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We present the perturbative renormalization group functions of O(n)-symmetric ¢* theory in 4 — 2¢
dimensions to the sixth loop order in the minimal subtraction scheme. In addition, we estimate diagrams
without subdivergences up to 11 loops and compare these results with the asymptotic behavior of the beta
function. Furthermore we perform a resummation to obtain estimates for critical exponents in three and two

dimensions.
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I. INTRODUCTION

The field-theoretic renormalization group approach
[1-3] has a long and successful history in the study of
critical phenomena, going back to the famous & expan-
sion [4]. In particular, it predicts critical exponents of
second-order phase transitions with high accuracy [5]
when combined with resummation methods [6]. More
specifically, one can extract approximate exponents for
three-dimensional O(n) universality classes from the
renormalization group functions of ¢* theory in 4 —2¢
dimensions." Considerable effort has thus been invested in
the calculation of the latter to increasingly high orders in
perturbation theory.

After the results [8,9] for three and four loops, the
computation [10-12] of the fifth order yielded highly
accurate critical exponents [13]. The subsequent correction
[14] of the perturbative result, which only very recently
was confirmed by numeric methods [15], affected the
resummed exponents only marginally [16].

For many years, the renormalization group method in
three dimensions provided the most accurate theoretical
predictions for critical exponents, consistent with the
only slightly less precise results from the fifth-order &
expansion [16]. However, considerable progress of other
techniques has by now produced a multitude of much more
refined results. Among those, we like to point out the
particularly astonishing performance of the conformal
bootstrap program [17,18] and Monte Carlo methods
[19,20], which reached unprecedented accuracy in
some cases.
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Another approach renormalizes the theory directly in three
dimensions [5,7].
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It was therefore overdue to improve on the & expansion,
which had been stuck at five loops for 25 years. Finally, the
six-loop result for the field anomalous dimension was
published in [21], and we provided the complete set of
renormalization group functions for ¢* theory (n = 1) in
[22]. These were obtained in a Feynman diagram compu-
tation, that became feasible through the automatization of
new techniques [23-25] to calculate Feynman integrals,
very briefly summarized in Sec. III.

Here, we present the six-loop renormalization group
functions for arbitrary values of n, in the minimal sub-
traction scheme. The exact (and slightly unwieldy) expres-
sions are given in Sec. IV, together with tables of numeric
values for the most interesting cases n € {0, 1,2,3,4}. We
then discuss numerous checks of our result and like to stress
in particular the confirmation of the beta function and the
field anomalous dimension, at n = 1, by Schnetz [26].
Furthermore, we compare the coefficients of the beta
function, supplemented by estimates up to 11 loops, with
the expected asymptotic behavior. This analysis confirms the
known fact that the convergence is rather slow in absolute
terms, but it also shows that the qualitative trend is correct and
we observe a striking pattern of zeros in the dependence on n,
in agreement with the asymptotic prediction.

In Sec. V, we give the ¢ expansions for the critical
exponents and recall the Borel resummation method with
conformal mapping, which was employed to great effect
in [9,13]. Since this basic idea can be implemented in
many different ways and incorporates several arbitrary
parameters, we include a rather detailed discussion of its
characteristics. Our resummation algorithm is accurately
defined in Sec. V C, followed by a discussion of how we
estimate the errors.

Finally, our resummed results for the critical exponents
in three and two dimensions are summarized and discussed

© 2017 American Physical Society
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in Secs. VI and VII. The reader only interested in these
results will find them in Tables XI and XII. In short, we find
increased accuracy (in comparison to the five-loop resum-
mation) and good agreement with results from other
methods. While the record precision for # and v in the
cases n =0 and n = 1 from bootstrap and Monte Carlo
methods is clearly out of reach, the &€ expansion seems
superior for the correction to scaling exponent @ and is on
par for the Fisher exponent 7 when n > 2. Values for v tend
to be low in comparison with simulations in three dimen-
sions and the theoretical predictions in two dimensions.

In our conclusion, Sec. VIII, we anticipate that the
upcoming seven-loop renormalization [26] is very likely to
result in estimates with smaller uncertainties, which will
provide even stronger tests of the compatibility of different
theoretical approaches.

We hope that our results will be useful for further
analyses. In particular, it would be interesting to compare
our critical exponents with other resummation methods
applied to the six-loop series. Another application might be
to probe the asymptotic behavior of the renormalization
group functions, as in [27,28]. Also, the & expansions and
Z-factor contributions of individual diagrams should suf-
fice to study other universality classes like the O(n) model
with cubic anisotropy [29,30] or even more complicated
cases like [31,32].

Therefore we provide an extensive set of data with this
article in Appendix A.

II. FIELD THEORY AND RENORMALIZATION

We consider the theory of n scalar fields ¢ =
(¢1»....¢,) with an O(n) symmetric interaction ¢*:=
()= (74 -+¢2)>. In D=4-2¢ Euclidean
dimensions, the corresponding renormalized Lagrangian is

L, a1 ), 167 2 44
[Z:Em A +Ezz(5¢) gy Zagm ot (1)
and contains an arbitrary mass scale p, such that g stays
dimensionless. The Z factors relate the renormalized field
¢, mass m and coupling ¢ to the bare field ¢, bare mass m,
and bare coupling g, via

2
m V4
Z(/):@:\/Z, ZmZ:m—Oz—l’ and

® A
Jo _ Zs
zZ, =22 =22 (2)
g9 MZeg Z%

In dimensional regularization [33] and minimal subtraction,
these Z factors depend only on & and ¢ and admit
expansions into formal Laurent series

Zi(9)
e

Z=Z(e) =1+ 3)
k=1
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where each Z, ;(g) is a formal power series in the coupling
g. The renormalization group (RG) functions can be read
off from the residues (at € = 0) of the Z factors [34,35]. In
particular, the beta function can be computed as

g (610g(ng))—1
Je) = u—=| = 2¢ ———L
B(g.€) o . 99
0Z,,(9)
__ 29241\9)
= —2e9+2g 99 (4)

whereas the anomalous dimensions for the field and mass
are given by

__ 0OlogZ; B dlog Z,(g)
vi(g) =u |, Pla)— ;
- —ZQLZgg(g) for i = m?, ¢. (5)

These RG functions are formal power series in the coupling
g. The first terms

n-+8
B(g.€) = —2eg + ng + O(¢g?)

show that, at least for small € > 0, the beta function admits
a nontrivial zero:

e+ O(¢*)  such that #(g,(e),e) = 0.

(6)

This critical coupling is a formal power series in ¢ and
determines a fixed point of the renormalization group flow.
This fixed point is IR attractive, meaning that the correction
to scaling exponent

94() :n+8

0

XCRVACEES -

Blg.€) = 2e+ O(e?)

(7)

is positive. The anomalous dimensions at the critical point
define the critical exponents

n(e) =274(g.(e)) and  v(e) =2+ 1,2 (9. (&))",

(8)

which we compute as formal power series in €. According
to the leading terms

n+2
and 7,2, = ———g+ O(g),

3
©)

n+2
Yo = 792 + O(g%)
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the first terms of their & expansions are

_ 2(n+2)é
n(e) = 8y O(¢*) and
v(e) = % + % O(&?)

We note that there are more critical exponents, but those are
related to # and v via the following scalingzrelations [1],
which, for the purpose of this paper, we simply take as
definitions of a, f, y and o:

y=v2-n. Dv=2-a  B5=p+y,
and a+2f+y=2. (10)

The critical exponents and the correction to scaling
exponent @ are independent of the renormalization scheme
and they conjecturally describe phase transitions of numer-
ous physical systems in several universality classes. In
Sec. V we describe how we resummed the ¢ expansions to
arrive at the estimates for these quantities in D = 3 and
D = 2 dimensions as presented in Secs. VI and VIIL.

III. CALCULATIONAL TECHNIQUES

We compute the Z factors (2) as the counterterms for the
one-particle irreducible correlation functions I'y of N = 2
and N =4 fields, by expanding them as Feynman dia-
grams. The ultraviolet (UV) subdivergences are subtracted
with the Bogoliubov-Parasiuk R’ operation [36,37], such
that

Z, =140, KR'T,(p,m?, g, ),
Z, =14 0,KRTy(p.m* g.u), and
Zy =14+ KRTy(p.m% g. 1)/ g. (11)

In the minimal subtraction (MS) scheme, the form (3) of the
Z factors is obtained by projecting onto the pole part with
respect to the regulator e = (4 — D)/2:

K (ch> =) e, (12)

n<0

We use standard techniques [1-3] to simplify the
computation:

(i) Acting with —0,,» squares a propagator, which is
equivalent to a four-point graph with two vanishing
external momenta. This way, Z; can be expressed in
terms of a subset of the graphs contributing to Z,
(Sec. 11.7 in [1]).

*Relations that explicitly involve the dimension D are often
distinguished and called hyperscaling relations. For simplicity,
we will refer to all of (10) just as scaling relations.
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TABLE 1. The number of (isomorphism classes of) one-particle
irreducible ¢* Feynman graphs, excluding graphs with tadpoles
(as those vanish in massless DimReg). We include the column for
seven loops just to illustrate the growth in complexity.

Loops 123 4 5 6 7

Two-point graphs (I') 011 4 11 50 209
Four-point graphs (I') 1 2 8 26 124 627 3794
Primitive four-point graphs I';) 1 0 1 1 3 10 44

(i) Using infrared rearrangement (IRR) [38,39], we can
set all internal masses to zero and nullify some
external momenta such that only massless propa-
gators remain to be computed.

These express all Z factors in terms of p integrals (massless
propagators) without infrared divergences, and our task is
thus reduced to the computation of the ¢ expansion of these
integrals. The number of ¢* Feynman graphs contributing
to I, and I’ is summarized in Table 1> A few of them are
primitive (free of subdivergences) and those were computed,
up to < 6 loops, already long ago in [42].* In fact, the partial
results [43,47] at higher loop orders have recently been
augmented significantly, including in particular the complete
set of primitive ¢* Feynman integrals with seven loops [48].

In order to calculate the missing integrals with (UV)
subdivergences, which was the main technical challenge,
we construct auxiliary counterterms using the R’ operation
of the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ)-
like one-scale scheme introduced in [25]. The resulting
linear combinations of integrals are convergent in D = 4
dimensions and can thus be computed exactly, term by term
after expanding in &, with the program HYPERINT [24]
based on the algorithm proposed in [23].

We gave a detailed account of this new method in [22].
The entire computation is automated with programs written
in MAPLE™ and PYTHON, using the GRAPHSTATE/
GRAPHINE library to manipulate Feynman graphs [49,50],
which will be published separately.’

The only addition to be made to the exposition in [22] is
that each Feynman graph G is now not only weighted with
the usual combinatorial symmetry factor 1/|Aut(G)|, but
also with an additional O(n)-group factor C; which is a
polynomial in n. It equals the number of ways one can
assign a component 1 < i, < n of the field ¢ to each of the
edges e of the graph, in such a way that at each vertex v, the
flavors of the four edges vm, v meeting at v can be

The ¢* graphs with < 6 loops were already enumerated and
tabulated in [40]. Asymptotically, the number of graphs grows
factorially with the number of loops and precise higher-order
expansions were recently presented in [41].

Some of the results in [42] in terms of zeta values were based
on numeric techniques, and one value in particular was only later
identified in [43] as the double zeta value (17). Analytic proofs of
these six-loop periods were later given in [44—46].

Maple is a trademark of Waterloo Maple Inc.
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TABLE II. Numerical values for the six-loop field anomalous dimension.

n }’%S (9)

0 0.055564% — 0.03704¢° + 0.1929¢* — 1.006g° + 7.095¢° + O(g7)
1 0.08333¢” — 0.06250g° 4 0.3385¢" — 1.926¢° + 14.38¢° + O(g")
2 0.11111¢% — 0.09259¢° + 0.5093¢* — 3.148¢° + 24.71¢° + O(g7)
3 0.13889¢ — 0.12731¢° + 0.6993g* — 4.689¢° + 38.44¢° + O(g7)
4 (9")

0.16667g> — 0.16667¢°> + 0.90284* — 6.563g° + 55.93¢° + O(g’

grouped into two equal pairs—according to the interaction
term (¢*)?. Hence,

Cq = Zn: H /1(1'1)[1‘, ...iv[zq)

iy iE(G):l veV(G)

(13)

gives the group factor for vacuum (i.e. 4-regular) graphs,
with

ab0cd t 04.c0pa+ 0440p

Aa,b,c,d) = 0 3

(14)

For a propagator (two-point) graph G, let G denote the
vacuum graph obtained by gluing the external legs together,
and for a vertex (four-point) graph G, let G denote the graph
|

7y (9)

obtained by attaching all external legs to an additional
vertex (this is known as the completed graph [47]). Then it
is easy to check that

,lz if Gis a propagator graph, and
CG == C("; . 3

) if Gis a vertex graph.

(15)
IV. RESULTS FOR THE RG FUNCTIONS

We now present our results for the six-loop renormal-
ization group functions, computed in the MS scheme in
D =4 —2¢ dimensions. Among those, the anomalous
dimension of the field takes the simplest form, because
it only involves Riemann zeta values {; = > 1/n*:

n+2 ., (n+8)(n+2) 5 5(n*—181—-100)(n+2) ,

36 7 432 5184

— [1152(5n 4 22)¢, — 48(n® — 612 + 64n + 184)¢5 + (393 + 29612 + 22752n + 77056))

(n+2)g°
186624

— [512(2n? + 55n + 186)¢3 — 6400(2n* + 55n + 186)¢s + 4736(n + 8)(5n + 22)¢s
— 48(n* + 2n® + 328n% + 4496n + 12912)¢, + 16(n* — 936n% — 4368n — 18592)(;

+ (291* + 794n3 — 30184n% — 5491040 — 1410544)]

(n+2)¢°

7
746296 O

(16)

Note that this result was already obtained in [21] with different methods; so our computation provides a nontrivial check.
Numeric values for n € {0, 1,2,3, 4} are given in Table II. The following results contain also the double zeta value

1
= ———~0.037707673,
G35 Z wB3md

I<n<m

(17)

which (conjecturally) cannot be written as a polynomial in Riemann zeta values with rational coefficients [42,51]. Our new
results are the coefficient of ¢® in the anomalous dimension of the mass (see Table III for numeric expansions):

TABLE III. Numerical values for the six-loop mass anomalous dimension.

n 71\,/,[25 (9)

0 —0.6667g + 0.5556¢%> — 2.056g° + 10.764* — 75.70¢° + 636.7¢° + O(g")
1 —1.0000g + 0.8333¢%> — 3.500¢° + 19.96¢* — 150.8¢° + 1355¢° + O(g")
2 —1.3333g + 1.1111¢g%> — 5.222¢° + 31.87¢* — 255.8¢° + 2434¢° + O(g")
3 —1.6667g + 1.3889¢% — 7.222g° + 46.64¢" — 394.9¢° + 3950¢° + O(g7)
4 (97)

—2.0000g + 1.6667g*> — 9.500¢g° + 64.39¢* — 571.9¢° + 5983¢° + O(¢’
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n-+2 S(n+2)¢* (5n+37)(n+2)¢
pis(g) = 29 St D (on+ 3o+ 2

(n+2)g*
7776
— [9600(2n2 + 551 + 186)s — 768(2n> + 145n + 582)C% — 768(5n2 — 14n — 72)(s

—288(3n% — 291 — 8161 — 2668)¢, + 48(17n° + 9401 4 8208n + 31848)(;

(n+2)g )
136624 + [1152(14n* 4 189n + 526)(2063¢g — 144(5 5)

—921600(15n% + 239n + 718)¢3¢s — 640(1080n° + 25180n> + 2845251 + 814062)¢,

—15360(2n° — 157n* — 2512n — 8268)¢3¢4 + 5120(27n3 + 1082n> + 130725 + 40008)(3

+3200(28513 + 7178n% + 73768n + 196032)¢s + 320(45n* + 36221 + 12202n% + 207708n + 753040)(s
—240(47n* + 2606n° — 5480n* — 1943201 — 489328)¢,

—80(51n* —9208n* — 4190761 — 33426881 — 8997136)(;

+ [288(5n + 22)¢, + 48(3n% + 10n + 68)¢5 — (n% — 75787 — 31060)]

+ (21n° + 45254n* + 10771201 + 3166528)]

(n+2)¢°

5(43n* + 48234n° — 5154216n* — 63140784n — 145482928)] 9331200

+0(g") (18)

and the coefficient of ¢’ in the beta function

n+8 3n+ 14 96(5n + 22)¢5 + 33n% + 9221 + 2960
PB(g) =269+ ——g ——3—g + ( S 516 g

— [1920(2n* + 551 + 186)¢s — 288(n + 8)(5n + 22)¢4

+96(63n% + 764n + 2332)5 — (5n® — 63200 — 80456n — 196648)] 3%

+ [112896(14n2 + 189n + 526)¢; — 768(6n° + 59n — 446n — 3264)(2
—9600(n + 8)(2n? + 55n + 186)s + 256(305n° + T466n> + 669861 + 165084)( s
— 288(63n3 + 138802 + 95321 + 21120)C,

— 16(9n* — 1248n* — 676401 — 552280n — 1314336)¢;

g6

+ (130" 4 12578n" 4 808496n” + 6646336 + 13177344)] =

— [204800(1819n% + 9782312 + 9010511 + 2150774),

+ 14745600(n* + 65n% 4+ 619n + 1502)&3

+995328(42n° + 2623n* + 25074n + 59984)¢5 5

—20736(28882n> + 82048312 + 6403754n + 14174864)(s

— 5529600(81> — 6351% — 91501 — 25944){5(s

+ 11520(440n* + 1266951 + 2181660n* + 143131525 + 29762136)¢,
+207360(n + 8)(6n° + 591> — 446n — 3264)(3¢,

—23040(188n* + 1321 — 93363n> — 862604n — 2207484)(3

— 28800(5951* + 20286n° + 277914n> + 1580792n + 2998152)¢

4 5760(4698n* 4 1318271 + 2250906n> + 146575561 + 29409080)( s
4 2160(91° — 1176n* — 88964n> — 1283840n> — 67940961 — 12473568)¢,

—720(33n° +2970n* — 4777401 — 1008416812 — 61017200n — 117867424)¢;

97

45(29n° + 22644n" — 3225892n° — 884188161~ — 5368205601 — 897712992)] 21990400 +

O(g*)  (19)
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TABLE IV. Numerical values for the six-loop beta function.

M (9)

A WO = O3

—2eg + 2.667g* — 4.667g> + 25.46¢" — 200.9¢° + 2004¢° — 23315¢” + O(g®)
—2eg + 3.000g> — 5.667g> + 32.55¢* — 271.6¢° + 2849¢° — 3477647 4+ O(g®)
—2eg + 3.333¢g% — 6.667g> + 39.95¢" — 350.5¢° + 3845¢° — 4899947 + O(g®)
—2eg + 3.667g> — 7.667g> + 47.65¢" — 437.6¢° + 4999¢° — 6624397 + O(g®)
—2eg + 4.000g%> — 8.667g> + 55.66¢" — 533.0¢9° + 6318¢° — 867687 + O(g®)

with numeric values given in Table IV. The expansions
(16), (18) and (19) are available in computer-readable form
in the attached files (see Appendix A).

A. Checks

Our computation exactly reproduced the full five-loop
results [10-12,14] and the six-loop field anomalous dimen-
sion [21], which in turn is consistent with the first three
terms in the large n expansion of the critical exponent 7
from [52-54]. The leading and subleading terms in the
large n expansion of the six-loop beta function, computed
almost 20 years ago in [55,56], provided a further suc-
cessful check.

In addition, we confirmed Broadhurst’s results for the
MS-renormalized five-loop propagator, obtained in 1993.
In fact, in [57] he obtained the & expansions of all five-loop
propaégator integrals with <5 loops, including the finite
parts.” These results agree perfectly with our e expansions
for those graphs.

A particularly strong check of our results is due to
Schnetz [26], who computed $ and y, to six loops for the
case n = 1, using completely different techniques includ-
ing single-valued integration and graphical functions [46].

Also, we initially computed all necessary integrals with a
combination of

(1) integration by parts (IBP) [58],

(i) € expansions of four-loop massless propagators

[59-61],
(iii) IRR extended by the R* operation [62—66] and
(iv) parametric integration, using hyperlogarithms, of
primitive (free of subdivergences) linear combina-
tions of graphs; examples of this technique are given
in graphs M, M35 and M5 in [44] and Sec. 5.3.2
in [67].
Together with our more recent strategy [22] of parametric
integration with the one-scale scheme, we have in fact
computed all diagrams with at least two different exact
methods ourselves. In addition, the most complicated
diagrams were also checked numerically using sector
decomposition [68] to at least three significant digits, using
a computer program by the first author. We furthermore
cross-checked our generation of the Feynman graphs and

*We are very thankful to David Broadhurst for making his
notes available to us.

their symmetry factors with GRAPHSTATE by comparison
with the output of the program FEYNGEN from [69]. Our
numbers of two- and four-point graphs in Table I agree with
the lists in [40] (after discarding the tadpole contributions).
The O(n) group factors were confirmed independently by
evaluating (13) with a simple FOrM [70] program.

Also, we verified that, after explicitly expanding
P(g.€) = =2¢/[0,log(gZ,)] from (4) and y:(g) =
p(9)9,1log Z;(g) from (5) as series in g, all poles in &
cancel and the results indeed coincide with the final
expressions in (4) and (5) in terms of the residues Z,; .
This shows that all higher-order poles of the Z factors are
consistent with the first-order poles as dictated by the
renormalization group.

Finally, we find our results for the six-loop coefficients
of the RG functions to be in good agreement with various
past predictions based on the < 5-loop coefficients. For
example, A5 ~ 34400 [10] and S ~ 34393 [71] for the
case n =1 are very close to our value 34776, where
S =57, (—g)*pVS. Even more interestingly, asymptotic
Padé-approximant predictions (APAPs) were provided for
various values of » in [72,73], as summarized in Table V. In
the case of the beta function, we see indeed only very small
deviations (<2%) from our exact results. It seems plausible
to expect that the APAP method might provide potentially
even more accurate predictions for the seven-loop
coefficient.

For the anomalous dimensions, the APAP forecasts are
still reasonable though significantly less precise, as was
already noted and discussed in [73] at the five-loop level.’
In this context let us point out that a qualitatively similar
situation occurs for predictions based on the conformal
Borel technique: the five- and six-loop predictions [71] (at
n = 1) for the beta function are good within 1%, whereas
the error of the predictions [21] for # increases from 0.5%
for six loops to 2.5% for seven loops (according to the
seven-loop result for # given in [26]).

"The outlyingly large deviations in y,,» forn =4 and n = 5 at
six loops are caused by a pole of the Padé approximant at n = 4.7,
the agreement becomes much better again forn =6 and n = 7.
We are grateful to the authors of [73] for their correspondence and
investigation of this matter. In conclusion, the discrepancy at n =
5 is very likely an artifact of the Padé method than an indicator of
an error in our result for y2,.
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TABLE V. Our six-loop coefficients of the RG functions,
compared to asymptotic Padé-approximant predictions from
[72,73]. The errors are given as (APAP — exact)/exact.

n 0 1 2 3 4 5
pgS 23315 34776 48999 66243 86768 110840
APAP [72] 23656 35374 49916 67604 88660

Error 1.46% 1.72% 1.87% 2.06% 2.18%

APAP [73] 35233 49381 66426 86636 110292
Error 1.31% 0.78% 0.28% —0.15% —0.50%
Yﬁfzs 1355 2434 3950 5983 8618
APAP [73] 1478 2740 4803 9476 3374
Error 9% 13%  22% 58% —139%
},gls 14.4 247 384 559 71.5
APAP [73] 11.2 20.7  35.0 56.2 87.3
Error -22.0% —-163% —89%  05% 12.6%

In the following, we discuss the dependence of the RG
function coefficients on the perturbative order and on the
internal degrees of freedom. We will see that our results are
consistent with the expected behavior.

B. Asymptotics

It has long been known that the renormalization group
functions are asymptotic series in the coupling g, with
factorially growing coefficients [74,75]. For the minimal
subtraction scheme, the precise leading asymptotic behav-
ior was first computed in [76] using 4 — 2¢ dimensional
instantons [77]. Namely, if we denote the coefficients of the
beta function by pM5(g) = >, f1S(—g)%, then

MS ~ =kl k32 Cyp as k> o0 (20)
where Cy is a constant that only depends on the number n
of field components:

c 36 - 3(nt1)/2 . 3 n+8 +3
p— X —— — p— .
P a2 1 nj2)arn P |77 T3 BTy

(21)

In this expression, yg = —I"(1)~0.577 denotes the
Euler-Mascheroni constant and A = 1.282 is the Glaisher-
Kinkelin constant defined by

InA = % —0(=1) = % (}’E + In(27) - é;g;) (22)

It is well known that the perturbative coefficients reach their
asymptotics rather slowly in the ¢* model [78,79], which is
illustrated in Fig. 1 and Table VI. We see that, even at six
loops, the ratio g5 /7 ~ 0.31 is still far from one. One also
should bear in mind that, at such low perturbative orders,
this kind of ratio depends significantly on the function used
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FIG. 1. These plots demonstrate that the perturbative coeffi-

cients of the f function (n = 1) are rather far from their
asymptotic values: crosses show the known coefficients ﬂg’[s
(k <7) and circles indicate the estimates for the primitive
contributions ™ up to loop order 11 (see Table XIII). They
are normalized by the predictions from the asymptotic formu-
las (20) (left plot) and (23) (right plot). The abscissa is 1/k, such
that in the limit k — oo the points should approach 1.0 on the
vertical axis. Note that there are no primitives with two loops,
resulting in the point (1/3,0).

to model the asymptotic behavior (Fig. 4 in [79]). For
illustration, we include in Fig. 1 a comparison of g5 to

which is another reasonable function with the same
asymptotics as (20).

In order to probe the asymptotic regime further, we
studied the primitive contributions 7 " to A5, that is, the
sum of the contributions of all four-point ¢* graphs that are
free of subdivergences. These dominate the leading asymp-
totics of A5 as k — oo, according to page 1865 in (761

In the context of high-order estimates in the perturbative
series, we interpret the extra pole in € as the one
produced by the totally irreducible diagrams at high
orders. These diagrams are known to be the dominant
ones at Kth order for K large for d < 4 and moreover
diverge only like 1/¢.

Indeed, the last row of Table VI shows how the primitive
graphs become more and more relevant as the loop number
increases.” At six loops, the primitive graphs 2" already
constitute 69% of the coefficient YS. The primitive
contributions at seven loops are known exactly [48] and

included in Fig. 1.

¥See also page 15 in [74]: “Finally, the leading diagrams at
order K give a single power of In A, they are those which do not
involve any divergent subgraph; i.e., they are the completely
irreducible diagrams.”

Such a comparison was already made in evaluation of the
four-loop calculation; see [79].
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TABLE VI. The upper part of the table shows the #-loop
coefficients M3, of the ¢* beta function pMS =3~ g5 (—g)*
(with n = 1) and their ratios to the asymptotic formulas (20) and
(23). In the lower two rows we show the contribution 2"
containing only the primitive graphs and their proportion of the

full #-loop coefficient.

Loop order 7 1 2 3 4 5 6

PIS/Pewiin% S48 835 438 335 309 314
PYS /B, in% 431 125 958 941 104 121
B 3567 325 272 2849 34776

prim 3 0 144 124 1698 24130
£+1

l;‘jr“; I}/IEI in % 100 0 443 458 596 69.4

Furthermore, we were able to obtain accurate numeric
estimates for all primitive graphs with up to 11 loops, using
anew method (based on the so-called Hepp bound) recently
introduced by the second author. A brief sketch of this
technique is provided in Appendix B. We see in Fig. 1 that,
even at 11 loops, the primitive contributions (which are
expected to be close to the full AY3) reach merely about half
of the value predicted by the asymptotic formula (20).
Details are given in Table XIII.

We conclude that it is not clear how the knowledge of the
leading asymptotic behavior of the perturbative coefficients
might be used to accurately predict perturbative coefficients
at higher orders. It is thus interesting to note that, in
principle, corrections to the leading asymptotic behavior of
the form

ﬂ%/[SNk!-k3+n/2.Cﬂ<1+Z%> as k- o (24)
=1

can indeed be calculated. In fact, the first correction a; was
computed long ago in [80] for the momentum subtraction
scheme and much more recently in [81] for the MS scheme,
using a method developed in [82]. Unfortunately, these
results need to be adjustedlo and we therefore cannot
presently discuss if the term a, /k narrows the gap between
the exactly known low-order coefficients S and the
asymptotic predictions. This correction could also inflate
the gap, because the expansion (24) is itself only asymp-
totic [83,84] and as such only guarantees an improved fit
for very large perturbative orders k.

In particular, we like to stress that the idea to truncate
(24), fit the coefficients a; to make this polynomial in 1/k
match the known low-order perturbative terms and then use

1n particular, in both of these papers, the value of U, needs
to be corrected to ’%8 (yg +5/3 +Inx), as was kindly pointed
out to us by Nalimov. Note that, with this correction, the result for
the leading asymptotics computed in [81] coincides with (20) and
(21) from [76].
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i ~0.10 1+

5?““1 ,l /3_17\45

FIG. 2. Dependence of the coefficients of the beta function
on n: The dashed curves show the primitive contributions

Pm / (k1 - k3T1/2) at six and 11 loops. For comparison with
the full beta function, our result for g5/ (k! - k3*"/2) at six loops
is included as the dotted line. The solid line shows the limiting

curve for k — oo, namely Cy from (21).

this polynomial to predict (extrapolate) higher-order per-
turbative coefficients is not justiﬁed.11 For a detailed
discussion and criticism of such a procedure, see [85,86].

C. Dependence on n

The coefficients pYS = pMS(n) are functions of the
number n of fields, because the contribution of each
Feynman graph is multiplied with a corresponding group
factor (15). More precisely, 5 (n) is a polynomial in n for
each order k, as seen in (19). Once normalized by the
asymptotic growth k! - K>*/2 from (20), these coefficients
approach Cy in the limit k — co. Since this limit is
dominated by the primitive graphs, our estimates for

Ao should exhibit the same behavior.

Figure 2 shows that these expectations are indeed
fulfilled. First, we note that the observation (from Fig. 1
at n = 1) that even the 11th perturbative order is far from
the asymptotic regime extends to all n 2 —3. However, all
curves share a zero at n & —4, and the primitive contribu-
tions with 11 loops vanish also near to the next zero of Cj; at
n = —6. We note that the asymptotic coefficient Cy is
approximated rather well by the primitive contributions

}])rzlm in the intermediate region where —6 < n < —4.

"Because (24) is asymptotic, it should be expected that longer
truncations with the correct values of a; yield increasingly worse
predictions for the low-order perturbative coefficients. Hence,
forcing these to be matched requires the fitted a; to deviate from
their exact values, so there is no reason why those should result in

good predictions for higher-order k.
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TABLE VII. The first zeros of the exactly known perturbative
coefficients ¥, from (19) as functions of n, for £ < 6 loops, and
similarly for our estimates ﬂI;T; for the primitive contributions
from Appendix B (up to 11 loops).

Loop order #  First zero  Second zero Third zero

1 -8
2 —4.67

MS (1) 3 —4.025 —41.4

£+l 4 —4.020 -12.1 3219
5 —4.0017 -8.76 —44.0
6 —4.00044 -7.52 -20.0
6 —3.99754 -7.22 -35.6
7 —3.99982 —6.58 -15.1

prim 8 —3.99994 —-6.31 -10.8

71 (1) 9 ~3.999997 —6.18 9.4
10 —-3.99999991  —6.10 -8.55
11 —4.000000095  —6.05 -8.21

This phenomenon of zeros at certain values of n was
observed in [87] and follows simply from the factor
['(2+n/2) in the denominator of (21), since it implies
that Cg, which governs the asymptotic behavior of ,B}:’IS
according to (20), vanishes at even values of n < —4.
Indeed, the zero of S5 (n) that is closest to the origin
converges rapidly towards —4 as ¢ increases, which was
checked for £ < 5 loops in [87]. In Table VII, we see that
this trend continues at £ = 6 loops and, with an impressive
rate of convergence, the same phenomenon continues
in our estimates of the primitive contributions S} up
to £ = 11 loops. Furthermore, at these higher loop orders,
we can see the convergence of the next zeros to the
expected values n = —6 and n = 8.

Note that the group factors C; can be negative for
such values of n, and in fact only because of these opposite
signs is the cancellation of V7(n) possible at all. As a
collective phenomenon, sensitive to all Feynman periods at
loop order Z, we thus interpret the convergence of zeros in
Table VII towards even values of n < —4 as a strong
consistency check of our exact six-loop results and also of
our estimates for the primitive contributions up to 11 loops.

V. RESUMMATION OF CRITICAL EXPONENTS

From the renormalization group functions y, y,» and
in Sec. IV, it is straightforward to work out the £ expansions
of critical exponents. We focus on 7, v~ and , for which
(8) and (7) yield the results shown in Tables VIII-X.

The e expansion f(e) =Y 2, fi(—2¢)k of a critical
exponent f around D =4 — 2¢ dimensions is a formal
power series with factorially growing coefficients

fi~Cp-kl-a*- kP as k- . (25)

In fact, this leading asymptotic behavior is completely
determined by the asymptotics (20) of the beta function, the

PHYSICAL REVIEW D 96, 036016 (2017)

leading terms (9) of the perturbation series and the defining
equations (6)—(8).12 In particular, all the coefficients Cy can
be expressed as multiples of Cy from (21) and were all
computed in [76]. The values of a and the exponents b
were already obtained in [74]:

3+n/2 for f=n,

4+n/2 for f=uv"', (26)
54n/2 for f=w.

d b=
nt an b

In order to obtain estimates for the critical exponents in
D = 3 dimensions, we must resum the divergent series f(¢)
at e = 1/2.

This problem of resummation is a huge subject (see for
example the review [89]), and many different approaches
have been put forward. Unfortunately, no consensus has so
far been reached on the optimal method to resum &
expansions. We therefore think that a careful comparison
of the various methods, based on the six-loop perturbation
series presented here, would be very valuable. In particular
in view of the potential for further higher-order perturbative
computations in the near future, like the seven-loop ¢
expansions in the ¢* model [26], such further insight into
the resummation problem is very desirable.

However, such an extensive analysis would exceed the
scope of this article and we decided to discuss only
the method of Borel resummation with conformal map-
ping. It would be very interesting to see how other
approaches, including order-dependent mapping [90,91],
large-coupling expansions [92-94] and self-similar factor
approximants [95], fare with the six-loop perturba-
tive input.

A. Borel resummation with conformal mapping

We will describe the method introduced first in [79] for
the resummation of series in the coupling ¢ and then
also applied to ¢ expansions [9]. This technique has a
successful history in the resummation of critical exponents
[6,13,16,96] and is explained in detail for example in
Chap. 16 in [1].

To begin with, we denote the Borel transform of f =

>0 fk(_zf)k as

B (x) = i Ji

2 Tkt bt1) (=x). (27)

According to (25), it defines an analytic function in the
domain |x| < 1/a with a singularity at x = —1/a of the

12Equations (6)—(8) furthermore relate corrections to the
leading asymptotics, as for example computed in [81]. If
one encodes the full asymptotic expansions as generating
functions, these relations can be computed elegantly in an
algebraic way [88].

036016-9



MIKHAIL V. KOMPANIETS and ERIK PANZER

PHYSICAL REVIEW D 96, 036016 (2017)

TABLE VIII. Numerical six-loop € expansion of the critical exponent n in D = 4 — 2¢ dimensions.

n n(e)

0 0.062500&% + 0.13281&> — 0.13388¢* + 0.84815¢° — 5.8067¢° + O(e7)
1 0.074074£% + 0.14952¢3 — 0.13326&* + 0.82101&> — 5.2014¢% + O(€7)
2 0.080000&% + 0.15200& — 0.12630&* + 0.74269¢> — 439215 + O(€7)
3 0.082645¢% + 0.14719&3 — 0.11919&* + 0.65225¢> — 3.6495¢0 + O(€7)
4 0.083333¢% + 0.13889¢3 — 0.11336&* + 0.56421¢> — 3.0312% + O(€7)

TABLE IX. Numerical six-loop & expansion of the critical exponent 1/v in D = 4 — 2¢ dimensions.

v'(e)

A LW = O3

2.0000 — 0.50000¢ — 0.34375¢% 4+ 091540 — 4.6002¢* + 30.596¢ — 246.77¢% + O(¢7)
2.0000 — 0.66667¢ — 0.46914€> 4 0.99622¢% — 4.9096&* + 30.440&> — 228.65¢% + O(¢7)
2.0000 — 0.80000e — 0.56000&” + 0.97949¢% — 4.8756&* + 28.136&> — 198.59£% + O(¢7)
2.0000 — 0.90909¢ — 0.62359¢? + 0.92057¢% — 4.6976&* + 25.278¢> — 168.91% 4+ O(¢7)
2.0000 — 1.00000e — 0.66667> + 0.84684¢> — 4.45866* 4 22.469¢> — 142.96£° 4 O(e7)

TABLE X. Numerical six-loop ¢ expansion of the correction to scaling w in D = 4 — 2¢ dimensions.

(¢)

AW = O3

2.0000¢ — 2.6250€% + 14.589¢% — 100.57&* + 859.94> — 8320.5¢° + O(e7)
2.0000e — 2.5185¢% + 12.946¢> — 83.762&* + 663.99¢5 — 5959.1° + O(¢7)
2.0000e — 2.4000&> + 11.497&3 — 70.724e* + 523.96¢° — 4401.7¢° + O(¢7)
2.0000e — 2.2810e? + 10.263&> — 60.498* + 421.82¢5 — 3341.1° + O(¢7)
2.0000e — 2.1667¢* 4+ 9.2207&> — 52.351&* + 345.65¢% — 2596.3¢° + O(¢7)

form (1 4 ax)?~"~'. We assume" that f is Borel sum-
mable, which means that %A?(x) admits an analytic con-

tinuation to the positive real axis x > 0 and also includes
that the Borel sum

le) = A " e 1Bl 2en)dt (28)

converges and gives the correct value of the critical
exponent at &= 1/2, which is our case of interest

(D = 3). By construction, this Borel sum }(8) has the
perturbative expansion f(e) as required. In order to
compute the integral (28), we must analytically continue
the Borel transform ‘B}’.(x) from the circle |x| < 1/a of

convergence to the positive real line. This is achieved with
the conformal transformation

I rax=]l with inverse x(w) w
= Xiw) = — 5,
Vidax+1 a(l —w)?
(29)

w(x)

While the Borel summability with respect to the coupling g
has been established in the fixed dimensions D =2 [97] and
D = 3 [98], it remains an open question for the & expansion.

as it maps the integration domain x € (0, o0) to the interval
w € (0, 1). Assuming that all singularities of %?(x) lie on
the cut (—oo, —1/al, which is mapped onto the unit circle
lw| =1, the expansion of the Borel transform B (x(w))

into a series in w converges in the full integration domain
and thus provides the sought-after analytic continuation.

Because we only know the first few expansion coef-
ficients f; with k < 6, we can only approximate the Borel
transform. Following [9,79], we introduce a second param-
eter A and the truncation order £ to write it as

ax \* <&
BY(x) ~ B (x) = (—) > Brw)k (30)

w(x)) =

The coefficients B% are functions of b and A, determined
by matching the coefficients of x through x’ in the
expansion of §B’;”1’f(x) with the perturbative constraints
(27). This ensures that B (x) is approximated well for
small values of x. Crucially, the parameter 4 allows us to
also adjust the growth 874" (x) ~ x* for large x to better
match the behavior of the actual Borel transform. Without
this degree of freedom, our approximations %?’O‘K(x) -

Zf:o B.I;jg would always approach a constant value at
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x — oo. This appears to model the Borel transform only
very poorly, and a careful choice of A is essential to
significantly improve the quality of the resumma-
tion [9,71,96].

Our approximate result for the Borel sum (28) is then
given by

Fle) m P2 (e) = /0 T e B Qenydr. (31)

Finally, a third parameter was introduced in [13] to
improve the results even further. Namely, we consider a
homographic transformation

d £

£ =hy(e) = - with inverse ¢ = h' ()

T1- qe
(32)

1+ g€

to reexpand the original e expansions as series in & (for
g = 0, nothing changes). We then proceed as above, taking
this new series as input:

~ ~ © 2et
L FhAa Ly —tgpbAt
fle) ~ £ (e) = A the B (1 — qg)dt. (33)

The motivation for (32) is that it allows us to map potential
singularities of critical exponents as functions of ¢ further
away from the point € = 1/2, in order to diminish their
possibly detrimental influence on the resummation [13].

In closing, let us stress that there are several aspects in
which this basic scheme might be adjusted. For example,
we could choose other conformal mappings than (29),
replace (32) by a different transformation and instead of
(30) we could use another class of functions to approximate
the Borel transform."

B. Dependence on resummation parameters

Our resummation procedure is formulated in terms of
three parameters: b, A and ¢. If we knew the full
perturbation series of a critical exponent f(e), the
resummed value f(e) = limf_,oo]”?i’q (&) would not depend
on these choices. But since we only have the first few terms
of the ¢ expansions at hand, we are forced to consider the
truncations }?’l’q(e) with #Z < 6. These do depend on the
parameters, which therefore have to be chosen carefully.

Let us first comment on b. The asymptotic behavior of
the coefficients of our approximations of the Borel trans-
form, %ji"l"f(x) from (30), is given by

“For example, hypergeometric functions were proposed in
[99] and Chap. 19 in [1]. Furthermore, Padé approximants have
been suggested as a replacement for the Taylor series (30); see
[100,101].
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It was noted in [79] that we can therefore match the leading
asymptotics (25) of the perturbation series and our model
for the Borel transform by setting b = b, + 3 /2, according
to (27) and T'(k + b + 1) ~ k! - k*. This fixed value was
indeed used in [9,21,71,79,96], with the idea that it
incorporates the contributions from very-high-order per-
turbation theory. We do not follow this strategy, for the
following reasons:
(1) For an exact resummation of the high-order con-
tributions, we would actually also have to enforce a
precise matching of the constant"

T
Ci=—> (=1)?(p—2A)B%".
f \/7—[;( )P (p ) fop

(2) In Sec. IV B we saw that even six loops remain far
away from the asymptotic regime (Fig. 1). The
contribution of the resummed asymptotic higher
orders is thus likely outweighed by the deviation
of the seven-loop contribution from its asymptotic
estimate (25).

(3) Variation of the parameter b, as first suggested in [5],
can improve the resummation and also provides a
hint towards the uncertainty of the result.

Instead, let us investigate how the resummation depends on
b. According to (27), the Taylor coefficients of the Borel
transform become smaller with increasing b. Since the
nontruncated Borel sum does not depend on b, this implies
that the dominant contribution to the integral (28) must
come from larger values of x. Hence, with increasing b, our
model for the large-x behavior of the Borel transform
(encoded in the parameter 4) should become more relevant.

Figure 3 demonstrates this behavior, by plotting the
resummations ﬁ?‘ﬁ‘q(l/ 2) of the critical exponent 1 (with
various truncation orders £ of the € expansion) as a function
of b for several values of 1. First note that, as expected, in
each case the dependence on b decreases if we take more
terms of the & expansion into account (it will disappear
completely only in the limit £ — o). Furthermore, the
choice of 1 has a strong influence on the b dependence of
the resummation.

This was pointed out in [79]. We note that in this reference,
the overall sign in Eq. (14) seems wrong, and in Egs. (13) and
(14), ay should not appear, according to our (34).
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FIG. 3. Dependence of the resummations ﬁ/;”l’q of n on b for different values of 4, at n =1 in D = 3 dimensions (¢ = 0.5) with

g = 0.2. The loop order # is indicated by the label £<7.
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FIG. 4. Dependence of the resummation of # on A for different values of b, for n = 1 in D = 3 dimensions with ¢ = 0.2. The loop

order Z is indicated by the label £5¢.

In fact, for most 1’s, the dependence on b is very strong.
However, we find that for a rather small range of 4, the five-
and six-loop resummations become almost insensitive to b
as illustrated by the plateau in the second plot of Fig. 3.
This stability (with respect to ) deteriorates quickly if we
resum fewer terms of the ¢ expansion. As expected from
our discussion earlier, we also see that for larger values of
b, the resummation depends more strongly on the tuning of
A. Finally note that with (26), the value b = b, +3/2 =5
chosen in [9,96] seems too small and misses the plateaus.

In conclusion, we take the sensitivity with respect to b
both as an indicator of the uncertainty of the resummation
and as a criterion to choose A and ¢. This is a common
approach in general, and the existence of wide plateaus in
this case was for example pointed out in [30]."° The power
of studying the sensitivity with respect to the resummation
parameters was also demonstrated in [102], and indeed we
will also apply this criterion with respect to variations of 4.

In Fig. 4 we see the dependence of the resummation on 4
for various b. As we expect from Fig. 3, very small values
like b = 5 give a very unstable picture. For suitable larger

"In [30,102], the same approach was used to optimize the
value for a in (29). It was observed that the dependence on a is
very weak and that the best choices of a lie very close to the value
from (26) in the asymptotic growth (25). We therefore keep a
fixed at this value.

values like b = 15 we find A intervals where the six-loop
resummation 7, (and to a lesser degree also the five-loop
resummation #s) varies only very little. If we further
increase b, the curves become more sensitive to A again.
However, even in the plot for b = 25, the value at the near-
optimal 4 = 2.5 from Fig. 3 remains essentially unchanged.

Finally, it is important to stress the role of the homo-
graphic transformation, indexed by ¢. The reexpansion in &
after the substitution (32) adjusts the coefficients in a
nontrivial way and thereby has a potential to alter the
apparent convergence of the resummation procedure. In
Fig. 5 we show the dependence on b for various choices of
g, where in each case A was tuned to minimize the
sensitivity to b.

The wide plateau existent for ¢ = 0.2 (already shown in
Fig. 3) gets shorter for larger ¢ and the dependence on b
becomes much stronger away from a short range of ¢ near
0.2. Also note that the level of the (shortened) plateaus
shifts with g (in Fig. 5, the plateau moves down when ¢ is
raised above 0.2). Clearly, such a strong correlation of the
resummation result with a free parameter is not desirable.
But we see that the stability criterion with respect to b
nevertheless clearly singles out a preferred range of g. The
same qualitative observation applies to the dependence on
A; that is, for ¢ far from 0.2, the dependence on A (as in the
plots like the ones shown in Fig. 4) becomes stronger.
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For different values of ¢ € {0,0.2,0.4,0.6}, we plot the dependence of the resummation on b. In each case, we adjusted A to

find the best apparent stability with respect to b. The loop order # is indicated by the label <.

In summary, we confirm the observation of [13] that
the homographic transformation (32), with a suitable choice
of ¢, can significantly improve the apparent stability of
the resummation with respect to variations in b and A.
Incidentally, note that the nearly optimal choice (with respect
to these stabilities) of setting (b, 4, ¢) to (15,2.5,0.2) yields a

result of ﬁé”’l’q ~ 0.03611, which agrees well with earlier
resummations and estimates from other methods (see
Table XI). Without the homographic transformation, that
is g = 0, the stability and the agreement with other results
would be much worse (see the leftmost plot in Fig. 5).

C. Resummation algorithm

In order to quantify the sensitivity of a function F(x)
with respect to a resummation parameter x, we pick a scale
A, and define

max

F = 1
VarX( (x)) as){rslzlle (agx’SaJrAx

Fx) = F&))  (39)

as the minimum spread of the values F(x’) around F(x)
inside an interval x’ € [a, a + A,] of width A, that contains
X (so a runs from x — A, to x). A smaller value of this
quantity corresponds to an increasingly flat plateau (of
width A ) in the kind of plots we show above. Following
our discussion in Sec. V B, we want to pick the resumma-
tion parameters such that these spreads, and in particular

Var, (]‘?’M), become as small as possible. But this is not the
only desirable criterion.

A further indicator for the uncertainty of the resumma-
tion is given by the size of the corrections going from one
loop order to the next. In fact, in [9,96], 4 was determined
exclusively by minimizing the relative differences

Qp=1=fs/fril

of the last few loop orders. Pictorially, this amounts to
searching for intersections of the curves labeled <6, £=°
and £<* in the plots as shown in Figs. 3 and 4.

These two very general approaches are called principle
of minimum sensitivity (PMS) [110] and principle of fastest
apparent convergence (PFAC) [111]. In our context of

critical exponents, they are discussed for example in [102],
and they can be applied in many different ways. In fact, we
found that several works on resummations leave out some
of the details of the employed procedure, making it difficult
to reproduce the results. 17 Therefore, let us state our method
precisely.

We combine both the PMS and the PFAC into the error
estimate

" 7b.,A, 7b.A, 7b.A, 7b.A,
EL(b. A q) =max{|f;"7 = f2A01 [f740 = £}
7b.A, 7b.,A,
+ max{Var,(f,"7), Varb(ff—lq)}

+ Var,(f2*) + Var, (f2*9). (36)
The first term accounts for the uncertainty due to the
unknown corrections from higher perturbative orders (esti-
mated by the differences of the largest two loop orders),
whereas the spreads in the following two lines take care of
the arbitrariness in the choice of the parameters b, A and g¢.
We pick the scales as follows:

(1) A, =20, because we indeed find such strikingly
wide plateaus (with only minute variations of the
resummation result), as seen in Fig. 3 and noticed in
[30], for all critical exponents and values of n that
we considered.

(i) A, =1, since the dependence on 4 is stronger and
even at six loops the plateaus do not grow much
longer (see Fig. 4).

A, =0.02, as the dependence on ¢ is very strong
(for fixed A); higher values of A, would yield
unrealistically high error estimates.

Our resummation of a critical exponent f at order £ then
proceeds as follows:

(1) Sample ff;’l’q as defined in (33) for parameters in

the cube

(iif)

(b, 2, q) € [0,40] x [0,4.5] x [0,0.8],

where b runs over half-integers and 1 and ¢ are
probed in steps of 0.02.

7Some notable exceptions are [112] and Appendix A in [113],
where the scanned parameter ranges are discussed in detail.
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FIG. 6. Six-loop resummation results and their error estimates (36) for the critical exponent 7 of the Ising model (left plot) and v~! of
the O(4) model (right plot), in three dimensions. In the first case, the “best” resummation is rather sharply localized, whereas the second
plot reveals a wide spread among the resummations with small error estimates. The dashed vertical line shows the weighted average.

(2) For each such point (b,1,¢q), compute the error
estimate (36).
(3) Find the (global) minimum E]; of these values
for E;(b, 1, q).

For the example of # (in the three-dimensional Ising case
n = 1), the “apparently best” resummation, according to our
error estimate, occurs at (b,4,q) = (11,2.56,0.2) and
yields EZ =~ 0.0002. These resummation parameters are very
close to the second plots in Figs. 3 and 4. The actual value of
the resummed critical exponent is 7;'***** ~ 0.03615 and
agrees (within the error estimate E7) with results from
completely different theoretical approaches (see Table XI).

A comment is due on our choice for the function
EJ;(b,i,q), which we use as a quantitative measure for
the “quality” of a resummation. Obviously, there are many
different reasonable definitions of such a measure.'® And
even if we stay with our definition (36), it still depends on
the somewhat arbitrary parameters A,, A; and A,.
However, we tested numerous such variations and found
that their effect on the selection of the apparently best
resummation parameters (b, 4, ¢) only results in very small
shifts of the critical exponents. Broadhurst attributes a
fitting quote to Jean Zinn-Justin (paraphrased):

In work on resummation, there is always an undeclared
parameter: the number of methods tried and rejected
before the paper was written.

We stopped counting.

D. Error estimates
The estimation of resummation errors is a notoriously
difficult undertaking, for mainly two reasons:

"®For example, one could incorporate more low-order correc-
tions |f, — f,_x| with k > 2, or disregard the stability Var, (f,_;),
or take further stabilities of lower loop orders into account.

(i) We do not know the perturbative coefficients of the
next loop order.

(ii) The free parameters (in our case: b, 1 and ¢) can in
principle be tuned to reproduce any value for the
critical exponents.

Therefore, we can only hope to get a good guess of the error
if we assume

(A) the next perturbative correction is not much larger
than the last known correction and

(B) the exact critical exponent is close to the resummed
critical exponent £2* when the parameters (b, A, q)
are chosen in order to minimize E];(b,/l, q).

We chose the widths A, A; and A, as given above such

that E’;(b, A, q) from (36) should be considered as a lower
bound on the error that is inherent to the resummation

f l}’l’q. To verify that this guess of the error is self-consistent,
we consider plots as shown in Fig. 6, i.e. the critical
exponent 7 of the three-dimensional Ising model (n = 1).
Each point (7%, E}(6)) represents a set 6 = (b, A, q) of
resummation parameters with an error estimate <0.0006 ~
3E{. We notice that the optimal resummation (Eg ~ 0.0002)
is rather sharply localized. The spread of the resummation
results around this optimum increases in line with the error
estimate—this means that our error estimates are indeed
consistent with the actual spread.

But there are also cases, like the critical exponent v in the
O(4) model as illustrated in the right plot of Fig. 6, where
there exist many resummation parameters that yield a close
to minimal error estimate but which produce results that are
spread much more widely than the error estimate suggests.
In such a situation, we do not pick the apparently best
resummation (like we do for ), but instead we choose a
mean value [e.g. 1.352 in the O(4) example] as a more
faithful representation of the distribution of resummations.
This is how we compiled our resummation data in Table XI
in the next section. Similar plots are provided for all
exponents in an ancillary file (see Appendix A).
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FIG. 7. Dependence of the resummation results for the critical exponent v~! in the three-dimensional O(4) model on b and /A, around
the point (b, 4, ¢) = (10,0.82,0.4) of the apparently best five-loop resummation. In this case, the sixth loop order induces a significant
correction, which exceeds what one might expect from just considering the variation (as a function of b and ) intrinsic to the five-loop

resummation itself.

In order to take the actual spreads of the best resumma-
tions (like shown in Fig. 6) into account, all errors reported
in the following section consist of the minimum error
estimate E’;, plus an additional contribution given by two
standard deviations of the set of all resummations with an

error < 3E§. One might argue that this would overestimate
the error, since we aimed to account for the spreads due to
variations in the parameters (b,4,q) already in (36).
However, given the arbitrariness in fixing the widths A,
and the unknown uncertainties neglected by assuming (A)
and (B) above, we are more confident with stating these
enlarged errors (in particular since underestimated errors
are not uncommon in the literature [114]).

Let us point out in an explicit example how the error
predicted by the principles PMS and PFAC, like (36),
can underestimate the corrections from higher-order
contributions. We consider again the exponent v in the
three-dimensional O(4) model. The apparently best five-
loop resummation gives v~' ~1.352 at 0 = (b,1,q) =
(10,0.82,0.4) with an error estimate of E;/D ~ 0.002. On
the scale of Fig. 7, we see indeed only very small
fluctuations of the five-loop resummation when » and A
are varied. Furthermore, the three-, four- and five-loop
resummations essentially coincide at €; in other words, the
four- and five-loop corrections almost vanish at this point.
Nonetheless, we see that the six-loop correction is signifi-
cant and much larger than the fluctuations of the five-loop
result. This kind of behavior appears to be linked with large
spreads of the best resummations as shown in the right plot
of Fig. 6 and explains why, in some rare cases, our error
estimates for the six-loop resummations quoted in Table XI
actually exceed the error estimates for the resummations of
the five-loop series.

In such a case one could say that the five-loop result
seemed converged, but towards an erroneous value. This
phenomenon is particularly well known to occur in two
dimensions, where it was called “anomalous apparent

convergence” in [102]. Here we also like to stress that
the large-x behavior of the Borel transform 2352”1’&()() of
critical exponents f is still unknown. Hence the power law
model (30) is only justified because it seems to work very
well in practice, but it remains unclear if A can actually be
interpreted as the exponent of a power law asymptotic
behavior of f(¢) for large ¢. If the exact large-x behavior is
of a different form, then the PMS might miss the correct
value (Appendix A in [93]).

VI. ESTIMATES FOR CRITICAL EXPONENTS
IN THREE DIMENSIONS

The critical phenomena of many interesting physical
systems are described by the O(n) universality classes. We
refer to [115] for a comprehensive discussion and only
recall some of the most interesting examples:

n = 0 (self-avoiding walks).—polymers [116],

n =1 (Ising universality class).—liquid-vapor transi-

tions, uniaxial magnets,

n =2 (XY universality class).—superfluid A transition

of helium [117],

n = 3 (Heisenberg universality class).—isotropic ferro-

magnets,

n = 4.—finite temperature QCD with two light fla-

vors [118].

These are the systems that we consider below; larger values
of n were discussed for example in [113,119,120].

The critical behavior of each universality class is
governed by the critical exponents a, f, y, 8, n and v.
However, in our field-theoretic approach, only two of them
are independent and determine all others through the
scaling relations (10). So, while discussing agreement with
other theoretical methods, we will only consider the critical
exponents #, v and the correction to scaling exponent .

In Table XI, we present the summary of our results for
the six-loop resummation of these exponents, in D =3
dimensions for 0 <n <4. For comparison of the
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TABLE XI.

PHYSICAL REVIEW D 96, 036016 (2017)

Estimates for critical exponents in D = 3 dimensions of the O(n) vector model. Results from the

conformal bootstrap and Monte Carlo techniques are listed first (we tried to collect the most accurate predictions in
each case). Our estimates from the five- and six-loop € expansions are shown next. For comparison of the resummation
methods, we display the five-loop results (from & expansion without D = 2 boundary conditions) according to [16].

n=90 n=1 n=2 n=3 n=4
0.031043(3)* 0.036298(2)!" 0.0381(2)!"*! 0.0378(3)!"*™ 0.0360(3)°
£ 0.0310(7) 0.0362(6) 0.0380(6) 0.0378(5) 0.0366(4)
n P 0.0314(11) 0.0366(11) 0.0384(10) 0.0382(10) 0.0370(9)
[16] 0.0300(50) 0.0360(50) 0.0380(50) 0.0375(45) 0.036(4)
0.5875970(4)*" 0.629971(4)!¥ 0.6717(1)!1%! 0.7112(5)1'%! 0.7477(8)°
£6 0.5874(3) 0.6292(5) 0.6690(10) 0.7059(20) 0.7397(35)
v £ 0.5873(13) 0.6290(20) 0.6687(13) 0.7056(16) 0.7389(24)
[16] 0.5875(25) 0.6290(25) 0.6680(35) 0.7045(55) 0.737(8)
0.904(5) 0.830(2)!1%¢! 0.811(10)° 0.791(22)° 0.817(30)°
£6 0.841(13) 0.820(7) 0.804(3) 0.795(7) 0.794(9)
@ P 0.835(11) 0.818(8) 0.803(6) 0.797(7) 0.795(6)
[16] 0.828(23) 0.814(18) 0.802(18) 0.794(18) 0.795(30)

“From y = 1.156953(1) [19] and v = 0.5875970(4) [20] via y = v(2 — ;) in (10).

"Given in [104] and compatible with 0.0365(10) [107] and y, = (5 —#)/2 = 2.4820(2) in [108].
‘From y, = 1/v = 1.3375(15) in [108], compatible with v = 0.749(2) [107] and 0.750(2) [104].
dComputed from wv = A = 0.531(3) according to [109] and v = 0.5875970(4) in [20].

“These are the results given as Ag = 3 + @ in Table 2 in [17].

resummation methods, we also show the outcome of
applying our resummation procedure to the five-loop ¢
expansions, in comparison with the results given in [16] for
the summation of the same series. It should be noted that
we do not consider the renormalization in fixed dimension
D € {2,3}, where the resummation problem is slightly
different and has been approached, for example, with
the pseudo-¢ expansion [121,122] going back to Nickel
(Ref. [19] in [6]).

The table furthermore includes a tiny selection of
estimates obtained with other theoretical approaches (in
particular Monte Carlo and the conformal bootstrap), which
by no means can represent the vast literature on this subject.
We merely tried to pick the most recent results of the
highest apparent accuracy, in order to compare them against
our field theoretic method.

Let us first state the following general observations:

(1) When we apply our resummation algorithm to

the five-loop & expansions, we obtain values for
the critical exponents that are compatible with the
resummation of [16]. This indicates that our resum-
mation procedure is consistent with their method,
though it differs from ours."

(2) Our error estimates (at five loops) are smaller than

those given in [16].

(3) The six-loop resummation results are consistent with

the five-loop results (within the quoted errors), and in

“Our method from Sec. V is an implementation of the ideas
lined out in [13]. In [16], however, the authors abandoned the
parameter A from (30) and in its stead introduced a further
parameter r via a transformation f(e) — (1 + re)f(e).

most cases the apparent errors of the six-loop results
are significantly reduced compared to five loops.

(4) Overall the agreement of the six-loop resummation
with predictions from other theoretical approaches is
very good, in particular for #.

The largest apparent discrepancies between our six-loop
resummation and other estimates occur for @ at n = 0 and
the exponent v when n > 1. In fact, the trend that
renormalization-group-based predictions for v tend to be
lower than results from statistical approaches has been
observed long ago. Our six-loop results narrow this gap
only slightly, but due to the large error estimates in those
cases we do not attach any significance to these differences
yet. Once the seven-loop perturbative results become
available, it will be interesting to revisit these cases.

We will now briefly discuss the universality classes one
by one and, for completeness, show the full set of critical
exponents as obtained via the scaling relations (10) from
our resummation results for # and v. However, these
derived exponents might be determined more accurately
via direct resummations of the individual series, as in [16],
or other resummation techniques.

Note that we resum the e expansions as explained in
Sec. V, without enforcing any boundary values of exactly
known critical exponents in two dimensions. The latter
technique is often used to improve the resummation results
for three dimensions [13,16,123]. However, the exact boun-
dary values are not known in all cases, and it seems difficult to
quantify the effect of this procedure on the error estimates.
We therefore do not enforce any two-dimensional boundary
values; instead, we test our method in Sec. VII by comparing
our resummation results in two dimensions with exact
predictions.

036016-16



MINIMALLY SUBTRACTED SIX LOOP RENORMALIZATION ...

A. Self-avoiding walks (nz =0)

Over the last decade, successive improvements of
Monte Carlo methods significantly diminished the uncer-
tainty of critical exponents [19,20,124,125]. The latest
and most accurate estimates are y = 1.156953(1) [19]
and v = 0.5875970(4) [20]. In contrast, the value wv =
A =0.531(3), computed long ago in [109] and confirmed
by the very recent result 0.528(8) of [20], remains the most
precise determination of the correction to scaling. In
conclusion, we derive

A
n=2-L=0031043(3) and @ == =0.904(5).
14 14
(37)

Applying the resummation procedure described in Sec. V
to the six-loop & expansions of 7, v and w (Tables VIII-X)
yields

n =0.0310(7),

v =05874(3) and o = 0.841(13).

(38)

The values of # and v are in good agreement with (37), but
the correction to scaling exponent  differs by ~7%. Note
that our error estimate for @ increases from five to six loops,
which hints towards a badly convergent situation.

For completeness, we compute the other critical expo-
nents via the scaling relations (10) from (38):

a=0.2378(9), £ =0.3028(4), y = 1.1566(10),
5 =4.820(4). (39)
B. Ising universality class (n=1)

Experimental measurements in Ising systems, as dis-
cussed for example in [115,126,127], have rather larger
uncertainties. Theoretical predictions are more accurate,
like the Monte Carlo simulations [128] with

n=0.03627(10), v =0.63002(10), = 0.832(6).

(40)

The most accurate values were obtained with the conformal
bootstrap [18,106]:

n=0036298(2), v=0.629971(4), = 0.830(2).

(41)

Our resummations for 7, v and @ and the other exponents
derived via (10) are

n=00362(6), ©=06292(5), o=0820(7),
a=0112(2),  p=0326005). y=12356(14),
5 = 4.790(4). (42)

PHYSICAL REVIEW D 96, 036016 (2017)
C. XY universality class (n=2)

Famous for the very precise measurement a =
—0.0127(3) in the microgravity experiment at the A
transition of liquid helium [117], this universality class
also describes planar Heisenberg magnets. Theoretical
predictions from a combination of Monte Carlo simulations
and high-temperature expansions in [103] are

n=00381(2), v=06717(1),  =0.785(20),
a=-00151(3), B=03486(1), y=13178(2).
5 =4.780(1). (43)

The conformal bootstrap [17] provides a correction to
scaling exponent @ = Ag —3 = 0.811(10). Resumming
the six-loop € expansions, we obtain

n=0.0380(6), v=06690(10), = 0.804(3),
a=-0007(3), B=03472(7), y=1313(2),
5 = 4.780(3), (44)

where the values in the second and third row are calculated
with the scaling relations (10). The accuracy for a = 2-3v
is so small due to the vicinity of v and 2/3, and serves
another motivation for the seven-loop calculation of the ¢
expansion.

D. Heisenberg universality class (nz =3)

For experimental results, we refer to [129]. The most
precise theoretical predictions stem from Monte Carlo
simulations [104]:

n = 0.0378(3), v=10.7116(10); (45)
Monte Carlo combined with high-temperature expansion
[105]:

n=00375(5), v=07112(5),
a=-0.1336(15), B =0.3689(3),
y=1396009),  &=4.783(3); (46)

and the correction to scaling exponent @ = Ay —3 =

0.791(22) from the conformal bootstrap [17]. Our resum-

mations yield

n = 0.0378(5), v = 0.7059(20), o = 0.795(7),

a=—0.118(6), B =0.3663(12), y = 1.385(4),

5 =4.781(3). (47)
E. The case n=4

The Monte Carlo results # = 0.0360(3), v = 0.750(2)
from [104] and # = 0.0365(10), v = 0.749(2) given in
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TABLE XII.  Previous estimates for D = 2 dimensions from the
five-loop e expansion according to [13], our results for the
resummation of the same series and also for six loops. The first
row for the exponents 7 and v shows the exact values for the Ising
model (column n = 1) due to Onsager [132] and the conjectures
of Nienhuis [133] in the cases n = —1 and n = 0. We also report
theoretical expectations for the correction to scaling exponent w.

n=-1 n=20 n=1
[133] 0.15 0.208333... 0.25
€0 0.130(17) 0.201(25) 0.237(27)
n & 0.137(23) 0.215(35) 0.249(38)
[13] 0.21(5) 0.26(5)
[133] 0.625 0.75 1
€0 0.6036(23) 0.741(4) 0.952(14)
v & 0.6025(27) 0.747(20) 0.944(48)
[13] 0.76(3) 0.99(4)
5l133.134] 17511301
€0 1.95(28) 1.90(25) 1.71(9)
@ & 1.88(30) 1.83(25) 1.66(11)
[13] 1.7(2) 1.6(2)

[107] are consistent with each other and also with the values
n =0.0360(4), v = 0.7477(8) obtained via y, = 1/v and
vi = (5 —1)/2 from the results in [108]. The correction to
scaling exponent is ® = Ag — 3 = 0.817(30) according to
the conformal bootstrap [17].

Our resummation results and the scaling relations (10)
lead to

n=00366(4), ©=07397(35), @ =0.794(9),
a=-0219(11),  B=0383(2), y=1452(7),
5 =4.788(2). (48)

VII. CRITICAL EXPONENTS IN
TWO DIMENSIONS

In two dimensions, the resummation of critical expo-
nents is known to be much less accurate, most likely due to
nonanalyticities in the beta function at the critical point
[130].20 Indeed, our errors (determined automatically by
the procedure from Sec. V D) reflect this expectation.

The results shown in Table XII are again compatible with
the five-loop resummations from [13]. Furthermore, we can
compare them with the following predictions:

n = 1.—The exact critical exponents 7 = 1/4 andv = 1

of the Ising model were computed by Onsager [132].

The convergence of our perturbative results seems slow,

and in particular v seems to stabilize at a value slightly

201¢ seems, however, that the ¢ expansion yields much more
accurate predictions for critical exponents in two dimensions (see
Table XII) than the fixed dimension approach [131].

PHYSICAL REVIEW D 96, 036016 (2017)

lower than expected. This phenomenon of “anomalous
apparent convergence” was already discussed in detail in
[102] at the five-loop level and seems to persist at six
loops.

The correction to scaling, however, is in good agreement
with the prediction @ = 1.75 from Eq. (21) in [130].

n = 0.—Our results are compatible with n = 5/24, v =
3/4 and @ = 2 as already conjectured by Nienhuis [133],
though v again seems slightly too small and the uncertainty
of w is large. The value of w has been subject to extensive
debate [134], so increased accuracy from the seven-loop &
expansion would be particularly desirable here.

n = —1.—The value of 7 is roughly consistent with
Nienhuis’ #=3/20, but for v the prediction of 5/8 is very
far from our result (almost 10 times our error estimate).

VIII. SUMMARY AND OUTLOOK

After many years of work, new mathematical insights
into the structure of Feynman integrals have matured into
practically applicable techniques that overcome limitations
of traditional approaches so far as to enable progress with
the perturbative computation of renormalization group
functions. Finally, after 25 years, we were thus able to
improve on the five-loop results [14] of the O(n)-sym-
metric ¢* model. We like to point out that the primitive
graphs relevant to this computation have been essentially
known for 30 years [42]. So the challenge was not in
unknown transcendental numbers beyond zeta values, but
the complexity introduced through subdivergences.

Our approach rests on a significantly improved under-
standing of the parametric representation of Feynman
integrals [23,135], symbolic integration algorithms based
on hyperlogarithms [24] and the Hopf algebra [136] of
renormalization underlying the BPHZ scheme [25]. But
also other techniques, like graphical functions and single-
valued integration [46,137], can be used for this kind of
calculations, as demonstrated by the impressive, indepen-
dent work of Schnetz [26]. In fact, these methods are so
powerful that even the seven-loop computation seems now
not only feasible but is already underway [26]. Note that the
contributions from seven-loop graphs without subdiver-
gences were investigated numerically long ago [43,47] and
are by now already known exactly [48].

We are optimistic that these tools will also have further
applications. They should be particularly amenable to ¢°
theories, whose renormalization only very recently reached
the four-loop level [123,138]. Fermions and gauge fields
provide additional technical difficulties, but even in this
very challenging domain, significant progress was achieved
recently. Let us just mention the Gross-Neveu model [139]
and the particularly impressive five-loop renormalization
of QCD [140-142] and generalizations [143—145]. Those
computations drew on yet another set of recently improved
methods, e.g. [146-149].
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It is our hope that explicit longer perturbation series, like
the ones presented here, will lead to an improved under-
standing of how they approach their asymptotic behavior
and provide a sufficiently robust and precise testing ground
to evaluate and compare the myriad of resummation meth-
ods that have been proposed over time, which usually make
various unproven assumptions. Such an analysis is an
important task in order to turn a finite number of perturbative
coefficients reliably into very precise estimates for physical
quantities and necessary to harvest the predictive power of
increasingly high-order perturbation series. Ultimately, we
hope that the deep theory of resurgence and transseries
[150,151], in combination with the structure of Dyson-
Schwinger equations [152], will provide superior tools for
this task; but so far, its explicit practical lessons seem to
restrict to the well-known insight that the analytic continu-
ation of the Borel transform should be tailored to have the
expected branch cuts [153].

As an application, we resummed the six-loop & expan-
sions for the critical exponents in three dimensions and
found that, in many cases, the resulting reduction of their
error estimates renders the renormalization group method
again competitive in comparison with recently advanced
bootstrap and Monte Carlo techniques. We expect that the
seven-loop renormalization will provide critical exponents
with even higher accuracies and allow for a more stringent
analysis of the compatibility of these very different meth-
ods. This is an important task in order to check various
assumptions that might be inherent to a particular approach.
For example, recent bootstrap results assume that the O(n)
models are realized at a “kink” on the boundary of the
domain of allowed operator dimensions [17,106].
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APPENDIX A: DESCRIPTION
OF ANCILLARY FILES

This article is accompanied by a comprehensive data set
in the form of human readable text files. We provide these
in two formats that are compatible with popular computer
algebra software: MAPLE [156] (files ending with .mp1l)
and Mathematica [157] (files ending on .m). Concretely,
these include

(i) € expansions of the renormalization group functions

and critical exponents,

(i) individual counterterms (Z-factor contributions),

symmetry and O(n) factors of all <6 loop ¢*
graphs and
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(ili) & expansions of the massless propagators that we
computed to obtain those.
Below we explain in detail the content and format of
these files (referring only to the MAPLE files, since the
Mathematica versions are built in complete analogy).

In addition, the Supplemental Material [158] (resum-
mation.pdf) provides detailed information on our
resummations. Namely, for each exponent f€{n,v7!,w},
dimension D € {2,3} and the corresponding values of n
considered in Tables XI and XII, it lists the parameters
(b, 4, q) with least apparent error (36) together with plots
like in Figs. 3 and 4, showing the nearby dependence on b
and 4, and including the distribution of resummation results
as in Fig. 6.

1. RG functions and critical exponents

Our six-loop expansions of the renormalization group
functions f,y, and y,,» defined in (4) and (5) are provided
in the Supplemental Material [158], expanded.mpl, (in
the MS scheme). It also contains the expansion of the
critical coupling g, (¢) from (6) and the resulting expan-
sions for the universal critical exponents 5, v~' and
defined in (7) and (8), plus the critical exponents a, 3, y and
0 computed via the scaling relations (10).

Each expansion is given symbolically with full n
dependence, followed by numeric evaluations for n €
{0,1,2,3,4} like in the tables in Secs. IV and V.

2. Counterterms of individual graphs

We computed the Z factors defined in (2) via their
expansions (11) in counterterms. For each i € {1, 2,4}, the
Supplemental Material [158] (Z.mpl) contains a list of

/ _ G (2
KR (@) — (3<3+

Tt

9

Multiplied with the symmetry and group factors Sym(G) =
3/2 and Cs=(5n+22)(3n>+22n+56)/2187, this gives a
contribution to Z,. The counterterm (A1) also contributes
to Z;, but with symmetry factor —1/2 and group factor
(n +2)?(5n +22)/243, as dictated by entry Z1[6,473] in
Z .mpl. Note that these data can also be looked up in [40],
where the graph is called 603-U7 and drawings of all
relevant graphs are provided in Fig. 1 therein.

The full Z factor is obtained by summing
(=9)"Sym(G)Csz¢ over all entries of the corresponding
list. The Supplemental Material [158] (rg.mpl) demon-
strates this computation and furthermore generates the
expansions of RG functions and critical exponents from

360
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1 5

NI 3 4 = eel2|345(346145|5(6|eel

2

FIG. 8. The graph with Nickel index ee12|345|346|45|
5|6 |ee|, showing the vertex order corresponding to this
labeling. This graph gives contributions to Z; and Z,.

graphs contributing to Z;, similar to the table in
Appendix A in [21] for Z,. Each entry is of the form

zil?, j] = [NI(G), Sym(G), Cg, zg]

and indexed by the loop number # and an integer j. A graph
G is specified by its Nickel index NI(G) as defined in
Sec. Il in [40]; see also [49]. This is an intuitive notation for
an adjacency list with respect to a certain labeling of the
vertices, illustrated in Fig. 8. Note that we consider graphs
without fixed external labels (“non-leg-fixed” in the termi-
nology of [69]); i.e. the symmetry factor is Sym(G) =
(Eg)!/Aut(G), where E; € {2,4} denotes the number of
external legs and the automorphisms are allowed to
permute them. Furthermore, the list contains the O(n)
group factor C; from (15) and the actual counterterm
contribution z, which, according to (11), equals 0 szCR’ G
for Z, and KR'G for Z,. The counterterm Z; is expressed
as a linear combination of a subset of graphs contributing to
Z,4, as explained in Sec. III.

For example, the entry Z4[6,458] in Z . mp1 corresponds
to the graph G depicted in Fig. 8 with NI(G) =
eel2|345|346|45|5|6|ee|. After minimal subtraction
of subdivergences in the G scheme (A2), its pole part is

7t 1 9( n Tt 23< 1
180 ) &3 237360 6 ) e2
161 7

Al
G+ ¢ 278\ 1 (AD)
30 % 103 945 ) &

these Z factors (it outputs the contents of expanded.mpl
mentioned earlier).

3. ¢ expansions of massless propagators

We obtained the counterterms from massless propaga-
tors, which are also called “p integrals” [58], via the
intermediate use of the BPHZ-like one-scale scheme [25]
as explained in detail in [22]. Since these p integrals might
be valuable for other applications, we include our results for
their ¢ expansions in the Supplemental Material [158]
(p_int gi.mpl), wherei € {2,4}.Inthecasei = 2, we
list all 1PI propagator graphs of ¢* theory, whereas the p
integrals given for i =4 arose from nullifying some
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external momenta and rerouting external legs of some
subdivergences, according to [22,25], in order to make those
subdivergences single scale. In particular, this means that the
p integrals listed for i = 4 are usually not Feynman graphs
of ¢* theory, due to vertices of valency greater than four.
The e expansions are given for external momentum
squared p?> = 1 in the G scheme [38]: each integration over

a loop momentum k carries the measure
147¢. 147
&2, , -4 (e
p2=1 16¢ 16

APPENDIX B: ESTIMATES FOR PRIMITIVE
DIAGRAMS UP TO 11 LOOPS

In the discussion of the asymptotic behavior in Sec. IV B,
we included the contributions of primitive (subdivergence-
free) graphs to the f function with up to 11 loops in Fig. 1.
These graphs had been enumerated in [47], but exact results
are currently complete only up to seven loops [48]. The
Feynman integral of such a primitive four-point graph G
with Z loops (and 7+ 1 vertices) has a simple pole
P(G)/(¢e) and thus contributes —(—g)P(G)/¢ to Z,
and Z,. Taking the symmetry factors into account, the

resulting contributions ™ (g) = 37, 2™ (—g)F to the beta
function defined in (4) are

prn=2x Yy

primitive G,
¢ loops, 4legs

P(G)

Aut(G)] (B1)

The residue P(G) is known as the Feynman period [159]
and can be written in Schwinger parameters x, [one for each
edge e € E(G) of the graph] as

) o 1
0 0 z//G(x) |x] =1
P(G) . P(G)/10* »
// 7/
180 / 6 /
; .
K 5 4 /7
100 I //
ra 4 4 P
” &
320 + / .
v 3+
210 4 Y 27
/‘
s wopo 'L H@NE®
160 +——— t t t T T T T T
7 10 13 16 19 1 2 3 4 5 6

FIG.9. The known Feynman periods P(G) at seven loops (left)
and 11 loops (right) as a function of the Hepp bound H(G) from
Definition 1. The plots also show the interpolating functions of
the form (B5).
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(1 - &)r(1 a2k
( 8) ( + 8) / . (Az)
I'(2-2e) e
which in  particular  normalizes the  bubble
NI(€ ¥») = elllel, which is the first entry

pnt[1,1] in p_int 4.mpl, to be exactly 1/e. For

example, the entry plInt[6,163] with Nickel index
el23]e24|35|66|56|6]| gives the ¢ expansion
7 27 206378\ 1
+ G ——— | =4+ 0 (). A3
C3C5 10 C3,5 504000) c ( ) ( )

Here, the Symanzik polynomial y s is given by a sum over
spanning trees 7 of G:

Ve = Z er-

spanning e T'
treeT’

(B3)

Beyond seven loops, not all Feynman periods are currently
known [48]. Standard numerical techniques for the evalu-
ation of (B2) are based on sector decomposition and
Monte Carlo integration [68]. Unfortunately, these methods
are not applicable in practice to graphs as complicated as
the ¢* graphs with 11 loops that we are facing here.
However, we find that a decent numerical estimate for
the integrals (B2) can be obtained from a rather simple graph
invariant, constructed by approximating the Symanzik
polynomial (B3) with its dominant (maximal) monomial.”!

Definition 1.—The Hepp bound of a primitive ¢* graph
G is

0o 0 1
= [ dx,--- [ dx )
H<G) /0 : /0 E(G) (maxy He¢T xe)2 |x, -1 €@

(B4)

Note that H(G) > P(G) is indeed an upper bound. It is
much easier to compute than the actual period (B2); in
particular, it is just a rational number and the calculation of
the Hepp bounds for all primitive graphs with up to 11
loops is possible without much difficulty. The Hepp bound
has many more interesting properties and will be explored
in detail in a paper by the second author [160].

What is relevant for our purposes here is that, surpris-
ingly, these easily obtainable numbers correlate strongly
with the complicated Feynman period. For example, Fig. 9
shows the period P(G) as a function of the Hepp bound

“'The integration domain can be subdivided into Hepp sectors
{x1 X501y < -+ < X4(k(G)) }» Which are indexed by a permutation
o of the edges E(G). Inside each Hepp sector, a particular
monomial of y; dominates all other monomials.
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TABLE XIII.

prim
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The upper part shows the counts of completed primitive ¢* graphs and the estimates for the primitive

contributions ff, | to the beta function of the @* model (n = 1) at #-loop order obtained with the Hepp bounds (B4).
The lower part of the table shows the fitting parameters used in the approximation (B5).

Loop order # 6 7 9 10 11
Completions 5 14 49 227 1354 9722
ﬁ?l"f estimate 2.41 x 10* 3.71 x 10° 6.06 x 10° 1.05 x 108 1.89 x 10° 3.57 x 10'°
I;TII]/:BK+1 21.8% 26.2% 31.6% 37.6% 44.3% 51.5%
as 9.78/10° 2.44/10° 5.22/10° 1.16/10° 2.34/107 5.11/108
b, 1.419 1.395 1.389 1.382 1.382 1.378
cy 2.93/10° 3.48/107 4.98/108 6.87/10° 1.04/10° 1.46/10'

H(G) at seven loops, where all periods are known exactly
due to [48].

This relationship between P(G) and H(G) is well
approximated by a power law and even better when we
allow for one further parameter as in

P(G) = f,(H(G)), where f (h):=ashb (1 —hc,).

(BS)

We fit the parameters a,, b, and c, to the known periods at
loop order #. The resulting coefficients are given in
Table XIII and the plots of f, are shown in Fig. 9 for
¢ =T7and ¢ = 11 loops. In all cases, the approximation by
the very simple fit curves (B5) reproduces the known
periods within 2% accuracy.22 We note though that, with
growing loop number, only very few periods are known
exactly, as current integration techniques only apply to
graphs with certain special combinatorial structures [48].
Our fits are thus biased—however, for the purpose of our
discussion here, we expect this systematic error to be
negligible.

To estimate the primitive contributions 07 to M5, at
loop order 7, we substitute f,(H(G)) for P(G) in (B1).
The calculation can be economized due to the fact that
primitive graphs G with the same completion F (the
completion is the 4-regular graph obtained by adding a

prim

*This is a bound on the error for an individual period P(G) as
approximated by f,(H(G)). On average, the error is much
smaller.

vertex v and connecting it to the external legs, such that
G = F\v) have equal periods [47] and Hepp bounds.
Therefore, H(F) := H(F\v) is independent of the choice
of the vertex v. Table XIII summarizes the number of
(isomorphism classes of) such completions, which were
given also in Table 1 in [47]. We used NAUTY [161] to
generate these graphs and to count their automorphisms.

Using the orbit-stabilizer theorem, |Aut(F\v)| =
Stabay(r) (v)| = [Aut(F)|/|Aut(F) - v|, we can express
the primitive contributions (B1) as a sum over the com-
pleted graphs as™

Z fe H(F 3Cr

~2 -4
Aut(F)| n(n+2)

o (n) (¢ +2)

primitive F,
2 loops, 4-reg

(B6)

where we also made the group factor C from (13) explicit,
using (15). In Table XIII we show the results for » = 1 and
see, for example, that at 11 loops, the primitive contribu-
tions amount to 51.5% of the asymptotic prediction S}
from (20). Based on a comparison in the seven-loop case,

where we know 5™ exactly, we expect our estimates for
P to be accurate within 1%o.

BThe factor 4! accounts for the different labelings of the
external legs of a decompletion, and the £ + 2 vertices V(F) =

UomisAut(F) - v are partitioned into the orbits corresponding to
inequivalent uncompletions G = F\v.
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