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The apparent breakdown of unitarity in low order perturbation theory is often is used to place bounds
on the parameters of a theory. In this work we give an algorithm for approximately computing the next-to-
leading order (NLO) perturbativity bounds on the quartic couplings of a renormalizable theory whose
scalar sector is ϕ4-like. By this we mean theories where either there are no cubic scalar interactions, or the
cubic couplings are related to the quartic couplings through spontaneous symmetry breaking. The quantity
that tests where perturbation theory breaks down itself can be written as a perturbative series, and having
the NLO terms allows one to test how well the series converges. We also present a simple example to
illustrate the effect of considering these bounds at different orders in perturbation theory. For example, there
is a noticeable difference in the viable parameter when the square of the NLO piece is included versus when
it is not.
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I. INTRODUCTION

The unitarity of the S-matrix is frequently used to place
theoretical constraints on the parameters of a theory. On the
one hand, if a 2 → 2 scattering amplitude grows with
energy, as is typically the case in nonrenormalizable
theories, then the condition S†S ¼ 1 will inevitably be
violated at some energy scale. This energy scale then sets
an upper limit on where new degrees-of-freedom must
appear to unitarize the scattering amplitude. While is
interesting in its own right, it is not the focus of this work.
On the other hand, in renormalizable theories, there are
relations among the parameters of the theory that cancel
this growth with energy [1]. Nevertheless the same pro-
cedure can be used to place “perturbativity bounds” on the
parameters of a renormalizable theory. Most famously, a
leading order (LO) analysis of this type yielded an upper
bound on the mass of the Higgs boson in the standard
model (SM), mh ≲ 1 TeV [2–4]. If some combination of
parameters in a renormalizable theory are too large, the
amplitude will appear to be nonunitary at some order in
perturbation theory. Of course these theories are unitary.
The more accurate statement is that perturbation theory is
breaking down for this choice of parameters.
This method has subsequently been improved and

refined. See for instance [5–8] for studies of beyond
leading order effects in the SM, including both renormal-
ization group (RG) improvement and higher fixed order
contributions. If some choice of parameters violates the
perturbativity bound at tree level it may be that perturba-
tivity is restored at one-loop, or perhaps it may be that those
parameters are not viable at any (low) order in perturbation
theory. The preceding discussion calls attention to the

following fact. The quantity that tests where perturbation
theory breaks down itself can be written as a perturbative
series. If higher order terms are known, one is then able to
test how well the series converges. To date not much work
has been done along these lines in theories beyond the SM.
The one-loop corrections necessary to compute perturba-
tivity bounds at next-to-leading order (NLO) in the two-
Higgs doublet model (2HDM) with a softly broken Z2
symmetry were computed in Ref. [9]. Reference [10] then
performed a comprehensive analysis of the viable param-
eter space in the 2HDM using these NLO perturbativity
bounds. Prior to this work, an ansatz inspired by SM results
was used to estimate the higher order corrections in the
2HDM [11,12]. Not only did the work of Refs. [9,10]
resolve the ambiguity of how to implement perturbativity
bounds at NLO in the 2HDM, but they also revealed where
the dominant NLO contribution comes from in the SM and
the 2HDM.
In this work we first derive a formula for the functional

form of the partial wave matrix for high energy 2 → 2 scalar
scattering in a general renormalizable theory. This allows us
to construct an algorithm for approximately computing the
NLOperturbativity bounds on the scalar quartic couplings of
a general renormalizable theory, (approximately) generaliz-
ing the result of [9,10]. Reference [9] showed that this
approximation dominates the NLO contribution to the
perturbativity bounds in the SM and certain special cases
of the 2HDM. Reference [10] went further and showed that
this is generally a good approximation in the 2HDMwith a
(softly broken) Z2 symmetry. Since the approximation is
based on the pattern found in [9,10] we expect that this
approximation should generally be a good estimate of
the full NLO contribution in theories whose scalar sector is
ϕ4-like. By this we mean theories where either there are no
cubic scalar interactions, or the cubic couplings are related*cmurphy@quark.phy.bnl.gov
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to the quartic couplings through spontaneous symmetry
breaking.
This approximate NLO result only requires knowledge

of the leading order matrix of partial wave amplitudes, and
the one-loop scalar contribution to the beta function of each
quartic coupling that is to be bounded. The advantage of
this approximation is its simplicity as both of the required
quantities are relatively easy to determine. To further ease
the calculation of these NLO bounds a package implement-
ing this algorithm, NLOUNITARITYBOUNDS, is available at
https://github.com/christopher‑w‑murphy/NLOUnitarity
Bounds in both Mathematica and Jupyter Notebook for-
mats. A (likely incomplete) list of othermodels forwhich all
of the results necessary to implement this algorithm are
already known is: the Manohar-Wise model [13], its
extension to include an additional color singlet, SUð2ÞL
doublet [14,15], and the left-right symmetric model [16].
As we will show, the natural interpretation of the

couplings appearing in the NLO partial wave amplitudes
are RG improved couplings evaluated at a scale much
larger than the typical scales of the theory. As such, these
corrections are naturally useful in analyses at high scales.
Examples of this include high scale flavor alignment [17],
effects of custodial symmetry breaking at high energies
[18], or simply investigating the validity of a model up to a
high energy scale [12,15,19–21].
The rest of this paper starts with a brief review of

perturbative unitarity in Sec. II. Following that is a derivation
of our main results in Sec. III. We then present an example to
illustrate the effect of considering perturbativity bounds
at different orders in perturbation theory in Sec. IV.
The example is simple, but it serves to highlight how the
viable parameter space in a model can change from order-to-
order in perturbation theory. In particular, there is a notice-
able difference in the viable parameter when the square
of the NLO piece is included versus when it is not. The
implementation of this model is included in the example
notebook associated with the NLOUNITARITYBOUNDS

package. Lastly, we discuss our findings in Sec. V.

II. BRIEF REVIEW OF PERTURBATIVE
UNITARITY

In this section we give a brief review of perturbative
unitarity. The S-matrix is unitary, S†S ¼ 1. This condition
can be translated into a relation among the various partial
wave amplitudes of a given theory, see e.g. [7,8,22,23]

Imða2→2
j Þ ¼ ða2→2

j Þ†a2→2
j þ

X
n>2

ða2→n
j Þ†a2→n

j ; ð1Þ

where a2→2
j is computed in a basis such that it is diagonal,

i.e. it is the eigenvalues of a2→2
j that satisfy the relation (1).

Note also that an integral over the n-body phase space
for each term in the sum in the rightmost term in (1) is
left understood. This is nothing but the equation for an

n-sphere of radius 1
2
centered at Reða2→2

j Þ ¼ ja2→n
j j ¼ 0,

Imða2→2
j Þ ¼ 1

2
.

The imaginary part of a2→2
j is fixed by the real part of

a2→2
j and the 2 → n partial wave amplitudes. Focusing on

the eigenvalues, a2→2
j , of the matrix a2→2

j we have

2Imða2→2
j Þ∓ ¼ 1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4A2

j

q
;

A2
j ¼ ½Reða2→2

j Þ�2 þ
X
n>2

ja2→n
j j2; ð2Þ

with the −ðþÞ solution corresponding to the case when the
imaginary part of a2→2

j is less than (greater than) one-half.
Assuming a perturbative expansion is viable, the first few
orders of Eq. (2) take the form

Imðað0Þj Þ− ¼ 0;

Imðað1Þj Þ− ¼ ðað0Þj Þ2;
Imðað2Þj Þ− ¼ 2að0Þj Reðað1Þj Þ þ ja2→3;ð0Þ

j j2; ð3Þ

where the superscript ðlÞ is the perturbative order and we
have dropped the superscript 2 → 2. For the þ solution we

instead have Imðað0Þj Þþ ¼ 1, Imðaðl>0Þj Þþ ¼ −ImðaðlÞj Þ−.
Assuming a valid perturbative expansion, the þ solution
corresponds to a scattering amplitude whose tree level
imaginary part is ImðMð0ÞÞ ¼ 16π. Since this is not a
frequently encountered scenario we will not consider this
possibility further in this work, drop the subscript−, and set
an upper limit of ImðajÞ ≤ 1

2
in the process.

Perturbative unitarity bounds are inequalities derived
from Eq. (1). From (2) it is clear that the conditions 0 ≤
Imða2→2

j Þ ≤ 1
2
and 0 ≤ A2

j ≤ 1
4
yield equivalent boundswhen

the imaginary part of a2→2
j is kept in its exact form. However

this is not the case if Imða2→2
j Þ is expanded to a finite order in

perturbation theory, as in (3). For example, to two-loop order,
the corresponding bounds are alwaysweaker than those from

0 ≤ A2
j ≤ 1

4
. Explicitly, to leading order, 0 ≤ Imða2→2

j Þ ≈
ðað0Þj Þ2 ≤ 1

2
whereas 0 ≤ A2

j ≈ ðað0Þj Þ2 ≤ 1
4
. Starting at three-

loops in ImðajÞ, NNLO for Aj, the relative strength of the
two bounds in no longer fixed.
Once the approximate NLO contributions to the eigen-

values of the partial wave matrix are known, which are
derived in Sec. III, perturbative unitarity bounds can be
obtained by evaluating one or more of the following

LO∶ ðað0Þ0 Þ2 ≤ 1

4
;

NLO∶ 0 ≤ ðað0Þ0 Þ2 þ 2ðað0Þ0 ÞReðað1Þ0 Þ ≤ 1

4
;

NLOþ∶ ½ðað0Þ0 Þ þ Reðað1Þ0 Þ�2 ≤ 1

4
: ð4Þ
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If perturbation theory is valid it is expected that the bounds
obtained from the upper limit (≤ 1

4
) will be similar in all

three cases since the LO eigenvalue is nontrivial and the
NLOðþÞ piece should represent a small correction, but it
is important to test, and confirm or deny, if this is actually
the case. The bound obtained from the lower limit (0 ≤)
originates from Ref. [7], Eq. (75) in particular.1 In contrast
to the ≤ 1

4
bound, the 0 ≤ bound only becomes nontrivial at

NLO, and can only be violated when perturbation theory
breaks down. While it is expected that the parameter space
of a given theory will be more constrained by the NLO
perturbativity bounds because of the additional 0 ≤ handle,
using this bound goes somewhat against the spirit of the
introduction in that there is no similar higher-order term to
compare with. In fact, the NLOþ expression shows how the
apparent 0 ≤ violation of unitarity is resolved at higher-
orders in perturbation theory. (Note that the NLOþ
expression contains some NNLO terms, but of course is
not the full NNLO expression.) To bring things full circle,
at NNLO similar apparent 0 ≤ violations of unitarity can
occur from the interference between the tree level and two-
loop 2 → 2 amplitudes and/or the tree level and one-loop
2 → 3 amplitudes. However, there is no reason to expect
the higher-order versions of the 0 ≤ bound to be similar to
the NLO version, as was the case for the ≤ 1

4
bound, since

there is little and/or no overlap between the potentially
problematic terms.

III. GENERIC PARTIALWAVEAMPLITUDES FOR
HIGH ENERGY SCALAR SCATTERING

A. Elements of the partial wave matrix

Consider a potential of the form

V ¼ 1

2
m2

αϕαϕα þ καβγϕαϕβϕγ þ λαβγδϕαϕβϕγϕδ; ð5Þ

where the subscript Greek letters are flavor indices. The
2 → 2 scattering of high energy (E ≫ jκαβγj; mα) scalars
can schematically by written as

Mi→f ¼ ðZ1=2
ϕ Þ4V½ϕ4�; ð6Þ

where ðZ1=2
ϕ Þ4 is the product of the four external wave-

function renormalization factors, and V½ϕ4� is the four-point
function. At tree level the unrenormalized four-point func-
tion is simply a linear combination of quartic couplings,

V½ϕ4�tree ¼ −cmλmB ¼ −cmðλm þ δλmÞ; ð7Þ

where δλm is the counterterm associated with the renormal-
ized coupling λm, cm is the numeric coefficient associated

with a given λm, and a subscript Roman letter is shorthand
for a set of Greek letters, e.g.m ¼ αβγδ. At high energies the
diagrams involving cubic couplings generally do not con-
tribute to Eq. (7). For s-channel processes this is manifestly
true simply becausewe assumeE ≫ jκαβγj. To see this is also
the case for t- and u-channel processes one should retain the
full mass dependence of the diagram until after the partial
wave amplitude is computed at which point it is safe to take
the high energy limit. An exception to this occurs when all of
the particles, internal and external, in a digram are massless.
Such a situation would occur if the theory contains a neutral,
CP-even Goldstone boson since it would then be possible to
write down vertices with an odd number of this Goldstone
boson. In this case there is a physical divergence in the
forward region, analogous to Rutherford scattering, and this
method as it is currently implemented is not applicable.
However it is worth pointing that a careful study of the
analytic structure of amplitudes involving the t-channel
exchange of massless particles showed that the naïve sum
rules for processes such asWþ

LW
−
L scattering are still correct

[24], so perhaps there may still be a way to extract
perturbativity bounds from such amplitudes. In any case,
henceforth we will neglect the trilinear couplings καβγ .
A generic one-loop diagram in D ¼ 4 − 2ε dimensions

with four external and two internal scalars, which is the
only topology of all scalar, 1PI diagrams that persists in the
high energy limit, takes the following form

λmλn
16π2

�
1

ε
þ 2 − ln

�
−p2 − i0þ

μ2

��
: ð8Þ

As is typically done the scale μ has been introduced to keep
the quartic couplings dimensionless. The sum of all such
diagrams leads to the four-point function at the one-loop
level

V½ϕ4� ¼ −cmλm

þ λmλn
16π2

�
ðσmn þ τmn þ υmnÞ

�
1

ε
þ 2þ ln

�
s
μ2

��

þ iπσmn − τmn ln

�
−t
s

�
− υmn ln

�
−u
s

��
; ð9Þ

where s, t, and u are the usual Mandelstam variables, and
the branch cut in the logarithm yields lnð−p2 − i0þÞ →
lnðp2Þ − iπ forp2 > 0. The one-loop correction is bilinear in
the various couplings with the (model dependent) coeffi-
cients σ, τ, and υ parameterizing the s-, t-, and u-channel
contributions, respectively.
At one-loop the scalar wavefunction renormalization is

finite, which allows the beta function of a quartic coupling
to be defined simply as

βλi ¼ μ
∂V½ϕ4�
∂μ ; ð10Þ1This perturbativity bound was subsequently investigated in

the 2HDM in Ref. [9] where it was called R1 (not R0
1).
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where the particular four-point function entering the
definition of the beta function is such that V½ϕ4�tree ¼
−λi. From this we see that

cmβλm ¼ ðσmn þ τmn þ υmnÞ
λmλn
8π2

; ð11Þ

which determines the purely scalar contribution to the one-
loop beta-function.
After renormalization the scattering amplitude takes the

form

Mi→f ¼ −cmλm − cmðδλmÞfin − cmλnðδZmnÞfin
þ cmβλm

�
1þ ln

� ffiffiffi
s

p
μ

��

−
λmλn
16π2

�
−iπσmn þ τmn ln

�
−t
s

�

þ υmn ln

�
−u
s

��
: ð12Þ

The counterterms cancel the divergences arising from the
one-loop diagrams, and generically contain finite parts that
contribute to the scattering amplitude. The diagonal and off-
diagonal wavefunction renormalization constants are δZmm
and δZmn, respectively, both of which are real (except when
using a complex-mass scheme).2 The off-diagonal terms
generally involve a different linear combination of the tree
level amplitudes than the diagonal terms. The wavefunction
counterterms depend on the particular process under con-
sideration, whereas the δλm are process independent.
The full energy dependence ofM can be subsumed into

a running coupling using standard renormalization group
methods

μ
∂λ̄mðμÞ
∂μ ¼ βλm; λ̄mðμmatchÞ ¼ ðλmÞphys; ð14Þ

with ðλmÞphys being the combination of physical parameters
that defines λm at the scale μmatch. The scattering amplitude
now takes the form

Mi→f ¼ −cmλ̄m − cmðδλmÞfin − cmλ̄nðδZmnÞfin þ cmβλ̄m

þ λ̄mλ̄n
16π2

�
iπσmn − τmn ln

�
−t
s

�
− υmn ln

�
−u
s

��
:

ð15Þ

Retaining only the first term on the right-hand side of
Eq. (15) corresponds to the leading-log (LL) approximation
of the NLO contribution.
An element of a2→2

j is related to the scattering amplitude
for the process Mi→f as follows

ða2→2
j Þ

i;f
¼ 1

16πs

Z
0

−s
dtMi→fðs; tÞPj

�
1þ 2t

s

�
; ð16Þ

where Pj are the Legendre polynomials. In the high energy
limitM is independent of s and t at leading order, allowing
us to concentrate on the j ¼ 0 case. Plugging (15) into (16)
and simplifying the result using (11) we find

16πða2→2
0 Þi;f ¼ −cmλ̄m þ 3

2
cmβλ̄m þ iπ − 1

16π2
σmnλ̄mλ̄n

− cmðδλmÞfin − cmλ̄nðδZmnÞfin: ð17Þ
Equation (17) is the exact expression for the functional
form of the partial wave matrix of 2 → 2 scattering
amplitudes in a general renormalizable theory in the high
energy limit and assuming the scalar quartic couplings are
parametrically larger than the gauge and Yukawa cou-
plings. To the best of our knowledge this result has not been
previously been given in the literature.

B. Eigenvalues of the partial wave matrix

In this subsection we give an approximate formula for
the NLO corrections to the eigenvalues of the partial wave
matrix for high energy scalar scattering. One only needs to
knows the leading order partial wave matrix and the (scalar
one-loop contribution to) the beta functions of the theory
under consideration to make use of this approximation.
Recall the well-known formula for the NLO perturba-

tions of the eigenvalues of an eigensystem that is known
completely at LO

að1Þ0 ¼ x⃗⊤ð0Þ · a
ð1Þ
0 · x⃗ð0Þ: ð18Þ

It says that the NLO eigenvalues depend only on the NLO
correction to the matrix and the LO eigenvectors, which are
determined from the LO matrix. Here the exact and leading
order eigensystems respectively are

a0 · x⃗ ¼ a0x⃗;

að0Þ0 · x⃗ð0Þ ¼ að0Þ0 x⃗ð0Þ; ð19Þ
and each object appearing in the first line of (19) is assumed
to have an expansion

2In the SM there is a relation between the tree level 2 → 3
partial wave amplitudes and the wavefunction renormalization
contribution to the one-loop 2 → 2 partial wave amplitudes [8],
which in our notation takes the form

ja2→3;ð0Þ
j j2 ¼ δZmmja2→2;ð0Þ

j j2 ðin the SMÞ: ð13Þ

This causes a partial cancellation in the NLO expression for Aj
that makes our approximation, discussed after (17), a more
accurate representation of Aj, again at least the in SM. It would
be interesting to see if (a generalization of) this relation is true in
other theories.
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a0 ¼ að0Þ0 þ að1Þ0 þ � � � ;
x⃗ ¼ x⃗ð0Þ þ x⃗ð1Þ þ � � � ;
a0 ¼ að0Þ0 þ að1Þ0 þ � � � : ð20Þ

The second term on the right-hand side of Eq. (17) (the
β-function contribution) to an element of a0 is universal.
Therefore the β-function contributions to the eigenvalues of
a0 can simply be determined using Eq (18). All one has to

do to obtain að1Þ0;β from að0Þ0 is replace each quartic coupling λ

that appears in að0Þ0 with − 3
2
βλ. Then using the LO

eigenvalues x⃗ð0Þ, which are also determined from að0Þ0 ,

we find the β contribution to að1Þ0

að1Þ0;β ¼ x⃗⊤ð0Þ · a
ð1Þ
0;β · x⃗ð0Þ;

að1Þ0;β ¼ −
3

2
að0Þ0 jλm→βλm

: ð21Þ

Unlike the β-function contribution, the third term on the
right-hand side of Eq. (17) (the σ contribution) is not
universal. Without doing an explicit calculation, the σ term
contribution to the partialwavematrix is not known.However
we are interested in knowing the eigenvalues of the matrix
rather than the entire matrix itself. Knowing that the imagi-
nary parts of the NLO elements of a0 come exclusively from
the σ contribution, we can use the second line of (3), i.e. the
fact that the theory is unitary, to determine the σ contribution
to the NLO eigenvalues. Note that the numerical factor in
front of σmn in Eq. (17) is complex. This is convenient as it
allows us to use the unitarity of the theory to also determine
the real part of the sigma contribution the NLO eigenvalues.
This yields the final result for the sigma contribution

að1Þ0;σ ¼
�
i −

1

π

�
ðað0Þ0 Þ2: ð22Þ

To proceed further without doing an explicit calculation
we must drop the finite pieces of the counterterms. Thus
combining the β contribution and the σ contribution we

(a) (b)

(c) (d)

FIG. 1. The bounds on λ1 and λ3 that result when the various perturbativity conditions are applied with the white space being allowed
by all five eigenvalues.
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arrive at our result for the approximation NLO contribution
to the eigenvalues of the partial wave matrix

að1Þ0 ¼ að1Þ0;β þ að1Þ0;σ: ð23Þ

IV. A SIMPLE EXAMPLE

In this section we present a simple example to sketch the
effect of using perturbativity bounds at different orders in
perturbation theory. Consider as a toy model the 2HDM
with a Uð2Þ symmetry, instead of Z2, to prevent tree level
flavor changing neutral currents [25–27]. The scalar sector
of this model has only two unique quartic couplings,
and the Uð2Þ symmetry preserves this relation along the
RG-flow. The potential is

V ¼ λ1
2

�
ðH†

1H1Þ þ ðH†
2H2Þ −

v2

2

�
2

þ ðλ1 − λ3Þ½ðH†
1H2ÞðH†

2H1Þ
− ðH†

1H1ÞðH†
2H2Þ�; ð24Þ

whereH1;2 are the two Higgs doublets.
3 We will take λ1;3 to

be free parameters for the purposes of this demonstration,
and neglect the electroweak vev, v ≈ 246 GeV, as it is not
important at high energies.
Figure 1 shows the bounds on λ1 and λ3 that result when

the various perturbativity conditions, (4), are applied. The
parameter space shaded blue, orange, green, red, and purple
is ruled out by perturbativity bounds from eigenvalues
whose LO terms are proportional to 4λ1 þ λ3, −λ1 þ 2λ3,
2λ1 − λ3, λ1, and λ3, respectively. There is a noticeable

difference in the viable parameter when the square of the
NLO piece is included versus when it is not, as shown in
panels (b) and (c) of Fig. 1. This is reminiscent of a result in
Ref. [28], where the bounds obtained on the coefficients of
some dimension-6 operators in the SMEFT depend notice-
ably on whether or not the square of the dimension-6
amplitude is included in the calculation of the cross section
under consideration. This parameter space could be further
constrained theoretically by required the potential to be
bounded from below, etc. Figure 2 shows in blue, green,
and red the viable parameter space for two individual
eigenvalues based on the LO, NLO, and NLOþ perturba-
tivity conditions, respectively. The contours in panels (a)
and (b) of Fig. 2 are colored blue and orange, respectively,
to match the color coding of the eigenvalues in Fig. 1. The
parameter space viable at NLO (green) in Fig. 2 is
determined using both the upper and lower limits on a0,
which, in contrast, are illustrated separately in Fig. 1 in
panels (b) and (d), respectively. The different perturbativity
criteria yield different viable parameter spaces. Perhaps the
simplest way to test the convergence of a0 as a perturbative
series is to see which choices of parameters are considered
viable by multiple perturbativity criteria.

V. DISCUSSION

In the section we discuss computing the leading order
partial wave matrix and one-loop scalar beta function, and
the validity of our approximation, before summarizing our
algorithm for finding the NLO perturbativity bounds in a
given theory.
One of the advantages of this approach is its simplicity

in that it only relies on knowledge of the leading order
partial wave matrix and one-loop scalar beta function.
In particular, the renormalization group equations in a
general quantum field theory to two-loop order have been
known for some time, and software exists to derive them

(a) (b)

FIG. 2. Viable parameter space for two individual eigenvalues based on the LO (blue), NLO (green), and NLO+ (red) perturbativity
conditions, respectively.

3One could simplify the potential in this case by defining
λ4 ≡ λ1 − λ3, but we stick with λ1 and λ3 as they are what is used
in [27].
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in a specific model [29]. In the extreme energy limit
s ≫ M2

i , which is sufficient to consider if one is only
interested in bounding dimensionless couplings, the
method of Ginzburg and Ivanov can be used to simply

the computation of að0Þ0 [30]. Though they originally
considered the 2HDM, their argument can be used for
any renormalizable theory where the matter fields have
definite representations under the gauge group of theory.
In particular at high energies masses and mixings are not

important, and að0Þ0 will be block diagonal with blocks
of definite representations under the gauge and global
symmetries of the theory [30]. In gauge theories, scatter-
ing amplitudes involving longitudinally polarized vector
bosons should be included when determining the bounds
on the quartic couplings of the theory. Their inclusion can
be greatly simplified through the use of the Goldstone
boson equivalence theorem, see e.g. [31]. Lastly, we note
that in gauge theories (with spontaneous symmetry break-
ing) there is the additional complication of preserving
gauge invariance. In a mixed M̄S/on-shell scheme, gauge
independence can be spoiled unless tadpole diagrams are
properly taken into account. This can be done by general-
izing the SM results of Fleischer and Jegerlehner [32] to
the theory under consideration. In fact this has been done
in the 2HDM [33–35] and the SM Effective Field Theory
(SMEFT) [36].
In considering how well our approximation does at

capturing the exact NLO results, theories can be placed into
one of three categories, broadly speaking. The first class is
theories are those without spontaneous symmetry breaking.
Here there exists a renormalization scheme such that the
approximation is actually exact. This is simply because all of
the counterterms for the quartic couplings are independent
of the mass counterterms, and the finite parts of the quartic
couplings can be chosen to cancel any potential wave-
function counterterm contribution. The second class of
theories is those with spontaneous symmetry breaking and
a ϕ4-like scalar sector. This class includes the SM and the
2HDM, theories for which this approximation is known to
be good one [9,10]. In multi-ϕ4 theory with spontaneous
symmetry breaking the wavefunction renormalization is
finite at one-loop, but more importantly it is parametrically
identical to the 1PI one-loop contribution. Thus, in ϕ4-like
theories is that there is no qualitative difference between
the different NLO contributions, and there is a qualitative
difference between the LO and NLO contributions This
suggests that at the very least including some NLO con-
tributions should give a good qualitative estimate of the full
NLO contribution, which may be sufficient if one wishes to
test the convergence of a0 in perturbation theory through
NLO. Finally, the third class of theories are those with
spontaneous symmetry breaking and scalar cubic inter-
actions whose cubic couplings are not related to its quartic
couplings. In contrast with the first two classes of theories, it

is not necessarily the case that this approximation will give a
good description of the exact NLO result. The reason being
that the wavefunction renormalization contribution is para-
metrically different from both the LO and the 1PI NLO
contributions to the partial wave amplitude. On the other
hand, if the cubic coupling of interest is much smaller than
the internal masses in the wavefunction renormalization
diagrams, the approximation may still be a good one as
the theory is approaching the ϕ4 limit in this scenario.
Examples of theories of this type include extending the SM
with a real scalar singlet without a Z2 symmetry, or with
scalars that are color singlets and SUð2ÞL triplets. This
includes the original Georgi-Machacek model, but not its
generalizations [37]. Additionally, the 2HDM plus a pseu-
doscalar singlet falls into this class, see for example [38] and
the references therein. Another thing to keep in mind in our
approach to finding the NLO perturbativity bounds is the
quartic couplings entering into the partial-wave amplitudes
are necessarily running couplings evaluated at an energy
scale much larger than the other scales in the problem. A LO
analysis is simpler in the sense that expressions could simply
involve ordinary quartic couplings. One could always
RG-improve the LO bounds by replacing the ordinary
couplings with running couplings with no penalty. This is
the leading-log approximation. However, to do the opposite,
replace running couplings in the NLO expressions with
ordinary couplings, would be a further approximation.
To summarize, in thisworkwe first derive a formula for the

functional form of the partial wave matrix for high energy
2 → 2 scalar scattering in a general renormalizable theory.
This allows us to construct an algorithm for approximately
computing the NLO perturbativity bounds on the scalar
quartic couplings of a general renormalizable theory. We
expect the approximation to be a good estimate of the full
NLO contribution in theories whose scalar sector is ϕ4-like.
By this we mean theories where either there are no cubic
scalar interactions, or the cubic couplings are related to the
quartic couplings through spontaneous symmetry breaking.
The approximate NLO result only requires knowledge of
the leading order matrix of partial wave amplitudes, and the
one-loop scalar contribution to the beta function of each
quartic coupling that is to be bounded, both of which are
quantities that are relatively easy to determine. The algorithm
for finding the eigenvalues of the partial wave matrix at
approximate next-to-leading order is as follows:
(1) Given the leading order partial wave matrix, að0Þ0 ,

find its eigenvalues, að0Þ0 , and eigenvectors, x⃗ð0Þ.
This may need to be done numerically.

(2) The β-function contribution to the NLO eigenvalues,

að1Þ0;β, is given by Eq. (18) with

að1Þ0;β ¼ −
3

2
að0Þ0 jλm→βλm

: ð25Þ
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(3) Using the unitarity of the theory, the σ-contribution
to the NLO eigenvalues is

að1Þ0;σ ¼
�
i −

1

π

�
ðað0Þ0 Þ2: ð26Þ

(4) The NLO contribution is given by the sum of the two

pieces, að1Þ0 ¼ að1Þ0;β þ að1Þ0;σ .
In addition, Mathematica and Jupyter Notebook packages
implementing this algorithm, NLOUNITARITYBOUNDS, are
available at https://github.com/christopher‑w‑murphy/NLOU
nitarityBounds. The natural interpretation of the couplings
appearing in the NLO partial wave amplitudes are RG
improved couplings evaluated at a scale much larger than
the typical scales of the theory. Therefore these corrections

are naturally useful in analyses at high scales. Once að1Þ0 is
known perturbativity bounds on quartic couplings can be
obtained at either leading order or next-to-leading order
in theories with ϕ4-like scalar sectors, enabling a test of the
convergence of the a0 as a perturbative series among other
studies. This is highlighted in the example we present.
Specifically, there is a noticeable difference in the viable
parameter when the square of the NLO piece is included
versus when it is not.
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