
�
1 −

α

π

�
þ ð3 − ξÞα

4π
lim
s→m2

θðs −m2Þ

¼ 2½m2r1ðm2Þ −mr2ðm2Þ�
�
1 −

α

π

�
; ðA13aÞ

½r2ðm2Þ −mr1ðm2Þ�
�
1 −

α

π

�

þ ð3 − ξÞα
4π

1

m
lim
s→m2

θðs −m2Þ ¼ 0; ðA13bÞ

or equivalently,�
1 −

α

π

�
½m2r1ðm2Þ −mr2ðm2Þ� ¼ ð3 − ξÞα

4π
lim
s→m2

θðs −m2Þ;

ðA14Þ

with m ≠ 0. Adopting lims→m2θðs −m2Þ ¼ 1 produces
nontrivial solutions. The choice of this particular limit of
the θ-functions will be explained later in Appendix B. The
equations for functions rjðsÞ then become

sr1ðsÞ þ R̄1ðsÞ ¼
�
1 −

α

π

�
mr2ðsÞ þ

ð3 − ξÞα
2π

ðA15aÞ

r2ðsÞ þ R̄2ðsÞ ¼
�
1 −

α

π

�
mr1ðsÞ; ðA15bÞ

where R̄jðsÞ are specified by Eqs. (A8), (A10).
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APPENDIX B: THE FROBENIUS METHOD
FOR EQ. (51)

The homogeneous part of Eq. (51a) can be solved using
the Frobenius method. Let us start with

f1ðxÞ ¼ xaþ1
Xþ∞

n¼0

cnxn

¼ c0xaþ1
2F1ðaþ 1; aþ 1; 2aþ 2;−xÞ: ðB1Þ

This inspires the following decomposition

f1ðxÞ ¼ xaþ1Φ1ðxÞ; ðB2Þ

where x ¼ s=m2 − 1. Eq. (51a) then becomes

xðxþ 1Þ d2

dx2
ΦðxÞ þ ½2aþ 2þ ð2aþ 3Þx� d

dx
ΦðxÞ

þ ðaþ 1Þ2ΦðxÞ ¼ 2aðaþ 1Þ: ðB3Þ

The homogeneous part of Eq. (B3) is the hypergeometric
differential equation forΦ with variable −x. After finding a
particular solution to the inhomogeneous equation, the
general solution to Eq. (B3) with finite initial conditions is

ΦðxÞ ¼ c02F1ðaþ 1; aþ 1; 2aþ 2;−xÞ þ 2a
aþ 1

: ðB4Þ

Therefore, the solution for Eq. (51a) is

f1ðxÞ ¼ xaþ1

�
c02F1ðaþ 1; aþ 1; 2aþ 2;−xÞ þ 2a

aþ 1

�
:

ðB5Þ

Substituting Eq. (B5) into Eq. (50a) gives the solution to
Eq. (51b) directly:

f2ðxÞ ¼ −c0
ðaþ 1Þ

a
xa2F1ða; aþ 1; 2aþ 2;−xÞ: ðB6Þ

Based on Eqs. (B5), (B6) for functions fjðxÞ, the following
solutions are obtained using Eq. (46):

r1ðsÞ ¼
c0
s 2F1

�
aþ 1; aþ 1; 2aþ 2;−

s −m2

m2

�

þ 2a
ðaþ 1Þs ; ðB7aÞ

r2ðsÞ ¼ −c0
ð1þ aÞ
am 2F1

�
aþ 1; aþ 2; 2aþ 2;−

s −m2

m2

�
:

ðB7bÞ

The parameter c0 can be determined by the initial
condition Eq. (A14).
Given that 2F1ðaþ 1; aþ 1; 2aþ 2; 0Þ ¼ 1, and

2F1ðaþ 1; aþ 2; 2aþ 2; 0Þ ¼ 1, we have

c0 þ
2a

aþ 1
lim
s→m2

θðs −m2Þ þ c0
aþ 1

a
¼ 2a lim

s→m2
θðs −m2Þ;

ðB8Þ

where the implicit dependence of the inhomogeneous term
on the limit of the θ-function has been restored. Nontrivial
solutions are obtained with lims→m2θðs −m2Þ ¼ 1. Then

c0 ¼
2a3

ð2aþ 1Þðaþ 1Þ ðB9Þ

gives the solution Eq. (52). If, instead, the boundary value
lims→m2θðs −m2Þ ¼ 0 had been chosen, only homo-
geneous parts of Eq. (B7) survive. As a result, the only
viable choice of c0 is 0, which produces trivial solutions.
Because Eq. (51a) is a second order ordinary differential

equation, there is another linearly independent solution of
Eq. (B5). The corresponding r1ðsÞ is

r1ðsÞ ¼
2a

ðaþ 1Þsþ
c
s

�
s
m2

− 1

�
−2a−1

× 2F1ð−a;−a;−2a; 1 − s=m2Þ: ðB10Þ

An interesting observation is that apart from different
definitions of coupling parameter a, the homogeneous
solution in Eq. (B10) is identical to the corresponding
r1ðsÞ from Eq. (11) of Ref. [13] based on the renormaliza-
tion scheme given by Eq. (10). However, Eq. (B10) is
not taken within the on-shell renormalization scheme
because it does not satisfy the finite boundary condition
Eq. (A14). Specifically, it corresponds to a propagator
function having a different p2 → m2 behavior from the
on-shell propagators.
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