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We present a study of transverse single-spin asymmetries (SSAs) in p↑p → J=ψ X and p↑p → DX
within the framework of the generalized parton model (GPM), which includes both spin and transverse
momentum effects, and show how they can provide useful information on the still almost unknown gluon
Sivers function. Moreover, by adopting a modified version of this model, named color gauge invariant
(CGI) GPM, we analyze the impact of the initial- and final-state interactions on our predictions. As a
consequence, we find that these two processes are sensitive to different gluon Sivers functions, which can
be expressed as linear combinations of two distinct, universal gluon distributions. We therefore define
proper observables which could allow for a separate extraction of these two independent Sivers functions.
At the same time, we show how it would be possible to discriminate between the GPM and the CGI-GPM
approaches by comparing the corresponding estimates of SSAs with present and future experimental results
at RHIC.
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I. INTRODUCTION

Transverse single-spin asymmetries (SSAs) in high-
energy lepton-hadron and hadron-hadron reactions are an
invaluable tool to probe hadrons at a deeper level of
accuracy, as well as to get information on the intimate role
of strong interactions. Indeed, they can provide information
on the three-dimensional structure of the nucleons and at the
same time shed light, or at least give some hints, on the still-
unknown mechanism of confinement.
SSAs are defined as the ratio of the difference and sum

of cross sections in which the spin of one of the hadrons
is reversed. They have stimulated the research program of
many experiments, like HERMES at HERA (DESY) and,
more recently, COMPASS at CERN, CLAS and CLAS12
at Jefferson Lab, and STAR, PHENIX and BRAHMS at
RHIC (Brookhaven National Laboratory); see for instance
Refs. [1–3] for recent reviews.
From the theoretical point of view, the interpretation of

SSAs within the framework of the common leading-twist,
collinear factorization theorems in QCD is very challenging.
At present, essentially two approaches have been proposed,
and are under current investigation, to explain such effects.
One approach, based on the factorization of hard

scattering cross sections and transverse-momentum-
dependent (TMD) parton distribution and fragmentation

functions (PDFs and FFs), is proven to be valid for
processes characterized by two energy scales [4–7]: a hard
one, like the virtuality of the exchanged boson in semi-
inclusive deep inelastic scattering (SIDIS), Drell-Yan (DY)
processes or eþe− annihilation, and a soft one, of the order
of ΛQCD, like the transverse momentum of the final hadron
in SIDIS or of the lepton pair in DY processes, or the
transverse momentum imbalance in hadron-pair production
in eþe− collisions. From the phenomenological point of
view, a prominent example of a TMD-FF is provided by the
Collins function [8], describing the fragmentation of a
transversely polarized quark into a noncollinear unpolar-
ized hadron. Among the TMD-PDFs, the Sivers function
[9] represents the azimuthal distribution of unpolarized
quarks and gluons in a nucleon polarized transversely to its
direction of motion. In contrast to FFs, supposed to be
universal, TMD-PDFs are intrinsically process dependent
because of the effects of initial- and final-state interactions
(ISIs and FSIs), encoded in the Wilson lines (or gauge
links) entering their color gauge-invariant definition. A
typical example is provided by the predicted sign change
of the quark Sivers function in SIDIS and in DY
processes, due to the presence of FSIs and ISIs, respec-
tively [10,11]. In those processes where both ISIs and
FSIs contribute, the color structure of the Sivers function
is more complicated and TMD factorization could even
be broken [12].
On the other hand, a second approach, based on collinear

factorization at next-to-leading twist (twist-three), is suit-
able for the description of processes characterized by only
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one hard energy scale, i.e., the transverse momentum of
a particle inclusively produced in hadronic collisions
[13–17]. In this framework, SSAs are given by convolu-
tions of hard scattering amplitudes with universal quark-
gluon-quark and three-gluon correlation functions.
In a series of papers [18–24], even if not supported by a

formal proof, the validity of the TMD formalism has been
assumed for single-scale processes as well, like p↑p → πX.
Moreover, in such a scheme, TMD-PDFs are conditionally
taken to be universal. This phenomenological approach is
nowadays known as generalized parton model (GPM) and
is able to successfully describe many features of several
available data. More recently, the process dependence of
the quark Sivers function has been studied within the GPM
for proton-proton collisions, by taking into account the
effects of ISIs and FSIs under a one-gluon exchange
approximation, leading to the so-called color gauge invari-
ant formulation of the GPM, referred to as CGI-GPM [25–
27]. In this approach, the process dependence of the quark
Sivers function can be shifted to the partonic cross sections.
Therefore the Sivers function can still be considered
universal, but when calculating physical observables it
has to be convoluted with modified partonic cross sections,
which turn out to have the same form, in terms of
Mandelstam variables, of the hard functions of the twist-
three collinear approach [25]. In particular, this model is
able to reproduce the expected opposite relative sign of the
Sivers asymmetries for SIDIS and DY, due to the effects of
FSIs and ISIs, respectively [10,11].
Along the same lines, here we address two aspects that,

as we are going to show, are somehow related to each other.
From one side we will focus on how to get information on
an important TMD-PDF so far poorly explored, namely, the
gluon Sivers function (GSF) [28]. To this end we consider
SSAs in hadronic processes where its contribution is
expected to be dominating. On the other hand, in the
spirit of pursuing and deepening the study of the process
dependence of the Sivers function, we compute color-
gauge initial- and final-state interactions for these same
processes (that are characterized by the presence of only
one large energy scale).
We will then show, within the frameworks of both the

GPM and CGI-GPM, how the analysis of existing and
future data for SSAs in the single-polarized processes
p↑p → J=ψ X and p↑p → DX could constrain the gluon
Sivers function. To this end, for the first time, we extend the
methods developed in Ref. [25] to the gluon sector. As for
the quark case, the process dependence of the gluon Sivers
function can be absorbed into the partonic hard functions.
However, one has to introduce two universal, completely
independent, Sivers distributions because, for three colored
gluons, there are two different ways of forming a color-
singlet state. The totally antisymmetric color combination,
even under charge conjugation, is commonly referred to as

an f-type state, while the symmetric combination, odd
under C-parity, is referred to as a d-type state. Hence, in
analogy to Ref. [29], we introduce an f-type and a d-type
gluon Sivers function, which are named A1 and A2 in the
notation of Ref. [30] and are related to the two distinct
trigluon Qiu-Sterman functions in the collinear, twist-three
formalism [31–33], as will be discussed also in the
following. A similar analysis within only the GPM
approach has been presented in Refs. [34,35].
We note that a previous extraction of the gluon Sivers

function from p↑p → π0X at central rapidities [36]
assumed the universality of this distribution, as it is in
the GPM approach. A reanalysis of those data within the
CGI-GPM is on the way [37]. As compared to the pion
case, inclusive J=ψ and D production have the advantage
of probing gluon TMDs directly, since the contributions
from quark-initiated processes turn out to be negligible. In
the present study, therefore, in order to show an indepen-
dent, direct and unbiased way to gather information on this
TMD, we will not make use of the results obtained
in Ref. [36].
For completeness we mention that the gluon Sivers

function could be probed as well in the process lp↑ →
l0J=ψ X [38–40], for which only preliminary data are
currently available from the COMPASS Collaboration at
CERN [41]. Moreover, the COMPASS Collaboration has
started analyzing the gluon Sivers effect in the production
of high-pT hadron pairs in muon scattering off polarized
proton and deuteron targets [42,43]. At a future Electron-
Ion Collider, the study of SSAs for ep↑ → e0QQ̄X would
provide information on the f-type gluon Sivers function
[44]. This distribution could also be accessed at RHIC by
looking at diphoton production [45], while p↑p → γ jetX
would be sensitive to the d-type gluon distribution [28,46].
Other promising measurements of the (f-type) gluon Sivers
function could be performed at a future fixed target
experiment at the LHC, named AFTER@LHC, and include
processes like p↑p → ηc;bX and p↑p → J=ψðΥÞγX for
which it has been shown that the color-singlet production
mechanism dominates [47,48].
The remainder of the paper is organized as follows: in

Sec. II we consider J=ψ production in (un)polarized
proton-proton collisions; in particular, in Sec. II A we
present our results in the color-singlet model (CSM) within
a TMD approach, in Sec. II B the calculation of the
contribution of initial- and final-state interactions to the
SSA and then in Sec. II C our theoretical estimates
compared with available data. We then move in Sec. III
to the SSAs for D meson production in proton-proton
collisions. More precisely, in Sec. III A we discuss and
present some details of the theoretical calculations and in
Sec. III B we collect our main results. Conclusions and
open issues are then gathered in Sec. IV. We collect some
further theoretical details in Appendixes A and B.
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II. CROSS SECTIONS AND SINGLE SPIN
ASYMMETRIES FOR pp → J=ψ X

A. Production mechanism: The color-singlet model

We consider first the inclusive production of a quarko-
nium state Q in unpolarized proton-proton scattering,

pðpAÞ þ pðpBÞ → QðpQÞ þ X; ð1Þ

where the four-momenta of the particles are given within
parentheses. We assume that the colorless heavy quark-
antiquark pair forming the quarkonium is in a bound state
described by a nonrelativistic wave function with spin
S ¼ 1, orbital angular momentum L ¼ 0 and total angular
momentum J ¼ 1. In the following we adopt the spectro-

scopic notation Q≡QQ̄½2Sþ1Lð1;8Þ
J �, where the color

assignments for the quark pair are generally specified by
the singlet or octet superscripts, (1) or (8). Therefore, in our

case, Q ¼ QQ̄½3Sð1Þ1 � with Q ¼ c, b. The squared invariant
mass of the resonance is denoted by M2 ¼ p2

Q, with M
being twice the heavy quark mass up to small relativistic
corrections.
Within the framework of the CSM (see e.g. Ref. [49]),

the heavy quark and antiquark pair is produced in the hard
partonic scattering with the same quantum numbers as the
meson into which it nonperturbatively evolves. Therefore,
J=ψ production is dominated, at leading order (LO) α3s
in perturbative QCD, by a gluon fusion process with the
emission of an additional real gluon in the final state
because of the Landau-Yang theorem,

gðpaÞ þ gðpbÞ → QQ̄½3Sð1Þ1 �ðpQÞ þ gðpgÞ; ð2Þ

as described in detail in Appendix A. In the rest frame
of the bound state, the relative momentum of the two
quarks is small compared to their mass mQ, which justifies
a nonrelativistic approach. In agreement with Eq. (A12) of
Ref. [49], we find that the corresponding partonic cross
section can be written as

dσ̂
dt̂

¼ πα3s
ŝ2

HU
gg→J=ψg; ð3Þ

with

HU
gg→J=ψg ¼

5

9
jR0ð0Þj2M

×
ŝ2ðŝ −M2Þ2 þ t̂2ðt̂ −M2Þ2 þ û2ðû −M2Þ2

ðŝ −M2Þ2ðt̂ −M2Þ2ðû −M2Þ2 ;

ð4Þ

where R0ð0Þ is the value of the bound-state radial wave
function at the origin. Details of the derivation are

presented in Appendix A. In the GPM approach, therefore,
the unpolarized cross section for the process under study
reads

dσ ≡ EQ
dσ
d3pQ

¼ α3s
s

Z
dxa
xa

dxb
xb

d2k⊥ad2k⊥bfg=pðxa; k⊥aÞfg=pðxb; k⊥bÞ

×HU
gg→J=ψgðŝ; t̂; ûÞ δðŝþ t̂þ û −M2Þ; ð5Þ

with fg=pðx; k⊥Þ denoting the distribution of unpolarized
gluons with light-front momentum fraction x and transverse
momentum k⊥ ¼ jk⊥j. Its dependence on the hard scale of
the process is not shown explicitly.
Concerning the k⊥ dependence of the unpolarized gluon

distributions, we use a simple factorized Gaussian para-
metrization

fg=pðx; k⊥Þ ¼ fg=pðxÞ
1

πhk2⊥i
e−k

2⊥=hk2⊥i; ð6Þ

with hk2⊥i ¼ 1 GeV2 and fg=pðxÞ being the unpolarized
gluon distribution, integrated over k⊥, evaluated at the hard
scale MT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2T þM2

p
, where pT ≡ pQT is the transverse

momentum of the J=ψ . Notice that the value adopted for
the Gaussian width, for which no phenomenological
information is currently available, has been fixed to
optimize the description of J=ψ data, within the uncer-
tainties, in the low pT region.
In Fig. 1 we compare our results for J=ψ production,

computed at rapidity y ¼ 0, with RHIC data taken at
ffiffiffi
s

p ¼
200 GeV and jyj < 0.35 from the PHENIX Collaboration
[50]. We do not consider the analogous data from the STAR
Collaboration [51,52] since they cover mainly the region at
larger pT. For the parameters entering the cross section, we
take jR0ð0Þj2 ¼ 1.01 GeV3, BrðJ=ψ → eþe−Þ ¼ 0.0597
and M ¼ 3.097 GeV.
These and the following results are based on the CTEQ6-

LO parametrization of fg=pðxÞ [53]. The uncertainty band
in the figure is obtained by varying the factorization scale in
the range MT=2 ≤ μ ≤ 2MT . Since the data include not
only the direct J=ψ yield, but also feed-down contributions
from B, ψð2SÞ and χc decays, our theoretical curves are
divided by a factor of 0.58, which is the expected fraction
of direct J=ψ production [54,55]. It turns out that, within
the GPM approach and assuming a color-singlet production
mechanism, it is possible to reproduce RHIC data on J=ψ
cross sections reasonably well at small values of pT ,
pT ≤ 2 GeV. This is in agreement with the findings of
Refs. [54,55], where it is also shown how next-to-leading
order QCD corrections and the contributions from the
intrinsic charm of the proton can further improve the
theoretical description. The rôle of color-octet states
[56–58], which becomes relevant at high pT , seems to
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be much less important in the kinematic region under study.
In our view, this justifies, at the present level of accuracy,
the use of the CSM in our analysis of the PHENIX SSA
data for p↑p → J=ψ X presented in the next section.

B. Single-spin asymmetries in the GPM
and CGI-GPM frameworks

The SSA for the process p↑p → hX is defined by

AN ≡ dσ↑ − dσ↓

dσ↑ þ dσ↓
≡ dΔσ

2dσ
; ð7Þ

where dσ↑ð↓Þ is the cross section for one of the initial
nucleons polarized along the transverse direction ↑ð↓Þ
with respect to the production plane. If we denote by
f̂a=p↑ðxa; k⊥aÞ the number density in momentum space of a
parton a inside a transversely polarized proton with mass
Mp, the numerator of the asymmetry will be sensitive to the
difference [59]

Δf̂a=p↑ðxa; k⊥aÞ≡ f̂a=p↑ðxa; k⊥aÞ − f̂a=p↓ðxa; k⊥aÞ
¼ ΔNfa=p↑ðxa; k⊥aÞ cosϕa

¼ −2
k⊥a

Mp
f⊥a
1T ðxa; k⊥aÞ cosϕa; ð8Þ

where ΔNfa=p↑ðxa; k⊥aÞ [or f⊥a
1T ðxa; k⊥aÞ] is the Sivers

distribution function for parton a and ϕa is the azimuthal
angle of its intrinsic transverse momentum k⊥a. The Sivers
function satisfies the positivity bound

jΔNfa=p↑ðxa; k⊥aÞj ≤ 2fa=pðxa; k⊥aÞ; or equivalently

k⊥
Mp

jf⊥a
1T ðxa; k⊥aÞj ≤ fa=pðxa; k⊥aÞ: ð9Þ

A more stringent constraint on the Sivers functions is given
by the Burkardt sum rule (BSR) [60], which states that the
total transverse momentum of all unpolarized partons
inside a transversely polarized proton vanishes. Since
available fits to the Sivers asymmetry for SIDIS data
[61,62] almost fulfill, within uncertainties, the BSR, little
room seems to be left for a gluon contribution. This is
consistent with arguments valid in the large-Nc limit of
QCD [63], according to which the gluon Sivers function
should be suppressed by a factor 1=Nc as compared to the
valence quark Sivers distributions at not-too-small values
of x, namely x ∼ 1=Nc.
Along the lines of Ref. [20], one finds that the numerator

of the SSA for J=ψ production in the GPM framework is
given by

dΔσGPM ≡ EQdσ↑

d3pQ
−
EQdσ↓

d3pQ

¼ 2α3s
s

Z
dxa
xa

dxb
xb

d2k⊥ad2k⊥b

×

�
−
k⊥a

Mp

�
f⊥g
1T ðxa; k⊥aÞ cosϕafg=pðxb; k⊥bÞ

×HU
gg→J=ψgðŝ; t̂; ûÞ δðŝþ t̂þ û −M2Þ; ð10Þ

where fg=p and f⊥g
1T are considered to be universal. The hard

partonic function HU
gg→J=ψg is given explicitly in Eq. (4),

while the denominator of the asymmetry is twice Eq. (5).
We now take into account the effects on the numerator of

the asymmetry coming from initial- and final-state inter-
actions between the struck parton (gluon) and the spectators
from the polarized proton. Such interactions are encoded
in the gauge links or Wilson lines that are needed in the
definition of the Sivers function in terms of QCD operators
to preserve gauge invariance, rendering it process depen-
dent. In the framework of the CGI-GPM, ISIs and FSIs are
approximated by a single, eikonal gluon, that corresponds
to the leading-order contribution of the Wilson line in an
expansion in the coupling constant gs. It is therefore the
imaginary part of the eikonal propagator that provides the
phase needed to generate the Sivers asymmetry. Moreover,
in the CGI-GPM, it is possible to express the process-
dependent gluon Sivers function in Eq. (10) as a linear
combination of two independent and universal gluon

distributions, denoted by f⊥gðfÞ
1T and f⊥gðdÞ

1T , with coeffi-
cients that are calculable for each partonic process. The two
distinct gluon Sivers distributions correspond to the two
possible ways in which three gluon fields, with color
indices a, b, c, can be neutralized, i.e., by contracting

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.5  1  1.5  2  2.5

PHENIX   y = 0

B
ee

 E
d3 σ/

dy
d2 p T

 (
nb

/G
eV

2 )

pT (GeV)

μ = MT

FIG. 1. Unpolarized cross section for the process pp →
J=ψ X → eþe−X, at

ffiffiffi
s

p ¼ 200 GeV in the central rapidity
region y ¼ 0, as a function of the transverse momentum pT
of the J=ψ . The theoretical curve is obtained adopting the
generalized parton model and the color-singlet production
mechanism for the quarkonium. Data are taken from Ref. [50].
The uncertainty band results from varying the factorization
scale in the range MT=2 ≤ μ ≤ 2MT .
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with either the antisymmetric (Ta
bc ≡ −ifabc) or the sym-

metric (Da
bc ≡ dabc) structure constants of the SUð3Þ-color

group. Their first transverse moments,

f⊥gðf=dÞ
1T ðxÞ ¼

Z
d2k⊥

k2⊥
2M2

p
f⊥gðf=dÞ
1T ðx; k⊥Þ; ð11Þ

at least at tree level are related to the two distinct trigluon

Qiu-Sterman functions Tðf=dÞ
G , which have opposite behav-

ior under charge conjugation. Hence f⊥gðfÞ
1T and f⊥gðdÞ

1T have
different properties as well: for instance the former is
C-even and expected to vanish in the small-x region,
whereas the latter is C-odd and not necessarily suppressed

when x is small [64]. Furthermore, only f⊥gðfÞ
1T is con-

strained by the BSR [28].
Formally, the numerator of the asymmetry in the CGI-

GPM approach can be obtained from Eq. (10) with the
substitution

f⊥g
1TH

U
gg→J=ψg →

CðfÞ
I þ CðfÞ

Fc

CU
f⊥gðfÞ
1T HU

gg→J=ψg

þ CðdÞ
I þ CðdÞ

Fc

CU
f⊥gðdÞ
1T HU

gg→J=ψg

≡ f⊥gðfÞ
1T HIncðfÞ

gg→J=ψg þ f⊥gðdÞ
1T HIncðdÞ

gg→J=ψg; ð12Þ

where we have introduced the modified partonic hard
functions

HIncðf=dÞ
gg→J=ψg ≡ CIncðf=dÞ

I

CU
HU

gg→J=ψg ¼
Cðf=dÞ
I þ Cðf=dÞ

Fc

CU
HU

gg→J=ψg:

ð13Þ

We have denoted with CU the color factor for the
unpolarized cross section, which can be calculated from
Fig. 2(a) knowing that the color factor for the scattering
amplitude for gg → J=ψg is Da

bc=2
ffiffiffiffiffiffi
Nc

p
, see Eq. (A9). We

find

CU ¼ 1

ðN2
c − 1Þ2

1

4Nc
Da

bcD
a
cb

¼ 1

ðN2
c − 1Þ2

1

4Nc

�ðN2
c − 4ÞðN2

c − 1Þ
Nc

�

¼ N2
c − 4

4N2
cðN2

c − 1Þ ¼
5

288
; ð14Þ

where we have substituted Nc ¼ 3 in the last equality. In

order to compute the new color factors Cðf=dÞ
I and Cðf=dÞ

Fc
for

the ISIs and FSIs respectively, in the following we will
adopt the methods developed for the twist-three, three-
gluon correlation functions [31–33].
We consider first the effects of ISIs, described by the

insertion of a longitudinally polarized gluon Aþ with
momentum kμ ≈ kþ and color index d, as depicted in
Fig. 2(b). The corresponding amplitude squared can be
obtained from the Born one in Fig. 2(a) with the replacement

ενλbðpbÞ → ενλbðpbÞAρðkÞð−gsfbedÞ½ðk − pbÞλgνρ þ ð2pb þ kÞρgνλ − ðpb þ 2kÞνgρλ�
−igλσ

ðkþ pbÞ2 þ iϵ

≈ ενλbðpbÞAρðkÞð−igsTd
beÞð−pσ

bgνρ þ 2pbρgσν − pbνgσρÞ
−i

2kþp−
b þ iϵ

≈ εσλbðpbÞAþðkÞðgsTd
ebÞ2p−

b
1

2kþp−
b þ iϵ

¼ εσλbðpbÞ
�
gsAþðkÞ 1

kþ þ iϵ

�
Td
eb; ð15Þ

where, according to the eikonal approximation, in the
numerator in the second line we have neglected all kμ

components with respect to the components of pμ
b. More-

over, we choose the polarization vector of the external
gluon such that ε−λbðpbÞ ¼ 0. This, together with the
orthogonality condition ενðpbÞpν

b ¼ 0, leads us to the final
result in Eq. (15). By using the relation

1

kþ � iϵ
¼ P

1

kþ
∓ iπδðkþÞ; ð16Þ

where P denotes the principal value, we find that the
imaginary part of the quark propagator, 1=ðkþ þ iϵÞ, is
given by −iπδðkþÞ. In the calculation of the full diagram,
such term is multiplied by the Born amplitude, taken with a
different color factor Td

eb because of the presence of an
extra gluon. At this point we define the color projectors

T c
aa0 ¼ NT Tc

aa0 ; Dc
aa0 ¼ NDDc

aa0 ð17Þ

with
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NT ¼ 1

Tr½TcTc� ¼
1

NcðN2
c − 1Þ ;

ND ¼ 1

Tr½DcDc� ¼
Nc

ðN2
c − 4ÞðN2

c − 1Þ ; ð18Þ

corresponding to the two different ways in which color can
be neutralized. For the f-type gluon Sivers function, the
relative color factor is therefore calculated from Fig. 2(b) as
follows:

CðfÞ
I ¼ 1

N2
c − 1

T d
aa0T

d
eb

1

4Nc
De

acDb
ca0

¼ −
1

4N2
cðN2

c − 1Þ2 T
d
a0aD

c
aeTd

ebD
c
ba0 ;

¼ −
1

2
CU; ð19Þ

where we have used the identity Tr½TdDcTdDc� ¼
ðN2

c − 1ÞðN2
c − 4Þ=2. Likewise, for the d-type color factor,

we find

CðdÞ
I ¼ 1

N2
c − 1

Dd
aa0T

d
eb

1

4Nc
De

acDb
ca0 ¼ 0; ð20Þ

since Tr½DdDcTdDc� ¼ 0. As already pointed out in
Ref. [65], the net contribution of the heavy quark-antiquark
pair to the FSI, depicted in Fig. 2(c), is zero because the pair
is produced in a color-singlet state. Hence we have

CðfÞ
Fc

¼ CðdÞ
Fc

¼ 0 ð21Þ

and therefore

HIncðfÞ
gg→J=ψg ¼ −

1

2
HU

gg→J=ψg; HIncðdÞ
gg→J=ψg ¼ 0: ð22Þ

We note that we did not consider the FSIs of the unobserved
particle (gluon) because they are known to vanish after

summing the different cut diagrams, see for example the
discussion in Ref. [25].

We then find that f⊥gðdÞ
1T does not contribute to the

specific partonic reaction under study, gg → J=ψg, and that
the numerator of the SSA can be expressed as a convolution

of f⊥gðfÞ
1T with a modified partonic hard function HIncðfÞ

gg→J=ψg

as follows:

dΔσCGI ≡ EQdσ↑

d3pQ
−
EQdσ↓

d3pQ

¼ 2α3s
s

Z
dxa
xa

dxb
xb

d2k⊥ad2k⊥b

×

�
−
k⊥a

Mp

�
f⊥gðfÞ
1T ðxa; k⊥aÞ cosϕafg=pðxb; k⊥bÞ

×HIncðfÞ
gg→J=ψgðŝ; t̂; ûÞδðŝþ t̂þ û −M2Þ: ð23Þ

This process can therefore be very useful to gather separate

and direct information on f⊥gðfÞ
1T .

C. Numerical results

A first extraction of the gluon Sivers distribution [36],
obtained by fitting very precise, RHIC midrapidity data on
AN for inclusive neutral pion production [66] within a GPM
approach, showed that f⊥g

1T is very small with respect to its
theoretical positivity bound in Eq. (9). In that analysis the
following functional form for ΔNfg=p↑ was adopted:

ΔNfg=p↑ðx; k⊥Þ ¼
�
−2

k⊥
Mp

�
f⊥g
1T ðx; k⊥Þ

¼ 2N gðxÞfg=pðxÞhðk⊥Þ
e−k

2⊥=hk2⊥i

πhk2⊥i
; ð24Þ

where

(a) (b) (c)

FIG. 2. LO diagrams for the process p↑p → J=ψ X in the GPM formalism (a) and in the CGI-GPM (b), in which the additional effect
of initial-state interactions is included. Final-state interactions (c) do not contribute when the J=ψ is produced as a color singlet. The
scattering amplitudes for the underlying partonic reaction, gg → J=ψg, are represented by the central blobs, while the upper and lower
ones describe the soft proton → gluon transitions.
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N gðxÞ ¼ Ngxαð1 − xÞβ ðαþ βÞðαþβÞ

ααββ
; ð25Þ

with jNgj ≤ 1 and

hðk⊥Þ ¼
ffiffiffiffiffi
2e

p k⊥
M0 e

−k2⊥=M02
: ð26Þ

With the above choice the Sivers function automatically
fulfills its positivity bound for any ðx; k⊥Þ values.
Alternatively, if we define the parameter

ρ ¼ M02

hk2⊥i þM02 ; ð27Þ

such that 0 < ρ < 1, then Eq. (24) becomes

ΔNfg=p↑ðx;k⊥Þ¼2

ffiffiffiffiffi
2e

p

π
N gðxÞfg=pðxÞ

ffiffiffiffiffiffiffiffiffiffi
1−ρ

ρ

s
k⊥

e−k
2⊥=ρhk2⊥i

hk2⊥i3=2
:

ð28Þ

In Ref. [36] the value of hk2⊥i was taken to be hk2⊥i ¼
0.25 GeV2, while the parameters Ng, α, β, ρ were fitted to
the data.
Here, as already stated in the Introduction, we do not use

any information from the previous analysis, and start
adopting the value hk2⊥i ¼ 1 GeV2, according to the results
shown in Sec. II A. On the other hand, in order to maximize
the effect, we saturate the positivity bound for the x-
dependent part [i.e. we take N gðxÞ ¼ �1] and adopt the
value ρ ¼ 2=3 [24] in Eq. (28). For the unpolarized gluon
distribution fg=pðxÞwe use the CTEQ6-LO parametrization
as before, with the factorization scale equal to MT .
Our results for the bands of possible values ofAN , between

the lower and the upper bounds (N gðxÞ ¼ �1), calculated
both in the GPM and the CGI-GPM at

ffiffiffi
s

p ¼ 200 GeV, are
confronted in Fig. 3 with PHENIX data [67,68].
As expected from the theoretical calculation, AN in the

CGI-GPM is a factor of 2 smaller (in size) as compared to
the GPM prediction. We note that, since AN is the ratio of
two cross sections, it is much less sensitive to the choice of
the factorization scale than the unpolarized cross section
presented in Fig. 1.
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FIG. 3. Comparison of the available data from PHENIX [67,68] with the bands of possible values of AN , between the lower and the
upper bounds (N gðxÞ ¼ �1), for the process p↑p → J=ψ X at

ffiffiffi
s

p ¼ 200 GeV, calculated in both the GPM and CGI-GPM approaches.
Upper panels: as a function of pT at xF ¼ −0.084 (left) and xF ¼ þ0.084 (right). Lower panels: as a function of pT at xF ¼ 0 (left) and
as a function of xF at pT ¼ 1.65 GeV (right). The red solid lines represent an estimate obtained with N gðxÞ ¼ þ0.1 within the GPM
approach (see text for details).
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It turns out that the 2006 data at xF ¼ 0 (lower-left panel)
are not able to give any constraint or discriminate among
the two models. Only the combined 2006–2008 and the
preliminary 2012 data at xF ¼ 0.084 (upper-right panel),
and partially also at xF ¼ −0.084 (upper-left panel), are
precise enough to further constrain the magnitude of the
gluon Sivers function within the GPM approach. As an
example, assuming the validity of the GPM, in the upper-
right panel of Fig. 3 the red solid curve illustrates how a
(positive) Sivers distribution reduced by one order of
magnitude with respect to its positivity bound would be
in better agreement with the measurements. The latest
preliminary data (RUN 2015) at fixed pT ¼ 1.65 GeV
(lower-right panel) are even more important since, thanks to
their high accuracy, they could constrain the GSF, not only
within the GPM, but also in the CGI-GPM approach. Once
again the red solid line represents an estimate within the
GPM obtained adopting N gðxÞ ¼ þ0.1.
On the other hand, the overall present precision as well as

the amount of the data does not allow us to reject any of the

two models. To this end, it would be helpful to determine

the sign of f⊥gðfÞ
1T independently, for example from a study of

the process p↑p → DX, as described in the next section.

III. SINGLE-SPIN ASYMMETRIES IN p↑p → DX

A. GPM and CGI-GPM formalism

We now turn to the study of the process

p↑ðpAÞ þ pðpBÞ → DðpDÞ þ X; ð29Þ

which has been already analyzed within both the GPM
[34,69] and the twist-three frameworks [33,70]. As already
discussed in Ref. [69], to which we refer for details, D
mesons are produced from the fragmentation of a c or c̄
quark created either through annihilation of a light quark
pair, qq̄ → cc̄, or through gluon fusion, gg → cc̄. The
unpolarized cross section can therefore be written as

2dσ ≡ EDdσ↑

d3pD
þ EDdσ↓

d3pD
¼ 2α2s

s

Z
dxa
xa

dxb
xb

dzd2k⊥ad2k⊥bd3kDδðkD · p̂QÞδðŝþ t̂þ û − 2m2
cÞ

× J ðz; kDÞ
�X

q

½fq=pðxa; k⊥aÞfq̄=pðxb; k⊥bÞHU
qq̄→QQ̄ðŝ; t̂; ûÞDD=Qðz; kDÞ�

þ ½fg=pðxa; k⊥aÞfg=pðxb; k⊥bÞHU
gg→QQ̄ðŝ; t̂; ûÞDD=Qðz; kDÞ�

�
; ð30Þ

where z is the light-cone momentum fraction of the parton
Q carried by the D meson, mc is the (anti)charm mass,
q ¼ u; ū; d; d̄; s; s̄, and Q ¼ c if D ¼ Dþ, D0 or Q ¼ c̄ if
D ¼ D−, D̄0. We choose the reference frame such that the
polarized proton moves along the Z axis, with polarization
↑ along the positive Y axis, and XZ is the production plane.
This means that k⊥a and k⊥b have only X and Y
components, while kD has a Z component as well. The
function δðkD · p̂QÞ is hence needed to perform the integral
only over k⊥D, i.e. the components of kD which are
transverse with respect to the direction of the fragmenting
quark p̂Q. The Jacobian connecting the partonic to the
observed hadronic phase space reads

J ðz; kDÞ ¼
1

z2

	
ED þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2D − k2⊥D

p 

2

4ðp2D − k2⊥DÞ

×

�
1 −

z2m2
c

ðED þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2D − k2⊥D

p
Þ2
�
2

: ð31Þ

Moreover, the partonic cross sections are written in the
form

dσ̂
dt̂

¼ πα2s
~s2

Hab→cd; ð32Þ

with

HU
qq̄→cc̄ ¼

N2
c − 1

2N2
c

�
~t2 þ ~u2 þ 2m2

c ~s
~s2

�
;

HU
gg→cc̄ ¼

Nc

N2
c − 1

1

~t ~u

�
N2

c − 1

2N2
c

−
~t ~u
~s2

�

×

�
~t2 þ ~u2 þ 4m2

c ~s −
4m4

c ~s2

~t ~u

�
; ð33Þ

where we have introduced the following invariants:

~s≡ ðpa þ pbÞ2 ¼ ŝ; ~t≡ ðpa − pcÞ2 −m2
c ¼ t̂ −m2

c;

~u≡ ðpb − pcÞ2 −m2
c ¼ û −m2

c: ð34Þ

In the GPM approach the numerator of the asymmetry
for the process under study reads [69]
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dΔσGPM ≡ EDdσ↑

d3pD
−
EDdσ↓

d3pD
¼ 2α2s

s

Z
dxa
xa

dxb
xb

dzd2k⊥ad2k⊥bd3kDδðkD · p̂cÞδðŝþ t̂þ û − 2m2
cÞ

× J ðz; kDÞ
�X

q

��
−
k⊥a

Mp

�
f⊥q
1T ðxa; k⊥aÞ cosϕafq̄=pðxb; k⊥bÞHU

qq̄→QQ̄ðŝ; t̂; ûÞDD=Qðz; kDÞ
�

þ
��

−
k⊥a

Mp

�
f⊥g
1T ðxa; k⊥aÞ cosϕafg=pðxb; k⊥bÞHU

gg→QQ̄ðŝ; t̂; ûÞDD=Qðz; kDÞ
��

; ð35Þ

with HU
qq̄→QQ̄ and HU

gg→QQ̄ given by Eqs. (33).
Notice that, as the gluons cannot carry any transverse

spin, the elementary process gg → cc̄ results in unpolarized
final quarks. In the qq̄ → cc̄ process one of the initial
partons (the one inside the transversely polarized proton)
can be polarized; however, there is no single-spin transfer
in this s-channel interaction so that the final c and c̄ are
again not polarized. Moreover, even when they are pro-
duced in the process q↑q̄↑ → cc̄, where the initial quarks
are transversely polarized because of the Boer-Mulders
effect [71], the s-channel annihilation does not create a
polarized final c or c̄. Consequently, there cannot be any
Collins fragmentation contribution to AN . More generally,
it has been checked that all contributions to AN , other
than the Sivers one, enter with azimuthal phase factors that
strongly suppress them after integration over transverse
momenta. Hence they can be safely neglected [69].
In the CGI-GPM framework, the Sivers functions

become process dependent because both ISIs and FSIs
are taken into account. Starting with the qq̄ subprocess, in
the calculation of the asymmetry one can still use the (anti)
quark Sivers distributions extracted from SIDIS measure-
ments, but they have to be convoluted with the following
partonic hard functions:

HInc
qq̄→cc̄ ¼ −HInc

q̄q→c̄c ¼
N2

c − 1

2N2
c

�
~t2 þ ~u2 þ 2m2

c ~s
~s2

�
;

HInc
qq̄→c̄c ¼ −HInc

q̄q→cc̄ ¼
3

2

1

N2
c

�
~t2 þ ~u2 þ 2m2

c ~s
~s2

�
: ð36Þ

The relative color factors have been derived as described
in the previous section and in Ref. [25], using the color
assignments collected in Fig. 4, by means of the color
projectors of Eq. (17) and the additional one

Qc
ij ¼ NQtcij; ð37Þ

where tcij are the generators of SUðNcÞ in the fundamental
representation and

NQ ¼ 1

Tr½tctc� ¼
2

N2
c − 1

: ð38Þ

We point out that Eqs. (36) are in agreement with the twist-
three expressions in Ref. [70] and, in the massless limit,
with the CGI-GPM partonic functions in Ref. [25].
Turning to the gluon induced subprocess gg → cc̄, the

effects of ISIs and FSIs have to be estimated diagram
by diagram. The resulting color factors are presented in
Table I. As in the previous section, CU denotes the usual
unpolarized color factor for the specific diagram D, while

Cðf=dÞ
I , Cðf=dÞ

Fc
, Cðf=dÞ

Fd
are the color factors obtained when an

extra gluon is attached in D to parton b (the gluon from the
unpolarized proton), parton c (the charm quark fragmenting
into the observed D meson, in this case) or parton d (the
unobserved anticharm quark, here) respectively. Once
again, the two labels f and d distinguish between the
two possible ways in which color is neutralized, leading to
the two independent gluon Sivers functions. Furthermore,

CIncðf=dÞ ≡ Cðf=dÞ
I þ Cðf=dÞ

Fc
. A detailed derivation of these

color factors for the first diagram in Table I is provided in
Appendix B for illustration. Finally, we point out that our
gluonic pole strengths, defined as

Cðf=dÞ
G ≡ Cðf=dÞ

I þ Cðf=dÞ
Fc

þ Cðf=dÞ
Fd

CU
; ð39Þ

are in full agreement with the ones given in Ref. [29] for the
study of the gluon Sivers effect in less inclusive processes

(a) (b) (c) (d) (e)

FIG. 4. CGI-GPM color rules for the eikonal three-gluon (a), quark-gluon (b) and antiquark-gluon (c) vertices. The color projectors for
the gluon (d) and the quark Sivers functions (e) are shown as well. The eikonal gluon has color index c.
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like p↑p → ππX, for which the FSIs of parton d need to be
taken into account as well. Notice that the results in
Ref. [29] have been derived adopting a different method,
i.e. by looking at the full gauge link structure and taking the
derivative of the gauge link. We have checked that the one-
gluon approximation employed here, which consists in
considering only the first-order contribution of the gauge
link in an expansion in terms of the strong coupling gs,
is sufficient to recover the exact gluonic pole strengths in

any partonic process calculated at LO in perturbative
QCD [29,37].
By summing all the diagrams, taken with the new color

factors CIncðf=dÞ, one obtainsHIncðf=dÞ, defined as in Eq. (13)
for the subprocess gg → J=ψg. At variance with what
we have found for p↑p → J=ψ X, both the independent

gluon Sivers functions f⊥gðfÞ
1T and f⊥gðdÞ

1T contribute to AN for
p↑p → DX. Explicitly, the numerator of the asymme-
try reads

dΔσCGI ≡ EDdσ↑

d3pD
−
EDdσ↓

d3pD
¼ 2α2s

s

Z
dxa
xa

dxb
xb

dzd2k⊥ad2k⊥bd3kDδðkD · p̂cÞδðŝþ t̂þ û − 2m2
cÞ

× J ðz; kDÞ
�X

q

��
−
k⊥a

Mp

�
f⊥q
1T ðxa; k⊥aÞ cosϕafq̄=pðxb; k⊥bÞHInc

qq̄→QQ̄ðŝ; t̂; ûÞDD=Qðz; kDÞ
�

þ
��

−
k⊥a

Mp

�
f⊥gðfÞ
1T ðxa; k⊥aÞ cosϕafg=pðxb; k⊥bÞHIncðfÞ

gg→QQ̄ðŝ; t̂; ûÞDD=Qðz; kDÞ

þ
�
−
k⊥a

Mp

�
f⊥gðdÞ
1T ðxa; k⊥aÞ cosϕafg=pðxb; k⊥bÞHIncðdÞ

gg→QQ̄ðŝ; t̂; ûÞDD=Qðz; kDÞ
��

; ð40Þ

where

HIncðfÞ
gg→cc̄ ¼ HIncðfÞ

gg→c̄c ¼ −
Nc

4ðN2
c − 1Þ

1

~t ~u

�
~t2

~s2
þ 1

N2
c

��
~t2 þ ~u2 þ 4m2

c ~s −
4m4

c ~s2

~t ~u

�
;

HIncðdÞ
gg→cc̄ ¼ −HIncðdÞ

gg→c̄c ¼ −
Nc

4ðN2
c − 1Þ

1

~t ~u

�
~t2 − 2~u2

~s2
þ 1

N2
c

��
~t2 þ ~u2 þ 4m2

c ~s −
4m4

c ~s2

~t ~u

�
: ð41Þ

These last two equations are in agreement with the hard partonic cross sections in Ref. [33], which have been calculated in
the twist-three approach.

TABLE I. Color factors for the LO diagrams contributing to the process gg → cc̄ in the CGI-GPM approach.

D CU CðfÞ
I CðfÞ

Fc
CðfÞ
Fd

CIncðfÞ CðdÞ
I CðdÞ

Fc
CðdÞ
Fd

CIncðdÞ

1
4Nc

− Nc

8ðN2
c−1Þ

1
8Nc

− 1
8NcðN2

c−1Þ − 1
8NcðN2

c−1Þ
Nc

8ðN2
c−1Þ

1
8Nc

1
8NcðN2

c−1Þ
2N2

c−1
8NcðN2

c−1Þ
1

4Nc
− Nc

8ðN2
c−1Þ − 1

8NcðN2
c−1Þ

1
8Nc − N2

cþ1

8NcðN2
c−1Þ − Nc

8ðN2
c−1Þ − 1

8NcðN2
c−1Þ − 1

8Nc − N2
cþ1

8NcðN2
c−1Þ

Nc

2ðN2
c−1Þ − Nc

4ðN2
c−1Þ

Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ − Nc

8ðN2
c−1Þ 0 Nc

8ðN2
c−1Þ − Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ

Nc

4ðN2
c−1Þ − Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 0 Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 Nc

4ðN2
c−1Þ

Nc

4ðN2
c−1Þ − Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 0 Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 Nc

4ðN2
c−1Þ

− Nc

4ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 − Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ

− Nc
4ðN2

c−1Þ
Nc

8ðN2
c−1Þ 0 − Nc

8ðN2
c−1Þ

Nc
8ðN2

c−1Þ
Nc

8ðN2
c−1Þ 0 Nc

8ðN2
c−1Þ

Nc
8ðN2

c−1Þ
− 1

4NcðN2
c−1Þ 0 − 1

8NcðN2
c−1Þ − 1

8NcðN2
c−1Þ − 1

8NcðN2
c−1Þ 0 − 1

8NcðN2
c−1Þ

1
8NcðN2

c−1Þ − 1
8NcðN2

c−1Þ
− 1

4NcðN2
c−1Þ 0 − 1

8NcðN2
c−1Þ − 1

8NcðN2
c−1Þ − 1

8NcðN2
c−1Þ 0 − 1

8NcðN2
c−1Þ

1
8NcðN2

c−1Þ − 1
8NcðN2

c−1Þ

D’ALESIO, MURGIA, PISANO, and TAELS PHYSICAL REVIEW D 96, 036011 (2017)

036011-10



B. Numerical results

In addition to gluon TMD-PDFs, which, as already
seen, contribute to AN for p↑p → J=ψ X, in inclusive D
production one needs to consider quark TMD-PDFs and
FFs as well. For the k⊥ dependence of the unpolarized
quark distributions we assume the same simple Gaussian
parametrization as in Eq. (6), with hk2⊥i ¼ 0.25 GeV2.
For the unpolarized fragmentation functions we adopt a
similar model, in which the dependences on z and k⊥D are
factorized,

DD=Qðz; k⊥DÞ ¼ DD=QðzÞgðk⊥DÞ; ð42Þ

with DD=QðzÞ being the collinear fragmentation function,
for which we use the LO parametrization in Ref. [72], and
gðk⊥DÞ is a Gaussian function as in Eq. (6) with hk2⊥Di ¼
0.2 GeV2 [69],1 normalized in such a way that

Z
d2k⊥DDD=Qðz; k⊥DÞ ¼ DD=QðzÞ: ð43Þ

We assume to have only one nonzero fragmentation
function for D mesons,

DD0=cðzÞ ¼ DD̄0=c̄ðzÞ ¼ DDþ=cðzÞ ¼ DD−=c̄ðzÞ; ð44Þ

and all the other contributions are set to zero.
In the calculation of the upper bounds for the SSAs, we

adopt for all quark and gluon Sivers functions the func-
tional form in Eq. (28) with N q;gðxÞ ¼ þ1 and ρ ¼ 2=3.
Moreover, we take hk2⊥i ¼ 1 GeV2 for gluons and hk2⊥i ¼
0.25 GeV2 for quarks. The factorization scale is chosen to
be equal to the transverse mass of the D meson, μ ¼ MT ,

with MD ¼ 1.869 GeV (for the charm mass entering the
hard scattering parts we adopt mc ¼ 1.3 GeV). We note
that the estimates for the denominators of the asymmetries
are the same in both the GPM and the CGI-GPM
approaches.
Our GPM results for AN in p↑p → D0X, which are the

same as the ones for p↑p → D̄0X, are presented in Fig. 5 in
two different kinematic regions: at fixed pseudorapidity,
η ¼ 3.8, as a function of ED [69] (left panel), and at fixed
transverse momentum, pT ¼ 1.5 GeV, as a function of xF
(right panel).
One of the main results of the above calculation

(analogous to what happens in the twist-three formalism)
is that in the CGI-GPM approach, AN for D0 meson is
different from AN for D̄0, as shown in Fig. 6, where the
same kinematic regions as in Fig. 5 have been considered.
We find that the quark contributions to AN in both models
are almost negligible for values of the D meson energy
ED ≤ 40 GeV and for xF ≤ 0.6. It is worth pointing out
that adopting any of the GPM quark Sivers functions as
extracted from data on azimuthal asymmetries in SIDIS
processes would give an almost negligible contribution to
AN , leaving at work only the gluon Sivers effect.
The gluon contribution in the GPM is relatively large in

size for xF ≥ 0 and in the whole considered range of ED.
For D0 production, in the CGI-GPM, the f-type gluon
Sivers effect is always quite small, while the d-type is
similar to the f-type for xF < 0, and to the GPM for
xF > 0. This can be understood by looking at Eqs. (41),
where the d- and f-type hard functions differ only by one
term. Indeed for negative xF, j ~uj < j~tj and the two hard
functions give almost the same contribution. For positive
xF, j ~uj becomes large and relevant and the d-type
contribution in Eq. (41) becomes positive. Notice that
the small size of all the asymmetries in the negative xF
region is due to the integration over the Sivers azimuthal
phase. We also point out that the different behavior of the
f- and d-type hard functions under the c ↔ c̄ charge
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FIG. 5. Quark and gluon contributions to the upper bounds (N q;gðxÞ ¼ þ1) on AN for the process p↑p → D0X calculated in the GPM
approach at

ffiffiffi
s

p ¼ 200 GeV: at fixed pseudorapidity, η ¼ 3.8, as a function of ED (left panel), and at fixed transverse momentum,
pT ¼ 1.5 GeV, as a function of xF (right panel).

1Notice that this value has been obtained for the light-quark
FFs into a pion; we have checked that using larger values, up to
1 GeV2, has a very tiny effect on SSA estimates.
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conjugation is not relevant since the FF for a c̄ into aD0 is
taken to be zero.
By comparison of the upper and lower panels of Fig. 6, it

is clear that there is no difference between the f-type gluon
asymmetries forD0 and D̄0 production, while we find a tiny
difference for the quark Sivers asymmetries and a change of
sign for the d-type contributions, see Eq. (41). These
findings imply that for positive xF, a sizable difference
in the asymmetries for D0 and D̄0 would validate the CGI-
GPM framework (or, equivalently, disprove the GPM), and,
at the same time, would provide an indication of the size of

the unknown Sivers functions f⊥gðdÞ
1T . On the contrary, if

f⊥gðdÞ
1T is very small, the GPM and CGI-GPM would predict

the same asymmetry for D0 and D̄0, making it impossible
to distinguish between the two models. Furthermore, if
we consider the SSA for the production of bothD0 and D̄0,
the following relation holds:

ANðD0 þ D̄0Þ ¼ 1

2
½ANðD0Þ þ ANðD̄0Þ�; ð45Þ

which is valid in both models because the unpolarized
cross sections for D0 and D̄0 are the same. In the GPM this
asymmetry would be the same as for D0 or D̄0 production,
while in the CGI-GPM it would receive a (small) con-

tribution only from f⊥gðfÞ
1T , since the one from f⊥gðdÞ

1T
cancels in the sum. In other words a sizable ANðD0 þ
D̄0Þ at forward rapidities could be expected only within the
GPM approach.
Finally, we note that the simultaneous study of AN for

inclusive D and D̄ meson production has been already
suggested in order to disentangle the two trigluon
correlation functions in the twist-three formalism
[33,70]. Notice that our estimates cannot be compared
directly with those presented in Ref. [70], since here we
have only considered a maximized scenario, without any
attempt to constrain the gluon Sivers parameterizations.
What we can only point out is that, in both the GPM and
the CGI-GPM approaches, the asymmetry in the back-
ward region cannot be sizable, due to the integration over
the azimuthal phases. This is in contrast to what happens

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  20  40  60  80  100

η = 3.8 μ = MT

CGI

A
N

ED (GeV)

 pp --> D0 X 

quark sat
gluon-f sat
gluon-d sat

(a)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

pT = 1.5 GeV μ = MT

CGI

A
N

xF

 pp --> D0 X 

quark sat
gluon-f sat

gluon-d sat

(b)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  20  40  60  80  100

η = 3.8 μ = MT

CGI

A
N

ED (GeV)

 pp --> -D0 X 

quark sat
gluon-f sat
gluon-d sat

(c)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

pT = 1.5 GeV μ = MT

CGI

A
N

xF

 pp --> -D0 X 

quark sat
gluon-f sat

gluon-d sat

(d)

FIG. 6. Upper bounds in size [that is, taking N q;gðxÞ ¼ þ1] for the quark, f-type and d-type gluon Sivers contributions to AN in the
process p↑p → D0X calculated in the CGI-GPM approach at

ffiffiffi
s

p ¼ 200 GeV: at fixed pseudorapidity, η ¼ 3.8, as a function of ED (a),
and at fixed transverse momentum, pT ¼ 1.5 GeV, as a function of xF (b). Analogous results for the process p↑p → D̄0X are presented
in panels (c) and (d).
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in the twist-three formalism, where one could get AN
values of the order of 30% for xF < 0.
Concerning the comparison with the experimental

results, namely the RHIC data [73–75] from the
PHENIX Collaboration, one has to recall that, in order
to do it, AN for D mesons has to be converted into AN for μ
production, taking into account theD → μ kinematics. This
would be a very important analysis with different potential
outcomes: (i) discriminating among different approaches
(TMD vs twist-three scheme), (ii) discriminating among
TMD models (GPM vs CGI-GPM) and (iii) putting, within
a TMD scheme, some constraints on the gluon Sivers
functions.

IV. CONCLUSIONS

In this paper we have performed a detailed analysis,
within a TMD factorization scheme, of SSAs for inclusive
hadronic processes characterized by one large energy scale
and dominated by gluon-gluon fusion contributions, with
two important aims: from one side we have addressed the
role of the TMD gluon Sivers function, still largely
unknown, and from the other one we have studied its
process dependence, intimately connected to the univer-
sality issue. To this end, we have considered two inclusive
processes, namely J=ψ and D meson production in pp
collisions, for which gluon initiated subprocesses are
expected to be dominating, extending to the gluon sector
the inclusion of initial- and final-state color interactions,
responsible for the process dependence of the TMDs. We
have then presented theoretical estimates obtained by
adopting both a generalized parton model approach with
inclusion of spin and transverse momentum effects and its
color-gauge invariant extension, still based on a partonic
interpretation, which includes also ISI and FSI effects via a
one-gluon exchange approximation.
Concerning charmonium production, adopting the color-

singlet model we have shown that with the inclusion of
TMD effects, and taking into account the uncertainty
coming from the choice of the factorization scale, the
theoretical estimates are able to reproduce the central
rapidity RHIC data reasonably well, at least for pT values
lower than 2 GeV. On the other hand the available SSA data
are still not precise enough to discriminate among the two
models or to give any robust constraint on the GSF.
Moving to D meson production, in the CGI-GPM

approach we have shown the emergence of two indepen-
dent gluon Sivers functions, according to how the color
is neutralized. As a clear signature these two GSFs enter
differently in D0 and D̄0 mesons, providing a tool to
disentangle them and at the same time to check the validity
of the GPM approach (where we have only one GSF) or its
CGI version.
To this end, present available SSA data (requiring a

suitable conversion of AN for D meson to μ meson
production) and future experimental results could be

extremely important to check the validity of the
approaches, put some constraints on the gluon Sivers
function and test its universality properties.
It is worth mentioning that J=ψ andDmeson production

could also be studied in πp↑ collisions at COMPASS.
While this would be less sensitive (as compared to RHIC)
to gluons, it could nevertheless provide useful insights into
the J=ψ-production mechanism through quarks and anti-
quarks in the TMD approach.
The richness of present and forthcoming experimental

activities together with their complementary and educated
phenomenological analyses are opening a new era in
learning about the inner mechanisms behind transverse
SSAs, and as a by-product, about some challenging features
of QCD. Within a TMD scheme, these studies also provide
a powerful tool to get information on gluon TMDs, and in
particular on the role of color exchange and its impact on the
process dependence of the gluon Sivers function.
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APPENDIX A: UNPOLARIZED CROSS
SECTION FOR gg → J=ψg

The scattering amplitude M for the partonic process

gðpaÞ þ gðpbÞ → QQ̄½3Sð1Þ1 �ðpQÞ þ gðpgÞ at LO in the
CSM can be written in the form [49]

Mðpa; pb;pQ; pgÞ

¼ 1

4
ffiffiffiffiffiffiffi
πM

p R0ð0ÞTr½Oðpa; pb;pQ; 0ÞðpQ −MÞε�λQðpQÞ�;

ðA1Þ

where R0ð0Þ is the radial wave function of the bound state
evaluated at the origin and ελQðpQÞ is its polarization
vector. The operator Oðpa; pb;pQ; kÞ is calculated from
the Feynman diagrams in Fig. 7, where k is half the
relative momentum of the two outgoing quarks forming
the bound state, which we take to be zero in our non-
relativistic approximation. We adopt the notation Oð0Þ≡
Oðpa; pb;pQ; 0Þ. Moreover, we write

Oðpa; pb;pQ; kÞ ¼
X6
m¼1

CmOmðpa; pb;pQ; kÞ; ðA2Þ
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where we have separated the color factors Cm from the rest of the Feynman amplitudes Om. Explicitly, from the three
diagrams in Fig. 7, one gets

O1 ¼ 4g3sε
μ
λa
ðpaÞενλbðpbÞερ�λg ðpgÞγν

pQ þ 2k − 2pb þ 2MQ

ðpQ − 2pb þ 2kÞ2 − 4M2
Q
γμ

−pQ þ 2k − 2pg þ 2MQ

ðpQ þ 2pg − 2kÞ2 − 4M2
Q
γρ;

O2 ¼ 4g3sε
μ
λa
ðpaÞενλbðpbÞερ�λg ðpgÞγρ

pQ þ 2pg þ 2kþ 2MQ

ðpQ þ 2pg þ 2kÞ2 − 4M2
Q
γν
−pQ=þ 2pa þ 2kþ 2MQ

ðpQ − 2pa − 2kÞ2 − 4M2
Q
γμ;

O3 ¼ 4g3sε
μ
λa
ðpaÞενλbðpbÞερ�λg ðpgÞγν

pQ − 2pb þ 2kþ 2MQ

ðpQ − 2pb þ 2kÞ2 − 4M2
Q
γρ

−pQ þ 2pa þ 2kþ 2MQ

ðpQ − 2pa − 2kÞ2 − 4M2
Q
γμ; ðA3Þ

and

C1 ¼
X
i;j

h3i; 3̄jj1iðtbtatcÞij;

C2 ¼
X
i;j

h3i; 3̄jj1iðtctbtaÞij;

C3 ¼
X
i;j

h3i; 3̄jj1iðtbtctaÞij; ðA4Þ

where the sum is taken over the colors of the outgoing
quark and antiquark and ta are the SUð3Þ generators in
the fundamental representation, normalized according to
TrðtatbÞ ¼ δab=2. The SUð3Þ Clebsch-Gordan coefficients,

h3i; 3̄jj1i ¼ δijffiffiffiffiffiffi
Nc

p ; ðA5Þ

with Nc being the number of colors, project out the color-
singlet configuration. By substituting Eq. (A5) in Eq. (A4),
we obtain

C1 ¼ C2 ¼
1

4
ffiffiffiffiffiffi
Nc

p ðdabc − ifabcÞ;

C3 ¼
1

4
ffiffiffiffiffiffi
Nc

p ðdabc þ ifabcÞ: ðA6Þ

The other color factors C4;5;6 can be obtained from C1;2;3,
respectively, by exchanging a ↔ b. Therefore we find

C4 ¼ C5 ¼
1

4
ffiffiffiffiffiffi
Nc

p ðdabc þ ifabcÞ;

C6 ¼
1

4
ffiffiffiffiffiffi
Nc

p ðdabc − ifabcÞ: ðA7Þ

The operators Om, with m ≥ 4, can be obtained from the
ones in Eq. (A3) by applying crossing relations. Since the
relations

Tr½O1ð0ÞðpQ −MÞε�λQðpQÞ�
¼ Tr½O4ð0ÞðpQ −MÞε�λQðpQÞ�;

Tr½O2ð0ÞðpQ −MÞε�λQðpQÞ�
¼ Tr½O5ð0ÞðpQ −MÞε�λQðpQÞ�;

Tr½O3ð0ÞðpQ −MÞε�λQðpQÞ�
¼ Tr½O6ð0ÞðpQ −MÞε�λQðpQÞ�; ðA8Þ

hold, in the sum of all the contributions to the amplitude,
by adding first diagrams 1 and 4, 2 and 5, and 3 and 6, we
single out the same, symmetric, combinations of color
factors, namely

C1 þ C4 ¼ C2 þ C5 ¼ C3 þ C6 ¼
1

2
ffiffiffiffiffiffi
Nc

p dabc: ðA9Þ

Hence Eq. (A1) can be written as

FIG. 7. Feynman diagrams for the process gg → QQ̄½3Sð1Þ1 �g in the CSM at LO in perturbative QCD. The corresponding crossed
diagrams, included in the calculation, are not shown. They can be obtained by reversing the fermion lines and replacing k ↔ −k.
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Mðpa; pb;pQ; pgÞ ¼
1

4
ffiffiffiffiffiffiffi
πM

p R0ð0Þ
1

2
ffiffiffiffiffiffi
Nc

p dabcTr

�X3
m¼1

Omð0ÞðpQ −MÞε�λQðpQÞ
�
; ðA10Þ

with

X3
m¼1

Omð0Þ ¼ g3sε
μ
λa
ðpaÞενλbðpbÞερ�λg ðpgÞ

�
γνðpQ − 2pb þMÞγμð−pQ − 2pg þMÞγρ

ðŝ −M2Þðû −M2Þ

þ γρðpQ þ 2pg þMÞγνð−pQ þ 2pa þMÞγμ
ðŝ −M2Þðt̂ −M2Þ þ γνðpQ − 2pb þMÞγρð−pQ þ 2pa þMÞγμ

ðt̂ −M2Þðû −M2Þ
�
; ðA11Þ

where have introduced the Mandelstam variables

ŝ ¼ ðpa þ pbÞ2 ≡ ðpQ þ pgÞ2;
t̂ ¼ ðpa − pQÞ2; û ¼ ðpb − pQÞ2: ðA12Þ

The unpolarized partonic cross section for the process
gg → J=ψg is given by

dσ̂
dt̂

¼ 1

16πŝ2
jMj2; ðA13Þ

where an average is understood over the initial gluon polar-
izations and colors, and a sum over the final ones. When
summing over the polarizations of the on-shell gluons, care
must be taken to consider only the physical (transverse)
polarization states. This can be achieved through the follow-
ing relations:

X
λa

εμλaðpaÞεμ
0�

λa
ðpaÞ ¼ −

�
gμμ

0 −
2

ŝ
ðpμ

ap
μ0
b þ pμ0

a p
μ
bÞ
�
;

X
λb

ενλbðpbÞεν0�λb ðpbÞ ¼ −
�
gνν

0 −
2

ŝ
ðpν

apν0
b þ pν0

a pν
bÞ
�
;

X
λg

ερλgðpgÞερ
0�
λg
ðpgÞ ¼ −

�
gρρ

0 −
2

û
ðpρ

ap
ρ0
g þ pρ0

a p
ρ
gÞ
�
;

ðA14Þ

while the sum over the polarization states of the J=ψ is
performed by using the identity

X
λQ

εαλQðpQÞεβ�λQðpQÞ ¼ −gαβ þ pα
Qp

β
Q

M2
: ðA15Þ

The final result is given in Eqs. (3) and (4), where we have
taken Nc ¼ 3.

APPENDIX B: COLOR FACTORS IN p↑p → DX
WITHIN THE CGI-GPM FRAMEWORK

In this appendix we provide an explicit calculation of
the color factors needed for the estimation of the SSAs
for p↑p → DX in the CGI-GPM approach. We limit our
discussion to the first diagram in Table I, the extension to
the remaining ones being straightforward. We begin with
the color factor for the unpolarized amplitude squared in
Fig. 8(a), which is given by

CU ¼ δbb0δaa0

ðN2
c − 1Þ2 Tr½t

ata
0
tb

0
tb� ¼ 1

4Nc
: ðB1Þ

The diagram in Fig. 8(b) accounts for the ISI, described by
an additional eikonal gluon attached to the initial-state
gluon that comes from the unpolarized proton. From the

CGI-GPM rules in Fig. 4, CðfÞ
I and CðdÞ

I are calculated as
follows:

CðfÞ
I ¼ δbb0

N2
c − 1

T c
aa0T

b
ceTr½tetb0 ta0 ta�;

¼ −
Nc

8ðN2
c − 1Þ ; ðB2Þ

and

(a) (b) (c) (d)

FIG. 8. Diagrams contributing to the color factors CU (a), Cðf=dÞ
I (b), Cðf=dÞ

Fc
(c) and Cðf=dÞ

Fd
(d) for the process gg → cc̄.
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CðdÞ
I ¼ δbb0

N2
c − 1

Dc
aa0T

b
ceTr½tetb0 ta0ta�;

¼ Nc

8ðN2
c − 1Þ ; ðB3Þ

where T c
aa0 and Dc

aa0 are respectively the f- and d-type
projectors defined in Eqs. (17) and (18), while Tb

ce≡
−ifbce. Similarly, the color factors CðfÞ

Fc
and CðdÞ

Fc
related

to the FSI of the outgoing charm quark, are obtained by
adding an eikonal gluon to the lower quark line as depicted
in Fig. 8(c), from which we find

CðfÞ
Fc

¼ δbb0

N2
c − 1

T c
aa0Tr½tbtb

0
ta

0
tcta� ¼ 1

8Nc
; ðB4Þ

and

CðdÞ
Fc

¼ δbb0

N2
c − 1

Dc
aa0Tr½tbtb

0
ta

0
tcta� ¼ 1

8Nc
: ðB5Þ

Finally, one computes the color factors CðfÞ
Fd

and CðdÞ
Fd

from
Fig. 8(d), where the eikonal gluon is now attached to the
upper antiquark line. We get

CðfÞ
Fd

¼ −
δbb0

N2
c − 1

T c
aa0Tr½tbtctb

0
ta

0
ta�

¼ −
1

8NcðN2
c − 1Þ ; ðB6Þ

where the minus sign in the first line stems from the
antiquark propagator, see the color rule in Fig. 4(c).
Likewise,

CðdÞ
Fd

¼ −
δbb0

N2
c − 1

Dc
aa0Tr½tbtctb

0
ta

0
ta�

¼ 1

8NcðN2
c − 1Þ : ðB7Þ
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