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Model-independent constraints on hadronic form factors, in particular those describing exclusive
semileptonic decays, can be derived from the knowledge of field correlators calculated in perturbative
QCD, using analyticity and unitarity. The location of poles corresponding to below-threshold resonances,
i.e., stable states that cannot decay into a pair of hadrons from the crossed channel of the form factor, must
be known a priori, and their effect, accounted for through the use of Blaschke factors, is to reduce the
strength of the constraints in the semileptonic region. By contrast, above-threshold resonances appear as
poles on unphysical Riemann sheets, and their presence does not affect the original model-independent
constraints. We discuss the possibility that the above-threshold poles can provide indirect information on
the form factors on the first Riemann sheet, either through information from their residues or by
constraining the discontinuity function. The bounds on form factors can be improved by imposing, in an
exact way, the additional information in the extremal problem. The semileptonic K → πlν and D → πlν
decays are considered as illustrations.
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I. INTRODUCTION

Since the pioneering works of Meiman [1] and Okubo
[2,3], it has been known that nontrivial constraints on
hadronic form factors can be derived from the knowledge
of suitably related field correlators. The method was
reconsidered in [4] within the modern theory of strong
interactions, where the correlators relevant for the bounds
on the Kl3 form factors were evaluated in the deep
Euclidean region by using perturbative QCD.
Themethod exploits unitarity and positivity of the spectral

function, and converts a dispersion relation for a correlator of
two currents into an integral condition along the unitarity cut
(i.e., above the lowest production threshold of particles
coupled to the currents) for the modulus-square of the form
factors parametrizing the relevant matrix elements in the
unitarity sum. From this condition and the analyticity
properties of the form factors as functions of energy, one
can derive, with standard techniques of complex analysis
[5,6], constraints on the values of the form factors and their
derivatives at points inside the analyticity domain.
Many applications of this approach to heavy-quark form

factors describing B → Dð�Þlν semileptonic decays, to
heavy-to-light form factors involved in B → πlν or D →
πlν decays, or to the light-meson form factors, have been
performed in the last 20 years [7–26] (for a review of earlier
literature see [27]). A similar formalism has been applied

also to the electromagnetic form factors of the pion [28–31]
and proton [32], to the πω form factor [33,34], and to heavy
baryons [35].
The presence of singularities below the unitarity thresh-

old modifies the derivation of the bounds. The method can
be adapted to include in an exact way the discontinuity
across an unphysical cut below the unitarity branch point,
present in some cases, related to lighter particles that can
couple to the current [33,34]. A pole situated below the
unitarity threshold, of known position but unknown resi-
due, can be also accounted for in an optimal way with
the technique of Blaschke factors [12,13]. In such a case,
the presence of the pole leads to a weakening of the
constraints.
Recently, the possible effect of resonances situated above

the unitarity threshold, close to the physical region, was
discussed in [36]. As known from general principles of
quantum field theory [37], the unstable particles are
associated to complex poles in the energy plane. Such
poles cannot appear on the first Riemann sheet of the
complex plane, and instead are situated on the second or
higher Riemann sheets. The argument used in [36] was
based on the remark that a complex pole on the second
sheet close to the real axis produces a local increase of the
modulus of the form factor on the unitarity cut. The
same increase can be obtained however with a complex
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singularity of the same position, but situated on the first
Riemann sheet. Therefore, in [36] it was argued that the
effect of an above-threshold singularity can be mimicked
through a complex pole on the first Riemann sheet, near the
physical region. The latter can be treated with the standard
technique of Blaschke factors, much like the subthreshold
poles. In this way, Ref. [36] estimated the physical effect of
the presence of above-threshold resonances.
In the present paper, we consider the question whether

the form-factor parametrizations can be improved if some
knowledge on the above-threshold poles is provided. We
start with a brief review of the technique of model-
independent constraints, presenting in particular the
stronger constraints obtained with some additional infor-
mation outside the semileptonic decay range. In Sec. III we
argue first that the presence of an above-threshold pole does
not affect the original bounds in the semileptonic region.
Then we investigate whether, from the presence of an
above-threshold resonance, one can obtain some informa-
tion on the form factor on the physical sheet and show
that, in some cases, the bounds can be improved by
implementing additional information of this type. In
particular, we find that the most practical constraints arise
from mapping the effect of the above-threshold resonance
to the phase of the form factor along the cut. Our
conclusions are given in the last section. In a short
Appendix, we discuss the connection between the first
two Riemann sheets and the canonical variable z used for
solving the extremal problem.

II. MODEL-INDEPENDENT CONSTRAINTS
ON HADRONIC FORM FACTORS

We present below, following the review [27] and the
recent paper [36], the main steps relevant for the derivation
of constraints on the form factor parametrizations. As in
[36], we concentrate in particular on the form factors
relevant for the semileptonic decays of pseudoscalar
mesons. We consider the heavy-to-light (Q → q) vectorlike
(V, A, or V − A) quark-transition current

Jμ ≡ Q̄Γμq; ð1Þ

and the two-point momentum-space Green’s function Πμν
J

separated into manifestly spin-1 (ΠT
J ) and spin-0 (ΠL

J )
terms:

Πμν
J ðqÞ≡ i

Z
d4xeiqxh0jTJμðxÞJ†νð0Þj0i

¼ 1

q2
ðqμqν − q2gμνÞΠT

J ðq2Þ þ
qμqν

q2
ΠL

J ðq2Þ: ð2Þ

The functions ΠT;L
J satisfy dispersion relations with pos-

itive spectral functions, expressed by unitarity in terms of
contributions from a complete set of hadronic states. From

the asymptotic behavior predicted by perturbative QCD, it
follows that the dispersion relations require subtractions
(one for ΠL

J and two for ΠT
J ). The subtraction constants

disappear by taking the derivatives:

χLJ ðq2Þ≡ ∂ΠL
J

∂q2 ¼ 1

π

Z
∞

0

dt
ImΠL

J ðtÞ
ðt − q2Þ2 ;

χTJ ðq2Þ≡ 1

2

∂2ΠT
J

∂ðq2Þ2 ¼
1

π

Z
∞

0

dt
ImΠT

J ðtÞ
ðt − q2Þ3 : ð3Þ

Perturbative QCD can be used to compute the functions
χJðq2Þ at values of q2 far from the region where the current
J can produce manifestly nonperturbative effects like pairs
of hadrons. For heavy quarks, Q ¼ c or b, a reasonable
choice is q2 ¼ 0, while for Q ¼ s a spacelike value, like
q2 ¼ −1 GeV2 or q2 ¼ −2 GeV2, is necessary.
The spectral functions ImΠJ are evaluated by unitarity,

inserting into the unitarity sum a complete set of states X
that couple the current J to the vacuum:

ImΠμν
J ðq2Þ¼ 1

2

X
X

ð2πÞ4δ4ðq−pXÞh0jJμjXihXjJ†νj0i: ð4Þ

For our purpose, it is enough to take X to be the lightest
meson pair in which one of them (of massM) contains a Q
quark and the other (of mass m) contains a q̄, and use the
positivity of the higher-mass contributions. This choice
gives a rigorous lower bound on the spectral functions, in
terms of the vector or scalar form factors that parametrize
the matrix elements of the current. Using the standard
notation

t� ≡ ðM �mÞ2; ð5Þ

the inequality for the transverse polarization ΠT
J can be

written as

1

πχTJ ðq2Þ
Z

∞

tþ
dt

wðtÞjFðtÞj2
ðt − q2Þ3 ≤ 1; ð6Þ

where tþ is the unitarity threshold, FðtÞ is the vector form
factor, and wðtÞ is a simple, nonnegative function,
expressed as a product of phase-space factors depending
upon tþ and t−. An analogous expression holds for ΠL

J and
the scalar form factor.
Using the standard dispersion techniques in quantum

field theory [38], one can prove that the semileptonic form
factors are in general analytic functions in the complex t
plane, with a unitarity cut along the real axis from tþ to ∞.
In some cases, as in B → Dlν and B → πlν, the form
factors may also exhibit poles situated on the real axis
below the unitarity threshold tþ. No analogous poles are
present in the form factors relevant in K → πlν and
D → πlν decays. All the form factors in semileptonic
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decays satisfy in addition the Schwarz reflection condition,
written generically as Fðt�Þ ¼ F�ðtÞ. The form factors are
therefore real on the real t axis below tþ, in particular in the
semileptonic region 0 ≤ t ≤ t−, where they can be mea-
sured from the decay rates.
As shown in the pioneering papers [1–4], one can obtain

constraints on the form-factor parametrizations in the semi-
leptonic region, using their analyticity properties and the
boundary condition (6). In order to exploit this condition, it is
convenient to map the cut t plane onto the unit disk in the
complex z plane defined by the conformal mapping1

z≡ ~zðt; t0Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p ; ð7Þ

which maps the cut t complex plane onto the interior of the
unit disk, such that the branch point tþ in mapped onto z ¼ 1
and the two edges of the unitarity cut t ≥ tþ map to the
boundary jzj ¼ 1. Moreover, z is real for t ≤ tþ. The choice
of the free parameter t0 in (7), which represents the point
mapped onto the origin of the z plane, ~zðt0; t0Þ ¼ 0, will be
discussed below.
In the variable z, the inequality (6) is written in the

equivalent form

1

2πi

I
C

dz
z
jϕðzÞF½~tðz; t0Þ�j2 ≤ 1; ð8Þ

where

~tðz; t0Þ ¼
4ztþ þ t0ð1 − zÞ2

ð1þ zÞ2 ð9Þ

is the inverse of (7), and ϕðzÞ is an outer function, defined
in complex analysis [5] as an analytic function lacking
zeros in jzj < 1. In our case, the function ϕðzÞ is defined by
specifying its modulus

jϕðzÞj2 ¼ w½~tðz; t0Þ�
jd~zðt; t0Þ=dtjχTðq2Þ½~tðz; t0Þ − q2�3 ; ð10Þ

on the boundary z ¼ eiθ of the unit disk. Then the function
for jzj < 1 can be reconstructed from its modulus on the
boundary by the representation [5]

ϕðzÞ ¼ exp

�
1

2π

Z
2π

0

dθ
eiθ þ z
eiθ − z

ln jϕðeiθÞj
�
: ð11Þ

In particular cases of physical interest, ϕðzÞ can be obtained
in closed form, as a product of simple analytic functions
(see [27,36]).
From the boundary condition (8), one can derive con-

straints on the form factor FðtÞ at points inside the
analyticity domain, in particular in the semileptonic region.
It is important to emphasize that the use of the outer

function in (8) ensures the constraints are optimal. Assume
first that the form factor FðtÞ has no singularities below the
unitarity threshold tþ, being an analytic function of real
type [F�ðtÞ ¼ Fðt�Þ] in the cut t plane, or equivalently in
the unit disk jzj < 1 (as mentioned above, this is the case
for the Kπ or Dπ form factors). Then, expanding as:

FðzÞ≡ F½~tðz; t0Þ� ¼
1

ϕðzÞ
X∞
k¼0

akzk; ð12Þ

where the coefficients ak are real, the condition (8) reads:

X∞
k¼0

a2k ≤ 1: ð13Þ

This inequality, which is valid also for any finite sum of
terms, was used in many studies to strongly constrain the
parameters used in the fits to semileptonic data or for
estimating the truncation error [15–17,19,21–24]. As dis-
cussed in several papers, the truncation error is minimized
by choosing the parameter t0 such that the semileptonic
range 0 ≤ t ≤ t− is mapped onto an interval ð−zmax; zmaxÞ
symmetric around the origin in the z plane. This method
allowed a high-precision determination of the elements
Vus; Vcb, and Vub of the CKM matrix from exclusive
semileptonic decays.
The constraints on the Taylor series coefficients ak

become stronger if some additional information on the
form factor outside the semileptonic range is available. The
general condition involving an arbitrary number of coef-
ficients ak and the values of FðzÞ at an arbitrary number of
points inside the unit disk2 has been derived using several
methods and can be found in [27].
For the discussion in the next section, it is of interest to give

the form of the constraint when one knows the values of the
form factorFðzÞ at two complex-conjugate points, whichwe
denote as zp and z�p, with jzpj < 1. Since the functions satisfy
the Schwarz reflection property, one has Fðz�pÞ ¼ F�ðzpÞ.
Using, as in [27], the technique of Lagrange multipliers for
imposing the additional constraints at zp and z�p, a straight-
forward calculation gives the inequality

XK−1
k¼0

a2k ≤ 1 − F ðzp; ξÞ; ð14Þ

where F is defined as

1This definition differs by aminus sign from that adopted in [36].

2In complex analysis, if instead of the L2 norm (8) the
boundary condition is expressed by means of the L∞ norm,
the problem is known as a combined Schur-Carathéodory and
Pick-Nevanlinna interpolation problem [5,6].
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F ðzp; ξÞ ¼
2ð1 − jzpj2Þ2j1 − z2pj2

jzpj4Kðzp − z�pÞ2

×

�
Re

�
ξ2z�2Kp

1 − z�2p

�
−
jξj2jzpj2K
1 − jzpj2

�
; ð15Þ

in terms of the point zp and the complex quantity

ξ ¼ ϕðzpÞFðzpÞ −
XK−1
k¼0

akzkp: ð16Þ

The inequality (14) defines an allowed domain for first K
coefficients ak in terms of the input complex value FðzpÞ
entering the variable ξ. One can check from (15) that the
function F is positive for jzpj < 1 and arbitrary values of ak
and FðzpÞ. Therefore, the domain defined by (14) is smaller
than that given by the condition

XK−1
k¼0

a2k ≤ 1 ð17Þ

derived from (13). As expected, knowledge of the value
FðzpÞ improves the constraints on the parameters in the
semileptonic region. We note, however, that the improve-
ment is small if the point zp is close to the boundary of the
unit disk, since F is small for jzpj close to 1.
Another additional piece of information that can improve

the constraints is knowledge of the phase of the form factor
along a part of the unitarity cut. In some cases, as for the
pion electromagnetic form factor or the Kl3 form factors,
the phase is related by Fermi-Watson theorem [39,40] to the
phase shift of the corresponding elastic scattering ampli-
tude, which is known with precision, for instance from the
solution of Roy equations [41]. In the present context (as
discussed in the next section), it is of interest to note that
one can approximately obtain the phase on a part on the cut
using the mass and width of a nearby resonance.
Using this information as an additional constraint leads

to a modified optimization problem, solved for the first time
for the Kl3 form factors in [42]. Several generalizations
have been discussed more recently in [20,21,27]. For
completeness, we give below the constraint on the first
K coefficients ak when the phase argFðtÞ is known on the
region 0 ≤ t ≤ tin (for the derivation, see Sec. IV of the
review [27]).
We denote by

ζin ≡ ~zðtin; t0Þ ¼ eiθin ð18Þ

the image on the unit circle in the z plane of the point
tin þ iϵ situated on the upper edge of the cut [the point
tin − iϵ being mapped onto expð−iθin)]. Then the domain
allowed for the coefficients ak is given by

XK−1
k¼0

a2k þ
1

π

XK−1
k¼0

ak

Z
θin

−θin
dθλðθÞ sin ½kθ −ΦðθÞ� ≤ 1; ð19Þ

where

ΦðθÞ ¼ arg½FðeiθÞ� þ arg½ϕðeiθÞ�; ð20Þ

and λðθÞ is the solution of the integral equation

XK−1
k¼0

ak sin½kθ −ΦðθÞ� ¼ λðθÞ − 1

2π

Z
θin

−θin
dθ0λðθ0ÞKΦðθ; θ0Þ;

ð21Þ

for θ ∈ ð−θin; θinÞ, where the kernel is defined as

KΦðθ;θ0Þ≡ sin½ðK−1=2Þðθ−θ0Þ−ΦðθÞþΦðθ0Þ�
sin½ðθ−θ0Þ=2� : ð22Þ

The inequality (19) describes an allowed domain for ak that
is smaller than the original domain (17), which represents
the improvement introduced by knowledge of the phase on
a part of the unitarity cut.
In the above derivations, the crucial role was played by

the fact that the form factor is analytic in the cut t plane.
As discussed above, the form factors relevant for K → πlν
and D → πlν decays do not have subthreshold singular-
ities, while the form factors involved in B → Dð�Þlν and
B → πlν decays have subthreshold poles, corresponding to
particles stable with respect to strong decays into B̄D and
B̄π, respectively.
As remarked for the first time in [12,13], it is possible to

derive constraints on the form factor even if the residue of
the pole is not known. Denoting by zp the position of the
pole in the z-variable, the inclusion of the pole can be done
in an optimal way with respect to the condition (8) by using
a so-called Blaschke factor [5]:

Bðz; zpÞ≡ z − zp
1 − zz�p

; ð23Þ

which is a function analytic in jzj ≤ 1 that vanishes at
z ¼ zp and has modulus unity for z on the unit circle:

jBðζ; zpÞj ¼ 1; ζ ¼ eiθ: ð24Þ

By using (24), one obtains from (8), with no loss of
information, the equivalent condition

1

2πi

I
C

dz
z
jBðz; zpÞϕðzÞF½~tðz; t0Þ�j2 ≤ 1: ð25Þ

Taking into account that the product Bðz; zpÞFðzÞ is
analytic in jzj < 1, we write the most general parametriza-
tion of the form factor as
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FðzÞ ¼ 1

Bðz; zpÞϕðzÞ
X∞
k¼0

akzk; ð26Þ

where the coefficients ak still satisfy (13).
Since by the maximum modulus principle jBðz; zpÞj < 1

for jzj < 1, the constraints in the semileptonic region
derived from (26) are weaker than those valid when no
subthreshold poles are present.

III. ABOVE-THRESHOLD POLES

The possible effect of an above-threshold resonance was
investigated in [36], starting with the remark that a pole in
the form factor at the same position as the resonance pole,
but situated on the first Riemann sheet, creates a Breit-
Wigner lineshape indistinguishable from that created by a
physical second-sheet pole equally near the unitarity cut.
Therefore, the effect of a second-sheet pole was simulated
by a pole situated on the first sheet. In the Appendix we
give for completeness the positions in the z plane of a
second-sheet pole, zIIp, and its counterpart on the first sheet,
zIp, for some particular form factors. The treatment of the
fake pole at zp ≡ zIp by the technique of Blaschke factors,
as shown in the previous section, led to the conclusion that
an above-threshold resonance has the effect of weakening
the unitarity bounds. The effect was found to be small in the
case of the Kπ and Dπ vector form factors. However, since
any information on the modulus of the form factor on the
cut is covered by the rigorous condition (6), which is the
main ingredient of the formalism, one can see that
accounting for the fake pole is not necessary. Thus, the
presence of an above-threshold pole does not affect the
bounds in the semileptonic region.
On the other hand, it is known that a pole of the

scattering amplitude as a function of c.m. energy squared
on a higher Riemann sheet can produce in some cases (such
as elastic 2 → 2 scattering [38]) a reflection on the first
sheet. Thus, a pole due to a resonance on the second sheet
induces a zero of the S-matrix element at the corresponding
point on the first sheet. This property is useful in practice:
In [43], the mass and width of the σ scalar resonance were
found by performing the analytic continuation of the Roy
equations for ππ scattering into the first sheet of the
complex plane and looking for the zeros of the S matrix.
One might ask whether a similar property exists for form

factors. In order to answer this question, we consider in
more detail the analytic continuation to the second
Riemann sheet. According to the general dispersive
approach in field theory [38], it is useful to consider, along
with a given form factor FðtÞ, the corresponding amplitude
(of definite angular momentum and isospin) of the elastic
scattering of two hadrons of masses M and m. We review
below some well-known facts about these quantities that
are useful for our purpose.

Denoting by fðtÞ the relevant partial wave of the
invariant elastic amplitude, elastic unitarity is expressed as

ImfðtÞ ¼ ρðtÞfðtÞf�ðtÞ; tþ ≤ t ≤ tin; ð27Þ

where ρðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − tþ=tÞð1 − t−=tÞ
p

is the dimensionless
phase space. This relation is valid in the elastic region,
below the opening of the first inelastic threshold tin. Unless
otherwise specified, by real t above the threshold tþ, we
mean the value tþ iϵ, on the upper edge of the cut.
Equation (27) has the well-known solution [38]

fðtÞ ¼ eiδðtÞ sin δðtÞ
ρðtÞ ; tþ ≤ t ≤ tin; ð28Þ

in terms of the phase shift δðtÞ.
The relation (27) provides also the route for analytic

continuation to the second Riemann sheet. Using the
Schwarz reflection property f�ðtÞ ¼ fðt�Þ, we write (27) as

fðtþ iϵÞ − fðt − iϵÞ ¼ 2iρðtÞfðtþ iϵÞfðt − iϵÞ: ð29Þ

The amplitude fIIðtÞ on the second sheet is defined by
gluing the lower edge of the cut in the first sheet to the
upper edge on the cut in the second sheet, i.e., by requiring
fIIðtþ iϵÞ ¼ fðt − iϵÞ. Understanding all quantities with-
out a superscript as defined on the first Riemann sheet, we
write Eq. (29) as

fIIðtÞ ¼ fðtÞ
1þ 2iρðtÞfðtÞ : ð30Þ

The S matrix is defined on the first sheet as

SðtÞ ¼ 1þ 2iρðtÞfðtÞ; ð31Þ

and on the second sheet as

SIIðtÞ ¼ 1 − 2iρðtÞfIIðtÞ: ð32Þ

Using the definition (30) of fIIðtÞ, one obtains:

SIIðtÞ ¼ 1

SðtÞ : ð33Þ

From this relation it follows that the poles of fIIðtÞ [and of
SIIðtÞ] correspond to zeros of SðtÞ on the first sheet, the
property mentioned at the beginning of this section.
Turning now to form factors, elastic unitarity implies the

relation [38]

ImFðtÞ ¼ ρðtÞF�ðtÞfðtÞ; ð34Þ

valid for t in the elastic region, tþ ≤ t ≤ tin.
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A first consequence of (34) is the well-known Fermi-
Watson theorem [39,40]: Since the right-hand side is
known to be real, the phase of the form factor must be
equal to the phase shift of the amplitude (28):

arg½FðtÞ� ¼ arg½fðtÞ� ¼ δðtÞ; tþ ≤ t ≤ tin: ð35Þ

Moreover, by defining, in analogy to fIIðtÞ,

FIIðtþ iϵÞ≡ Fðt − iϵÞ; ð36Þ

one obtains from (34):

FIIðtÞ ¼ FðtÞ
1þ 2iρðtÞfðtÞ ¼

FðtÞ
SðtÞ : ð37Þ

Assuming that FðtÞ does not vanish at the zero of SðtÞ,
FIIðtÞ has a pole at that position. So, the second-sheet poles
of the form factor and the S-matrix element have the same
position, a known universality property of the poles in
S-matrix theory. The relation (37) shows also that the
analytic structure of the function FIIðtÞ is more complicated
than that of FðtÞ: besides the unitarity cut, it has the same
branch points as SðtÞ, in particular those lying on the left-
hand cut produced by crossed-channel exchanges [38].
We show now that it is possible to express the value of

FðtÞ on the first sheet, at the value of t corresponding to the
second-sheet pole position, in terms of the residues of the
poles of the form factor and the amplitude on the second
sheet. From (33) and (37) one has:

FðtÞ ¼ FIIðtÞSðtÞ ¼ FIIðtÞ
SIIðtÞ : ð38Þ

Denoting by tp one of the pole positions on the second
sheet, in the vicinity of the pole one can write

fIIðtÞ ¼ rf
t − tp

þ gðtÞ; ð39Þ

and

FIIðtÞ ¼ rF
t − tp

þ hðtÞ; ð40Þ

where the functions g and h are regular at t ¼ tp. Using
these expressions and (32) in (38) and taking the limit
t → tp gives

FðtpÞ ¼
i

2ρðtpÞ
rF
rf

: ð41Þ

From the Schwarz principle, Fðt�pÞ ¼ F�ðtpÞ, the value of
F at t�p (still on the first sheet) is the complex conjugate of
the expression (41). As shown in the previous section, this

additional condition on the first sheet can be included
exactly in the Meiman-Okubo problem, leading to an
improvement of the bounds in the semileptonic region.
The relation (14) gives the allowed domain of the coef-
ficients ak in terms of this additional information. It can be
viewed therefore as a new sum rule relating the residues of
the above-threshold poles on the second Riemann sheet to
the parameters describing the semileptonic decays.
In practice, if the ratio rF=rf is not known, one can

reverse the argument and use (14) as a constraint on the
residues, in terms of the coefficients ak determined from fits
to semileptonic decay data. However, the correlation is
expected to be small, due to the fact that, as shown in the
Appendix, in cases of interest the point zp ≡ zIp is close to
the boundary jzj ¼ 1. Therefore, the value of the new sum
rule in this case is of more formal than phenomenological
significance.
Of more practical value turns out to be another conse-

quence of unitarity that is valid on the unitarity cut below
the first inelastic threshold. By dividing both sides of (29)
by the product f�f, one has

1

f�ðtÞ −
1

fðtÞ ¼ 2iρðtÞ; ð42Þ

which implies

Im

�
1

fðtÞ
�
¼ −ρðtÞ: ð43Þ

The solution of this equation is

fðtÞ ¼ 1

ψðtÞ − iρðtÞ ; ð44Þ

where the undetermined function ψðtÞ is real on the elastic
part of the unitarity cut, tþ ≤ t ≤ tin. If a narrow resonance
of mass M and width Γ is present, this function can be
parametrized as

ψðtÞ ∼M2 − t
MΓ

; ð45Þ

up to factors holomorphic in a region tþ < t < tin, where
tin denotes the first inelastic threshold. By including all
these factors in an energy-dependent ΓðtÞ, we can write,
with a good approximation, the phase of the form factor in a
limited energy region above the threshold as:

arg½FðtÞ� ¼ arctan

�
MΓðtÞ
M2 − t

�
: ð46Þ

This relation can be generalized to the case where over-
lapping resonances occur. In such a case, it is a well-known
feature of S-matrix theory that simply summing
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Breit-Wigner resonances does not preserve unitarity, and
the proper treatment would require allowing Γ not only to
be dependent on energy, but also a matrix-valued quantity
over the various channels.
In Fig. 1 we show the phase δ0 of the scalar Dπ form

factor obtained from (46), using the standard Breit-Wigner
expression ΓðtÞ ¼ ΓρðtÞ=ρðM2Þ, with the mass M ¼
2.351 GeV and width Γ ¼ 0.230 GeV of the D�

0 resonance
[44]. We can assume that this value of the phase is a good
approximation in the elastic region, below the opening of
inelastic channels.
As discussed in the previous section, this additional

information leads to a stronger constraint in the semileptonic
region, given by Eq. (19). This constraint can be easily
derived by solving the integral Eq. (21) for the function λðθÞ
and using this solution in (19). For illustration, we present
below the result of this analysis for the scalarDπ form factor.
We take the value χLVðq2 ¼ 0Þ ¼ 0.016 from Ref. [25] and
the outer function from Refs. [25,27]:

ϕðzÞ ¼
ffiffiffi
3

p

32
ffiffiffiffiffiffiffiffiffiffiffiffi
χLVð0Þ

p ffiffiffi
π

p mD −mπ

mD þmπ
ð1 − zÞð1þ zÞ3=2

×
ð1 − zz−Þ1=2
ð1þ z−Þ1=2

; ð47Þ

where we take for simplicity t0 ¼ 0 in (7) and use the
notation z− ≡ ~zðt−; 0Þ.
Taking for illustration K ¼ 5, we obtain the allowed

domain for the coefficients ak, k ≤ 4:

1.78a20 þ 1.28a21 þ 1.13a22 þ 1.84a23 þ 2.33a24

þ 0.79a0a1 − 0.49a0a2 − 1.61a0a3 − 1.96a0a4

− 0.13a1a2 − 0.84a1a3 − 1.09a1a4

þ 0.49a2a3 þ 0.54a2a4 þ 2.09a3a4 ≤ 1: ð48Þ

In this calculation, we assume that the phase is given up to
the first inelastic threshold tin ¼ ð2.42 GeVÞ2 due to theDη
channel. The results are actually quite stable against the
variation of tin around this value.
It is easy to see that the constraint (48) is stronger than

the standard condition (17). In a typical application to
semileptonic processes, the lowest coefficients ak are
determined from fits of the data, and the aim is to set a
bound on the next coefficient, which gives an estimate of
the truncation error. In practical applications (see for
instance [24]), the optimal values of the parameters are
usually small, far from saturating the upper bound (17). To
simulate such a situation, we take, for instance, the input
values a0 ¼ 0.10, a1 ¼ 0.08, a2 ¼ 0.07 and a3 ¼ 0.05, for
which the left hand side of (17) is 0.024. With this input, we
obtain the constraint ja4j ≤ 0.99 from the standard inequal-
ity (17), and the smaller range −0.62 ≤ a4 ≤ 0.68 from the
improved constraint (48). We can then obtain a bound on
the truncation error δFðt−Þ at the end t− (corresponding
to z−) of the semileptonic region. From the parametrization
(12), one can write this error as:

δFðt−Þ ≈
ja4jz4−
jϕðz−Þj

: ð49Þ

Using the above limits on a4 and the values z− ¼ 0.325 and
ϕðz−Þ ¼ 0.176 in our case, we obtain from (49) the
uncertainties δFðt−Þ ≈ 0.063 using the standard constraint
(17) and δFðt−Þ ≈ 0.043 using the improved constraint
(48), which amounts to an improvement by about 30%.
Similar results are obtained for a large class of input values
for the lowest coefficients.
One can use also the optimal value of t0 discussed in

Sec. II, for which the semileptonic region is mapped onto a
symmetric range in the z plane. From Eq. (A7), we obtain in
our case t0 ¼ 1.97 GeV2 and z− ¼ 0.167. Due to the smaller
z−, the error estimated from (49) is much smaller, but the
constraints on the coefficient a4 are similar to those reported
above. In this case too, the improvement brought by the
incorporation of the phase δ0 turns out to be quite important.

IV. SUMMARY AND CONCLUSIONS

In this paper we have continued the discussion of
the effect of above-threshold singularities on model-
independent form-factor parametrizations, initiated in
Ref. [36]. We emphasized the fact that the presence of
above-threshold poles does not affect the strength of the
original model-independent constraints. By exploiting the
connection between the first and the second Riemann
sheets of a generic semileptonic form factor, we have
derived a relation between the value of the form factor on
the first Riemann sheet at the point tp that is the image of
the location of the resonance pole on the unphysical
(second) Riemann sheet, and the residues of the form
factor and of the related elastic scattering amplitude. Using

FIG. 1. Phase of the Dπ scalar form factor as a function of the
c.m. energy E ¼ ffiffi

t
p

.
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this expression in the combined constraint (14) involving
the coefficients an of a Taylor series expansion in the
variable z and the values of the form factor at the two
complex-conjugate points, we derived a new sum rule
relating the parametrization in the semileptonic region to
the residues of the second-sheet poles of the form factor F
and the corresponding elastic scattering amplitude f. We
argued however that the effect of this additional informa-
tion in improving the model-independent constraints is
expected to be small. Finally, we showed that from the mass
and width of a narrow resonance, one can approximately
obtain the phase of the form factor on a limited part of the
unitarity cut. By including this additional information in the
extremal problem, one obtains stronger constraints, given
in (19), on the form-factor parametrization in the semi-
leptonic region. This second method appears to be of more
immediate utility in phenomenological applications.
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APPENDIX: UNIFORMIZATION OF THE
TWO-SHEET RIEMANN
SURFACE BY z MAPPING

In this Appendix we discuss the connection between the
canonical variable z in Eq. (7) used for solving the extremal
problem in Sec. II and the Riemann structure of the elastic
cut of the semileptonic form factor FðtÞ. We first note that
(7) can be written as

z≡ ~zðt; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p þ ikðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
− ikðtÞ ; ðA1Þ

in terms of the function

kðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
t − tþ

p
: ðA2Þ

We recall that the first Riemann sheet is defined by
argðt − tþÞ ∈ ð0; 2πÞ, while the second sheet is defined
by argðt − tþÞ ∈ ð2π; 4πÞ. It follows that the first Riemann
sheet corresponds to arg kðtÞ ∈ ð0; πÞ, which implies
kIðtÞ > 0, and the second Riemann sheet corresponds to
arg kðtÞ ∈ ðπ; 2πÞ, which implies kIðtÞ < 0, where kIðtÞ is
the imaginary part of kðtÞ. Denoting by kRðtÞ the real part
of kðtÞ, we obtain from (A1):

jzj2 ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
− kIðtÞ�2 þ k2RðtÞ

½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p þ kIðtÞ�2 þ k2RðtÞ
: ðA3Þ

From this relation it follows that

kIðtÞ > 0 ⇒ jzj < 1;

kIðtÞ < 0 ⇒ jzj > 1: ðA4Þ

Therefore, the first Riemann sheet of the t plane, where
kIðtÞ > 0, is mapped inside the unit circle in the z plane,
while the second sheet, where kIðtÞ < 0, is mapped outside
the unit circle. In standard terminology, the variable (7)
achieves the uniformization of the Riemann surface of the
elastic cut, i.e., it maps the two Riemann sheets onto a
single plane.
For the discussion in Sec. III, it is useful to have a

relation between the images in the z plane of the pole on the
second sheet, and of the corresponding complex point
situated on the first sheet. This relation follows from the
symmetry property

~tðz; t0Þ ¼ ~tðz−1; t0Þ; ðA5Þ
satisfied by (9), which shows that the images in the z plane
of the first-sheet and second-sheet points corresponding to
the same complex t value are inverse to each other,

zIp ¼ 1

zIIp
: ðA6Þ

For a numerical illustration, we take for definiteness

t0 ¼ tþ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t−
tþ

r �
; ðA7Þ

to achieve a symmetric semileptonic range (−zmax, zmax), as
discussed in Sec. II. Then, using the masses and widths
from [44] for the poles associated with the first vector
resonances K�ð892Þ and D�ð2010Þ for the Kπ and Dπ
vector form factors, respectively, we obtain from (A1) the
positions in the z plane of zIIp and their first-sheet counter-
parts zIp. They read:

zIIp ¼ −0.11 ∓ 1.05i; jzIIpj ¼ 1.06;

zIp ¼ −0.10� 0.94i; jzIpj ¼ 0.95; ðA8Þ
and

zIIp ¼ 0.978 ∓ 0.212i; jzIIpj ¼ 1.001;

zIp ¼ 0.977� 0.212i; jzIpj ¼ 0.999; ðA9Þ
respectively. For the scalar resonance D�

0ð2400Þ relevant to
the scalar Dπ form factor, the corresponding points are

zIIp ¼ 0.151 ∓ 1.179i; jzIIpj ¼ 1.19;

zIp ¼ 0.107� 0.834i; jzIpj ¼ 0.84: ðA10Þ
We emphasize that the form factors have poles at the points
zIIp, but are regular at zIp.
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