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In this paper, a general case of conformal invariant vacuum nonlinear electrodynamics is studied.
We analyze the consistency of this electrodynamics model with fundamental principles such as causality,
unitarity, and the Ellis-Hawking dominant energy condition. Certain features of the electromagnetic waves
in this model are investigated.
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I. INTRODUCTION

Vacuum nonlinear electrodynamics (NED) effects are
the object of strong interest in contemporary field theory,
due to the approaching opportunities for their experimental
verification. The main hopes are associated with the
development of intense laser facilities such as ELI [1]
and XCELS [2]. Furthermore, an especially inspiring recent
report [3] about vacuum birefringence observation through
the detection of polarized optical radiation coming from
isolated pulsars provides strong expectations of NED
investigation advances in further astrophysical missions
such as XIPE [4] and IXPE [5].
Vacuum nonlinear electrodynamics models arise from

diverse assumptions. For instance, the Born-Infeld [6]
model solves the problem of infinite energy of a pointlike
charge by bounding the field strength in the charge center.
Heisenberg-Euler [7] theory considers quantum radiative
corrections caused by electron-positron vacuum polariza-
tion in a strong electromagnetic field and predicts bire-
fringence for electromagnetic waves in a vacuum. The
Podolsky model [8] takes into account higher derivatives of
the field strength tensor. There are various modifications
and extensions for these theories [9–11] which partially
or fully inherit properties of Born-Infeld and Heisenberg-
Euler electrodynamics. However, due to the lack of reliable
experimental data in favor of one of them, a set of completely
new NED Lagrangians was proposed. Among them, empir-
ical models [12–15], inspired by astrophysics and cosmol-
ogy, take a special place. The development of these models
in papers [12–14] opened up an unusual theoretical view on
Universe acceleration due to nonlinear electromagnetic
processes. Moreover, charged regular black holes as a
new class of compact astrophysical objects were predicted
in Refs. [16,17].

Because of the variety within the choices of NED
models, there is a need to clarify the selection rules for
them. The main common criterion in the development of all
NED models listed above is correspondence to Maxwell
electrodynamics in the weak-field limit. At the same time,
most of the models do not possess the symmetries inherent
to Maxwell theory. It is well known [18] that Maxwell
electrodynamics is invariant under a 15-parametric Lie
group, comprised of a Poincaré group (ten parameters),
coordinate scaling (one parameter), and a conformal group
(four parameters). In addition, this theory possesses such
properties as dual invariance and zero trace of the stress-
energy tensor, and it certainly satisfies fundamental prin-
ciples, such as causality, unitarity, and the Hawking-Ellis
dominant energy condition. The compliance with Maxwell
electrodynamics symmetries may be a powerful selection
tool for the NED models.
In this paper, we consider a general case of conformal

invariant NED, possessing all the symmetries listed above.
The birefringence and optical nonreciprocity conditions are
defined.
The paper is organized as follows: In Sec. II, we

introduce the conformal invariant NED Largangian and
verify the fundamental principles. In Sec. III, we construct
the dominant energy condition for nonlinear electrodynam-
ics in tetrad representation and check this condition for
the proposed model. Section IV is devoted to peculiarity in
wave propagation and vacuum refraction indexes. In
Sec. V, we summarize our results.

II. CONFORMAL INVARIANT NONLINEAR
ELECTRODYNAMICS: SYMMETRIES

AND FUNDAMENTALS

Let us consider a general case of Lorentz-invariant action
for vacuum nonlinear electrodynamics, whose Lagrangian
in the space-time with the metric tensor gik depends on two
invariants J2, J4 of the field strength tensor:*sokolov.sev@inbox.ru
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S ¼ 1

c

Z ffiffiffiffiffiffi
−g

p
LðJ2; J4Þd4x; ð1Þ

where J2 ¼ FikFki and J4 ¼ FikFklFlmFmi, and g ¼
det jjgikjj. It is easy to derive a symmetric stress-energy
tensor for the action (1):

Tik ¼
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LÞ
δgik

¼ 4

�∂L
∂J2 þ J2

∂L
∂J4

�
Fð2Þ
ik

þ
�
ð2J4 − J22Þ

∂L
∂J4 − L

�
gik; ð2Þ

with the trace

T ¼ Ti
i ¼ 4

�∂L
∂J2 J2 þ 2J4

∂L
∂J4 − L

�
; ð3Þ

where the second power of the electromagnetic field tensor

is introduced: Fð2Þ
ik ¼ FimFm·

·k .
The choice of Lagrangian follows from specific model

phenomenology. As the main criterion for constructing our
model, we will take the maximum correspondence to the
symmetries of Maxwell’s electrodynamics. Primarily, we
will demand that the stress-energy tensor be traceless,
T ¼ 0, which leads to the following equation for the
Lagrangian:

∂L
∂J2 J2 þ 2J4

∂L
∂J4 − L ¼ 0: ð4Þ

The general solution to this equation can be obtained by the
characteristics method and has the form

L ¼ J2W

�
J2ffiffiffiffiffiffiffi
2J4

p
�

¼ J2WðzÞ; ð5Þ

where W is an arbitrary function of the field invariants’
ratio z ¼ J2=

ffiffiffiffiffiffiffi
2J4

p
.

This Lagrangian of the vacuum nonlinear electrodynam-
ics, besides that of the traceless stress-energy tensor, also
possesses other symmetries of Maxwell electrodynamics. It
is obvious that the model is invariant under Poincaré-group
and coordinate scaling. In order to show invariance under
the conformal group, let us consider the metric tensor
transformation gik → ~gik ¼ ΩðxÞgik, where Ω is an arbi-
trary, positive-defined scaling factor. As was pointed out in
Ref. [18], the electromagnetic field invariants under such
transformations change as

J2 → ~J2 ¼ J2=Ω2; J4 → ~J4 ¼ J4=Ω4: ð6Þ
If we take into account that the metric tensor determinant
transforms as

ffiffiffiffiffiffi−gp
→

ffiffiffiffiffiffi
− ~g

p ¼ Ω2 ffiffiffiffiffiffi−gp
, we will obtain, by

using Eqs. (5) and (6), that the action (1) is invariant under

conformal group. So the model is conformal invariant, and
due to this property, we will call it conformal vacuum
nonlinear electrodynamics (CNED). Moreover, the stress-
energy tensor of this model is proportional to the stress-
energy tensor of Maxwell theory:

Tik ¼ 4½W þ zð1 − z2ÞW0�
n
Fð2Þ
ik −

gik
4
J2
o
; ð7Þ

where W0 denotes the derivative. Although the model
function WðzÞ is still considered to be arbitrary, its choice
must fulfill fundamental principles, the primary of which
are unitarity and causality conditions.
The causality principle guarantees that the group velocity

for the elementary electromagnetic excitations does not
exceed the speed of light in a vacuum. At the same time, the
unitarity criterion provides the positive definiteness of the
norm of every elementary excitation of the vacuum. To
clarify the restrictions on the Lagrangian coming from
these principles, one should consider electromagnetic wave
propagation on the background of an electromagnetic field
which is constant in time and space. The dispersion relation
for these waves for nonlinear electrodynamics with an
arbitrary Lagrangian was obtained in Ref. [19] and is
extremely difficult to analyze. Therefore, similarly to
Ref. [20], we will perform our description in a more
particular case, where the background field is under the
following restriction: ðEBÞ ¼ 0. This means that the field
is purely magnetic or purely electric in a special Lorentz
frame. In this case, due to the vacuum birefringence, the
electromagnetic wave splits into two orthogonal, propa-
gating modes. The restrictions from causality and unitarity
conditions, applied to each of these modes, were obtained
in Ref. [20] as a set of inequalities [that reference’s
Eqs. (27)–(31)], which in terms of independent invariants
J2 and J4 can be rewritten as

∂L
∂J2 ≥ 0;

∂L
∂J4 ≥ 0;

∂L
∂J2 þ J2

∂L
∂J4 ≥ 0; ð8Þ

∂L
∂J2 þ J2

∂L
∂J4

þ 2J2

�∂2L
∂J22 þ 2J2

∂2L
∂J2∂J4 þ J22

∂2L
∂J24 þ

∂L
∂J4

�
≥ 0; ð9Þ

∂2L
∂J22 þ 2J2

∂2L
∂J2∂J4 þ J22

∂2L
∂J24 þ

∂L
∂J4 ≥ 0: ð10Þ

This set of inequalities imposes restrictions on the
Lagrangian of any arbitrary nonlinear theory; however, in
the case of electrodynamics with conformal properties
CNED, this set can be significantly simplified. To perform
this simplification, let us derive the additional relations
between the derivatives of the Lagrangian. By differentiat-
ing Eq. (4) with respect to the invariants J2 and J4, we obtain
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J2
∂2L
∂J22 þ 2J4

∂2L
∂J2∂J4 ¼ 0; ð11Þ

2J4
∂2L
∂J24 þ J2

∂2L
∂J2∂J4 þ

∂L
∂J4 ¼ 0: ð12Þ

For the considered field configuration, when ðEBÞ → 0, the
invariant J4 tends to the value J4 → J22=2, and at the same
time J2 ≠ 0. In consequence, Eqs. (11) and (12) take the
forms

∂2L
∂J22 þ J2

∂2L
∂J2∂J4 ¼ 0 ð13Þ

and

J22
∂2L
∂J24 þ J2

∂2L
∂J2∂J4 þ

∂L
∂J4 ¼ 0: ð14Þ

Finally, the addition of the last two equations leads to the
expression

∂2L
∂J22 þ 2J2

∂2L
∂J2∂J4 þ J22

∂2L
∂J24 þ

∂L
∂J4 ¼ 0; ð15Þ

through which the inequality (10) is always satisfied,
and (9) transforms into the last inequality in (8). As a result,
the causality and unitarity criteria for conformal invariant
vacuum nonlinear electrodynamics take the form of the
inequalities (8), which can be rewritten in terms of themodel
function W as

WðzÞ > 0; W0ðzÞ < 0; ð16Þ

where one should take into account that z ¼ �1 when
ðEBÞ ¼ 0.
In addition to the general constraints, let us consider

other possible restrictions on the Lagrangian coming from
observational data. Often, the Hawking-Ellis dominant
energy condition is considered such a restriction. It is well
known that this condition is satisfied for Maxwell electro-
dynamics, so it is important for it to keep being satisfied
for CNED.

III. DOMINANT ENERGY CONDITION
FOR CONFORMAL NED

The dominant energy condition sets restrictions on the
stress-energy tensor, which guarantee that for every time-
like observer, energy density will be non-negative, and
energy flux will be a casual vector (timelike or null). These
requirements ensure dominance of the energy density over
the other components in the stress-energy tensor. The
dominant energy condition [21] leads to the following
inequalities:

Tikaiak ≥ 0; TkiTimamak ≥ 0; ð17Þ

for any causal, future-pointing vector ak.
Usually, verification of fulfillment of these inequalities is

performed in coordinate representation for each particular
case of the stress-energy tensor.
In this section, we will develop an alternative way based

on tetrad representation. This approach seems to be more
general and formal for calculations.
In order to develop this approach, let us choose two

isotropic, future-pointing, real four-vectors lk and nk. We
take into account that any causal, future-pointing vector
ak can be represented as a superposition of two noncol-
linear isotropic vectors also pointing into the future
ak ¼ αlk þ βnk, where α,β are real constants. Without loss
of generality, one can take that lknk ¼ 1. At the same time,
the causality ak sets a restriction on coefficients, αβ ≥ 0.
Now we supplement vectors lk and nk by two other

complex, isotropic vectors mk and m̄k, so that altogether
these vectors form a tetrad with the following scalar
products:

lklk ¼ nknk ¼ mkmk ¼ nkmk ¼ lkmk ¼ 0;

lknk ¼ −m̄kmk ¼ 1; ð18Þ

where the bar denotes complex conjugation. The tetrad
represents a basis, which can be used for electromagnetic
field tensor decomposition:

Fik ¼ f1ðlink − lkniÞ þ f2ðlimk − lkmiÞ
þ f̄2ðlim̄k − lkm̄iÞ þ f3ðnimk − nkmiÞ
þ f̄3ðnim̄k − nkm̄iÞ þ if4ðmim̄k −mkm̄iÞ; ð19Þ

where f1, f4 are real and f2, f3 are complex functions
of coordinates, whose values assign the electromagnetic
field configuration in the given space-time. By using the
representation (19) and the scalar products (18), it is easy to
derive the auxiliary relations:

J2¼FikFki ¼ 2½f21−f24þ2ðf̄2f3þ f̄3f2Þ�;

J4¼FikFklFlmFmi ¼ J22
2
þ4½f1f4þ iðf2f̄3−f3f̄2Þ�2;

Fð2Þ
ik l

ink ¼ f21þ f̄2f3þ f̄3f2: ð20Þ

Substitution of the stress-energy tensor for arbitrary vac-
uum nonlinear electrodynamics (2), auxiliary relations
(20), and ak decomposition to the dominant energy con-
dition (17) gives the representation of this condition in
tetrad formalism:
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Tikaiak

¼ 8

�∂L
∂J2þJ2

∂L
∂J4

��
α2jf3j2þβ2jf2j2þ

αβðf21þf24Þ
2

�
þ2αβT ≥ 0;

TikTkmamai

¼ 16T

�∂L
∂J2þ J2

∂L
∂J4

��
α2jf3j2þβ2jf2j2þ

αβðf21þf24Þ
2

�

þ2αβ

�
T2þð4J4−J22Þ

�∂L
∂J2þJ2

∂L
∂J4

�
2
�
≥ 0; ð21Þ

where T is the stress-energy tensor trace. This form of
the Hawking-Ellis dominant energy condition is suitable
for arbitrary Lorentz-invariant nonlinear vacuum electro-
dynamics. Its verification proves that for the chosen
Lagrangian, for any arbitrary field configuration repre-
sented by functions fi and any constants α and β, the
inequalities take place [Eq. (21)].
In the particular case of conformal vacuum nonlinear

electrodynamics, the verification of the dominant energy
condition becomes greatly simplified, since T ¼ 0. Taking
into account the non-negative definiteness of 4J4 − J22 ¼
4ðE2 −B2Þ2 þ 16ðEBÞ2 ≥ 0 for any field configuration
and the restriction on coefficients αβ > 0, one can obtain
that both inequalities (21) will be satisfied when

∂L
∂J2 þ J2

∂L
∂J4 ≥ 0; ð22Þ

which coincides with the last inequality in the earlier
requirements (8) coming from causality and unitarity
criteria. Therefore, the fulfilment of these criteria for
CNED implies the dominant energy condition.
After the discussion of general properties and funda-

mental restrictions, we proceed to observational manifes-
tations of conformal nonlinear electrodynamics.

IV. VACUUM REFRACTION INDEXES
IN THE CONFORMAL NED

Vacuum birefringence is one of the vivid effects inherent
for many models of nonlinear electrodynamics, and its
experimental research is the most promising way to test a
status of the specific model.
When the electromagnetic wave propagates in a strong

external field in a nonlinear vacuum, it splits into two
normal modes as in a birefringent optical crystal.
To obtain vacuum refraction indexes for these modes

in conformal nonlinear electrodynamics, let us consider
electromagnetic wave excitation ~fik ¼ fik exp f−iSg, with
the amplitude fik and eikonal Sðr; tÞ, propagating on the
background of a constant and homogenous field Fik.
We suppose that the excitation is weak compared to the
external field, jfikj ≪ jFikj.

The general form of dispersion law for such excitations
in the case of an arbitrary Lorentz-invariant nonlinear
electrodynamics was obtained in early works [19,22].
The dispersion law for CNED with the Lagrangian (5)
in pseudo-Riemmanian space-time with the metric tensor
gik takes the form�

Gik
ð1Þ

∂S
∂xi

∂S
∂xk

�
×

�
Gmn

ð2Þ
∂S
∂xm

∂S
∂xn

�
¼ 0; ð23Þ

where metric tensors of effective space-time are introduced:

Gik
ð1Þ ¼ Ugik þ V

Fik
ð2Þffiffiffiffiffiffiffi
2J4

p ; Gmn
ð2Þ ¼ gmn; ð24Þ

and for brevity we use the notations for coefficients

U ¼ z2ðz2 − 1Þðz2 − 2ÞW00 þ zð3z4 − 7z2 þ 3ÞW0 −W;

V ¼ −2ðz2 − 2Þfzðz2 − 1ÞW00 þ ð3z2 − 2ÞW0g: ð25Þ

As it follows from (24), electromagnetic excitations, as in
an optic crystal, split into two modes, each of which
propagates in effective space-time with the metric tensor
dependent on the wave polarization.
The speed of one of the modes does not depend on the

external field. This wave, similarly with the crystal optics,
we will call the ordinary wave. The refraction index for it is
always equal to unity, n2 ¼ 1. The propagation speed and
refraction index for another mode will substantially depend
on the external field. To obtain this dependance, we
suppose that background space-time is pseudo-Euclidian,
gik ¼ diagfþ1;−1;−1;−1g, and we represent the wave
eikonal in the form S ¼ ωt − ðkrÞ. We also assume that the
wave vector k is real and coupled to the refraction index n
by a relation inherent to homogenous waves in continuous
media, k ¼ ωnq=c, where q is the unity vector.
Using the auxiliary expression

Fik
ð2Þ

∂S
∂xi

∂S
∂xk¼

ω2

c2
E2−

2ω

c
ðk½EB�Þþ½kB�2−ðkEÞ2

¼ω2

c2
fE2þn2ð½qB�2−ðqEÞ2Þ−2nðq½EB�Þg;

ð26Þ

one can represent the dispersion law (23) in the form

n2
�
1þ VððqEÞ2 − ½qB�2Þ

2U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 −B2Þ2 þ 2ðEBÞ2

p �

þ nVðq½EB�Þ
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 −B2Þ2 þ 2ðEBÞ2

p
¼ 1þ VE2

2U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 −B2Þ2 þ 2ðEBÞ2

p : ð27Þ
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The solution for n can be expressed from this equation
in a general form; however, it will be cumbersome and
hard to analyze, so we will consider it in several partial
cases, the simplest and most important of which corre-
sponds to the wave propagation in the purely magnetic field
B ≠ 0, E ¼ 0. For this field configuration, z ¼ z1 ¼ −1
and alsoU ¼ W0

1 −W1, V ¼ 2W0
1, where the derivatives of

the function W should be taken at the point z1, as noted by
the index. The dispersion law (27) in this case will take a
simpler form:

n2 ¼
�
1 −

W0
1

W0
1 −W1

sin2θ

�
−1
				
z¼−1

; ð28Þ

where θ ¼ ðcqBÞ is the angle between the wave propagation
direction and the magnetic field. The distinctive feature of
this expression is that the vacuum refraction index does not
depend on the magnetic field strength, and for each specific
model function, W is completely determined by the wave
propagation direction.
Let us consider another specific case, in which the wave

propagates in a pure electric field E ≠ 0, B ¼ 0, for which
z ¼ z2 ¼ 1, and also U ¼ −W0

2 −W2 and V ¼ 2W0
2. It is

easy to derive the refraction index from the dispersion
law (27):

n2 ¼
�
1þW0

2

W2

sin2ψ

�
−1
				
z¼1

; ð29Þ

where ψ ¼ ðcqEÞ is the angle between the wave propaga-
tion direction and the electric field strength.
Finally, we describe the case in which E ≠ 0, B ≠ 0, but

at the same time E⊥B. For clarity, we will consider that in
the chosen reference frame, the electric field value exceeds
the magnetic field jEj > jBj. As earlier, for this field
configuration z ¼ 1. Since the dispersion law (27) contains
the terms odd under reflection of q, this leads to a
difference of the refraction indexes for the waves propa-
gating in mutually opposite directions. The difference of
refraction indexes for opposite directions can be easily
found from the dispersion law, taking into account Eq. (25):

nþ − n− ¼ 2W0ðq½EB�Þ
WðE2 − B2Þ þW0ð½qE�2 − ðqBÞ2Þ : ð30Þ

This effect is called optical nonreciprocity and can be
measured in experiments with ring lasers [23,24].

V. DISCUSSION

We found that in conformal-invariant nonlinear electro-
dynamics with the traceless stress-energy tensor, weak
electromagnetic waves propagate on the background of a
homogeneous pure electric or pure magnetic field similarly
to the waves in an optic crystal. So the wave splits into two
modes, and the refraction index for the ordinary mode is
equal to unity as in Maxwell vacuum. It is also follows from
the causality and unitarity conditions (16) that the refrac-
tion index for the extraordinary mode is greater than or
equal to unity, depending on the wave propagation direc-
tion with the respect to the field vector. Advances in optical
measurements make it possible to perform the experimental
research of vacuum nonlinear electrodynamics effects in
the laboratory. Such projects as ELI and PVLAS search for
vacuum birefringence in strong magnetic fields. The main
efforts of these projects are aimed at vacuum refraction
index measurement and comparison with the Heisenberg-
Euler theory prediction:

n1 ¼ 1þ 4α2B2

90πm4
sin2θ; n2 ¼ 1þ 7α2B2

90πm4
sin2θ; ð31Þ

where m is the electron mass, α is the fine structure
constant, B is the induction of the background magnetic
field, and θ is the angle between k and the field vectorB. In
contradiction to Eq. (31), in the conformal-invariant non-
linear electrodynamics with the Lagrangian (5), the refrac-
tion index for the first normal mode is always equal to
unity, and for the mode with orthogonal polarization to the
first one, the refraction index will depend on the angle θ in a
more complex way than predicted by Heisenberg-Euler
theory. It also should be noted that the indexes (28) do not
depend on the field strength, and the birefringence is caused
by a dimensionless coupling constant, which is a part of the
W function as a parameter. Therefore, when carrying out
experiments to search for the vacuum birefringence effects
in a magnetic field, it is necessary not to limit measure-
ments by choosing the angle θ ¼ π=2, which provides the
maximum value of the effect, but it is also required to find
the refraction index dependence on the angle θ for both
normal modes.
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