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Motivated by the claimed possibility of a large contribution of the first radial excitation of theDð�Þ to the
B semileptonic decay into charmed mesons, also invoked to solve the “1=2 vs 3=2 semileptonic puzzle,”we
discuss the transitions to heavy-light radial excitations by a heavy b → c quark current. We first consider a
HQET sum rule, which provides a bound on the slopes of Isgur-Wise functions, which we then calculate in
the Bakamjian-Thomas framework, which both guaranties covariance in the heavy quark limit and satisfies
a set of HQET sum rules. We observe a remarkable property that for a large variety of wave functions, the
transition to the first radial excitation is very small, while the transition matrix element to the second radial
excitation is large and dominant in saturating the HQET sum rule. This is opposite to what is found in
nonrelativistic models, where the transition to the first radial excitation dominates the sum rule. The relative
magnitude of the transition to the second excitation appears to be weakly dependent on the dynamical scale
(radius of the bound states), and the same holds true for the slope of the elastic transition. These features
could be tested in the heavy-mass limit of lattice QCD. This pattern is shown to be related to the general
structure of the Bakamjian-Thomas model; it is independent of the spin structure of the approach and
derives mainly from the Lorentz transformation of the spatial wave function, a feature often disregarded in
quark models.
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I. INTRODUCTION

A. Motivation

Large discrepancies have been observed when compar-
ing theoretical predictions for BðB → D��ðL ¼ 1ÞlνÞ with
the data [1].
Radial excitations DðnÞðL ¼ 0Þ could constitute a back-

ground to B → D��ðL ¼ 1Þlν, since they too can decay
to Dπ or Dππ. A large contribution from the first one has
been invoked to explain the “1=2 vs 3=2 puzzle” [2], using
both a QCD sum rule approach and a quark model result
from Ref. [3]. The resulting rate is BðB → Dð�Þ0lνÞ≈
Oð1%Þ. Note that only the first radial excitation can be
relevant in the semileptonic decay, because the excitation
energy ΔE is otherwise too large for a decay rate to be
sizeable.
From now on, we shall denote by d

dw ξ
ðnÞðwÞjw¼1 ≡

d
dw ξ

ðnÞð1Þ the derivative of the Isgur-Wise (IW) function
at zero recoil, for a transition to the n ¼ 1; 2;… radial
excitation (n ¼ 0 being the ground state). The value
obtained in Ref. [3], d

dw ξ
ðn¼1Þð1Þ ¼ 2.2, indeed allows

for a large BðB → D0lνÞ.

B. Methods to evaluate transition amplitudes

It is useful to examine whether or not various models or
approaches in the heavy-quark limit yield the same order of

magnitude for d
dw ξ

ðn¼1Þð1Þ.
(1) HQET sum rules.

There exist a large number of heavy-quark
effective theory (HQET) sum rules which severely
constrain the properties of the IW functions for
transitions to excited states, including the radial
ones. They derive from the operator product ex-
pansion (OPE), and they provide bounds that can
also be established in the Lorentz-group approach to
IW functions [4]. They can be used to check the
consistency of concrete calculations and models in
the infinite-mass limit, and we shall use this pos-
sibility for the present problem, cf. Sec. II. The sum
rule that we have established in Ref. [5] is especially
relevant here, as it provides an explicit bound to the
slopes of IW functions.

(2) Lattice QCD approach.
This is, in principle, the only method of calcu-

lation based on first theory principles, and it has
been successfully used to study many hadronic
transitions. However, it is not easy to use lattices
in the present problem. Studying masses of radial
excitations is already difficult, as standard methods
give reliable estimates of the lowest state of a given
JP, and sophisticated methods should be used to
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extract the higher states contributing to the correla-
tion functions. Extracting the inelastic transition
matrix elements is even more challenging.2 Despite
these difficulties, it is nowadays possible to perform
trustable computations of hadronic matrix elements
involving the first excited states, such as the decay
constants, hadron-to-hadron transitions via the light
quark current in the heavy quark mass limit, or the
electromagnetic transitions [7]. For the transitions
through a heavy quark current, in which we are
interested in this paper, a first attempt to compute IW
functions has been made a long time ago in Ref. [8]
in the limit of infinitely heavy both b and c quarks,
by using nonrelativistic QCD (NRQCD) on the
lattice. This work was preliminary and studied only
the transition to the first radial excitation, while in
fact we also need the IW function to the second one.

(3) Lattice QCD and quark models.
Note that lattice QCD may also be useful indi-

rectly to assess the validity of the quark models for
the calculation of the IW functions that we are using
below. For instance, one can check the relevance of
potentials and wave functions by comparison with
lattice data in the heavy quark limit of QCD. This is
what we have done for the spatial distributions
of current densities in the static limit in both
approaches, or for the coupling constants corre-
sponding to integrated distributions, cf. Ref. [9].
A comparison with quark models has also been
made for the transitions to radial excitations induced
by the light quark current in the static limit
in Ref. [10].

(4) Quark models.
Although inherently approximate, the quark

model is a tool to formulate quick and definite
predictions for a large set of hadronic excited states,
and for a large range of the kinematical variables.
However, there are a large variety of quark models,
and one has to take into account both their theo-
retical soundness and their phenomenological
achievements before applying them to a given
physical situation.
(a) There are several general frameworks for treat-

ing bound states, such as the Schwinger-Dyson
and Bethe-Salpeter formalisms [11], or the
quasipotential approach of Ref. [12], which is
also at the origin of the works of Refs. [3,13],
which have been applied to a large number of
processes. Another possibility is the family of
models based on the general Bakamjian-Thomas
(BT) framework. For the latter, we have different

forms of the dynamics: the instant form, like
the one we choose below (see also Ref. [14]),
the light-front or null-plane form [15] (or,
almost equivalently, the dispersion relation ap-
proach of Ref. [16]), and the so-called point
form [17,18].

(b) Within each of these approaches, there is still a
large amount of freedom left, corresponding to
the arbitrariness of the potential or of the mass
operator or, more generally, to the interaction
kernel. This freedom can be lifted by the choice
of a general structure and shape of potentials,
and then by fixing the remaining parameters
after comparing the model’s predictions with the
spectroscopical experimental data.

(c) Although we do not deny the merits of the
other approaches, we would like to stress the
advantages of the BT framework for the present
problem. It is especially attractive in the heavy
quark limit: it is covariant, and it satisfies
Isgur-Wise scaling and a large number of HQET
sum rules which severely constrain the proper-
ties of the IW functions.3 These sum rules
do not seem to have been checked in other
approaches.
Another, rather standard, approach used to

treat heavy-light systems is based on the Dirac
equation [9,19], and is not relevant for the study
of heavy quark currents.

Furthermore, one must stress the importance of selecting
potential models (or the mass operator) by testing them
over a large range of spectroscopic states, and this is
what has been done in this model, covering a large range of
hadronic states, and it has been done with success. In that
respect, the Godfrey and Isgur (GI) spectroscopic
Hamiltonian is the most suited when working with
mesons [20].
The main conclusion of our calculations in the heavy

quark limit of the BT approach is that the slope d
dw ξ

ð1Þð1Þ is
very small, while the one to the second radial excitation,
d
dw ξ

ð2Þð1Þ, is large. This is in contrast with the nonrelativ-
istic situation.
One should emphasize, however, that the properties of

the radial excitations are usually found to be more model
dependent than those of the ground states. This is related to
the presence of nodes in the wave functions. It seems,
then, advisable to vary the wave functions within the BT
framework as much as possible and check if some
conclusions remain stable. After doing so, we conclude
that a general pattern is stable and that the transition to the
first radial excitation remains very small for confining
potentials.

2A method of choice to extract the properties of radially
excited states on the lattice is known as the generalized
eigenvalue problem (GEVP) [6].

3Admittedly, this is in contrast with the finite-mass situation,
where the good properties of the BT scheme are lost.
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II. THE HQET SUM RULE APPROACH FOR
THE ξðnÞðwÞ ISGUR-WISE FUNCTION

TO RADIAL EXCITATIONS

One particularly relevant sum rule has been obtained in
HQET concerning the IW functions for transitions from the
ground state to radial excitations [5].
We write the sum rule as a constraint for the sum of the

squared moduli of the slopes of the various radial excita-
tions, d

dw ξ
ðnÞðwÞjw¼1 ≡ d

dw ξ
ðnÞð1Þ,

X∞
n¼1

���� d
dw

ξðnÞð1Þ
����2 ¼ 5

3
σ2 −

�
4

3
ρ2 þ ρ4

�
; ð1Þ

where ρ2 ¼ − d
dw ξ

ð0Þð1Þ is the slope of the IW function, and

σ2 ¼ d2

dw2 ξð0Þð1Þ is its curvature. This sum rule gives a
bound on the squared slopes of IW functions to radial
excitations. Such a sum rule is quite analogous to the
Bjorken sum rule, and stands on the same rigor.
We stress that it is quite useful to consider models in the

infinite-mass limit, independently of the precise phenom-
enological relevance of this limit, because important QCD-
theoretical statements should be satisfied in this limit. Such
a statement is Eq. (1), the right-hand side (rhs) of which is
not a priori known. It is a combination of quantities relative
to the ground state, which should be first either evaluated
theoretically or inferred from experiment. In practice, one
finds that there is a strong cancellation between two terms
on the rhs, which leads to a rather strong model depend-
ence. One can use the sum rule of Eq. (1) in two ways:
(1) Deduce an approximate phenomenological bound

on the radial excitations.
In order to obtain a rough model-independent

bound, one can rely on the experimental values of ρ2

and σ2 by identifying ξðwÞ as the ratioGðwÞ=Gð1Þ in
B → Dlν.
Using the expansion of Ref. [21], we write4

GðwÞ
Gð1Þ ¼ 1 − ρ2Dðw − 1Þ þ 1

2

�
67ρ2D − 10

32

�
ðw − 1Þ2

þ � � � ; ð2Þ

and therefore

σ2 ¼ 67ρ2D − 10

32
: ð3Þ

Notice that the consideration of the ratioGðwÞ=Gð1Þ
amounts to neglecting the Oð1=mb;cÞ corrections at
zero recoil. However, we must keep in mind that the

calculation of Ref. [21] is done at finite mass, and
therefore we can only expect a rough equality to the
heavy quark limit for w away from 1. In spite of this
difficulty, we assume from now on that the precedent
expressions hold in the heavy quark limit.
Numerically, the experimental fit gives [22]

ρ2 ¼ ρ2D ≃ 1.19;

σ2 ≃ 2.18 ⇒
5

3
σ2 −

4

3
ρ2 − ρ4 ≃ 0.63; ð4Þ

which then implies���� d
dw

ξðnÞð1Þ
���� ≤ 0.8: ð5Þ

Notice that this is clearly below the number given
in Ref. [3], and that it does not constrain any
j d
dw ξ

ðnÞð1Þj to be very small. The magnitude of
the bound for the slope is in fact close to the
ground-state slope itself, j d

dw ξ
ð0Þð1Þj≃ 1. From this

alone, however, one cannot tell which are the large
transitions.

(2) Sum rule as a consistency condition of theoretical
estimates.
Using a given theoretical expression for ξðwÞ, one

can also infer a bound on the possible value of the
slope for radial excitations. As given below, in the
BT approach, and relying on the GI Hamiltonian as
mass operator, one finds for the bound [rhs of the
sum rule, Eq. (1)]:

5

3
σ2 −

�
4

3
ρ2 þ ρ4

�
≃ 0.22: ð6Þ

In Ref. [23], we demonstrated the general validity
of the sum rule in the BT approach, which we also
check numerically below.
The bound in Eq. (6) is now much lower than in

Eq. (5) but still much larger than the contribution we
find below, arising from the first radial excitation.
One may also wonder how one could accommodate
very small values and saturate the sum. In our model,
the answer is that the transition to the second radial
excitation is very large, providing the main part of
the sum.

III. BT RESULTS IN THE HEAVY QUARK LIMIT

We now pass on to our own calculation of IW functions
in the BT scheme.

A. General setup

We consider ξðnÞðwÞ, where w ¼ v:v0, and v (v0) stands
for the four-velocity of the initial (final) meson state. We

4Notice that in Ref. [21], the expansion parameter is
z ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi

wþ 1
p

−
ffiffiffi
2

p Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p Þ, which we translate into
expansion of GðwÞ=Gð1Þ in (w − 1).
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consider both states to be JP ¼ 0− [jP ¼ ð1=2Þ−], and by
denoting the light quark mass as m and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
as p0,

the expression reads

ξðni;nfÞðwÞ

¼ 2

1þ w

Z
d3p⃗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp:v0Þðp:vÞp
p0

mðwþ 1Þ þ p:ðvþ v0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp:vþmÞðp:v0 þmÞp
× φnf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp:v0Þ2 −m2

q ��
φni

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp:vÞ2 −m2

q �
; ð7Þ

where the radial wave functions φnðpÞ are labeled by the
excitation number n (n ¼ 0 for the ground state), and they
are normalized according to5

4π

Z
p2dpjφnðpÞj2 ¼ 1: ð8Þ

Factors of 2 have been maintained in the expression to
make manifest the normalization to 1 at w ¼ 1 for ni ¼ nf.
The first factor under the integral corresponds to the
Jacobian of the Lorentz transformation of spatial wave
functions, and the second factor corresponds to the Wigner
rotations. We shall deal below with ni ¼ 0; i.e., transitions
from the ground state.

B. Numerical results with the Godfrey-Isgur
rest-frame Hamiltonian

Let us emphasize that while using the wave functions
from the GI Hamiltonian at rest, our treatment of the
relativistic center-of-mass motion of hadrons is different
from the various treatments proposed by the Toronto group
(see, e.g., the discussion in Ref. [20]).

1. Ground-state results for slope and curvature and
evaluation of the bound (rhs of the sum rule)

One needs the ground-state IW function in order to
evaluate the bound. This means that the value of the bound
depends on the model itself, and it will not be universal.
Nevertheless, it helps in verifying the consistency of the
model calculation.
As mentioned above, the rhs of Eq. (1) is very sensitive

to the values of ρ2 and σ2, which is why one needs a
particularly safe and accurate calculation of ρ2 and σ2.
Our calculations are performed by diagonalizing the
Hamiltonian on a harmonic oscillator basis. We then study
the dependence of the results on the dimension of the basis,
from dimensions 16 to 40. The problem is especially
significant for the curvature, which involves in the inte-
grand higher-order derivatives of the IW function. We find
a reasonable stability of the results for ρ2 and σ2 if we use
formulas which minimize the order of the derivatives by

deriving both the initial and the final state. The one for
d2

dw2 ξðnÞð1Þ is too long to be presented in the main text and is

given in the Appendix. The expression for d
dw ξ

ðnÞð1Þ is
simpler. We generalize it to different initial (i) and final (f)
spatial wave functions to be applied also for transitions to
radial excitations:

d
dw

ξðni;nfÞð1Þ

¼ −4π
Z

∞

0

dp

�
1

3

d
dp

½pφfðpÞ�ðp0Þ2 d
dp

½pφiðpÞ�

þ 1

12
½pφfðpÞ�

�
8 −

4m
p0 þm

−
m2

ðp0Þ2
�
½pφiðpÞ�

�
; ð9Þ

while another expression is found below, cf. Eq. (32).
The following values are obtained with a basis of 35
elements:

ρ2 ¼ 1.0233; σ2 ¼ d2

dw2
ξð0Þð1Þ ¼ 1.5810

⇒
5

3
σ2 −

�
4

3
ρ2 þ ρ4

�
¼ 0.2236; ð10Þ

indeed small with respect to the phenomenological value
given in Eq. (5). Further enlarging the basis leads to stable
results—i.e., fully consistent with the ones quoted above.

2. Transitions to radial excitations

For the radial excitations, no similar accuracy is neces-
sary. Notice also that the signs of the derivatives are
irrelevant, since the relative phase of states is arbitrary.

(i) First radial excitation: With the GI mass operator,
the slope of the IW function to the first radial
excitation is small. We get

d
dw

ξð1Þð1Þ≃ −0.0088; ð11Þ

which leads to a negligible semileptonic branching
ratio in the heavy quark limit (see Sec. IV for a
discussion of the finite-mass case).

(ii) Second radial excitation: The second remarkable
fact is that the slope of the IW function to the second
radial excitation is large,

d
dw

ξð2Þð1Þ≃ 0.4533: ð12Þ

Its contribution to the semileptonic rate remains
small, with respect to the ground state, due to the
phase-space suppression. It should be, however,
less suppressed in the related but simpler mode,
B0 → D��π, with both D�� and π being electrically
charged.5For an S-wave state, we have

R
d3p → 4π

R
p2dp.
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(iii) Higher radial excitations n > 2: The slopes of IW
functions to higher radial excitations are again very
small, even if not as small as the result given in
Eq. (11). Notice also that they do not decrease very
fast for n > 3. We obtain

d
dw

ξð3Þð1Þ≃ −0.071;
d
dw

ξð4Þð1Þ≃þ0.087:

ð13Þ

3. The saturation of the sum rule
with the GI mass operator

The above estimates of the derivatives of IW functions to
radial excitations at zero recoil agree well with the expected
sum of their moduli squared. In our BT approach with GI
Hamiltonian, the lhs of Eq. (1) is found to be 0.2236,
cf. Eq. (10). Since j d

dw ξ
ð2Þð1Þj2 ¼ 0.2055, the second radial

excitation makes about 90% of this sum, and the saturation
is almost complete with a few more excitations beyond the
second one:

Xn¼6

n¼3

���� d
dw

ξðnÞð1Þ
����2 ≃ 0.0149: ð14Þ

The whole set n ¼ 1;…; 6 gives a sum 0.2205, to be
compared with 0.2236. By further enlarging the basis of
wave functions, the same sum becomes 0.2216; thus the
saturation becomes even better, and one in fact may worry
that the inclusion of further excitations might violate the
bound. Indeed, for a fixed dimension of the basis of wave
functions, and by increasing the number of terms in the
sum, the sum, after decreasing with the degree of excita-
tion, reaches a minimum, and then increases again when the
excitation number approaches the dimension of the basis.
We believe this to be an artifact due to the use of a finite
dimension basis, as well as the limitation of precision in the
numerical calculation.

C. Stability with respect to variation of the wave
functions: Two other examples

Based on our previous experience, the GI mass operator
should be preferred to other possible choices because of its
success when confronted with experimental results. One
should, however, remain cautious, as the above results
involve radial excitations and, by using different sets of
(reasonable) wave functions within the BT approach, check
the robustness of the two important conclusions drawn so,
namely (i) the smallness of the slope of the IW function to
the first radial excitation, and (ii) the large size of the slope
of the IW function to the second radial excitation.
We have computed the IW functions with the GI

mass operator by expanding the wave function in two
different basis sets: the harmonic oscillator basis and the
pseudo-Coulombic basis. Of course, we get the same IW

function in both bases to a very good approximation, as we
should. On the other hand, the main contribution to the IW
function comes in both sets from the n ¼ 0 (no radial
excitation) part.
To test the generality of the pattern of the transitions to

radial excitations that we have found for the GI wave
function, we now use the BTexpression for the IW function
with wave functions that are different from the GI ones. As
simple exercises, we take the harmonic oscillator wave
functions and the pseudo-Coulombic ones. We realize that
we obtain the same pattern in both cases as in the GI model.

1. Harmonic oscillator wave functions

The simplest check of the above conclusion can be made
by using the basis of harmonic oscillator (HO) wave
functions. For β ¼ 0.5 GeV, close to the optimal value
to describe the ground state (β ¼ 0.57 GeV), we get

(i) Slopes of IW functions:

d
dw

ξð0Þð1Þ ¼ −ρ2 ¼ −1.2367;

d
dw

ξð1Þð1Þ≃ 0.049;

d
dw

ξð2Þð1Þ≃ 0.928;

d
dw

ξð3Þð1Þ≃ −0.010;

d
dw

ξð4Þð1Þ≃ −0.007: ð15Þ

(ii) Curvature of the ground state:

σ2 ¼ d2

dw2
ξð0Þð1Þ≃ 2.431: ð16Þ

(iii) Saturation of the sum rule [Eq. (1)] in the HO basis:

r:h:s:
5

3
σ2 −

�
4

3
ρ2 þ ρ4

�
≃ 0.873;

l:h:s:
X8
n¼1

���� d
dw

ξðnÞð1Þ
����2 ≃ 0.865; ð17Þ

which is quite satisfactory.
Notice in particular that the dominance of the second

radial excitation, already found for the GI mass operator, is
even more pronounced in this case.

2. Pseudo-Coulombic wave functions

The pseudo-Coulombic (PC) wave functions form an
orthonormal set that it is particularly well suited for
semirelativistic Hamiltonians with square-root kinetic
energy,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, and to relativistic equations with a

linear confining potential [24]. A common feature they
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share with Coulombic wave functions is an exponential
falloff in r, but a major difference is that the coefficient in
the exponential is the same for all the elements of the basis,
and there is no continuous spectrum. In that latter sense, it
is similar in structure to the HO basis, with a general
exponential factor instead of a Gaussian one. We have
indeed found that the ground-state wave function for the
GI mass operator is exponential in r, which roughly
corresponds to the IW function of shape ð 2

wþ1
Þ2 [25].

The effect of the mass is small, and the dipole form is
exact for m ¼ 0. More precisely, one finds that numerically
ψ0ðrÞ ∝ expð−0.75rÞ, with r in GeV−1.
The PC set can be written in a simple way in the r-space:

ψðl; n; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8n!
ðnþ lþ 2Þ!

s
αð2αrÞl expð−αrÞL2lþ2

n ð2αrÞ;

ð18Þ
where, again, n labels the radial quantum number, and Lm

n
stands for the Laguerre polynomial. As an example, for
α ¼ 1 GeV, we obtain

(i) Slopes of IW functions:

d
dw

ξð0Þð1Þ ¼ −ρ2 ¼ −0.980;

d
dw

ξð1Þð1Þ≃ 0.062;

d
dw

ξð2Þð1Þ≃ 0.382;

d
dw

ξð3Þð1Þ≃ −0.006;

d
dw

ξð4Þð1Þ≃ −0.002; ð19Þ

thus very close to the results obtained by using the
GI wave functions.

(ii) Curvature of the ground state:

σ2 ¼ d2

dw2
ξð0Þð1Þ≃ 1.452: ð20Þ

(iii) Saturation of the sum rule [Eq. (1)] in the PC basis:

r:h:s:
5

3
σ2 −

�
4

3
ρ2 þ ρ4

�
≃ 0.150;

l:h:s:
X8
n¼1

���� d
dw

ξðnÞð1Þ
����2 ≃ 0.150; ð21Þ

which is even better than in the previous cases.

D. A counterexample: The set of Coulombic
wave functions

If we use the Coulombic wave functions and choose
α¼0.75GeV in order to get a slope for the ground-state IW
function similar to the previous sets, we obtain

d
dw

ξð0Þð1Þ ¼ −ρ2 ¼ −0.978;

d
dw

ξð1Þð1Þ≃ 0.200;

d
dw

ξð2Þð1Þ≃ 0.018: ð22Þ

Although the results for the ground state are very similar,
the pattern of slopes of IW functions to the radial
excitations is completely different. In this case, the first
radial excitation actually dominates, while the second and
higher ones are very small.
The natural interpretation of this qualitative difference

is that the Coulombic wave functions do not correspond to
confining potential, unlike the other choices discussed
above.
For completeness, we check the sum rule [Eq. (1)] also in

this case. We get

σ2 ≃ 1.453 ⇒
5

3
σ2 −

�
4

3
ρ2 þ ρ4

�
≃ 0.160; ð23Þ

and the saturation is difficult to achieve: the contribution
corresponding to the first radial excitation, although now
dominant, is very far from saturating the bound.
In fact, the sum rule does not make sense due to the

unconfined continuum spectrum. Indeed, we are studying a
sum rule of the heavy quark limit of QCD at the leading
order, and HQET assumes and includes the confinement
mechanism. Due to confinement, the light cloud is con-
strained to follow the heavy quark of four-velocity v with
the same four-velocity.

E. Conclusion on the various sets of wave functions
with confined spectrum

From the above results, one conclusion appears to be
independent of the details. The three cases corresponding to
a confining potential, with a discrete spectrum rising to
infinity, lead to the same pattern of slopes d

dw ξ
ðnÞð1Þ,

(n ≥ 1), strongly dominated by the one corresponding to
the second radial excitation, with all the others being very
small. This feature deserves an explanation, which we
propose below, cf. Sec. III G.
Let us note that this extreme dominance of the second

radial excitation seems specific to the relativistic BT
approach. It is not apparently present in the approach of
Ref. [3], which rather predicts a large transition to the first
excitation with a similar potential.

F. Contrast with nonrelativistic calculations

Let us now stress that the observed effect is rela-
tivistic. The opposite happens in the nonrelativistic (NR)
calculation, in which the slope of the IW function to the
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first radial excitation dominates the sum. To illustrate this
important point, we use a set of HO wave functions where
all excitations are suppressed except for the first one. The
NR approximation can be obtained by taking p ≪ m in the
BT expressions (9). We use the same parameter for
numerical evaluation, β ¼ 0.5 GeV, and a large difference
already appears in ρ2, namely

ρ2NR ¼ 0.097 vs ρ2rel ≃ 1.237; ð24Þ

where the index “rel” indicates the full relativistic result
(15). Similar comparison of the NR results with those
obtained in the BT scheme gives

d
dw

ξð1Þð1ÞNR ≃ −0.08;
d
dw

ξð1Þð1ÞBT ≃ 0.05;

d
dw

ξð2Þð1ÞNR ≃ 0;
d
dw

ξð2Þð1ÞBT ≃ 0.93: ð25Þ

In other words, the relativistic effects are huge, which
is expected, since one is in a very relativistic regime
for the light quark, namely β=m≳ 1. Indeed, with
φ ∝ expð−β2r2=2Þ, β ¼ 0.57 GeV and m ¼ 0.22 GeV,
one obtains β=m ∈ ð2; 3Þ.
Relativistic effects are not always so large for all

physical quantities. The above example is specific to the
slopes. Moreover, it must be recalled that to perform a
fair comparison between nonrelativistic and relativistic
approaches, it would be convenient to rescale the param-
eters of our NR version so as to describe the same spectrum.
For instance, this procedure would induce a change in the
mass of the quark, which is usually found around 0.33 GeV
in the NR case, instead of 0.22 GeV for the GI mass
operator. The inverse radius β would have to be changed
from β ¼ 0.5 GeV to a smaller value, depending on the
potential. In fact, one can get an idea of the final result for
the ρ2NR from the results tabulated in Ref. [25]. The so-
called ISGW model [26], using a Schrödinger wave
equation andm≃ 0.3 GeV, leads to a reasonable spectrum,
but it yields ρ2 ≃ 0.33 if calculated in the NR case [25].
That value is much larger than the one in Eq. (24) but still
much smaller than the required ρ2 ≃ 1. Only the relativistic
corrections of the BT treatment of the center of motion can
fill the gap. In that way, the ISGW spectroscopic model
results in ρ2 ≃ 1.28 [25].
In any case, one thing remains clear: whatever the

parameters of the NR model with HO wave functions,
the slope at the origin for the transition to the first radial
excitation is the only one which does not vanish, in
complete contrast with the relativistic case. This can also
be seen from the expression for the derivative of the IW
function in the NR case, d

dw ξ
ðni;nfÞð1Þ ¼ −ð1=3Þhfjr2jii.

Since a HO radial excitation wave function (n > 0) is a
polynomial times the ground-state one, with degree 2n, it is

clear that the state r2jii is a linear superposition of the
ground state and the first radial excitation, and it is
orthogonal to the states with n > 1.
Therefore, there is something qualitatively new in the

relativistic calculation—i.e., a dominant higher excitation
n ¼ 2. We now try to interpret this result.

G. Relation between the relativistic corrections
for center-of-mass motion and the pattern

of transitions to radial excitations

One can find a simple relation between this remarkable
pattern of transitions to radial excitations and the structure
of relativistic corrections for center-of-mass motion of the
hadrons in the BT approach.
Let us recall that the relativistic effect in our calculation

is a compound of several effects. In the case of the slope ρ2,
they arise from the following [25,27]:

(i) Relativistic effects in the mass operator. The rela-
tivistic GI mass operator, describing the states at rest,
with a relativistic kinetic energy and other relativistic
effects affecting the potential, are contained in the
internal wave functions and in the hadron masses
which are used in a concrete calculation.

(ii) The effects coming from the boost of the states from
their rest frame. These are the specific contributions
from the BT approach. They are displayed explicitly
in the expression for ρ2 in terms of the internal wave
functions. They include both the purely spatial
effects (as would be present for scalar quarks) and
the quark spin effects (e.g., Wigner rotations).

We decompose the effects of center-of-mass motion into
contributions having increasing powers of the internal
velocity ðv=cÞn, where v=c represents, say, hki=m, with
k being a generic internal momentum. We further reexpress
these effects in a form in which the derivatives with respect
to internal momentum always affect only the initial ground-
state wave function φi. In other words, we write the slope as
a sum of matrix elements over the internal wave functions
hfjOjii, O being a local operator in internal momentum
space. This is different from the former choice, which was
conceived for numerical efficiency. We are now motivated
by the need of a transparent interpretation of the various
contributions.
Starting from the expression for ρ2 given in Ref. [27],

we have

d
dw

ξðnÞð1Þ ¼ −
�
n

����
�
k0zþ zk0

2

�
2
����0
	
−
1

4
δ0;n

−
1

6

�
n

����
�

k2

k0 þm

�
2
����0
	
; ð26Þ

where the average is over internal wave functions and z is
an arbitrary direction. The matrix element exhibits rota-
tional symmetry, and k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. The last two terms
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come from the spin of the active heavy quark and from the
spin of the light spectator quark (Wigner rotation).6 The
first term,

−
�
n

����
�
k0zþ zk0

2

�
2
����0
	
; ð27Þ

is then the purely spatial effect, which would be present
already for scalar quarks. It comes from the Lorentz
transformation of the spatial internal wave function. It
can be reexpressed in terms of derivatives with respect to
the momentum. Using rotational symmetry and denoting
jk⃗j ¼ k, one can write

−
�
n

����
�
k0zþ zk0

2

�
2
����0
	

¼ 1

3
m2

Z
dk⃗φfðk⃗Þ�

�
2

k
d
dk

þ d2

dk2

�
φiðk⃗Þ

þ 1

3

Z
dk⃗k2φfðk⃗Þ�

�
4

k
d
dk

þ d2

dk2

�
φiðk⃗Þ

þ 1

2

Z
dk⃗φfðk⃗Þ�φiðk⃗Þ −

1

12

Z
dk⃗

k2

k20
φfðk⃗Þ�φiðk⃗Þ: ð28Þ

Let us count the powers in v=c in various terms of Eq. (26), and first in Eq. (28). We are not performing an expansion; we are
just estimating the order of various terms whose sum represents the exact result.
The first line in Eq. (28) is the lowest order—i.e., the nonrelativistic expression, of order ðv=cÞ−2. The quantity under the

integral is obviously Oðk−2Þ:

1

3
m2

Z
dk⃗φfðk⃗Þ�

�
2

k
d
dk

þ d2

dk2

�
φiðk⃗Þ: ð29Þ

We now consider relativistic effects, which are of higher order in v=c: of the order ðv=cÞ0,

1

3

Z
dk⃗k2φfðk⃗Þ�

�
4

k
d
dk

þ d2

dk2

�
φiðk⃗Þ þ

1

2

Z
dk⃗φfðk⃗Þ�φiðk⃗Þ; ð30Þ

and of the order ðv=cÞ2,

−
1

12

Z
dk⃗

k2

k20
φfðk⃗Þ�φiðk⃗Þ: ð31Þ

These correspond to the effect of the Lorentz transformation on the spatial wave functions φi;fðk⃗Þ.
For spin-1=2 quarks, the result given in Eq. (26) includes two additional terms coming from (a) the free heavy quark

current, and (b) the light quark Wigner rotations (the last two terms). One then ends up with

d
dw

ξðni;nfÞð1Þ ¼ 1

3
m2

Z
dk⃗φfðk⃗Þ�

�
2

k
d
dk

þ d2

dk2

�
φiðk⃗Þ

þ 1

3

Z
dk⃗k2φfðk⃗Þ�

�
4

k
d
dk

þ d2

dk2

�
φiðk⃗Þ þ

1

4

Z
dk⃗φfðk⃗Þ�φiðk⃗Þ

−
1

12

Z
dk⃗

k2

k20
φfðk⃗Þ�φiðk⃗Þ −

1

6

Z
dk⃗

k2

ðmq þ k0Þ2
φfðk⃗Þ�φiðk⃗Þ: ð32Þ

The coefficient of the term in
R
dk⃗φfðk⃗Þ�φiðk⃗Þ has changed from 1=2 to 1=4 by including the contribution −1=4

of the heavy quark coming from the current matrix element ūs0
1
γμus1 , and the Wigner rotation effect is the last term

in Eq. (32).

6We consider the vector current to define ξ, the matrix element of j0 with nonrelativistic normalization, and a factor for the active
quark ūs0

1
γ0us1 with nonrelativistic normalization of spinors u†u ¼ 1. The final ξ is, of course, independent of the choice of the current.
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The three lines of Eq. (32) now represent, respectively,
the NR contribution O½ðv=cÞ−2� (I), the O½ðv=cÞ0� terms
(II), and a O½ðv=cÞ2� relativistic correction (III). To discuss
the magnitude of the three contributions, one may for
instance use a set of HO wave functions. It appears, then,
that I is of Oðm2R2Þ. II is most remarkably independent of
m and of R2. In other words, II is scale independent; it
does not depend on the size of the bound state. III is
O½1=ðm2R2Þ�. In a nonrelativistic system m2R2 ≫ 1,
implying a hierarchy I ≫ II ≫ III. With the realistic
parameters, m2R2 < 1, one finds quite a different pattern
with the following striking results for a large range of
m2R2, m ¼ 0.22, 1 < R2 < 10, a range which includes the
realistic values:

(i) The total result for d
dw ξ

ðnÞð1Þ is close to 1 for n ¼ 0,
2, and small for n ¼ 1 or n > 2.

(ii) II, when different from zero, is by far the dominant
term (i.e., for n ¼ 0, 2), the NR contribution I being
reasonably small.

(iii) For the elastic transition, the value of the term II
is fixed to −1; i.e., it is independent of R2 or
β2 ¼ 1=R2. For the transition to the first radial
excitation, instead, it is always 0, as well as for
the transitions to n > 2. Finally, for n ¼ 2, it is
always ≃0.913.

(iv) On the whole, the spin effects are rather small, and
the total result is close to what it would be for scalar
quarks, and its main contribution is the term coming
from the Lorentz transformation of the spatial part of
the wave function, term II.

Qualitatively, these conclusions obtained with the set of
HO wave functions extend to the Godfrey-Isgur system of
wave functions.
Let us understand a little more about the result for the

scale-independent term II. Leaving aside 1
4

R
dk⃗φfðk⃗Þ�φiðk⃗Þ,

which gives no transition, one sees that for a HO ground
state for initial state,

1

3
k2
�
4

k
d
dk

þ d2

dk2

�
φiðk⃗Þ ð33Þ

is an exact linear superposition of the n ¼ 0 and n ¼ 2 HO
states with algebraic coefficients:

1

3
k2
�
4

k
d
dk

þ d2

dk2

�
φ0ðk⃗Þ ¼

ffiffiffi
5

6

r
φ2ðk⃗Þ −

5

4
φ0ðk⃗Þ: ð34Þ

The contribution of II to the slope of the ground state
d
dw ξ

ð0Þð1Þ is

−
1

3
×
15

4
þ 1

4
¼ −1; ð35Þ

as anticipated above, while its contribution to d
dw ξ

ð2Þð1Þ is

ffiffiffi
5

6

r
≃ 0.913; ð36Þ

and it does not contribute to other radial excitations. These
numbers are already not far from the total results given in
Sec. III A 1, which include spin. This is also the general
pattern that we find with GI or pseudo-Coulombic wave
functions.
The general conclusion is then that near w ¼ 1, the term

II, which corresponds to the Lorentz transformation of the
spatial wave function from the rest frame, contributes
almost entirely to the ground state and to the second radial
excitation, with large and comparable values of the slope
≃1, while the slope of the transition to any other radial
excitation, and consequently the transition itself, is very
small. This feature of the Bakamjian-Thomas model in the
heavy quark limit is apparently not found in other works.
However, in principle, it is a consequence of a very general
phenomenon, which is the Lorentz transformation of the
spatial wave function.

IV. HOW TO CHECK THE BT PREDICTION ON
THE PATTERN OF RADIAL EXCITATIONS

A. Comparisons at mQ → ∞ with lattice calculations

As we have stressed, we have only definite covariant
predictions for the mQ → ∞ limit of the current matrix
elements in the BT approach, and this is why we stuck to
this limit.7 Our mQ → ∞ discussion is valuable in itself,
because (a) it can be confronted with other statements made
in this limit, as we have done above for the sum rules and
other models; and (b) in principle, it could be also checked
by lattice QCD calculations made directly in the mQ → ∞
limit, as has been done for the transitions mediated by a
light quark current [10,28] and previously for heavy current
transitions to L ¼ 1 excitations [29], or one could compare
to calculations performed at very large quark masses.
The case of heavy currents poses specific problems in the

exact infinite heavy quark mass limit, since a finite w ≠ 1
corresponds to infinite momentum transfer. On the lattice,
one can then reach only w ¼ 1, where the IW function for
the inelastic transition vanishes. A similar problem was
encountered in transitions to L ¼ 1. One way to get around
that difficulty is to use a derivative current operator that
does not vanish at w ¼ 1, factorizing a trivial factor ∝
ðw − 1Þ (see reference in Sec. I B). This derivative expres-
sion is obtained due to the identities between the coef-
ficients of the subleading corrections in 1=mb;c of current

7By “current matrix elements,” we always mean that the
current operator is simply the sum of standard currents over
all the quarks, in the spirit of the old additivity or “impulse”
approximations. Otherwise, one could always maintain covari-
ance by the introduction of two-body current operators. We thank
B. Keister for stressing that point.
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type (which can indeed be expressed as covariant deriv-
atives) and the leading IW function.
A similar solution could perhaps be devised for the

transitions to the radially excited states, by a manipulation
of the identities found in our discussion [30]. For instance,
one gets

LðbÞðnÞ
5 ð1Þ ¼ −LðcÞðnÞ

5 ð1Þ ¼ ΔEðnÞ d
dw

ξðnÞð1Þ; ð37Þ

where Lðb;cÞðnÞ
5 ðwÞ are subleading form factors, for 1=mb;c

corrections that generalize the corresponding elastic quan-
tities defined in Ref. [31]. Equivalently, one could extract
the relevant coefficients with an infinitely heavy b quark,
and by varying the c-quark mass.
One could also calculate directly the current matrix

element for finite momenta at finite but very large masses
(using NRQCD), with the current matrix element approxi-
mating the IW function. As we said, the attempt with this
last method reported in Ref. [8] should be considered as
preliminary, since the extraction of excited states can be
much improved nowadays.

B. Discussion of phenomenological tests

Of course, it would be desirable to test the above striking
predictions in phenomenological b → c processes, but
several problems seem to render this goal difficult. Such
tests would in principle require full finite-mass calculations
in the quark model. As we already emphasized it in the
Introduction, we do not trust the predictions of the BT
approach at finite mass, specifically for inelastic transitions,
while in the elastic case they seem satisfactory. We have
explained the difficulty in detail for the case of transitions
between the L ¼ 0 ground state and the L ¼ 1 orbitally
excited states in Ref. [32]: certain identities at order 1=mQ

are not satisfied in the quark model approach. In another
recent paper [30], we presented similar (general) identities
for the transitions to radial excitations, and found a similar
conclusion: one identity at order 1=mQ cannot be satisfied
in the inelastic case, while it is satisfied in the elastic case of
BT with finite quark masses.
Indeed, in the transitions to L ¼ 1, we have found for the

nonleptonic decays that the finite-mass calculation gives a
much too large rate for the measured decay to the 0þ D
meson, in contradiction with experiment [32], and this
leaves us in theoretical incertitude.

A recipe has been successful in the case of the transitions
between L ¼ 0 and L ¼ 1, namely to make predictions by
combining the heavy quark mass limit of the amplitudes
with a realistic phase space. Indeed, in this way, in the
nonleptonic decays, applying factorization, one gets rea-
sonable agreement for the “elastic” decay B → Dð�Þπ and
for the now well-measured decays B → Dð2þ; 0þÞπ [33].
One is then encouraged to try to apply this second approach
to the B → DðnÞð�Þ transitions (n ¼ 1, 2). In the B → Dð1Þð�Þ
case, the mQ → ∞ result is so small that any 1=mQ

correction will destroy the initial result. On the other hand,
this way of estimating the physical processes could be more
trustable for B → Dð2Þð�Þ because the amplitude is large.
All in all, the best tests should be through lattice QCD

near the mQ → ∞ limit.

V. CONCLUSION

One must stress first the remarkable feature of the pattern
of transitions to the radial excitations in the BT approach at
mQ → ∞: these transitions are very strongly dominated by
the transition to the second excitation, while n ¼ 1 and
n > 2 excitations have a very small transition matrix
element. Our approach has had some notable successes
for current matrix elements, but it is important that its
conclusions be checked in some way. There seems to be no
really easy way for such a test. All in all, the best one could
do would be a lattice QCD calculation in the limit
mQ → ∞, using suitable operators to allow the calculation
at w ¼ 1, or by using the finite but large masses.
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APPENDIX: EXPRESSIONS FOR THE
NUMERICAL CALCULATION OF THE

SLOPE AND THE CURVATURE

To check the sum rules, one requires high accuracy in the
calculation of slopes and curvatures. We have found that
the following expressions are well adapted for these
numerical calculations:

d
dw

ξðni;nfÞð1Þ≡ −ρ2 ¼ −4π
Z

∞

0

dp



1

3

d
dp

½pφfðpÞ�ðp0Þ2 d
dp

½pφiðpÞ�

þ 1

12
½pφfðpÞ�

�
8 −

4m
p0 þm

−
m2

ðp0Þ2
�
½pφiðpÞ�

�
; ðA1Þ
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d2

dw2
ξðni;nfÞð1Þ≡ σ2 ¼ 4π

Z
∞

0

dp



1

15

d2

dp2
½pφfðpÞ�ðp0Þ4 d2

dp2
½pφiðpÞ�

þ 1

30

d
dp

½pφfðpÞ�ðp0Þ2
�
12 −

4m
p0 þm

−
m2

ðp0Þ2
�

d
dp

½pφiðpÞ�

þ 1

240
½pφfðpÞ�

1

ðp0Þ4ðp0 þmÞ2 ð170m
6 þ 593m4p2 þ 600m2p4 þ 192p6

þ 2mð101m4 þ 244m2p2 þ 128p4Þp0Þ½pφiðpÞ�
�
: ðA2Þ
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