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We study ρ meson unpolarized generalized parton distributions based on a light-front constituent quark
model where the quark-antiquark-meson vertex is constructed under the symmetric loop momentum
convention. The form factors and some other low-energy observables of the ρ meson are calculated.
Moreover, the contributions to the form factors and generalized parton distributions from the valence and
nonvalence regimes are discussed and analyzed in detail. In the forward limit, the usual structure functions
are estimated as well. In addition, by evolving the moments of the obtained structure functions to the scale
of the lattice calculation, we give the factorization scale of our quark model. It is found that the present
phenomenological model is reasonable to describe the general properties of ρ meson.
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I. INTRODUCTION

It is known that the usual parton distribution functions
(PDFs) and electromagnetic form factors (FFs) shed light
on the “one-dimensional” structure of hadrons [1].
Moreover, generalized parton distributions (GPDs) natu-
rally embody the information of both PDFs and FFs, and
therefore they display the unique properties to present a
“3D” description for the transverse and longitudinal par-
tonic degrees of freedom inside the system, and they
contain promising potential which gives arise to ideals
of “quark/gluon imaging” of hadrons [1]. Many theoretical
investigations have been carried out on the general proper-
ties of GPDs for a hadronic system [2]. It is believed that
the studies of GPDs are closely related to the processes of
deeply virtual Compton scattering and the deeply virtual
meson electroproduction [3–5]. By comparing with exper-
imental measurements, one can obtain possible constrains
on the GPDs of a hadron [6,7]. With the help of sum rules,
the unpolarized GPDs are directly connected to the electro-
magnetic FFs of the system. There are some empirical
parameterizations for GPDs. For the nucleon case, those
parametrizations can be obtained by fitting the experimen-
tal data to the Dirac, Pauli, and axial FFs [8–12]. In the
forward limit, GPDs reproduce the usual PDFs, and thus a
description of GPDs can also be built with the help of the
experimental data of PDFs [11]. In addition, the moments
of GPDs can provide other new information as well, such as
the neutron asymmetry [13] and the quark orbital angular
momentum [14,15].

Many endeavors have been made to study the GPDs of
simple hadrons in the literature, like the studies of a pion
[4,16–19]; of a proton and neutron [10–12,20–22]; and of
the light nuclei, 3He [13,23], or deuteron [8,24–27]. In those
works, different approaches have been employed. They
include the chiral quark models employing the Nambu–
Jona-Lasinio model, the spectral quark model [16,28,29], the
covariant constituent quarkmodels (CCQMs) [17,18,30], the
Dyson-Schwinger equation approach [19], the AdS/QCD
inspired light-front wave functions [22], and some empirical
parametrizations as already mentioned above. Among those
phenomenological approaches, the light-cone constituent
quark model (LCCQM), one of the CCQMs, is a quite
suitable and successful approach to be applied for the studies
of the quark-hadron vertex and of the hadron properties, as
has been pointed out by Refs. [18,31]. Besides the various
model-dependent studies, some lattice QCD calculations
have been also performed [32,33]. It is believed that those
lattice simulations, together with the experimental data, can
be employed to check and make a judgement for the
different phenomenological models.
Apart from the pion (spin-0) and nucleon (spin-1=2)

targets, the deuteron (spin-1) target is also common
experimentally. The GPDs of a deuteron have been already
defined through the matrix operators on the light front [24],
and the partonic structures and FFs of the deuteron have
been formally explored through different approaches as
well [25–27,34–36]. We know that the deuteron is a weakly
bound system of a proton and a neutron and approximately
satisfies the isospin symmetry. Therefore, by considering
the GPDs of the proton and neutron, one may obtain the
information of the deuteron GPDs [8,25,37].*sunbd@ihep.ac.cn
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The ρmeson, which is a spin-1 particle as well, is usually
regarded as a qq̄ bound state in CCQMs. Some lattice
results [38] have already shown that the ρ meson is
approximately a pure 3S1 state with only ∼1% admixture
of the 3D1 wave, and, consequently, in the rest frame, the
valence quarks carry out almost completely the spin of
the ρ meson. This conclusion provides a solid support to
employ the constituent quark model to explore the ρmeson
structure as a pure qq̄ system. It should be stressed that the
most previous studies of the ρ meson focus on its FFs
[39–46]. The only one lattice QCD calculation for the
moments of the unpolarized ρ meson PDFs appeared
two decades ago [47], which was performed at the scale
Q ¼ 2.4 GeV. With a quenched approximation, Ref. [47]
obtained the nth moments of its structure functions, which
is meaningful only when comparing with the nonsinglet
valence quark distributions. Later on, the result of QCD
sum rules for the ρ meson structure functions in Ref. [48]
matches the lattice calculation well. As for the ρ GPDs,
there are some possible indirect approaches to access them,
such as through the connection with generalized distribu-
tion amplitudes, via the double distributions [2,49,50] or
the Radon transformation [51]. Thus, it is of a great interest
to see what the GPDs of the ρmeson look like with the help
of the LCCQM model. This study may be even useful to
understand the processes involving the ρ meson lepton
production such as eþ N → eþ ρ0 þ N [7,25,52,53] or
the process of γγ� → ρρ [54] and the future Electron-Ion
Collider (EIC) experiments [55,56].
In analogy to the deuteron case, we introduce the

GPDs of the ρ meson and apply the LCCQM for the study
of its unpolarized GPDs. Particularly, the GPDs with
different skewness ξ will be discussed in detail. It should
be mentioned that in the LCCQM, the separation of
the valence Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) and nonvalence Efremov-Radyushkin-Brodsky-
Lepage (ERBL) regimes is transparent after the integration
over the poles in the Dirac propagators of k− ¼ k0 − k3, i.e.
the minus component of the loop momentum.
Consequently, we can further study the contributions to
the properties of the ρ meson, like its FFs and GPDs,
from the valence and nonvalence regimes at different values
of ξ.
This paper is organized as follows. Section II gives a

brief introduction to the general decomposition of GPDs
for the spin-1 × ρ meson. Section III shows a description
of the LCCQM. Moreover, in Sec. IV, we display the main

numerical results for the ρ meson FFs and its unpolarized
GPDs with the LCCQM. In addition, in Sec. V, we discuss
the QCD evolution of the moments of the ρ meson PDFs
and make a comparison to the lattice calculation. Finally,
Sec. VI is devoted to a short summary.

II. GPDS FOR HADRONS WITH SPIN 1

The notations in this work are [30]

t ¼ Δ2 ¼ ðp0 − pÞ2;

ξ ¼ −
Δ · n
2P · n

¼ −
Δþ

2Pþ ; jξj ¼ Δþ

2Pþ ; ðjξj ≤ 1Þ

x ¼ k · n
P · n

¼ kþ

Pþ ; ð−1 ≤ x ≤ 1Þ; ð1Þ

where p and p0 are the 4-momenta of the incoming and
outgoing ρ mesons, P ¼ ðp0 þ pÞ=2, Δ ¼ p0 − p, n is a
lightlike 4-vector with n2 ¼ 0, and k is the 4-momentum in
the loop which will be specified in next section. The
skewness variable ξ plays a similar role as the Bjorken
variable [37,57].
The helicity counting rules restrict that there are totally

nine helicity conserving GPDs of the spin-1 particle for
each quark flavor and the gluons. Five of them are
unpolarized (averaged over helicities), and the other four
are polarized (sensitive to helicities). The helicity-averaged
GPDs are defined through the two-parton correlation
function for quarks as [24]

Vλ0λ ¼
1

2

Z
dω
2π

eixðPzÞhp0; λ0jq̄
�
−
1

2
z

�
=nq

�
1

2
z

�
jp; λijz¼ωn

¼
X
i

ϵ0�νVðiÞ
νμ ϵμH

q
i ðx; ξ; tÞ; ð2Þ

where ϵ ¼ ϵðp; λÞ [or ϵ0 ¼ ϵ0ðp0; λ0Þ] and λðor λ0Þ ¼ 0, �1
are the initial (or final) polarization vector and its helicity,
respectively. The explicit expressions of ϵ and the helicity
amplitudes of the matrix elements were introduced in
Ref. [24]. The helicity amplitudes give the connection
between GPDs and the Deep Inelastic Scattering (DIS)
structure functions by taking the forward limit. It is argued
that there are five independent tensor structures that the

tensor VðiÞ
νμ in Eq. (2) would explicit depend on,

fgνμ; Pνnμ; nνPμ; PνPμ; nνnμg: ð3Þ

Consequently, the GPDs of the ρ meson are defined as

Vλ0λ ¼ −ðϵ0� · ϵÞHq
1 þ

ðϵ · nÞðϵ0� · PÞ þ ðϵ0� · nÞðϵ · PÞ
P · n

Hq
2 −

2ðϵ · PÞðϵ0� · PÞ
M2

Hq
3

þðϵ · nÞðϵ0� · PÞ − ðϵ0� · nÞðϵ · PÞ
P · n

Hq
4 þ

�
M2

ðϵ · nÞðϵ0� · nÞ
ðP · nÞ2 þ 1

3
ðϵ0�ϵÞ

�
Hq

5; ð4Þ
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where M is the ρ meson mass. The five unpolarized GPDs
Hq

i ði ¼ 1 ∼ 5Þ are the functions of x, ξ, and t. The explicit
dependence of Hq

i on the three variables is omitted for
simplicity.

A. Sum rules

The conventional form factor decomposition of the
vector current for a spin-1 particle is

Iμλ0λ ¼ hp0; λ0jq̄ð0Þγμqð0Þjp; λi

¼ ϵ0�βϵα
�
−
�
Gq

1ðtÞgβα þ Gq
3ðtÞ

PβPα

2M2

�
Pμ

þ Gq
2ðtÞðgμαPβ þ gμβPαÞ

�
: ð5Þ

The conventional FFs G1;2;3 are obtained from Gq
1;2;3 by

weighting with electromagnetic charges and then summing
over flavors: Gi ¼ euGu

i þ ed̄G
d̄
i for i ¼ 1, 2, 3. It is

equivalent to using the isospin combination, which will
be shown later in Eq. (39). Comparing with Eq. (4), one can
obtain the sum rules,

Z
1

−1
dxHq

i ðx; ξ; tÞ ¼ Gq
i ðtÞ ði ¼ 1; 2; 3Þ;

Z
1

−1
dxHq

i ðx; ξ; tÞ ¼ 0 ði ¼ 4; 5Þ: ð6Þ

The integrals of Hq
4 and H

q
5 vanish due to the constraints of

time reversal and Lorentz invariance, respectively [24].
The FFs GC;M;Q can be expressed in terms of G1;2;3

as [42]

GCðtÞ ¼ G1ðtÞ þ
2

3
ηGQðtÞ;

GMðtÞ ¼ G2ðtÞ;
GQðtÞ ¼ G1ðtÞ − G2ðtÞ þ ð1þ ηÞG3ðtÞ; ð7Þ

where η ¼ −t=4M2. Together with Eq. (6), one can obtain
GC;M;Q directly from GPDs H1;2;3. Note that in many
previous studies, the calculation of GC;M;Q from the matrix
elements of Iþλ0λ is faced with the well-known ambiguity of
the angular condition [39]. Some different prescriptions are
proposed to avoid the “worst”matrix elements. The present
work bypasses this ambiguity.
The normalizations take

GCð0Þ ¼ 1; GMð0Þ ¼ 2Mμ; GQð0Þ ¼ M2Qρ; ð8Þ

where μ and Qρ are the ρ magnetic dipole and quadrupole
moments. The mean square charge radius hr2i is given by

hr2i ¼ lim
t→0

6½GCðtÞ − 1�
t

: ð9Þ

B. Forward limit

For x > 0, the helicity amplitudes in the forward limit
(Δ ¼ 0) give the relations between GPDs and the unpo-
larized (quark-spin-averaged) parton distributions qλðxÞ
[24,47], with λ being the polarization of the ρ meson, as

Hq
1ðx; 0; 0Þ ¼

q1ðxÞ þ q−1ðxÞ þ q0ðxÞ
3

¼ qðxÞ;

Hq
5ðx; 0; 0Þ ¼ q0ðxÞ − q1ðxÞ þ q−1ðxÞ

2
: ð10Þ

For x < 0, the above equations with an overall sign change
give the antiquark distributions at−x. Here, the unpolarized
quark density is defined as qλ ¼ qλ↑ þ qλ↓, where ↑ (↓)
stands for up (down) spin projection along the direction of
the motion when the ρ meson moves with infinite momen-
tum. In the constituent quark model, the sum rules,
corresponding to the flavor number and momentum con-
servation, are

Z
dxuðxÞ ¼

Z
dxd̄ðxÞ ¼ 1; ð11Þ

Z
dx½xðuðxÞ þ d̄ðxÞÞ� ¼ 1 ð12Þ

for the ρþ meson.
At leading twist or leading order, the single flavor DIS

structure function Fq
1ðxÞ is one-half of the probability to

find a quark with momentum fraction x and obeys the
Callan-Gross relation [24,47]

Fq
1ðxÞ ¼

1

3
½q1↑ðxÞ þ q1↓ðxÞ þ q0↑ðxÞ� ¼

1

2
Hq

1ðx; 0; 0Þ: ð13Þ

The single flavor structure function bq1ðxÞ, which measures
the difference in the spin projection of the ρ meson, only
depends on the quark-spin-averaged distribution qλðxÞ,

bq1ðxÞ ¼ q0ðxÞ − q1ðxÞ þ q−1ðxÞ
2

¼ Hq
5ðx; 0; 0Þ: ð14Þ

From parity, one has qλ↑ ¼ q−λ↓ , and therefore the conven-

tional structure functions, related to qλðxÞ, are

F1ðxÞ ¼
X
q

e2qF
q
1ðxÞ; b1ðxÞ ¼

1

2

X
q

e2qb
q
1ðxÞ: ð15Þ

In the following, we will focus on the single flavor structure
functions. In the meson case, the structure functions are
identical for both flavors. It should be mentioned that the
spin-1 particle, different from the spin-1=2 one, has the
tensor structure function b1. It triggers great interest
[58–62]. The sum rule of this structure function isR
dxb1ðxÞ ¼ 0 [58].
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In addition, the nth Mellin moment of a function fðxÞ is
defined as

MnðfÞ ¼
Z

1

0

xn−1fðxÞdx: ð16Þ

For the ρ meson case, to the leading order (twist 2), one
finds

2MnðFq
1Þ ¼ Cð1Þ

n an; 2Mnðbq1Þ ¼ Cð1Þ
n dn; ð17Þ

where CðkÞ
n ¼ 1þOðαÞ are the Wilson coefficients of the

operator product expansion and an and dn are the reduced
matrix elements [47]. With the quenched approximation,
Ref. [47] found that these relations hold for both even and
odd nth orders.

C. Isospin combination

In Eq. (4), GPDs are defined flavor by flavor. Similar to
Refs. [29,63], the corresponding isospin projection of the
isovector (I ¼ 1, nonsinglet) equals

1

2

Z
dω
2π

eixðPzÞhρbðp0; λ0Þjq̄
�
−
1

2
z

�
=nτ3q

�
1

2
z

�
jρaðp; λÞijz¼ωn

¼ {ϵ3ab

�
−ðϵ0�ϵÞHI¼1

1 þ ðϵnÞðϵ0�PÞ þ ðϵ0�nÞðϵPÞ
Pn

HI¼1
2 −

2ðϵPÞðϵ0�PÞ
M2

HI¼1
3

þ ðϵnÞðϵ0�PÞ − ðϵ0�nÞðϵPÞ
Pn

HI¼1
4 þ

�
M2

ðϵnÞðϵ0�nÞ
ðPnÞ2 þ 1

3
ðϵ0�ϵÞ

�
HI¼1

5

�

¼ {ϵ3ab

�
−ðϵ0�ϵÞðHu

1 −Hd
1Þ þ

ðϵnÞðϵ0�PÞ þ ðϵ0�nÞðϵPÞ
Pn

ðHu
2 −Hd

2Þ −
2ðϵPÞðϵ0�PÞ

M2
ðHu

3 −Hd
3Þ

þ ðϵnÞðϵ0�PÞ − ðϵ0�nÞðϵPÞ
Pn

ðHu
4 −Hd

4Þ þ
�
M2

ðϵnÞðϵ0�nÞ
ðPnÞ2 þ 1

3
ðϵ0�ϵÞ

�
ðHu

5 −Hd
5Þ
�
; ð18Þ

where a, b ¼ 0, 1, 2 and ρ� ¼ ρ1 ∓ {ρ2. For the isoscalar case (I ¼ 0, singlet), one needs the exchange =nτ3 ↔ =n, and
therefore Hu

i −Hd
i ↔ Hu

i þHd
i . In the following work, we will only deal with a positive-charged ρ and omit the subscript

þ whenever no ambiguity arises.

III. OUR APPROACH

In analogy to the chiral interaction Lagrangian for the π → qq̄ vertex [64], the effective Lagrangian for the ρ → q̄q is
taken as

LI ∼ −{
M
fρ

q̄γμτq · ρμ

¼ −{
M
fρ

½ūγμuρ0μ þ
ffiffiffi
2

p
ūγμdρþμ þ

ffiffiffi
2

p
d̄γμuρ−μ þ d̄γμdρ0μ�; ð19Þ

where fρ is the ρ decay constant. In the lowest Fock state, the two-parton correlation function, the lhs of Eq. (18), corres-
ponds to a triangle loop [3]. The loop integral, corresponding to the active u quark [see Figs. 1(a) and 2], is specified as

Vuðx; ξ; tÞ ¼ Nμν

Z
d4k
ð2πÞ4 δ½n · ðxP − kÞ�ð−ÞTr

�
{ð=k − =PþmÞ

ðk − PÞ2 −m2 þ {ϵ
γν

{ð=kþ =Δ
2
þmÞ

ðkþ Δ
2
Þ2 −m2 þ {ϵ

=n

×
{ð=k − =Δ

2
þmÞ

ðk − Δ
2
Þ2 −m2 þ {ϵ

γμ
�
Λðk − P; p0ÞΛðk − P; pÞ; ð20Þ

where m is the constituent quark mass and

Nμν ¼
M2

f2ρ

ϵ0�νðp0; λ0Þϵμðp; λÞ
2ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffi

ωp0ωp
p ð21Þ
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and the scalar function

Λðk − P; pÞ ¼ c
½ðk − PÞ2 −m2

R þ {ϵ�½ðk − Δ
2
Þ2 −m2

R þ {ϵ�
ð22Þ

is following Ref. [30], with mR and c being the regulator
mass and the normalization factor, respectively. The loop of
the struck d quark can be obtained from the crossed
Feynman diagram of Fig. 1(b). Here, the scalar product
function Λðk − P; pÞ is symmetric under the exchange of
the momentums of the two constituents. This scalar
function is employed to describe the momentum depend-
ence between q and q̄ inside the ρ meson. Actually, it plays
a role of the momentum cutoff similar to the Pauli-Villars
regularization [30]. It may also stand for a property of the
Bethe-Salpeter amplitude [65] and contain the information
of the nonperturbative effect. Conceptually, by taking
Λðk − P; pÞ as a part of the quark-antiquark-meson vertex,
one gets the smeared quark-antiquark-meson vertex,
γμΛðk − P; pÞ [42]. As will be seen later, the symmetric
momenta convention, shown in Figs. 1 and 2, enables the
vertex to fulfill the constraint from the isospin symmetry.

Note that the elastic FFs can be calculated in different
reference frames, such as the Drell-Yan frame [31], where
Δþ ¼ 0 and ξ ¼ 0, and the Breit frame, where Δþ ¼ −Δ−

(see Refs. [30,66] for discussions on the motivation of
adopting this frame). In this work, the above loop integral is
performed in the Breit frame, and then the ξ dependence of
GPDs can be obtained as well. In this special reference
frame, the momentum transfer and initial and finial
momenta are

Δ ¼ ðΔþ;Δ−;Δ⊥Þ ¼ ðqz;−qz; qx; qyÞ;

p ¼
�
p0 −

qz
2
; p0 þ qz

2
;−

Δ⊥
2

�
;

p0 ¼
�
p0 þ qz

2
; p0 −

qz
2
;
Δ⊥
2

�
; ð23Þ

where Δ⊥ ¼ ðqx; qyÞ and p0 ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2=4M2

p
. Since

Δ2⊥ ≥ 0, one gets the constraint jξj ≤ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2=t

p
.

The physics in the nonvalence regime, shown in Fig. 2,
is remarkably different from the one in the valence
regime. According to Ref. [67], the qq̄ pair, created
by the virtual photon, could interact with itself and form
a virtual meson, before merging with the meson state.
From another point of view, the higher Fock component
contributions should be taken into account in both two
regimes for completeness. Instead of finding all higher
Fock component contributions as Refs. [68,69], we
handle the nonvalence contribution by replacing the
simple γμ with a phenomenological meson vertex Γμ

as shown in Ref. [42]. This is an analogy to the covariant
form [70], which has been applied for the deuteron case
in our previous work [71]. Thus, the smeared quark-
antiquark-meson vertex becomes ΓμΛðk − P; pÞ.
For the u quark contribution shown in Fig. 1(a), the

spectator constituent momentum is ks ¼ kd̄ ¼ k − P. The

FIG. 1. Direct (a) and crossed (b) Feynman diagrams contributing to the GPDs of the quark q and antiquark q̄ of the ρmeson. The gray
blobs represent the normal Light Front (LF) wave vertexes. The plus component of the momentum carried by red lines has positive sign
in the valence regime.

FIG. 2. The struck u quark in the nonvalence regime, yielded by
the off-diagonal terms in the Fock space. The black blob
represents the non-wave-function vertex. The red line has the
negative sign in this regime.
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phenomenological vertices under this loop momentum
assignment read

Γμ
i ¼ γμ −

ð2k − P − Δ
2
Þμ

Di
; Γν

f ¼ γν −
ð2k − Pþ Δ

2
Þν

Df
;

ð24Þ

where Di;f ¼ Mi;f þ 2m, and the kinematic invariant
masses Mi;f are [42]

M2
i ¼

κ2⊥ þm2

1 − x0
þ κ2⊥ þm2

x0
; ð25Þ

M2
f ¼ κ02⊥ þm2

1 − x00
þ κ02⊥ þm2

x00
; ð26Þ

with the LF momentum fractions x0 ¼ −kþs =pþ ¼ ð1 − xÞ=
ð1 − jξjÞ, x00 ¼ x0pþ=p0þ ¼ ð1 − xÞ=ð1þ jξjÞ, and

κ⊥ ¼ ks⊥ −
kþs
pþ pi⊥ ¼ ðk − PÞ⊥ −

x0

2
Δ⊥;

κ0⊥ ¼ ðk − PÞ⊥ þ x00

2
Δ⊥: ð27Þ

In the nonvalence regime, shown in Fig. 2, the relation of
−jξj < x < jξj leads to x0 > 1, and the initial vertex

becomes the non-wave-function vertex. To keep the mass
square positive [see Mi in Eq. (25)], Ref. [42] proposes to
directly replace 1 − x0 with x0 − 1 in Eq. (25) and gets

M2
iðNVÞ ¼

κ2⊥ þm2

x0 − 1
þ κ2⊥ þm2

x0
: ð28Þ

Hereafter, we use the subscripts V and NV to stand for
the valence and nonvalence regimes, respectively. Note
that, when both the struck and spectator constituents are on
mass shells, namely, ðk − Δ

2
Þ2 ¼ ðk − PÞ2 ¼ m2, one gets

M2
i ¼ M2

f ¼ M2. Due to the exchange 1 − x0 ↔ x0 − 1, the
relation ofM2

iðNVÞ ¼ M2 no longer holds for the nonvalence

case. However,M2
i andM

2
iðNVÞ have the same limiting value

as x → jξj, and thus the continuity of GPDs is guaranteed.
The physics in the parton-number-changing nonvalence
Fock state contributions is much more complicated than
that in the valence one, since the creation of the qq̄ pair
involves an infinite sum of the meson contribution. Due to
the lack of the information about the nonvalence regime
[67], in some model calculations, the discontinuity may
arise at x ¼ ξðorjξjÞ where the valence and nonvalence
regimes divide, like in Ref. [17] for the π meson GPDs.
With the above preparations, the integral of Eq. (20) in

the light-front frame reads

Vuðx; ξ; tÞ ¼ Nμν

Z
dkþdk−dk⊥

4ð2πÞ4 δ½xPþ − kþ� ð−ÞTr½Oμνþ�
ðkþ − PþÞðkþ þ Δþ

2
Þðkþ − Δþ

2
Þ

×
1

½k− − P− − ðk − PÞ−on þ i ϵ
kþ−Pþ�

1

½k− þ Δ−

2
− ðkþ Δ

2
Þ−on þ i ϵ

kþþΔþ
2

�

×
1

½k− − Δ−

2
− ðk − Δ

2
Þ−on þ i ϵ

kþ−Δþ
2

�
× Λðk − P; p0ÞΛðk − P; pÞ; ð29Þ

where

Oμνþ ¼ {3ð=k − =PþmÞΓν
i

�
=kþ =Δ

2
þm

�

× γþ
�
=k −

=Δ
2
þm

�
Γμ
f; ð30Þ

ðk − PÞ−on ¼
ðk − PÞ⊥ þm2

kþ − Pþ ; etc:; ð31Þ

and the Λ functions, Eq. (22), are chosen without changing
the distribution of the poles with respect to the three
denominators of the propagators. There are six poles with
respect to k− for the integral, the same as in the pion case
[30]. They are

k−
1ð2Þ ¼ P− þ ðk − PÞ−onðRÞ − i

ϵ

kþ − Pþ ;

k−
3ð4Þ ¼

Δ−

2
þ
�
k −

Δ
2

�
−

onðRÞ
− i

ϵ

kþ − Δþ
2

;

k−
5ð6Þ ¼ −

Δ−

2
þ
�
kþ Δ

2

�
−

onðRÞ
− i

ϵ

kþ þ Δþ
2

; ð32Þ

where ðk − PÞ−R and ðk� Δ
2
Þ−R are obtained by replacing m

with mR in Eq. (31), respectively. Since p0þ > pþ > 0,
after integrating over k−, there are only two regions in kþ
that contribute to the integral, the valence regime kþ ∈
½Δþ=2; Pþ� and the nonvalence one kþ ∈ ½−Δþ=2;Δþ=2�.
In the case p0þ ¼ pþðξ ¼ 0Þ, there is only one regime
(valence), and the detail calculation can be found in
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Refs. [64,72]. The first two poles k− ¼ k−
1ð2Þ contribute to

the valence part, and the last two poles k− ¼ k−
5ð6Þ con-

tribute to the nonvalence one (see Fig. 2). The residue of the
pole k− ¼ k−1 reads

Vu
1ðVÞðx; ξ; tÞ ¼

−Nμν

4ð2πÞ4
Z

Pþ

Δþ
2

dkþ
Z

dk⊥δ½xPþ − kþ�

×
Tr½Oμνþ�

ðkþ − PþÞðkþ þ Δþ
2
Þðkþ − Δþ

2
Þ

×
1

½k− þ Δ−

2
− ðkþ Δ

2
Þ−on þ i ϵ

kþþΔþ
2

�

×
1

½k− − Δ−

2
− ðk − Δ

2
Þ−on þ i ϵ

kþ−Δþ
2

�
× Λðk − P; p0ÞΛðk − P; pÞjk−¼k−

1
; ð33Þ

and for the rest of the poles, k− ¼ k−i , V
u
iðV=NVÞðx; ξ; tÞ (i

labels different poles) can be obtained similarly. Then, the
valence contributions read

Vu
ðVÞ ¼ Vu

1ðVÞ þ Vu
2ðVÞ; ð34Þ

where the ξ-independent (also frame-independent) full
result for the u quark GPDs is

Vu ¼ Vu
ðVÞ þ Vu

ðNVÞ: ð35Þ

It is easy to verify that, under the assignment of loop
momenta in Fig. 1, the trace part of the loop integral for the
d quark is related to that of the u quark as

Tr½Oμνþ
ðdÞ ðx;−kÞ� ¼ −Tr½Oμνþð−x; kÞ�: ð36Þ

Therefore, the relation Vdðx; ξ; tÞ ¼ −Vuð−x; ξ; tÞ is
preserved, as required by the isospin and crossing sym-
metries [30]. Here, the symmetric momenta convention are
essential for the present model to fulfill this constraint. We,
thus, get

Z
1

−1
dxHd

i ðx; ξ; tÞ ¼ −
Z

1

−1
dxHu

i ðx; ξ; tÞ; ð37Þ

with i ¼ 1 ∼ 5. Finally, the isovector GPDs satisfy

HI¼1
i ðx; ξ; tÞ ¼ HI¼1

i ð−x; ξ; tÞ: ð38Þ

In addition, from Eq. (6), the sum rules of the conventional
FFs, it is easy to see the equivalent [24,29]

Gi ¼ eu

Z
1

−1
dxHu

i ðx; ξ; tÞ þ ed

Z
1

−1
dxHd

i ðx; ξ; tÞ

¼
Z

1

−1
dxHI¼1

i ðx; ξ; tÞ: ð39Þ

In our work, the strategy to extract the five GPDs Hi, is to
construct five independent equations by replacing ϵ0�νϵμ in
Vu with the tensors listed in (3) separately and finally to
solve them jointly. See the Appendix for more details.

IV. RESULTS

In this work, we take the constituent mass m ¼
0.403 GeV and regulator mass mR ¼ 1.61 GeV. The
requirement of stability of the bound states, m > M=2
and mþmR > M, is maintained.
The calculated ρ meson FFs and low-energy observables

are shown in Fig. 3 and Table I. The nonvalence contri-
butions to FFsG1;2;3 at ξ ¼ −0.2,−0.4, and−0.6 are shown
in Fig. 4. Due to the constraint jξj ≤ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2=t

p
, the

corresponding jtjmin are 0.10, 0.45, and 1.33 GeV2, respec-
tively. Figures 5–7 show the 3D plots of the unpolarized ρ
meson GPDs H1;2;3 as the functions of variables x and t at
the two different skewnesses ξ ¼ 0 and −0.4. The values

G
C

,M
, Q

(t
)

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

– t (GeV2)

FIG. 3. The ρ FFs, GC (solid black line), GM (dashed red line),
and GQ (dot-dashed blue line).

TABLE I. The ρ meson low-energy observables of the mean square charge radius (hr2i), the magnetic dipole (μ), and the quadrupole
(Qρ) moments in the units of fm2, 1=2M, and 1=M2, respectively. The results of other LCCQMs [39,40,42,70,73], of the point-form
formalism [43], of the lattice QCD [74], and of the experiment measurement [75] are also displayed for a comparison.

[39] [40] [42] [70] [73] [43] [74] [75] this work

hr2i 0.37 0.35 � � � � � � 0.268 � � � 0.670(68) � � � 0.52
μ 2.14 2.26 1.92 1.83 2.21 2.2 2.613(97) 2.1(5) 2.06
Qρ −0.79 −0.37 −0.43 −0.33 −0.882 −0.47 −0.733ð99Þ � � � −0.323
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are normalized to the corresponding FFs GiðtÞ for a
convenience of the comparison. Figures 8–10 show
H1;2;3 at specific momentum transfers t (−0.5 and
−10 GeV2) and different skewnesses ξ (0, −0.2, −0.4,
and −0.6). Due to the symmetry, only the 0 < x < 1 regime
is plotted in Figs. 8–10. Moreover, the two obtained
structure functions, Fu

1ðxÞ and bu1ðxÞ, are plotted in
Figs. 11 and 12, respectively.

For the charge form factorGC in Fig. 3, we found it has a
crossing point near t ¼ −3.8 GeV2. Moreover, the tend-
encies of t dependence of all three obtained FFs agree with
the previous results, such as Refs. [40,42,43]. In Table I,
other results of the LCCQMs, of the point form, of the
lattice QCD, and of the experiment measurement are also
listed for a comparison. Although the LCCQM proposed in
the present work is inspired by former ones [42,70] (for the

G
1N

V
(ξ

,t)
/G

1
(t

)

–7 –6 –5 –4 –3 –2 –1 0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t (GeV2)

(a)

G
2N

V
(ξ

,t)
/G

2
( t

)

–7 –6 –5 –4 –3 –2 –1 0
0.0

0.1

0.2

0.3

0.4

0.5

t (GeV2)

(b)

G
3N

V
(ξ

,t)
/G

3
(t

)

–7 –6 –5 –4 –3 –2 –1 0
0.0

0.2

0.4

0.6

0.8

1.0

t (GeV2)

(c)

FIG. 4. The nonvalence contributions to FFs G1, G2, and G3 at ξ ¼ −0.2 (dotted red line),−0.4 (dashed blue line), and −0.6 (dot-
dashed purple line), respectively.

(a) (b)

FIG. 5. The 3D ρþ GPD H1 at ξ ¼ 0ðaÞ and −0.4ðbÞ.
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meson vertex), Ref. [30], etc. (for the cutoff function),
different values of the model parameters, m and mR, are
adopted here. Thus, the calculated results are different from
theirs. Our calculated value of the magnetic dipole moment,

μ ¼ 2.06, is very close to the nonrelativistic value (μ ¼ 2)
[70] and to the experimental data. In addition, the estimated
mean square radius hr2i and quadrupole moment Qρ in our
calculation are also compatible with other calculations. It is

(a) (b)

FIG. 6. ρþ GPD H2. The same line code is used in Fig. 5.

(a) (b)

FIG. 7. ρþ GPD H3. The same line code is used in Fig. 5.

H
1I=

1
(x

,ξ
,t=

-
0.

5G
eV

2
)/

G
1

(t
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

(a)

H
1I=

1
(x

,ξ
,t=

-
10

G
eV

2
)/

G
1

(t
)

0.2 0.4 0.6 0.8 1.0

–5

–4

–3

–2

–1

0

1

2

x

(b)

0.2 0.4 0.6 0.8 1.0

FIG. 8. ρþ GPD H1ðx; ξ; tÞ at (a) t ¼ −0.5 GeV2 and −10 GeV2. The solid black, dotted red and dashed blue curves stand for the H1

with ξ ¼ 0;−0.2; and − 0.4, respectively. The dotted-dashed purple curve in (b) is for ξ ¼ −0.6 The vertical dashed lines on the x axis
represent x ¼ jξj.

ρ MESON UNPOLARIZED GENERALIZED PARTON … PHYSICAL REVIEW D 96, 036019 (2017)

036019-9



expected that the future measurements for the ρ meson
radius and quadrupole moment may provide a test for
different model calculations.
The Lorentz invariance requires that the FFs Gi in Eq (5)

are frame independent, since the integration over x removes
the influence of different light-cone direction n and there-
fore the integral remains ξ independent. However, it is still
interesting to investigate the nonvalence contribution (at
ξ ≠ 0) to Gi. As one can see from Fig. 4, for all three FFs,
the valence contributions are dominant in small skewness

jξj, and the percentage of the nonvalence contributions
increases as jξj does, which is same as the pion case [17].
As jtj increases, the nonvalence contribution in G1

increases, while those in G2 and G3 go oppositely.
Especially for G2, the decrease is very distinct. It is clearly
illustrated in Fig. 9(b) for the GPDH2 at t ¼ −10 GeV2. In
contrast, in the pion case [17], the nonvalence contribution
to the pion form factor is especially large in the large jξj and
small jtj region. In all three ρ FFs Gi, we find that the sum
of the numerical result of the valence and nonvalence

H
2I =

1
(x

,ξ
,t=

-
0.

5G
eV

2
)/

G
2

(t
)

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

(a)

H
2I=

1
(x

,ξ
,t=

-
10

G
eV

2
)/

G
2

(t
)

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

x

(b)

FIG. 9. ρþ GPD H2. The same line code is used in Fig. 8.

H
3I=

1
( x

,ξ
,t=

–
0.

5G
eV

2
)/

G
3

(t
)

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

(a)

H
3I=

1
(x

,ξ
,t =

–1
0G

eV
2

)/
G

3
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

(b)

FIG. 10. ρþ GPD H3. The same line code is used in Fig. 8.

F
1u
(x

)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

FIG. 11. The DIS structure function Fu
1 .

b 1u
(x

) 0.2 0.4 0.6 0.8 1.0

–0.20

–0.15

–0.10
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0.10

0.15

x

FIG. 12. The DIS structure function bu1 .

BAO-DONG SUN and YU-BING DONG PHYSICAL REVIEW D 96, 036019 (2017)

036019-10



contributions only has negligible variation over ξ. Thus, the
frame independence of our model calculation is well
satisfied.
It should be stressed that our results, shown in Figs. 5–

10, are continuous at x ¼ ξ (or jξj) as discussed earlier. The
ξ trajectory limits that −0.42 ≤ ξ ≤ 0 for t ¼ −0.5 GeV2,
and −0.90 ≤ ξ ≤ 0 for t ¼ −10 GeV2. As one can see from
Figs. 8(a) and 9(a), in the small jtj region, the transition
from the valence to novalence regimes in H1 and H2 is
quite smooth. However, in the large jtj region, as shown in
Figs. 8(a) and 9(b), bothH1 andH2 become sensitive to the
transition in the nonzero skewness case, while Figs. 10 and
7 show that H3 is very sensitive when x → ξ (or jξj) as
ξ ≠ 0, in both the small and large jtj regions.
We know that, in the forward limit (t → 0) and in the deep

inelastic region, Hq
1ðx; 0; 0Þ=2 corresponds to the single

flavor structure function Fq
1ðxÞ and Hq

5ðx; 0; 0Þ corresponds
to the structure function bq1ðxÞ. The two obtained functions
Fu
1 and bu1 are plotted in Figs. 11 and 12, respectively. Our

result for Fu
1 has a crossing near x ¼ 0, which is beyond the

expectation, since as x → 0; Fu
1 should decrease to zero

smoothly. This may be due to the fact that the contribution of
the gluon GPDs becomes more important in the small-x
regime [2], which is beyond the scope of the present
calculation. As for bu1ðxÞ or more general Hu

5ðx; ξ; tÞ, the
sum rules Eq. (6) requires the integral over x vanishes for any
ξ and t. Our numerical result holds the sum rule for
Hu

4 quiet well, but for Hu
5, the integral deviates from zero

by, at most, ∼6.5% [with respect to GCð0Þ ¼ 1] when
−7 GeV2 ≤ t ≤ 0. The violation of sum rules ofH4 and H5

is also encountered in the deuteron case, such as the
numerical model in Ref. [25]. In addition, the symmetry
around x ∼ 1=2 preserves approximately for both Fu

1ðxÞ and
bu1ðxÞ in our phenomenological model calculation. This
symmetry conforms to the isospin and crossing symmetries,
which reduces uρþðxÞ ¼ d̄ρþð1 − xÞ.

V. QCD EVOLUTION

It is known that the low-energy chiral quark model
provides the initial conditions for the QCD evolution. The
present work assumes that the valence quarks carry all the
momentum at a factorization scale Q0. To compare our
result with the lattice calculation, the evolution is needed.
As far as we know, Ref. [47] is the only one lattice QCD
calculation for the moments of the unpolarized ρ meson,
which is at the scale Q ¼ 2.4 GeV with quenched approxi-
mation. Its results are supported by the latter QCD sum rule
calculation in Ref. [48]. The leading order (LO) DGLAP
evolution for the moments of the single flavor structure
function Fu

1ðxÞ reads

Vu
nðQÞ

Vu
nðQ0Þ

¼
�
αðQÞ
αðQ0Þ

�
γð0Þn =ð2β0Þ

; ð40Þ

where the valence-quark momentum fractions Vu
n ¼

Mnþ1½Hu
1ðx; 0; 0Þ� ¼ 2Mnþ1½Fu

1ðxÞ� ∼ anþ1 and the run-
ning coupling constant is

αðQÞ ¼ 4π

β0 logðQ2=Λ2
QCDÞ

; ð41Þ

where β0 ¼ 11Nc=3 − 2Nf=3 with Nc ¼ Nf ¼ 3 and

ΛQCD ¼ 0.226 GeV ð42Þ

being employed [29,63]. The percentage of the ρ total
momentum carried by the valence quarks is V1 ¼ Vu

1 þ Vd̄
1 .

In Ref. [47], it was found that Vq
1ðQ ¼ 2.4 GeVÞ ¼

0.33ð2Þ and therefore V1 is about 70%. At the quark
model point Q0, i.e. the model factorization scale, V1ðQ0Þ
turns out to be

V1ðQ0Þ ¼ 1; G1ðQ0Þ þ S1ðQ0Þ ¼ 0; ð43Þ

from the downward LO DGLAP evolution. In the above
equation, G1ðQÞ and S1ðQÞ are the gluon and sea momen-
tum fractions, respectively. Thus, quark model point Q0 is

Q0 ¼ 528þ77
−62MeV: ð44Þ

The error bars come from the uncertainty in lattice result for
Vq
1 . This is a rather low scale; however, the typical

expansion parameter αðQ0Þ=ð2πÞ ¼ 0.131þ0.018
−0.023 makes

the perturbation theory meaningful. It should be mentioned
that our numerical result for V1 is 1.02, which diverges
from unity by 2%. At the scale Q ¼ 2.4 GeV, the results
for V1;2;3 (or a2;3;4) and d2;3;4 of Ref. [47] are

Vu
1 ¼ 0.33ð2Þ; Vu

2 ¼ 0.17ð5Þ; Vu
3 ¼ 0.06ð4Þ;

ð45Þ

d2 ¼ 0.29þ22
−23 ; d3 ¼ −0.001ð15Þ; d4 ¼ −0.01ð6Þ:

ð46Þ

After the LO DGLAP evolution to the lattice scale, our
model predicts

Vu
1 ¼ 0.34ð2Þ; Vu

2 ¼ 0.15ð1Þ; Vu
3 ¼ 0.08ð1Þ;

ð47Þ

d2 ¼ 0.044ð3Þ; d3 ¼ 0.048ð5Þ; d4 ¼ 0.039ð5Þ;
ð48Þ

where the error bars came from the uncertainty of the
predicted scale Q0 in Eq. (44). As one can see, except for
d2, the lowest moments of bq1ðxÞ, our results agree well with
the lattice calculations. However, it should be emphasized
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that Ref. [47] concluded their d2 value being “surprisingly”
large at the scale of Q ¼ 2.4 GeV, since bq1ðxÞ should
vanish if the ρ meson is in a pure 3S1 state. We believe that
our estimated smaller value for d2 is more reasonable since
only the 3S1-wave coupling is taken into account in the
present calculation and the 3D1 admixture is thought to be
small (∼1%) as mentioned earlier.

VI. SUMMARY AND CONCLUSIONS

In the present work, we perform a calculation for the ρ
meson unpolarized GPDs by employing a light-cone
constituent quark model and using the isospin combination
[29,63]. The smeared ρ − qq̄ meson vertex, which repre-
sents the nonperturbative QCD effect, is adopted following
Ref. [42] but using the symmetric loop momentum con-
vention in order to satisfy the isospin symmetry. The three ρ
meson FFs and some other low-energy observables are
calculated. Our results are compatible with the previous
calculations. By considering the sum rules of GPDs, the
unpolarized DIS structure functions have also been esti-
mated, and the symmetric distribution is basically main-
tained in our numerical calculation. This feature reflects the
isospin and crossing symmetries. At x ¼ ξ (or jξj) where
the DGLAP and ERBL regimes meet, GPDs in our
calculation are continuous, as required by the consistency
of factorization at leading twist [2]. After the QCD
evolution, the model predictions for the moments of

structure functions are compared with the lattice calcula-
tion. The obtained factorization scaleQ0 is a rather low one
in this work. However, the corresponding typical expansion
parameter is still small enough to make the perturbative
calculation meaningful. It is encouraging that all the first
three-order moments in our calculation are compatible with
the lattice calculation at the same scale ratio. The present
model can be also applied for the polarized GPDs of the ρ
meson, and such a calculation is in a progress. Moreover, a
calculation for the deuteron GPDs is also expected in the
future.
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APPENDIX EXTRACTING THE
UNPOLARIZED GPDs

The following is the method to extract the unpolarized
GPDs Hi. First, the loop integral, Eq. (29), after excluding
the two polarization vectors ϵμ and ϵ0�ν, is

Vu;μνðx; ξ; tÞ ¼ M2

f2ρ

1

2ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp0ωp

p
Z

d4k
ð2πÞ4 δ½xP

þ − kþ�

× ð−ÞTr
�

{ð=k − =PþmÞ
ðk − PÞ2 −m2 þ {ϵ

γν
{ð=kþ =Δ

2
þmÞ

ðkþ Δ
2
Þ2 −m2 þ {ϵ

=n
{ð=k − =Δ

2
þmÞ

ðk − Δ
2
Þ2 −m2 þ {ϵ

γμ
�

×
c

½ðk − PÞ2 −m2
R þ {ϵ�½ðkþ Δ

2
Þ2 −m2

R þ {ϵ� ×
c

½ðk − PÞ2 −m2
R þ {ϵ�½ðk − Δ

2
Þ2 −m2

R þ {ϵ�

¼ −gμνHu
1 þ

nμPν þ Pμnν

n · P
Hu

2 −
2PμPν

M2
Hu

3 þ
nμPν − Pμnν

n · P
Hu

4 þ
�
M2nμnν

ðn · PÞ2 þ
1

3
gμν

�
Hu

5: ðA1Þ

Then, by contracting with the five tensors, one gets five independent equations as

0
BBBBBB@

gμv
nμnν
nμPν

nνPμ

PμPν

1
CCCCCCA

· Vu;μν ¼

0
BBBBBBBB@

−4 2 − 2P2

M2 0 4
3

0 0 − 2ðn·PÞ2
M2 0 0

−ðn · PÞ n · P − 2ðn·PÞP2

M2 −ðn · PÞ n·P
3

−ðn · PÞ n · P − 2ðn·PÞP2

M2 n · P n·P
3

−P2 2P2 − 2P4

M2 0 M2 þ P2

3

1
CCCCCCCCA

·

0
BBBBBB@

Hu
1

Hu
2

Hu
3

Hu
4

Hu
5

1
CCCCCCA
: ðA2Þ

Finally, the explicit expressions for GPDs are obtained:
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0
BBBBBB@

Hu
1

Hu
2

Hu
3

Hu
4

Hu
5

1
CCCCCCA

¼

0
BBBBBBBBBB@

1
6
ðP2

M2 − 3Þ P2ðP2−M2Þ
2M2ðn·PÞ2

M2−P2

2M2ðn·PÞ
M2−P2

2M2ðn·PÞ
1

3M2

− 1
2

− 3P2

2ðn·PÞ2
1
n·P

1
n·P 0

0 − M2

2ðn·PÞ2 0 0 0

0 0 − 1
2ðn·PÞ

1
2ðn·PÞ 0
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