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When the Standard Model is interpreted as the renormalizable sector of a low-energy effective theory, the
effects of new physics are encoded into a set of higher-dimensional operators. These operators potentially
deform the shapes of Standard Model differential distributions of final states observable at colliders. We
describe a simple and systematic method to obtain optimal estimations of these deformations when using
numerical tools, like Monte Carlo simulations. A crucial aspect of this method is minimization of the
estimation uncertainty: We demonstrate how the operator coefficients have to be set in the simulations in
order to get optimal results. The uncertainty on the interference term turns out to be the most difficult to
control and grows very quickly when the interference is suppressed. We exemplify our method by
computing the deformations induced by the O3W operator in WþW− production at the LHC, and by
deriving a bound on O3W using 8 TeV CMS data.
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I. INTRODUCTION

After the historical discovery of the Higgs boson [1,2] in
July 2012, the Large Hadron Collider (LHC) is currently
probing matter and spacetime at unprecedented small
distances, looking for a signal of physics beyond the
Standard Model (SM). However, new physics remains
very elusive so far, as no statistically significant signal
has been observed in the collected data up to now.
Although there are good theoretical arguments to expect

new particles near the TeV scale, it is also plausible that
these states will be somewhat too heavy to be produced on
shell at the LHC. In such a scenario, the presence of new
physics states is best studied using effective field theory
methods, and their effects can be parametrized by higher-
dimensional operators made of SM fields. The search for
heavy physics beyond the SM then becomes a program of
SM precision measurements, aiming at testing the existence
of one or several of these higher-dimensional effective
operators.
The analysis of the distributions of final-state kinematic

variables plays a central role in this scenario because their
shapes contain important information about the presence of
the effective operators. In principle, a thorough analysis of
the shapes of the differential distributions may be the key to

the discovery of new physics. However, such a program is
not so straightforward to carry out systematically because
of the large number of effective operators and kinematic
variables to take into account and because of the computa-
tional cost of estimating the differential rates [3]. Much
progress is still needed in order to systematically and
efficiently search for an arbitrary number of higher-
dimensional operators using multidimensional differential
rates. An attempt to improve shape analysis techniques
using the moments of the differential distributions has been
done in Ref. [4].
In this paper we focus on establishing an optimal method

for determining the various contributions (SM, interfer-
ence, and BSM) that constitute the differential rates in the
presence of dimension-6 effective operators. The paper is
organized as follows. A first inspection of the event rates in
the presence of effective operators is done in Sec. II. Based
on these considerations, an optimal method to estimate the
expected deformations of differential rates induced by an
arbitrary number of effective operators is presented in
Sec. III and summarized in Sec. III C. As an illustration
and check, we obtain the deformations of the differential
rate of WW production induced by the O3W operator at
reconstruction level, and we reproduce within two sigma
the bound obtained on O3W from 8 TeV data by CMS.
Conclusions are presented in Sec. V.

II. LOW-ENERGY AMPLITUDES
AND PHASE-SPACE CONSIDERATIONS

A. Effective theory basics

A field theory can sometimes be approximated by a
simpler, so-called “effective” theory, in a given region of
phase space [5]. Consider an ultraviolet (UV) theory that
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lies at a scale Λ which is much larger than the typical
energy scale E of a given experiment ðΛ ≫ EÞ. From the
UV point of view, the low-energy effective theory is
obtained by expanding the correlation functions computed
within the UV theory with respect to the parameter E=Λ.
It is very plausible that the Standard Model is not the

ultimate UV-complete theory of nature, and its Lagrangian
corresponds to the relevant and marginal sector of a low-
energy effective theory. In this picture, the full SM effective
Lagrangian also contains a series of operators of dimension
higher than four, built from SM fields and invariant under
SM symmetries, which are suppressed by inverse powers of
the new physics scale Λ. To the low-energy observer, these
higher-dimensional operators parametrize the new physics
effects, which appear as new interactions between the
known particles, including vertices with extra derivatives.
The SM effective Lagrangian takes the general form

Leff ¼ LSM þ
X∞
d¼5

LðdÞ; ð1Þ

where

LðdÞ ¼
X
I

αðdÞI

Λd−4O
ðdÞ
I : ð2Þ

The effective operators OðdÞ
I have mass dimension d > 4,

and αðdÞI are dimensionless coefficients. In general, these
coefficients can be complex, depending on the operator.
However, one can always split the operator into its real and
imaginary parts in order to end up with only real coef-
ficients. Because of this, in the following we consider only
real coefficients, without loss of generality.
Identifying Λ with the mass scale of a heavy particle, the

effective field theory is valid only at energies

E < Λ; ð3Þ

and the contributions of the effective operators to any given
observable are arranged as an expansion in E=Λ [6]. The
power of the effective theory approach lies in the fact that
this series can be consistently truncated in order to match a
desired precision, which can be chosen according to the
available experimental uncertainties. At any given order of
truncation, new physics effects are described by a finite set
of universal coefficients. Larger effects are expected to
come from operators with lower dimension: For example,
the leading contributions to Higgs observables come from
the dimension-6 Lagrangian Lð6Þ, while the leading con-
tributions to quartic neutral gauge boson interactions come
from the dimension-8 Lagrangian Lð8Þ [7]. Here and in the
following, we truncate the EFT expansion at dimension 6.
The complete list of independent dimension-6 SM effective
operators has been reported in [8].

Let us consider, for concreteness, the case of a single
dimension-6 effective operator. The general case involving
an arbitrary number of higher-dimensional operators is very
similar. The effective Lagrangian is then given by

Leff ¼ LSM þ α

Λ2
Oð6Þ: ð4Þ

In the presence of the effective operator of Eq. (4), a generic
amplitude M can be expressed as

M ¼ MSM þ α

Λ2
MBSM þO

�
α2

Λ4

�
; ð5Þ

where MSM is the SM piece and MBSM represents the
leading BSM contribution obtained by one insertion of the
effective operator. The subleading contributions are given
by Feynman diagrams with more than one insertion of
the effective operator. Notice that, in general, the BSM
component MBSM is not proportional to MSM.
Physical observables, like the ones measured at the LHC,

are described statistically by event rates σ that are given by
the integral of the squared amplitude jMj2 over some phase
space domain D—which can be chosen by the experimen-
talist to some extent. Typical examples of such observables
are total cross sections and decay widths. In the presence of
the effective operator of Eq. (4), the observable event rate σ
is given by

σ ∝
Z
D
dΦjMj2; ð6Þ

whereM is given by Eq. (5) and
R
D dΦ denotes the integral

over the phase space domain. This event rate σ can be
further decomposed as a sum of three leading contributions,

σ ¼ σðαÞ≡ σSM þ α

Λ2
σint þ α2

Λ4
σBSM þ…; ð7Þ

where

σSM ∝
Z
D
dΦjMSMj2; σint ∝

Z
D
dΦ2Re½MBSMMSM��;

σBSM ∝
Z
D
dΦjMBSMj2: ð8Þ

The ellipses in Eq. (7) represent both contributions of
higher order in 1=Λ and OðΛ−4Þ terms coming from the
interference of higher-order diagrams with the SM com-
ponent. It will be made clear in the next subsection why all
the terms in Eq. (7) should be kept in order to describe the
leading effects of new physics.
The leading components of a square matrix element in

terms of Feynman diagrams are illustrated in Fig. 1. The
component σSM corresponds to the pure SM contribution,
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which remains in the limit α=Λ2 → 0. The component σint

is obtained from the interference between the SM and BSM
amplitudes, while the component σBSM is the pure BSM
contribution. From the point of view of a new physics
searcher, these two latter components together constitute
the new physics signal σNP ¼ σ − σSM, while σSM con-
stitutes the irreducible background [9]. Notice that, by
definition, σint and σBSM do not have the same dimension
as σSM.
Finally, we notice the general fact that the modulus of the

interference term has an upper bound

jσintj < 2
ffiffiffiffiffiffiffiffi
σSM

p ffiffiffiffiffiffiffiffiffiffi
σBSM

p
: ð9Þ

This is obtained by using

����
Z

dΦRe½MSMMBSM��
����

≤
����
Z

dΦMSMMBSM�
����

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dΦjMSMj2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dΦjMBSMj2

s
; ð10Þ

where in the last step we have used the Cauchy-Schwartz
inequality. In the following, we refer to Eq. (9) as the
“Cauchy-Schwartz bound” on the interference.

B. Consistent truncation of event rates

We can now consider various limit cases of signal and
background over a given phase space domain. Consider
first a region of phase space D1 where the SM contribution
is much larger than the BSM contribution,

jMSMj ≫
���� α

Λ2
MBSM

����: ð11Þ

The Cauchy-Schwartz bound automatically implies that
the interference is much smaller than σSM, namely,
σSM ≫ jαΛ−2σintj. The modulus of the interference term
can, in principle, take any value between zero and
2jαjΛ−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σSMσBSM

p
. If we assume the case of an unsup-

pressed interference, then we have

σSM ≫
���� α

Λ2
σint

���� ≫ α2

Λ4
σBSM: ð12Þ

In this case, the SM background is large with respect to the
signal, and the signal appears predominantly through the
interference term σint. The component σBSM can thus be
neglected at leading order in the effective theory expansion.
For practical purposes, one may notice that the σBSM term
can also be kept, as long as it is negligible. Whenever the
σBSM term becomes non-negligible, the truncation of the
EFT expansion has to be pushed to next-to-leading order:
The higher-order diagrams in Eq. (5) have to be taken into
account, as well as the contributions from higher-order
operators. In this paper our focus is merely on the leading
effects of new physics; thus, aspects of the EFT at next-to-
leading order are beyond our scope.
Still, in the case described by Eq. (11), if the interference

is vanishing, then the signal comes mainly from σBSM. In
such a case, one should be careful with the next-to-leading
order contributions of the EFT, as described in the para-
graph above. Since the σBSM component is Oð1=Λ4Þ, other
Oð1=Λ4Þ contributions coming from the interference of
higher-order diagrams or dimension-8 operators with the
SM amplitude can be present. These observations have also
been made in [10,11].
Consider now a phase space domain D2 where the SM

contribution is much smaller than the BSM contribution,

jMSMj ≪
���� α

Λ2
MBSM

����: ð13Þ

Using again the Cauchy-Schwartz bound, Eq. (13)
automatically implies that the interference term is much
smaller than the BSM contribution, namely, α2Λ−4σBSM ≫
jαΛ−2σintj. Assuming an unsuppressed interference, we
have

σSM ≪
���� α

Λ2
σint

���� ≪ α2

Λ4
σBSM: ð14Þ

This is the typical situation of a search for “rare events,”
where the SM background is vanishing and each signal
event carries a high statistical significance. In this case, the
new physics signal appears predominantly through the pure
BSM term σBSM. This implies that, even at leading order in
the EFTexpansion, one has to keep the σBSM term. This fact
might seem puzzling at first, as one ends up with a
Oð1=Λ4Þ term at leading order. Naively, there are other
Oð1=Λ4Þ contributions coming from the interference of
higher-order diagrams or dimension-8 operators with the
SM amplitude. However, one can easily check that the
contribution σBSM is actually the dominant one because
the other OðΛ−4Þ contributions would come from an

FIG. 1. The leading contributions to the square amplitude in
presence of a dimension-6 operator.
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interference with the SM amplitude, which is small by
assumption [see Eq. (13)].
We conclude from the above analysis that, in general,

both the interference term σint and the quadratic BSM term
σBSM have to be kept in order to describe the leading effects
of new physics for any background configuration. The σint

piece dominates when jMSMj ≫ jαΛ−2MBSMj—provided
that the interference is not suppressed—while the σBSM

piece dominates for jMSMj ≪ jαΛ−2MBSMj.
Finally, let us comment about specific event rates

encountered in collider experiments. In the case of resonant
production of an unstable particle, the propagator is
resummed, so the amplitude does not initially have the
form Eq. (5), but the form

jMj2res ∝
1

ðs −m2Þ2 þm2Γ2
tot
; ð15Þ

where Γtot is the total decay width. This is instead the total
width which has the form of a quadratic function,
Γtot¼ΓSMþαΛ−2Γintþα2Λ−4ΓBSM. However, if the EFT
expansion is valid, one can always expand jMj2res with
respect to s=Λ2 andm2=Λ2, to end up with a quadratic form
jMj2res;SM þ αΛ−2jMj2res;int þ α2Λ−4jMj2res;BSM þ OðΛ−6Þ.
Similarly, when using the narrow-width approximation in a
productionþ decay process, the event rates take the form
σi ≡ σprodΓi=Γtot, where σprod is a production cross section
and Γi a partial decay width. Again, the three quantities
σprod, Γi, Γtot are, in principle, quadratic functions of α.
However, if the EFT expansion is valid, one can always
expand σi to quadratic order so that σi ¼ σSM þ αΛ−2σint þ
α2Λ−4σBSM þOðΛ−6Þ.
We can see that the EFT expansion always allows us to

express the event rate as a quadratic function in α=Λ2, even
in the case of resonances. The discussion of this section
applies similarly to the case of an arbitrary number of
effective operators.
A comment on the relevance of rare events.—One may

remark that in the case where we have jMSMj ≫
jαΛ−2MBSMj and an unsuppressed interference, the signal
is proportional to α=Λ2. On the other hand, in the case
jMSMj ≪ jαΛ−2MBSMj, the signal is proportional to
α2=Λ4. The absolute magnitude of the signal is thus much
larger in the former case than in the latter one, but the
magnitude of the background is also larger in the former
case. We may therefore wonder which of these two
configurations is the more advantageous in order to detect
the signal. The answer to this seemingly straightforward
question is not so easy and needs to involve a test statistic.
Assume a signal discovery test whose significance Z is

given by [12]

Z ¼ N − Nbkgffiffiffiffiffiffiffiffiffi
Nbkg

p ; ð16Þ

where N is the total number of events and Nbkg is the
expected number of background events. Let D1 and D2 be
two domains of phase space satisfying

σBSM1 ≈ σBSM2 ; σSM1 ≫
���� α

Λ2
σint1

���� ≫ α2

Λ4
σBSM1 ;

σSM2 ≪
���� α

Λ2
σint2

���� ≪ α2

Λ4
σBSM2 ; ð17Þ

where σSM1;2 , σ
int
1;2, and σBSM1;2 are the components of the event

rate σ on D1;2. Denoting Z1 and Z2 the discovery
significance on D1 and D2, respectively, we have

Z1

Z2

≪ 2: ð18Þ

The proof is given in Appendix A. This small theorem
makes it clear that the regions of phase space where
jMSMj ≪ jαΛ−2MBSMj, i.e., rare-events regions, can pro-
vide a lot of statistical significance, even though the signal
is much weaker in that region compared to the jMSMj ≫
jαΛ−2MBSMj region. The signal search in such rare-events
regions thus deserves special attention. We further empha-
size that this rare-events situation naturally happens when-
ever a higher-dimensional operator carries derivatives, as is
the case for many of the SM dimension-6 operators. For
such operators, the high-energy tails of the kinematic
distributions are typically rare-events zones. Thus, the
analysis of high-energy tails also deserves special attention.
For example, regarding the presentation of results, the use
of overflow bins for the high-energy tail should be
prevented as much as possible in order not to lose the
precious information from the tail. Instead, all the bins
should be kept up to the highest energetic event, no matter
how few events are contained in the bins.

III. OPTIMAL ESTIMATION
OF DIFFERENTIAL RATES

In the previous section we have considered event rates
over a region of phase space D. Let us now assume that the
experiment allows us to partition the region D into
subdomains such that D ¼ ∪rDr. We refer to the Dr
subdomains as “bins.” In addition to the total rate, the
knowledge of the event rate in each bin provides informa-
tion about the shape of the distribution. From the exper-
imental point of view, one talks about binned distribution.
In principle, the size of each bin can be made small enough
so that each event is seen separately. In this case one talks
about unbinned distribution. Notice that, since the exper-
imental precision is finite, the bin size can never shrink to
zero; however, it is instructive to keep in mind that the latter
case can be seen as a limit of the former.
Let us first consider the case of one single dimension-6

effective operator whose contribution to the amplitudes is
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given by Eq. (5). Let X be a variable of phase space with
domain DX ⊂ D. For a collider experiment X can be some
transverse momentum, invariant mass, etc. One defines the
“differential event rate” along X as

σX ≡ dσ
dX

∝
Z
DnDX

dΦ
����MSM þ α

Λ2
MBSM

����2; ð19Þ

where
R
DnDX

means that the integral is performed over the
complement ofDX. Integrating σX over the domainDX, one
recovers the total rate, namely,

R
DX

dXσX ¼ σ. The bins
DXr over the domain DX are defined by the partition DX ¼
∪rDXr and the event rate σr on a bin DXr is then given byZ

DXr

dXσX ¼ σr: ð20Þ

The set of rates on every bin fσrg forms a histogram that
constitutes a discrete estimator of the true differential
distribution σX.
Let us now proceed to decompose the differential rate σX

defined in Eq. (19) as a sum of three components, σSMX , σintX ,
and σBSMX , in complete analogy to the case of the total rate
σ. We have

σX ¼ σXðαÞ≡ σSMX þ α

Λ2
σintX þ α2

Λ4
σBSMX ; ð21Þ

where

σSMX ∝
Z
DnDX

dΦjMSMj2; ð22Þ

σintX ∝
Z
DnDX

dΦ2Re½MBSMMSM��;

σBSMX ∝
Z
DnDX

dΦjMBSMj2: ð23Þ

The same is also true for the binned rates

σr ¼ σrðαÞ≡ σSMr þ α

Λ2
σintr þ α2

Λ4
σBSMr : ð24Þ

The phase space integral is usually difficult or impossible
to evaluate analytically, for example, because of the
complexity of D. Its evaluation then has to rely on a
numerical integration method, for instance, a Monte Carlo
(MC) simulation. In the following we assume that such an
estimation method is available.

A. Reconstructing the differential rates

Assuming we have a way of evaluating a differential rate
in the presence of effective operators with coefficients fixed
to given values, we can now figure out how to efficiently

determine the deformations induced by the effective
operators.
We first consider the case of a unique dimension-6

operator. We have seen in Sec. II that the expansion of the
event rate has to be kept up to quadratic order in α, and the
same argument also applies to the differential rate σX. Since
σX is a quadratic function of α [see Eq. (21)], in principle, it
is sufficient to know σX for only three different values of α,
namely, α0, α1, and α2, in order to reconstruct the exact
form of σXðαÞ. Whenever these three evaluations of σX are
available, which we denote by σiX ¼ σXðαiÞ, i ¼ 0, 1, 2,
then the three components σSMX , σintX , and σBSMX are obtained
by simply solving a 3 × 3 linear system; this simple task
needs to be carried out only once.
In the case in which the estimations are made by means

of Monte Carlo simulations, one directly deals with the
binned rates σr which are extracted from the histogram of
the σX distribution. The three components, σSMr , σintr , σBSMr ,
are obtained by solving a 3 × 3 linear system for each bin.
The σSMr component can be obtained by simply setting α ¼
α0 ¼ 0 in the MC simulation. The components σintr and
σBSMr are instead obtained by running the MC simulation
for two nonzero values of α, namely, α1 and α2. Therefore,
we end up with the following solution of our linear system:

σSMr ¼ σ0r

σintr ¼ Λ2

α1α2

�
α22σ

1
r − α21σ

1
r

α2 − α1
− ðα1 þ α2Þσ0r

�

σBSMr ¼ Λ4

α1α2

�
−
α2σ

1
r − α1σ

2
r

α2 − α1
þ σ0r

�
; ð25Þ

where σ0r ¼ σrð0Þ, σ1r ¼ σrðα1Þ, and σ2r ¼ σrðα2Þ. These
components can then be used in Eq. (24), “reconstructing”
the formula that gives σr for any value of α.
Let us consider the general case of n effective operators.

We present only the case of dimension-6 operators for
simplicity. A similar analysis applies to the case of
operators with arbitrary dimension. The amplitude has,
in general, the form

M ¼ MSM þ 1

Λ2

Xn
I¼1

αIMBSM
I þOðΛ−4Þ: ð26Þ

The n BSM contributions MBSM
I are, in general, different

from each other. The differential event rate σX is propor-
tional to the squared modulus of the amplitude and can be
decomposed as

σX ¼ σXðαIÞ ¼ σSMX þ 1

Λ2

Xn
I¼1

αIσ
int
X;I þ

1

Λ4

Xn
I;J¼1

αIαJσ
BSM
X;IJ :

ð27Þ
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It is convenient to rewrite the sum of the BSM quadratic
contributions as

Xn
I;J¼1

αIαJσ
BSM
X;IJ ¼

Xn
I¼1

α2Iσ
BSM
X;II þ2

Xn
I;J¼1;I>J

αIαJσ
BSM
X;IJ ð28Þ

where σBSMX;IJ ¼ ReðMBSM
I MBSM�

J Þ. The last piece of
Eq. (28) corresponds to the interference term of the
effective operators.
In addition to n interference terms σintX;I , we have n terms

σBSMX;II and nðn − 1Þ=2 terms σBSMX;IJ . Including the σSMX
component, the total number of terms to compute is
ðnþ 1Þðnþ 2Þ=2. We conclude that ðnþ 1Þðnþ 2Þ=2
simulations are enough to exactly know the event rate
σX as a function of the operator coefficients. The compo-
nents are obtained by simply solving a ðnþ 1Þðnþ 2Þ=2 ×
ðnþ 1Þðnþ 2Þ=2 linear system. This operation needs to be
done only once. If one uses histograms, the system has to
be solved once for each bin, just like in the case of a single
operator.
We conclude that the complexity of the simple

reconstruction method described above grows quadratically
with the number of operators, once simplifications pro-
vided by the EFT expansion are taken into account.

B. Minimizing the uncertainties

The numerical evaluations of σX that are needed to
reconstruct σXðαÞ are usually endowed with an intrinsic
uncertainty. The correct approach is to think about estima-
tors of σX for each value of the chosen α. In the case of a
single dimension-6 operator, there are three estimators, and
we denote them by σ̂iX ¼ σ̂XðαiÞ, i ¼ 0, 1, 2. The uncer-
tainties associated with these estimators are naturally
propagated to the σSMX , σintX , σBSMX components because
these quantities are linear combinations of the σiX. In turn,
these uncertainties are propagated to the reconstructed
σXðαÞ distribution because of the relation in Eq. (21)
and, when it comes to confronting σXðαÞ with the observed
distribution σobsX , the uncertainty on σXðαÞ should be taken
into account. It is therefore important to have a measure of
this uncertainty, which is given by the covariance matrix of
the estimators of the σSMX , σintX , σBSMX components.
In principle, there is a freedom in choosing the α

coefficients that are used to perform the numerical esti-
mations of σX which are needed to reconstruct σXðαÞ. If
there were no uncertainties, any set of values would work
fine. However, in the presence of uncertainties, it turns out
that the choice of the α coefficients has a crucial impact on
the reconstruction uncertainties. In the following we will
determine the values of α that minimize these uncertainties.
Let us work with the binned distributions σr and focus on

a bin r. The three estimators are denoted by σ̂0r ¼ σ̂rðα0Þ,
σ̂1r ¼ σ̂rðα1Þ, σ̂2r ¼ σ̂rðα2Þ. We introduce the relative vari-
ance of each estimator V̄i

r, which is given by

V̄i
r ¼

E½ðσ̂irÞ2� − E½σ̂ir�2
E½σ̂ir�2

ði ¼ 0; 1; 2Þ; ð29Þ

where E½ŷ� represents the expectation value of the random
variable ŷ. No correlation is assumed among estimators
related to different values of αi. Furthermore, we assume
that the three relative variances have the same magnitude,
namely,

V̄0
r ∼ V̄1

r ∼ V̄2
r ≡ V̄r: ð30Þ

In the case where the estimators are obtained through
Monte Carlo simulations with NMC points, we have
V̄r ∼ 1=NMC.
The estimators of interest to us are σ̂SMr , σ̂intr , and σ̂BSMr ,

which are expressed in terms of some linear combinations
of the σ̂ir as shown in Eq. (25). The quantity at the center of
our analysis is the relative covariance matrix of these
estimators, which is given by

C̄rðα0; α1; α2Þ

¼

0
BBBBB@

E½ðσ̂SMr Þ2�
E½σ̂SMr �2 − 1

E½σ̂SMr σ̂intr �
E½σ̂SMr �E½σ̂intr � − 1

E½σ̂SMr σ̂BSMr �
E½σ̂SMr �E½σ̂BSMr � − 1

E½ðσ̂intr Þ2�
E½σ̂intr �2 − 1

E½σ̂intr σ̂BSMr �
E½σ̂intr �E½σ̂BSMr � − 1

E½ðσ̂BSMr Þ2�
E½σ̂BSMr �2 − 1

1
CCCCCA:

ð31Þ

It is important to notice that, for the sake of determining the
σSMX , σintX , and σBSMX components, there is no need to use
values of α and Λ that respect the EFT validity bounds of
Eq. (3). Note that to apply this trick, the possible higher-
order terms in the expressions of the event rates must be set
to zero to avoid any disturbance [13].
After these preliminary steps, we can discuss the

uncertainties that affect the σ̂SMr , σ̂intr , and σ̂BSMr estimators.
We aim at simultaneously minimizing the uncertainties for
every component. We should therefore consider the trace of
the relative covariance matrix of Eq. (31). Let us first notice
that choosing α0 ¼ 0 simply gives σ̂SMr ¼ σ̂0r , and therefore
the relative variance for σ̂SMr is simply V̄SM

r ¼ V̄r. This
choice is arguably optimal, and we are left with finding
optimal values for α1 and α2.
For a fixed value of α1, it turns out that trC̄rð0; α1; α2Þ is

minimized for α2 going to infinity [14], and this runaway
direction can be seen in Fig. 2. In this limit the σ̂2r estimator
corresponds exactly to σ̂BSMr with relative variance equal to
V̄r and vanishing correlation with σ̂SMr . Also in this limit the
relative covariance matrix takes the form
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C̄rð0; α1;∞Þ ¼ V̄r

0
BBB@

1 − Λ2

α1

σBSMr
σintr

0

− Λ2

α1
σSMr
σintr

1þ 2
Λ4σSMþα2

1
σBSMr

α1Λ2σintr
þ 2

Λ8ðσSMÞ2þα2
1
Λ4σSMσBSMr þα4

1
ðσBSMr Þ2

α2
1
Λ4ðσintr Þ2 − α1

Λ2

σBSMr
σintr

0 − α1
Λ2

σBSMr
σintr

1

1
CCCA: ð32Þ

The trace of the relative variance matrix goes to infinity for
both α1 → 0;∞ because the linear system becomes degen-
erate in these limits. Further studying the behavior of
trC̄rð0; α1;∞Þ, we find that it admits two minima for

α1 ¼ �Λ2

ffiffiffiffiffiffiffiffiffiffi
σSMr
σBSMr

s
: ð33Þ

It is a nontrivial feature that this expression is independent
of σintr . This implies that the optimization does not depend
on whether the interference is suppressed.
The behavior of the trace of C̄rð0; α1; α2Þ is shown in

Fig. 2, where we have taken Λ to be such that Eq. (C5) is
verified. One can observe from the plot that the minimum
of the trace of the relative covariance matrix occurs for
α1 ¼ 1, α2 ¼ ∞ or vice versa. The relative covariance
matrix at the positive optimal α1 takes the following form:

C̄min
r ¼ V̄r

0
BB@

1 − σ̄r
σintr

0

− σ̄r
σintr

1þ 4 σ̄r
σintr

þ 6ð σ̄r
σintr
Þ2 − σ̄r

σintr

0 − σ̄r
σintr

1

1
CCA; ð34Þ

where

σ̄r ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σSMr σBSMr

q
: ð35Þ

Notice that since the minimal relative covariance is, by
definition, dimensionless, it can depend on the components
of the differential rate only through the combination
σ̄r=σintr . This quantity is also the one appearing in the
Cauchy-Schwartz bound of Eq. (10), which can now be
rewritten as jσintr j ≤ 2σ̄r.
Considering the two values of σintr that saturate the

Cauchy-Schwartz bound, the relative covariance matrix
at the minimum assumes the following form:

V̄r

0
B@

1 − 1
2

0

− 1
2

9
2

− 1
2

0 − 1
2

1

1
CA and V̄r

0
B@

1 1
2

0

1
2

1
2

1
2

0 1
2

1

1
CA; ð36Þ

for σintr ¼ þ2σ̄r and σintr ¼ −2σ̄r, respectively. The relative
uncertainty on the interference component is given by the
square root of ðC̄rÞ22. From Eq. (36) one sees that the
uncertainty on the interference component is larger than

the ones on σSMr , σBSMr by at least a factor 3=
ffiffiffi
2

p
when σintr is

positive. In the case of a maximal negative interference, the
optimal α1 corresponds, in fact, to a fully destructive
interference, σ1r ¼ 0, and the expected uncertainty associ-
ated with this result is vanishing. This can be directly seen
in the covariance matrix [Eq. (36), right side], which
features a zero eigenvalue. This situation of a large negative
interference gives the smallest uncertainties possible.
In contrast, whenever the interference is suppressed,
jσintr j < 2σ̄r, the uncertainty on the interference component
quickly blows up. For example, taking σintr ¼ �0.2σ̄r, we
get ðC̄rÞ22 ≈ 175 and ðC̄rÞ22 ≈ 130, respectively. Our cal-
culation provides a quantitative estimate of the difficulties
that will be encountered for determining the interference
component.
If one evaluates the minimal relative covariance matrix at

the negative optimal α1 of Eq. (33), Eq. (36) and the
subsequent expressions and discussions are valid up to a
sign flip of σintr . Let us notice that if the sign of σintr is known
in advance, the sign of the optimal α1 can then be chosen so
that the interference term is negative, which gives a better
uncertainty on the estimation of σintr . But this refinement
matters mostly for an interference near the Cauchy-
Schwartz bound.

FIG. 2. Trace of the relative covariance of the σ̂SM, σ̂int, σ̂BSM

estimators as a function of α1, α2. One assumes σSM ∼ σBSMΛ−4,
a positive interference saturating the Cauchy-Schwartz bound,
and an event number NMC ¼ 104 for each simulation.
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Finally, one may notice that the optimization is, in
principle, different for each bin, as made clear by the r
dependence of the optimal point given in Eq. (33).
However, a simpler version of the optimization can also
be obtained by using the α1 that minimizes the uncertainty
on the total rates, namely, α1 ¼ Λ2ðσSM=σBSMÞ1=2.

C. Case of n operators

Let us discuss the reconstruction method in the case
of n effective operators. We have seen in Sec. III A that
ðnþ 1Þðnþ 2Þ=2 simulations have to be performed to fully
reconstruct the event rate σX as a function of the αI’s. In
practice, it turns out that it is sufficient to switch on one or
two effective operators at a time in order to reconstruct all
the components. Using the results of the previous section,
we can provide the complete list of ðnþ 1Þðnþ 2Þ=2
optimized points to be used for the simulations. We have
(1) One point with all αI ¼ 0.
(2) For every I, a single nonzero αI satisfying αI ≫ 1.

These are n points.
(3) For every I, a single nonzero αI satisfying

αI ∼ Λ2 ðσSMX Þ1=2
ðσBSMX;II Þ1=2

. These are n points.

(4) For every pair ðI; JÞ, a single nonzero pair ðαI; αJÞ
satisfying αI;J ≫ 1 and αIσBSMX;II ∼ αJσ

BSM
X;JJ . These are

nðn − 1Þ=2 points.
We thus end up with a system of ðnþ 1Þðnþ 2Þ=2 linear

equations that has to be solved. A useful side effect of the
optimization described in the previous subsection is that the
calculation of the various components becomes more
transparent. In particular, point (1) provides σSMX , and point
(2) provides the σBSMX;II components. Point (3) provides the
interference terms σintX;I which can simply be obtained by
subtracting σSMX þ α2IΛ−4σBSMX;II from the outcome of the
simulations in point (3), instead of using the exact formulas
of Eqs. (25). This simplification is a consequence of having
used arbitrary large αI’s in point (2). Similarly, point (4) pro-
vides the σBSMX;IJ components, which are obtained by sub-
tracting α2Iσ

BSM
X;II þ α2Jσ

BSM
X;JJ from the outcome of the

simulations in point (4). An analysis similar to the one
of Sec. III B shows that the uncertainty on the σBSMX;IJ terms is
minimized for αIσBSMX;II ∼ αJσ

BSM
X;JJ .

Comments on Monte Carlo simulations.—Differential
distributions are often estimated using Monte Carlo sim-
ulations, which reproduce the experimental setup assuming
a fixed number of events NMC or a fixed integrated
luminosity ℒMC. The expected, relative uncertainties asso-
ciated with estimation of the event rate are given by

ffiffiffiffi
V̄

p ≡
1=

ffiffiffiffiffiffiffiffiffiffi
NMC

p ð1þOðN−1
MCÞÞ in both cases (see Appendix B).

In order to search for a small deviation in a given set of
data, one should require that the MC error be small with
respect to the statistical error of the data. For binned data,
the number of events in each bin N̂r is Poisson distributed,

and its relative statistical error is given by 1=
ffiffiffiffiffiffi
N̂r

p
. The

requirement that the MC error be small with respect to
the experimental error in every bin translates into the
condition

NMC;r ≫ N̂r for any bin r: ð37Þ

Note that this condition depends on the actual data one
wants to analyze. It applies for both background-only and
signal hypothesis, i.e., for both α ¼ 0 and α ≠ 0. Finally,
the binning and range of all the MC histograms have to
match the bins chosen for the data and are thus com-
pletely fixed.

IV. CONCRETE EXAMPLE: SEARCH FOR
ANOMALOUS TRILINEAR GAUGE

COUPLING AT THE LHC

To validate our reconstruction method, we apply it to the
concrete example of the search for the dimension-6
effective operator O3W in WW production at the LHC.
The operator O3W is defined as

O3W ¼ εijkWi
μνWj;ν

ρWk;ρμ; ð38Þ

and its coefficient is denoted by α3W
Λ2 .

After electroweak symmetry breaking, it contributes to
anomalous triple gauge couplings [15] that can be para-
metrized as follows [16]:

L∂
CGC ¼ λZ½igZZμνðŴ−

νρŴ
þ
ρμ − Ŵþ

νρŴ
−
ρμÞ�

þ λγ½ieFμνðŴ−
νρŴ

þ
ρμ − Ŵþ

νρŴ
−
ρμÞ�; ð39Þ

where Ŵþ
μν ¼ DμWþ

ν −DνWþ
μ and

λZ ¼ λγ ¼ 3
α3W
gΛ2

: ð40Þ

The Lagrangian L∂
CGC induces new vertices among the

weak gauge bosons which carry extra derivatives with
respect to the Standard Model ones. This new interaction
will potentially deform the WW differential rates at
the LHC, especially in the high-energy range of the
distributions.
A search for theO3W operator has been performed by the

CMS Collaboration in [17], where they consider WþW−

production in the leptonic decay channel at the LHC, with
an integrated luminosity of 19.4 fb−1 at 8 TeV center-of-
mass energy. In [17] the same operator is defined using a
different normalization convention, and the translation to
our notation is done by using the following relation:
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α3W ¼ g3

4
cWWW: ð41Þ

Our aims are as follows:
(i) Determining the deformations of the differential

rates in WþW− production induced by the O3W
operator using our optimized technique for
Monte Carlo simulations.

(ii) Deriving a 95% CL bound on α3W
Λ2 using the measured

differential distributions of [17].
Therefore, we consider the process pp → WþW− →
lþνl−ν̄ (l ¼ e, μ) at 8 TeV center-of-mass energy.
The measured unfolded differential distributions for this

process are displayed in Fig. 3 of [17], and they can be
consistently compared to the outcome of our MC simu-
lations. The dilepton invariant mass (mll) distribution in the
“0-jet category” is the one chosen to put a bound on
α3W=Λ2. The total number ofWþW− þ background events
measured in the 0-jet category is ∼4800, and the quoted
95% CL bound [17] translated to our notation is

−0.39 <
α3W
Λ2

< 0.41 TeV−2: ð42Þ

We simulate events for WþW− production at 8 TeV with
MadGraph5 [18] after having implemented the O3W
operator in FeynRules2.0 [19]. These events are showered
with Pythia8 [20] and selected using the cuts chosen in the
CMS analysis. In particular, the leptons are required to have
pT > 20 GeV and jηj < 2.5. Events with one or more jets
with pT > 30 GeV and jηj < 4.7 are rejected.
Following the notation introduced in the previous

sections, the differential rate along the mll variable will
be denoted by σmll

. We consider the binned distributions for
σmll

in the range [20, 200] GeV, according to the choice
made in the CMS analysis.
We evaluate the components of the binned mll distribu-

tion following our optimal method described in Sec. III. We
first compute the SM component σSMmll

by setting α3W ¼ 0 in

our Monte Carlo simulation. Then we compute the mll

distribution for a very large value of α3W=Λ2, chosen to be
272 TeV−2, which turns out to be proportional to the BSM
component σBSMmll

to a very good approximation. The binned
σSMmll

and σBSMmll
components are shown in Fig. 3.

In order to compute the interference component σintmll

following the results of Sec. III B, we used Eq. (33) to
determine the third optimal value of α3W=Λ2. Since the
σSM=σBSM ratio is roughly 100 TeV−4 in most of the bins,
we conclude that the third optimal point for the simulation
is roughly α3W=Λ2 ≈ 10 TeV−2.
We still need to set the size of our MC samples. We

require, for every bin, the number of MC events to be larger
than the observed data analyzed by the CMS Collaboration
in the search for the O3W operator. For example, NMC ¼
5 × 105 events would give a MC uncertainty that is
typically 10 times smaller than the statistical ones.
Although this number is enough for the sake of analyzing
the CMS distribution, it turns out that this amount is not
sufficient to resolve the binned interference components
because the interference is further suppressed by a m2

W=E
2

factor with respect to the naive expectation. This can be
understood thanks to some helicity selection rules [11,21].
A much larger number of events is needed to properly

estimate the interference component. We have indeed used
NMC ¼ 2.4 × 106 events for each of the three simulation
points α3W=Λ2 ¼ 0, 8.6, and 272 TeV−2. The relative
covariance matrix calculated in Sec. III B readily provides
the uncertainty on the σSMmll

, σintmll
, and σBSMmll

components.
The uncertainties on σSMmll

and σBSMmll
are too small to be

visible in Fig. 3. In contrast, the uncertainty on σintmll
is not

negligible, even with such a large MC sample. Having fixed
a unique optimized value of α1 for every bin and taking into
account that the number of MC events in a given bin
depends on this α1, the uncertainty on σintr is obtained from
Eq. (C2), where the relative variance associated with a
given bin is

FIG. 3. Differential distributions of dilepton invariant mass. The σSMmll
, σintmll

, σBSMmll
components normalized to σSM are shown from left to

right. The differential distribution from CMS data is shown in red.

SHARPENING THE SHAPE ANALYSIS FOR HIGHER- … PHYSICAL REVIEW D 96, 036003 (2017)

036003-9



V̄i
r ¼

σitot
σir

1

NMC
: ð43Þ

These uncertainties are shown in Fig. 3.
Finally, we compare our reconstructed differential rate

for pp → WþW− → lþνl−ν̄ to the measured one shown in
Fig. 3 of the CMS study [17]. The uncertainties quoted are
a combination of statistical and systematic errors. Because
combinations of many sources of uncertainties tend to be
governed by the central limit theorem [22], we approximate
the likelihood for each bin as a Gaussian. The complete
likelihood used in our analysis is

Lðα3WÞ ¼
Y
r

exp

�
−

1

2Δ2
r

�
σrðα3WÞ − σobsr

σSMr

�
2
�
; ð44Þ

where σobsr =σSMr are the experimental numbers given in [17]
and Δr are the combined uncertainties for each bin, which
are typically ∼8%. Using Eq. (44), we compute the credible
intervals for the α3W=Λ2 parameter, assuming a flat prior
over ½−100; 100� TeV. The posterior distribution for
α3WΛ−2 is shown in Fig. 4. We find

−1.09 <
α3W
Λ2

< 1.19 TeV−2 at 95%CL: ð45Þ

This bound is in agreement within less than two sigma with
the one reported by CMS [see Eq. (42)].

V. CONCLUSION

If new particles beyond the Standard Model are too
heavy to be produced on shell at the LHC, their presence
can still be indirectly detected via the effect of SM higher-
dimensional operators. In such a scenario, the LHC
precision physics program would play a central role for
new physics searches. The key observables for revealing

the existence of higher-dimensional operators may be the
distributions of final-state kinematic variables that contain
precious information about new physics effects. The
analysis of these differential rates thus deserves to be
optimized in all its aspects.
We focus on the case where leading effects from new

physics arise from dimension-6 operators. We first inspect
the event rates and the problem of detecting the deforma-
tions induced by the presence of the effective operators. We
make it clear that, in general, the pure BSM term should not
be neglected in the differential rate analysis—even though
it is Oðα2=Λ4Þ—since there can be regions of phase space
where its contribution is dominant. We have also found a
bound on the interference term which follows from the
application of the Cauchy-Schwartz inequality. Using this
bound, it can be quantitatively shown that regions of phase
space with rare SM events are very important to search for
deformations of the differential rates.
Based on this preliminary analysis, we determine an

optimal method to obtain the different contributions to the
differential rates in the presence of dimension-6 effective
operators, assuming that an estimator (e.g., a Monte Carlo
tool) of the distributions is available. In the case ofn effective
operators, the evaluation of the rate at ðnþ 1Þðnþ 2Þ=2
different points is needed. The various contributions to the
differential rate are then simply obtained by solving a linear
system.
A crucial aspect of the proposed method is the mini-

mization of the uncertainty through an optimal choice of
the higher-dimensional operator coefficient to be used in
the simulations. In the case of a single dimension-6
operator, we have to estimate the differential rate for three
values of the coefficient α. The analysis of the relative
covariance matrix of the three estimators reveals that the
uncertainty is minimized for values of α equal to zero,
infinity, and �Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σSMX =σBSMX

p
. Interestingly, this result

turns out to be independent of the value of the interference.
The covariance matrix provides the uncertainties on the
estimated contributions and their correlations, allowing a
well-defined control of the estimations. This covariance
matrix should be, in principle, implemented in any sub-
sequent statistical analysis. It turns out that the uncertainty
on the interference component is larger than the ones on the
SM and BSM components by a factor 3=

ffiffiffi
2

p
if the

interference saturates the positive Cauchy-Schwartz bound,
and it grows very quickly if the interference is smaller than
this value.
We illustrate and check our method by determining the

deformations induced by the O3W operator on leptonic
final states from WW production, at the 8 TeV LHC. We
work at the reconstruction level, aiming to approximately
reproduce the analysis made by the CMS Collaboration in
Ref. [17]. We ultimately reproduce, within a two-sigma
range, the bound on α3W=Λ2 obtained in this CMS
analysis.

FIG. 4. Posterior density probability for the coefficient of O3W .
Green, yellow, and grey areas correspond to Bayesian credible
regions with, respectively, 68.27%, 95.45%, 99.73% probability.
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Note added.—After completing our work we became aware
of similar developments made by members of the LHC
Higgs Cross Section Working Group [23] and the ATLAS
Collaboration [24]. The basic method presented in these
references (called morphing) is essentially the same as our
reconstruction method described in Sec. III A, although the
parametrization that has been used is slightly different.
However, the question of how the input parameters need to
be chosen such that the expected uncertainty of the output
is minimal has not been addressed in these studies. Our
paper fills this important gap by presenting, for the first
time, an optimal morphing method and the statistical
approach which gives rise to it.

APPENDIX A: PROOF OF EQ. (18)

For our purpose it is enough to assume a p-value based
discovery test, which leads to Eq. (16). A similar demon-
stration can be done using a Bayes factor. Using the
inequality in Eq. (17) and keeping only the leading terms
in the discovery tests, one gets

Z1 ∝
α

Λ
σint1ffiffiffiffiffiffiffiffi
σSM1

p ; Z2 ∝
α2

Λ2

σBSM2ffiffiffiffiffiffiffiffi
σSM2

p : ðA1Þ

Let us consider the ratio

Z1

Z2

¼ Λ
α

σint1

ffiffiffiffiffiffiffiffi
σSM2

p
ffiffiffiffiffiffiffiffi
σSM1

p
σBSM2

: ðA2Þ

Using the Cauchy-Schwartz bound on σint1 [see Eq. (9)], one
has

Z1

Z2

≤
Λ
α

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σSM2 σBSM1

p
σBSM2

: ðA3Þ

Using the equality of BSM components made in the initial
assumptions [see Eq. (17)], we obtain

Z1

Z2

≪ 2

�
Λ2

α2
σSM2
σBSM2

�
1=2

: ðA4Þ

The inequality contained in Eq. (17) then proves Eq. (18).

APPENDIX B: UNCERTAINTIES ON
MONTE CARLO ESTIMATORS

For a fixed luminosity ℒMC, the number of MC events
N̂MC is Poisson distributed. The estimator of the event rate
is given by

σ̂ ¼ N̂MC

ℒMC
; ðB1Þ

which satisfies

E½σ̂� ¼ σ and V½σ̂� ¼ σ

LMC
; ðB2Þ

where σ is the theoretical rate. The expected relative error
associated with the estimation of σ is thus given by
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σℒMC

p
.

Instead of a fixed luminosity, one can require a fixed
number of events NMC. In this case, the random variable is
the MC luminosity ℒ̂MC. The combination σℒ̂MC follows
an Erlang distribution

σ
ðσℒ̂MCÞNMC−1

ðNMC − 1Þ! e−σℒ̂MC ; ðB3Þ

for which E½σℒ̂MC� ¼ V½σℒ̂MC� ¼ NMC. In this case, the
estimator of the event rate is given by

1

σ̂
¼ ℒ̂

NMC
; ðB4Þ

which satisfies

E
�
1

σ̂

�
¼ 1

σ
and V

�
1

σ̂

�
¼ 1

σ2
1

NMC
: ðB5Þ

The expected relative error associated with the estimation
of 1=σ is therefore given by 1=

ffiffiffiffiffiffiffiffiffiffi
NMC

p
. For large NMC, one

has that E½σ̂� ¼ E½1=σ̂�−1ð1þOðN−1
MCÞÞ, and the relative

uncertainty associated with the estimation of σ is given by
1=

ffiffiffiffiffiffiffiffiffiffi
NMC

p
up to Oð1=NMCÞ corrections.

APPENDIX C: GENERAL
COVARIANCE MATRIX

The relative covariance matrix for the estimators
(σ̂SMr , σ̂intr , σ̂BSMr ), assuming arbitrary relative covariance
for the σ̂ir, namely, V̄0

r ≠ V̄1
r ≠ V̄2

r , is given by
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C̄rð0; α1;∞Þ ¼

0
BB@

V̄0
r − Λ2

α1
σBSMr
σintr

V̄0
r 0

− Λ2

α1

σSMr
σintr

V̄0
r ðC̄rÞ22 − α1

Λ2

σBSMr
σintr

V̄2
r

0 − α1
Λ2

σBSMr
σintr

V̄2
r V̄2

r

1
CCA; ðC1Þ

where

ðC̄rÞ22 ¼ V̄1
r

�
1þ 2

Λ2ðσSMr þ α21Λ−4σBSMr Þ
α1σ

int
r

þ 2
σSMr σBSMr

ðσintr Þ2
�
þ ðV̄0

r þ V̄1
rÞ
Λ4ðσSMr Þ2
α21ðσintr Þ2 þ ðV̄1

r þ V̄2
rÞ
Λ−4α21ðσBSMr Þ2

ðσintr Þ2 : ðC2Þ
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