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We investigate the Padé approximation method for the analytic continuation of numerical data and its
ability to access, from the Euclidean propagator, both the spectral function and part of the physical
information hidden in the second Riemann sheet. We test this method using various benchmarks at zero
temperature: a simple perturbative approximation as well as the two-loop Φ-derivable approximation. The
analytic continuation method is then applied to Euclidean data previously obtained in the Oð4Þ symmetric
model (within a given renormalization scheme) to assess the difference between zero-momentum and pole
masses, which is in general a difficult question to answer within nonperturbative approaches such as the
Φ-derivable expansion scheme.
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I. INTRODUCTION

In recent years, much progress has been achieved in
accessing the properties of interacting quantum fields in
equilibrium. Part of the success stems from the develop-
ment of continuum nonperturbative tools [1–4] that allow
to implement some of the resummations of perturbative
diagrams that are required in this context. Most of these
approaches are formulated in Euclidean space (or imagi-
nary-time formalism) because, on general grounds, the
equations are easier to solve than the corresponding ones in
Minkowski space (or real-time formalism). For instance,
to date, there is no complete Minkowski space study of
the temperature driven symmetry restoration in the four-
dimensional OðNÞ model which could compete in preci-
sion with its Euclidean counterpart. Yet certain quantities of
interest, such as transport coefficients, pole masses, and
decay rates, require the use of the real-time formulation,
and therefore a constant effort is put into extending the
previous methods (not only formally but also at a
computational level) to Minkowski space. In particular,
the self-consistent scalar propagator equation was solved
in Minkowski space at zero and finite temperatures, both
in the symmetric and broken phases (see e.g. Refs. [5–11]).
These spectral function-based numerical solutions
were obtained in various nonperturbative approximations.

More recently, the spectral function was accessed using an
analytic continuation of the functional renormalization
group (FRG) equations [12,13].
Another possible route toward real-time quantities is not

to employ the above approaches directly in Minkowski
space but rather to develop methods that allow for the
analytic continuation of Euclidean data. A standard method
used to extract the spectral function from Euclidean data
employs Bayesian inference to invert the integral relation
between Euclidean correlation functions and spectral func-
tions. In order to overcome some difficulties of the maximal
entropy method [14], a novel Bayesian method was devel-
oped recently in Ref. [15] and applied for example to extract
spectral properties from bottomonium correlators [16] and
solutions of the quark Dyson-Schwinger equation obtained
in Landau gauge [17]. In the context of the Φ-derivable
expansion scheme [also referred to as the two-particle
irreducible (2PI) formalism], knowledge of the external
propagator, which fully displays the (linear) symmetries of
the theory, requires the resolution of a Bethe-Salpeter
equation. Since the latter equation is more easily solved in
Euclidean space (see for instance Ref. [18]), analytic
continuation techniques are of great help in this case.
In this paper, we would like to investigate the analytic

continuation method of Ref. [19] which constructs multi-
point Padé approximants in the form of finite continued
fractions. We test this method using various benchmarks.
First, we consider the two-loop Φ-derivable approxima-
tion for a one-component scalar field at zero temperature
for which Euclidean data are already available [20] and
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Minkowski data are relatively easy to generate using
dispersion techniques. Using this benchmark, we test to
what extent the pole mass and more generally the spectral
function determined directly in Minkowski space can be
reproduced from the Euclidean solution. Our test shows
also that we have some control on the choice of the
appropriate analytic continuation (among the infinitely
many possible choices). For a second test, we use simple
one-loop perturbative formulas and investigate the ability
of the continuation method to extract (physical) informa-
tion hidden in the second Riemann sheet.
We then apply the Padé analytic continuation method

on the previously obtained Euclidean space solution of
Refs. [21,22] to assess how much pole masses differ from
zero-momentum masses. A similar question was recently
addressed in Ref. [23] in the context of the quark-meson
model using the FRG approach. In our case, such a
comparison is motivated by the fact that, in our previous
Euclidean studies of the Oð4Þ model, the parametrization
was done at T ¼ 0 based, for simplicity, on the pion and
sigma zero-momentum masses of the external propagator
which are directly accessible from the effective potential in
the imaginary-time formalism. Since a more correct para-
metrization should involve the corresponding pole masses,
we would like to quantify how much the parametrization
was distorted by the use of the zero-momentum masses. We
mention also that, recently, the Padé analytic continuation
method was applied in Ref. [24] to compute the pole mass
of the internal propagator of the symmetry improved 2PI
(SI2PI) formalism. In Ref. [25], we argued that, at least at
two-loop order, the SI2PI formalism contains an inherent
untamed infrared sensitivity in the broken phase, according
to which the Euclidean propagator is not defined above
some value of the volume of the system.1 Here, we use the
Padé analytic continuation method to investigate to what
extent this IR sensitivity affects the pole mass of the
corresponding Minkowski propagator.
The organization of the paper is as follows. In Sec. II,

using dispersion techniques, we generate Minkowski data
within the two-loop Φ-derivable approximation for a φ4

model at zero temperature, with or without spontaneous
symmetry breaking. In Sec. III, we present the multipoint
Padé continuation method and perform various tests using
both the Minkowski space solution of Sec. II and simple
perturbative formulas. The continuation method is then
used in Sec. IV to assess the difference between pole and
zero-momentum masses in the context of the Oð4Þ model
as well as the IR sensitivity of the pole mass in the two-loop
SI2PI approximation. The conclusions of our study are

presented in Sec. V, and some technicalities can be found in
the Appendixes.

II. MINKOWSKIAN TWO-LOOP Φ-DERIVABLE
APPROXIMATION IN THE φ4 MODEL

In this section, we consider a relatively simple situation
where the Φ-derivable equations can be solved directly
and accurately in Minkowski space. The obtained results
shall then be used as a benchmark for the Padé analytic
continuation method to be presented in the next section.
In what follows, Q ¼ ðq0; q⃗Þ denotes a four-momentum in
Minkowski space, and we introduce the notation

Z
Q
≡
Z

∞

−∞

dq0
2π

Z
dq3

ð2πÞ3 :

A. Generalities

The 2PI formalism typically gives access to a self-
consistent equation for the two-point function of a given
model, from which various observables can be determined,
in principle. In contrast to the infinite tower of Dyson-
Schwinger equations, the equation for the two-point func-
tion in the 2PI formalism is not coupled to higher n-point
functions. The price to pay is, however, that the equation
contains infinitely many terms coming from the loop
expansion of the 2PI effective action, and then it needs
to be truncated for any practical purpose. In the case of the
φ4 model, the two-loop truncation of the 2PI effective
action leads to the following gap equation for the momen-
tum dependent mass function M̄ðQÞ of the self-consistent
propagator ḠðQÞ≡ i=ðQ2 − M̄2ðQÞ þ iϵÞ in the presence
of an arbitrary field expectation value ϕ,

M̄2ðQÞ ¼ m2
0 þ

λ2
2
ϕ2 þ λ0

2
T ½Ḡ� þ λ2

2
ϕ2I ½Ḡ�ðQÞ; ð1Þ

where the tadpole and bubble integrals are defined respec-
tively as

T ½G�≡
Z
Q
GðQÞ; ð2Þ

I ½G1; G2�ðKÞ≡ −i
Z
Q
G1ðQÞG2ðQþ KÞ; ð3Þ

with the shorthand notation I ½G�ðKÞ≡ I ½G;G�ðKÞ. The
physical value of the field ϕ, denoted ϕ̄, is given in terms of
the field equation. In the two-loop order truncation, it reads

0 ¼ ϕ̄

�
m2

2 þ
λ4
6
ϕ̄2 þ λ2

2
T ½Ḡ� þ λ2

6
S½Ḡ�

�
; ð4Þ

where the setting-sun integral at vanishing external four-
momentum is defined as

1This infrared sensitivity can be avoided for some specific
(sharp) UV regulators. However, the specificity of these UV
regulators makes this removal of the IR sensitivity artificial in a
sense; see Ref. [25] for more details.
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S½G1; G2; G3�≡ −i
Z
Q

Z
K
G1ðQÞG2ðKÞG3ðQþ KÞ; ð5Þ

with a shorthand notation similar to that above, S½G�≡
S½G;G;G�. Let us mention that the field equation may have
multiple solutions. The solution ϕ̄we are interested in is the
one that minimizes the effective potential. The latter can
also be computed within the 2PI formalism, but we shall
not recall its expression here.
As discussed in Ref. [26], a total of five counterterms

are needed in order to absorb the divergences present
in Eqs. (1) and (4). These counterterms can be expressed in
terms of two renormalized quantities, a mass parameter
m2 and a coupling λ, and a renormalization scale.
Expanding the propagator around an auxiliary propagator
G0ðQÞ ¼ i=ðQ2 −M2

0 þ iεÞ, in which M0 plays the role
of the renormalization scale, the counterterms were explic-
itly determined in Ref. [27] and employed numerically in
Ref. [20]. Similar counterterms, although determined at
some fixed temperature in the symmetric phase, have been
used in Refs. [9,21,22,28]. In the present study, we use
the counterterms of Ref. [27], and in Appendix A, we show
the formal relation between the renormalization method of
Ref. [27] and that ofRef. [26],which is formulated in termsof
various two-point and four-point functions. The explicitly
finite gap and field equations obtained after renormalization
are

M̄2ðQÞ ¼ m2 þ λ

2
ðϕ2 þ T F½Ḡ�Þ þ

λ2

2
ϕ2IF½Ḡ�ðQÞ; ð6aÞ

0 ¼ ϕ̄

�
m2 þ λ

6
ϕ̄2 þ λ

2
T F½Ḡ� þ

λ2

6
SF½Ḡ�

�
: ð6bÞ

The finite parts of the integrals, denoted by the subscript F,
read

T F½G�≡
Z
Q
GrðQÞ; ð7aÞ

IF½G�ðQÞ≡ I ½G�ðQÞ − I ½G0�; ð7bÞ

SF½G�≡ S½δG� þ 3S½δG; δG;G0� þ 3

Z
Q
GrðQÞIF½G0�ðQÞ;

ð7cÞ

where I ½G0�≡ I ½G0�ðQ ¼ 0Þ and, as a result of expanding
G around G0, one has

δGðQÞ ¼ GðQÞ −G0ðQÞ; ð8aÞ

GrðQÞ ¼ δGðQÞ − i

�
M2

0 −M2
l −

λ2

2
ϕ2IF½G0�ðQÞ

�
G2

0ðQÞ;

ð8bÞ

withM2
l ≡m2 þ λ2

2
ðϕ2 þ T F½G�Þ. Eachof the three termson

the rhs of Eq. (7c) is UV finite.

B. Use of dispersion relations

To put the system (6) in a convenient form in view of
its numerical resolution, we now make use of dispersion
relations. We first focus on the momentum dependent
bubble integral IF½G�ðKÞ. A standard method for dealing
with such an integral in Minkowski space is to use the
spectral representation for the propagator and a subtracted
dispersion relation (see e.g. Ref. [29]) relating the real and
imaginary parts of the integral. The spectral representation
for the propagator is

GðQÞ ¼
Z

∞

0

ds
2π

iρðsÞ
Q2 − sþ iε

; ð9Þ

with the spectral function defined as the (real) function
ρðQ2Þ ¼ 2ℑ½iGðQÞ�. In the two-loop approximation con-
sidered here, the leading contribution to the propagator at
largeQ is entirely given by the tree-level term,GðQÞ ∼ i=Q2.
It then follows from Eq. (9) that the spectral function obeys
the following sum rule2:Z

∞

0

ds
2π

ρðsÞ ¼ 1: ð10Þ

We note also that ρðsÞ ∼ 1=s2 at large s in the approximation
at hand (if ϕ̄ ≠ 0).
Using Eq. (9) in a particular integral containing the self-

consistent propagator is helpful because the integral over
the momentum becomes perturbative and can be carried
out using standard techniques, yielding an integral kernel in
the rewritten expression of the original integral. In par-
ticular, we can use this rewriting in order to evaluate the
imaginary part of the bubble integral IF½G�ðQÞ. Using
Eq. (9) in the integral for I ½G�ðQÞ, carrying out the
momentum integration, and taking the imaginary part,
while noting that ℑIF½G�ðQÞ ¼ ℑI ½G�ðQÞ, one obtains

ℑIF½G�ðQÞ ¼
Z

∞

0

ds1
2π

Z
∞

0

ds2
2π

ρðs1Þρðs2ÞℑI0½G1; G2�ðQÞ;

ð11Þ

where GjðQÞ ¼ i=ðQ2 − sj þ iεÞ, j ¼ 1, 2. The UV finite
kernel ℑI0½G1; G2�ðqÞ is the imaginary part of the pertur-
bative bubblewithmass squares s1 and s2. It is given in terms
of the Källén function λðx; y; zÞ ¼ ðx − y − zÞ2 − 4yz as

2This relation still holds beyond the present approximation for
the spectral function associated with the bare propagator, in the
presence of an ultraviolet regulator. It needs to be modified by a
renormalization factor for the spectral function associated to the
renormalized propagator.
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ℑI0½G1; G2�ðQÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðQ2; s1; s2Þ

p
16πQ2

× ΘðQ2 − ð ffiffiffiffiffi
s1

p þ ffiffiffiffiffi
s2

p Þ2Þ; ð12Þ

with ΘðxÞ being the Heaviside step function.
We could obtain the real part of IF½G�ðQÞ in the same

fashion. It is, however, more efficient to make use of the
dispersion relation that connects it to its imaginary part.
Since the real part of the finite bubble integral grows
logarithmically in the approximation at hand, we need a
once-subtracted dispersion relation (see Appendix B for
more details),

ℜIF½G�ð
ffiffiffi
s

p Þ ¼ IF½G� þ
s
π
P
Z

∞

0

ds0
ℑI ½G�ð

ffiffiffiffi
s0

p
Þ

s0ðs0 − sÞ ; ð13Þ

where we have again used that ℑIF½G�ðQÞ ¼ ℑI ½G�ðQÞ as
well as ℜIF½G� ¼ IF½G�, with our notational convention
I ½G� ¼ I ½G�ðQ≡ 0Þ. Each term in the previous relation is
finite. The subtracted piece IF½G� can be conveniently
computed using Eq. (9) for G. We find

IF½G� ¼
Z

∞

0

ds1
2π

Z
∞

0

ds2
2π

ρðs1Þρðs2ÞI0½G1; G2� − I ½G0�

¼
Z

∞

0

ds1
2π

Z
∞

0

ds2
2π

ρðs1Þρðs2ÞI0;F½G1; G2�; ð14Þ

where I0;F½G1; G2� ¼ I0½G1; G2� − I ½G0� and we have
used the sum rule (10) to bring I ½G0� under the integral.
The difference I0;F½G1; G2� of pertubative bubble integrals
is UV finite. It can then be computed in any regularization
scheme, with the result

I0;F½G1; G2� ¼
ðs1 − s2Þ−1

16π2

�
s1 ln

s1
eM2

0

− s2 ln
s2
eM2

0

�
:

ð15Þ

We now turn our attention to the principal value integral
appearing in Eq. (13). Since this integral depends on which
interval the imaginary part of the bubble has a support,
we have to say a few words on the form of the spectral
function. In the present article, we restrict ourselves to
spectral functions which have a singular part, correspond-
ing to a real pole of the propagator. In this case, one can
write

ρðsÞ ¼ 2πZδðs − M̄2
pÞ þ σðsÞ; ð16Þ

where the continuum part σðsÞ, starting at the two-particle
threshold, is given in Eq. (B7) and the pole mass M̄p is
defined as Ḡ−1ðQ ¼ M̄pÞ ¼ 0 or, equivalently, in terms of
the gap mass M̄2ðQÞ, as

M̄2
p ¼ M̄2ðM̄2

pÞ: ð17Þ

Using that the imaginary part of the bubble integral, along
with σ, is nonzero only for s > sth ¼ 4M̄2

p, one can write
the real part of the finite bubble integral in the form

ℜIF½G�ð
ffiffiffi
s

p Þ ¼ IF½G� þ
s
π
P
Z

∞

sth

ds0
ℑI ½G�ð ffiffiffiffi

s0
p Þ

s0ðs0 − sÞ ; ð18Þ

with IF½G� given in (14).
Finally, we discuss the evaluation of the finite tadpole

and setting-sun integrals T F½G� and SF½G� defined in (7a)
and (7c). The simplest way to compute them is by using the
Euclidean propagator obtained through analytic continu-
ation from (9) as

GEðQEÞ ¼
Z

∞

0

ds
2π

ρðsÞ
Q2

E þ s
: ð19Þ

For instance, the unsubtracted tadpole T ½G� that enters
T F½G� can be written, owing to a Wick rotation, as T ½G� ¼R
QE

GEðQEÞ≡ T E½GE�. Similarly, one finds S½G� ¼
−
R
QE

R
KE

GEðQÞGEðKÞGEðQþ KÞ≡ −SE½GE�. With the
Euclideanversion of (8), T F½G� andSF½G� are then evaluated
with an appropriate numerical cutoff.

C. Results

The iterative numerical algorithm for the resolution of
the system (6) is described in detail in Appendix C. Here,
we concentrate on describing the results obtained in the
broken symmetry phase of the model. We explore in
Sec. II C 2 the region of the parameter space (m2, λ) where
such a type of solution exists. All dimensionful quantities
are measured in units of M0 throughout this paper, that is,
in the numerical code M0 ¼ 1.

1. Minkowskian solution

A typical broken phase solution of the gap and field
Eqs. (6) can be seen in Fig. 1: the left panel shows the real
and imaginary parts of the self-energy, while the right panel
shows the pole and the continuum parts of the correspond-
ing spectral function. We compare these quantities to
perturbative ones obtained using a tree-level spectral
function ρðQÞ ¼ 2πδðQ2 −M2Þ to evaluate the integrals,
with M2 ≡ M̄2ðQ ¼ 0Þ. We see that, even for a relatively
large value of the coupling, the 2PI self-energy is not much
different from a perturbative one. This is due to the fact that
in the two-loop approximation the momentum dependence
of the self-energy is logarithmic and that the mass M2 ≡
M̄2ðQ ¼ 0ÞÞ is then very close to M̄2

p. Note, however, that
resummation of a perturbative series is needed in order to
know the value of M2; hence, the comparison tells us that
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the momentum dependence of the self-energy is similar to a
perturbative one.3

2. Parametrization

In previous studies [28,30], we analyzed the parameter
space of the model at T ¼ 0 and how it was divided into
regions corresponding to systems that displayed a sym-
metric phase and systems that displayed a broken phase.
In those studies, the renormalization was carried out in the
symmetric phase at a large enough fixed temperature T⋆
that played the role of the renormalization scale. It is
interesting to see how this discussion appears in the present
scheme where the renormalization is performed directly at
T ¼ 0, where the parametersm2 and λ do not have the same
meaning as in previous studies and where the role of the
renormalization scale is played by M0 rather than T⋆.
Apart from the occurrence of the above-mentioned two

regions of the parameter space, the detailed investigation of
Ref. [22] shows that, within a given 2PI approximation, one
could have physical and unphysical branches of solutions
to the gap equation (as ϕ is varied), which could merge for
some values of the field. In this case, there is a region of ϕ
where the gap equation admits no solution. This could
result in the absence of a solution to the coupled system of
gap and field equations if the would-be ϕ̄ were to be
engulfed by the region of ϕ over which the gap equation
has no solution. We have shown in Ref. [22] that a localized
approximation to the momentum dependent gap mass is

useful to investigate the loss of solution. We now show that
an unphysical solution to the full 2PI equations can indeed
be found. However, for the sake of simplicity, we use the
localized approximation introduced in Ref. [22] to find the
region of parameters where a loss of solution happens.
Our analysis reveals the existence of three curves which,

as shown in the left panel of Fig. 2, delimit different regions
of the ðm2; λÞ parameter space. The physically most
relevant one, denoted λcðm2Þ, separates the region where
only a symmetric phase exists from the region where there
is potentially a broken phase solution. This curve is a
critical line in the parameter space, in the sense that, for these
parameters, the physical solution is at ϕ̄ ¼ 0 with no ϕ̄ ≠ 0
solution and the curvature of the potential at ϕ ¼ 0 is
vanishing. The condition of vanishing curvature thus defines
the λcðm2Þ curve through the relation

m2 þ λc
2
T F½Ḡϕ¼0� þ

λ2c
6
SF½Ḡϕ¼0� ¼ 0: ð20Þ

The second line, denoted λ−ðm2Þ, delimits the region where
a loss of solution occurs from the region where the coupled
gap and field equations do admit a solution. We expect such
a region basedonour previous investigations inRef. [22]. For
an example, the left panel of Fig. 2 shows a value of
the coupling (λ ¼ 34) at which the solution is lost for
m2 < −0.12, while for m2 > −0.12, M̄2

ϕ̄≠0ðm2Þ is multi-

valued. Multivaluedness is usually the signal of the appear-
ance of unphysical branches, which can collide with the
physical branch and lead to a loss of solution. In our case, the
physical branch is always the upper one. This branch
continuously connects to the ϕ ¼ 0 solution (in the case
of parameterswhere the solution exists for anyϕ ≥ 0), where
the unphysical branch disappears and only the physical

FIG. 1. Left panel: real and imaginary parts of the self-energy for a broken phase solution with λ ¼ 15 and m2 ¼ −0.28666 obtained
by solving (6) and characterized by M̄2ðQ ¼ 0Þ≡M2 ¼ 0.5, M̄2

p ¼ 0.4862; ϕ̄ ¼ 0.3312, and Z ¼ 0.96904, compared with a
perturbative expression evaluated with a mass squared equal to M̄2ðQ ¼ 0Þ and a field value ϕ̄ð1Þ ¼ −0.3328, obtained in the first
iteration [in the plot, the value of the field is illustrated by the value of the limit ℑM̄2ðQ → ∞Þ]. Right panel: the spectral functions
corresponding to the first iteration and to the solution of the 2PI equations.

3Another possibility is to parameterize the system directly in
terms of M2, with, however, the important subtlety that two
physically distinct systems (one in the broken phase and one in
the symmetric phase) can lead to the same parameters ðM2; λÞ;
see the discussion in Appendix C.
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solution remains.4 It is important to note here that, in order
to find the unphysical branch of the solution, it was very
helpful to reparametrize our equations in terms of the local
part of the self-energy M̄2ðQ ¼ 0Þ, rather than m2, as
explained in Appendix C around (C2). For further details
on unphysical branches of solutions and the loss of solution,
we direct the reader to Ref. [22]. In principle, the λ−ðm2Þ
curve can be obtained in the full 2PI case by searching, at
each value of m2, for the value of the coupling where a loss
of solution to the coupled equations occurs, as shown in the
right panel of Fig. 2. Since this is a tedious procedure, as for
large λ the convergence of the iterations is slow and strongly
initial condition dependent, we resort to the much simpler
localized approximation used in Refs. [22,31,32], which
qualitatively reproduces the solution of the full 2PI equa-
tions. In this approximation, the full self-energy is replaced
by its zero-momentum value resulting in a tree-level type
propagator with a self-consistent mass. Finally, we define
λ̄cðm2Þ as the curve where the gap mass at ϕ ¼ 0 vanishes.
For λ < λ̄c, the gap equation admits no solution at ϕ ¼ 0,
which also makes the potential unreachable there. Using the
gap Eq. (6a) at ϕ ¼ 0 and that T F½Ḡ�jM̄2¼0 ¼ M2

0=ð16π2Þ,
one can easily see that λ̄cðm2Þ ¼ −32π2m2=M2

0.

III. ANALYTIC CONTINUATION OF EUCLIDEAN
SOLUTIONS USING PADÉ APPROXIMANTS

In this section, we would like to use Padé approximants
in order to analytically continue functions known only at a

finite number of points in the complex plane. We employ
the multipoint Padé approximant (see Refs. [19] and [33])
calculated for a function known at N complex points zi,
fðziÞ ¼ ui, i ¼ 1…; N, using a finite continued fraction.
Using the notation 1

1þ x≡ 1
1þx, the finite continued fraction

is written in the form

CNðzÞ ¼
a1
1þ

a2ðz − ziÞ
1þ � � � aNðz − zN−1Þ

1
; ð21Þ

and the task is to determine its N coefficients ai from the
conditions CNðziÞ ¼ ui. An elegant and efficient way to
achieve this is by recursion: the coefficients are obtained as
ai ¼ giðziÞ, by defining5

g1ðziÞ ¼ ui; i ¼ 1;…; N; ð22aÞ

gpðzÞ ¼
gp−1ðzp−1Þ − gp−1ðzÞ

ðz − zp−1Þgp−1
; p ≥ 2: ð22bÞ

Working out explicitly the condition ai ¼ giðziÞ for a few
values of i, one sees that basically one needs to construct
a triangular matrix ti;j using the recursion ti;j ¼ ðti−1;i−1=
ti−1;j − 1Þ=ðzj − zi−1Þ, for j ¼ 2;…; N and i ¼ 2;…; j,
starting from its first row t1;j ¼ uj, j ¼ 1;…; N.
The finite continued fraction can be written as a rational

function, CNðzÞ ¼ AðzÞ=BðzÞ, which we do not give here
because we do not use that form. We only mention that
the polynomials AðzÞ and BðzÞ are both of order ðN − 1Þ=2
for N odd and of order ðN − 2Þ=2 and N=2, respectively,

FIG. 2. Left panel: the parameter space in the localized approximation. The λc and λ̄c curves coincide with the ones of the full 2PI case,
while λ− represents an approximation to the boundary of the region where a loss of solution is observed in the full 2PI case. Right panel:
the gap mass of the broken phase solution M̄2

ϕ̄≠0 as a function of the renormalized mass parameterm2. The results are obtained at a fixed

λ ¼ 34 using the M2 parametrization discussed in Appendix C. The fact that the curve is multivalued in some m2 range signals the
appearance of an unphysical solution (lower branch) there. At this value of the coupling, the loss of solution occurs in the region
m2 < −0.12.

4Actually, at allϕ, including thevanishing field limit, there exists
yet another unphysical branch, where the gapmass is exponentially
large. We disregard this solution of the gap equation when
discussing physical and unphysical branches.

5In the second relation, it is understood that z is part of the set
of discrete points zi.
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for N even. This means that with increasing N two Padé
sequences of the type Pk

kðzÞ (for N ¼ 2kþ 1; k ≥ 0) and
Pk
kþ1ðzÞ (for N ¼ 2ðkþ 1Þ; k ≥ 0) are generated. When all

the continued fraction coefficients are non-negative, it is
known (see Ref. [34]) that Pk

kðzÞ decreases, while Pk
kþ1ðzÞ

increases monotonically with k. The first sequence has a
lower bound, while the second sequence has an upper
bound which for k → ∞ is a Stieltjes function FðzÞ, that is,
a function of the form FðzÞ ¼ R∞0 dtρðtÞ=ð1þ ztÞ, with
ρðtÞ ≥ 0 in the domain of integration.
We shall use the above method to obtain the propagator

ḠðQÞ for Q2 > 0, from the knowledge of the same
propagator at a finite number of negativeQ2 ¼ −Q2

E values
in the Euclidean domain. In practice, we fix q⃗ (to zero in
our case) and define the original Padé approximant as a
function of the Matsubara frequency ωn, and, to carry out
the analytic continuation, we evaluate it at ωn ¼ −iωþ ε,
where the ε → 0 limit can be safely taken. We should of
course keep in mind that the analytic continuation of a finite
number of data is not unique and leads to various solutions
that differ by their asymptotic behaviors as jzj → ∞.6 The
ability of the method to reproduce the expected propagator
then needs to be tested, and we will do so by using the
explicit Minkowskian solution obtained in the previous
section. Another subtle point is that, by definition, the Padé
approximant has no branch cut and thus there is only one
Riemann sheet to be considered. It is then a question of
how the method can allow us to access physical information
usually hidden in the second Riemann sheet of the propa-
gator. A related issue is the fact that the Padé approximant
does not obey the Schwarz reflection property, whereas the
analytic propagator (B2) obeys this property [Gðs�Þ� ¼
−GðsÞ with our conventions] in the first Riemann sheet, as
is easily checked.

A. Test I: Ability to access the spectral function

To test the quality of the Padé analytic continuation, we
use two test functions: the Euclidean 2PI self-energy
extracted from Eq. (19) using the spectral function obtained
as the solution of (6) and the zero temperature finite
perturbative Euclidean bubble with square mass M2 ¼ 0.5:

B0;F½GM�ðQEÞ

¼ 1

16π2

 
2 − log

M2

M2
0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

Q2
E

s
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

Q2
E

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4M2

Q2
E

q
þ 1

!
:

ð23Þ

In both cases, we compare the real and imaginary parts of
the analytically continued quantity to the one computed in
the Minkowski space, which in the latter case is M̄2ðQÞ.
For the comparison in the 2PI case, we use the parameters
m2 ¼ −0.2611 and λ ¼ 5, for which one obtains M2 ≡
M̄2ðQ ¼ 0Þ ¼ 0.5 and ϕ̄ ¼ 0.5566. These agree with the
values obtained with the numerical code used in Ref. [20]
to solve the Euclidean version of the model in the present
renormalization scheme.
In Fig. 3, we show the Padé analytically continued real and

imaginary parts of the Euclidean 2PI self-energy and the
corresponding spectral function compared to the quantities
computed directly in Minkowski space. We see that, while
usingN ¼ 10 points in (21) leads to a noticeable error almost
everywhere, except for the real part of the self-energy at
small

ffiffiffi
s

p
, the multipoint Padé approximation using N ¼ 50

points has difficulties reproducing the Minkowski result
only in a narrow neighborhood of the threshold. However,
even withN ¼ 10 points, the analytical continuation gives a
good approximation for the pole mass, M̄p ¼ 0.70387,
compared to the value M̄p ¼ 0.70392 obtained from a direct
calculation. Based on this observation, we can trust our
results presented in Sec. IV concerning the comparison of
zero-momentum and pole masses.
In order to quantify the quality of the analytic continu-

ation over a significant region of momentum, we define the
following Minkowski space integral,

Q ¼
Z ffiffi

s
p

maxffiffi
s

p
min

dqðFðqÞ − F ðqÞÞ2; ð24Þ

where F is the original function and F is its approximation
obtained using analytic continuation, and with

ffiffiffi
s

p
min =max

FIG. 3. The real and the imaginary parts of the analytically
continued Euclidean 2PI self-energy given by (19) are compared
to the corresponding quantities computed directly in Minkowski
space from (6). The inset shows the same comparison for the
spectral function. For Padé analytic continuation, we used
N ¼ 10 and N ¼ 50 points in the ½0; 10M� interval of Euclidean
momentum.

6Knowing some data d1;…; dn for a finite set of points
z1;…; zn and given an analytic continuation fðzÞ of these data,
which is such that fðziÞ ¼ di, we can construct another analytic
continuation of the same data as, for instance, gðzÞ ¼ fðzÞ þQ

n
j¼1ðexpfi2πz=zjg − 1Þ.
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chosen appropriately. In Fig. 4, we show this quantityQ as
a function of the sampled region with fixed sampling
frequency (bottom x axis) and as a function of the number
of sample points on fixed region (top x axis). We see
convergence both by increasing the sampled region and by
increasing the number of points. While a perfect continu-
ation would mean Q ¼ 0, the curves do not tend to zero,
which we attribute to the error arising from finite number
representation and the inherent differences in the analytic
properties of the approximated functions and the Padé
approximants. Also note that the combined results have
some implications on the continuation of finite temperature
data. The results corresponding to the bottom axis tell us
that, at a certain temperature, there is a limiting Matsubara
frequency, over which including new frequencies does not
improve the quality of the continuation. At the same time,
the results associated to the top axis indicate that with fewer
frequencies in the relevant range, i.e. by increasing the
temperature, the quality of the continuation deteriorates.

B. Test II: Ability to access physical information
in the second Riemann sheet

We show now that the Padé analytic continuation of
Euclidean data is capable of finding physically relevant
complex poles in the case of an Oð4Þ symmetric model.
Since we have 2PI results in Minkowski space only in the
one-component case, we use as a benchmark the T ¼ 0
Minkowskian results of Refs. [35] and [36] obtained within
perturbation theory at one loop. We calculate the integrals
of the sigma self-energy both in Euclidean and Minkowski
spaces with the renormalization prescription of Ref. [35]

and then carry out the analytic continuation (cf. Ch. 6.3 of
Ref. [37]) of the Euclidean bubble integrals using Padé
approximants. We construct one Padé approximant for each
bubble integral, as it turns out that with this procedure we
get better agreement with the Minkowskian results than in
the case where a single Padé approximant is associated to
the entire Euclidean self-energy.
The physically relevant complex pole of the sigma

propagator is on the second Riemann sheet (see e.g.
Sec. 1.3 of Ref. [38]), which is accessed by crossing the
real axis in between the thresholds of the pion and the sigma
bubbles. In the present case, this range is given in terms of
the tree-level pion and sigmamasses as

ffiffiffi
s

p
∈ ½2mπ;0; 2mσ;0�.

In the search for the complex pole of the σ propagator,
we continue the Padé approximant (21) to complex values
of its argument. With the parameters given in the first line
of Table I in Ref. [35], we find a complex pole at

ffiffiffi
s

p ¼
569.25 − i · 119.02 MeV, using the exact formulas of the
bubbles analytically continued to the second Riemann
sheet, and at

ffiffiffi
s

p ¼ 569.32 − i · 118.83 MeV, using the
multipoint Padé approximation with N ¼ 200 points in the
[0,3] GeV interval of Euclidean momentum. This finding
is in line with the low temperature location of pole II in the
second Riemann sheet shown in Fig. 6 of Ref. [36].7 As in
Fig. 3 of Ref. [39], the real part of this pole is close to
the maximum of the spectral function, which is accurately
reproduced with a Padé approximant using N ¼ 200
points, in line with the findings of the previous subsection.
However, a word of caution is in order, since, as we show in
Fig. 5, far from the real axis, the contours ℜG−1

σ ð ffiffiffi
s

p Þ ¼ 0

and ℑG−1
σ ð ffiffiffi

s
p Þ ¼ 0 are strongly distorted. This is because

the Padé approximants, fitted to the bubble integrals, being
rational functions, induce spurious poles in the propagator.
In the shown range, there are eight fake poles, four to the
left and four to the right of the physical one. We observed
that the number of fake poles within this range stayed
constant as we increased N from 200 to 1000, but their
position varied significantly compared to that of the physical
pole. While in our benchmark case we are lucky, as the
position of the physical pole is well captured with the Padé
analytic continuation, one should always check whether
the result obtained in the complex plane is influenced by
nonphysical poles of the Padé approximant.
The fact that the Padé analytic continuation gives so

accurately the coordinates of a complex pole on the second
Riemann sheet located far away from the real axis is a
surprise to us in view of the fact that, as already mentioned,
the Padé approximant does not know about the existence of
different Riemann sheets. When using Padé approximants,
one can in principle mimic to some extent the procedure
of the analytic continuation based on a known functional

FIG. 4. The quality of the Padé analytic continuation of the
Euclidean perturbative bubble (Q0, filled symbols) and the
Euclidean self-energy (Q, empty symbols). The circle symbols
correspond to the bottom x axis and were obtained using a fixed
number of sampling points (N ¼ 50) in an interval with variable
upper limit Λ, while the square symbols correspond to the top x
axis and were obtained using N sampling points in a fixed width
interval with upper limit Λ ¼ 10.

7However, we could not reproduce the results shown in
Fig. 2 of Ref. [39], where the scale of the imaginary axis seems
to be off.
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form. In order to do this, we continue the Euclidean bubbles
to the real axis, and then we construct new Padé approx-
imants for the real and imaginary parts of the pion bubble
for

ffiffiffi
s

p
> 2mπ;0 and a new Padé approximant for the sigma

self-energy in the range
ffiffiffi
s

p
∈ ½2mπ;0; 2mσ;0� where it is

purely real. One can then continue these Padé approximants
to complex values. Actually, Fig. 5 was obtained in this
way, and in the present case, no significant change in the
coordinates of the complex pole and of the zero contours
was observed for ℜ

ffiffiffi
s

p
< 2mσ;0.

Recently, a Padé approximant of a different form than
the one given in Eq. (21) was used in Refs. [40,41] for the
analytic continuation into the second Riemann sheet of the
ππ scattering amplitude in the scalar-isoscalar (I ¼ J ¼ 0)
and vector-isovector (I ¼ J ¼ 1) channels parametrized in
terms of the corresponding phase shifts measured exper-
imentally at low energy values (

ffiffiffi
s

p
). In these references,

the location of the σ (f0ð500Þ) and ρ complex poles was
determined using single-pole Padé approximants PN

1 ðs; s0Þ
with N ¼ 2 or N ¼ 3 representing the number of deriva-
tives of the amplitude known at s0. The precision of the
pole determination is comparable with that of alternative
approaches. The rate of the convergence with increasing N
of the position and residue of the pole was studied in
Refs. [40,42], while the uncertainties of the pole location to
the parametrization of the partial wave were investigated
in Ref. [43]. These results suggest that in our case one
could try to analytically continue the propagator (and not
the self-energy) from real to complex values of

ffiffiffi
s

p
using a

PN
1 ðs; s0Þ Padé approximant. This will exclude the fake

poles encountered in Fig. 5, possibly at the expense of a
less accurate determination of the complex pole position
compared to the case when the multipoint Padé approxi-
mation is used.

IV. COMPARISON OF POLE AND
ZERO-MOMENTUM MASSES

IN THE OðNÞ MODEL

In our earlier works [21,22], we have studied the para-
metrization of the Oð4Þ model in regard to its application
to light meson phenomenology. The parametrization was
done using zero-momentum masses for simplicity. However,
a correct parametrization requires, instead, the use of pole
masses. Here, we use the Padé analytic continuation method
in order to assess how different these masses can be. We
should mention that this comparison only makes sense in a
given renormalization scheme because the zero-momentum
masses are scheme dependent whereas the pole masses
are not.
Another subtlety comes from the fact that, in a given 2PI

approximation, one can define two types of propagators, the
so-called internal and external propagators. The internal
propagator is the one considered in Sec. II for the case of
the two-loop approximation. However, one can define an
external propagator, aswe recall in the next subsection. Since
the parametrization of Refs. [21,22] was done using the
zero-momentum mass of the external propagator, in what
follows, we compare this mass with the pole mass of the
same propagator. In doing so, we shall use a well-motivated
approximation for the external propagator which leads to
the same expression in the two-loop and Oðλ2Þ truncations
of the 2PI effective action, the two approximations used
in Refs. [21,22]. For completeness, we shall also do this
comparison in the case of the internal propagators which are
different in the two types of truncations.

A. External vs internal propagators

In the 2PI formalism, the internal propagator Ḡϕ in the
presence of a given field expectation value is obtained by
solving the equation 0 ¼ δΓ½ϕ; G�=δGG¼Ḡϕ

, where Γ½ϕ; G�
is the so-called 2PI effective action. Knowing Ḡϕ, one can
reconstruct the usual one-particle irreducible (1PI) effective
action as Γ½ϕ� ¼ Γ½ϕ; Ḡϕ�. From the latter, it is also
possible to compute the propagator as G−1 ¼ δ2Γ=δϕ2.
Although these two definitions for the two-point function
are equivalent in the absence of approximations, they differ
in practice whenever a truncation of Γ½ϕ; G� is considered,
and the second definition is referred to as the external
propagator. We refer to Ref. [26] for details on the relation
between the two types of propagators and their respective
renormalization. Here, we recall the expression for the
external propagator in the two-loop and Oðλ2Þ truncations,
in the N ¼ 1 case. In Euclidean configuration space, one
obtains

G−1
E ðx; yÞ ¼ δ2Γ½ϕ; G�

δϕðxÞδϕðyÞ
����
G¼Ḡϕ

−
1

2

Z
z1;z2;z3;z4

Λðx; z1; z2Þ

× ḠEðz1; z3ÞḠEðz4; z2ÞVðz3; z4; yÞ; ð25Þ

FIG. 5. The zero contours of the real and imaginary parts of the
inverse σ propagator given by analytic expression on the second
Riemann sheet compared to the corresponding quantities ob-
tained using multipoint Padé approximation with N ¼ 200
points. The physical pole is well reproduced, although the Padé
approximation gives additionally eight spurious poles in the shown
range.
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with

δ2Γ½ϕ; G�
δϕðxÞδϕðyÞ

����
G¼Ḡϕ

¼ G−1
E;0ðx − yÞ − λ2

6
Ḡ3

Eðx − yÞ

þ 1

2
½λ4ϕ2 þ λ2ḠEð0Þ�δðx − yÞ; ð26Þ

where we have restricted to homogeneous fields ϕðxÞ ¼ ϕ
and where Λðx; z1; z2Þ and Vðz1; z2; xÞ are proportional to
ϕ and have tree-level contributions equal to λ2ϕδðx − z1Þ
δðx − z2Þ. In this work, we shall neglect all contributions to
Λ and V beyond tree level, which is the minimum needed
if we want the two-loop external propagator to contain at
least the same diagrams as the two-loop internal one.
Higher order contributions, since they are proportional to
ϕ2, lead only to logarithmic modifications of the momen-
tum dependence of the self-energy. We thus expect those
contributions not to modify by much the values of the pole
and zero-momentum masses. This is an important simpli-
fication because, in general, obtaining the function V
requires solving a Bethe-Salpeter equation, which we avoid
here without affecting our conclusions in a dramatic way.
Putting these pieces together and Fourier transforming, we
arrive at G−1

E ðQEÞ≡Q2
E þ M̂2

EðQEÞ, with

M̂2
EðQEÞ ¼ δZ2Q2

E þm2
2 þ

λ4
2
ϕ2 þ λ2

2
T E½ḠE�

−
λ2

2
ϕ2B½ḠE�ðQEÞ −

λ2

6
SE½ḠE�ðQEÞ: ð27Þ

We mention that, in the Oðλ2Þ truncation, the internal
propagator has exactly the same expression as the approxi-
mate external propagator introduced above, since the gap
mass M̄2

EðQÞ is given by the right-hand side of (27).
In fact, we can do a little bit better concerning the

external propagator, as the zero-momentum value M̂2
E ≡

M̂2
EðQE ¼ 0Þ does not need to be approximated but can be

computed instead from the curvature of the effective
potential associated to the effective action. Proceeding this
way, one completely takes into account the contribution of
the Bethe-Salpeter equation to M̂2

E, and away fromQE ¼ 0,
we can approximate M̂2

EðQEÞ by

M̂2
EðQEÞ ¼ δZ2Q2

E þ M̂2
E −

λ2

2
ϕ2½B½ḠE�ðQEÞ − B½ḠE��

−
λ2

6
½SE½ḠE�ðQEÞ − SE½ḠE��: ð28Þ

The counterterm δZ2 is needed to absorb divergences in the
difference of setting-sun integrals and is determined numeri-
cally as explained in Appendix A. 2 of Ref. [22], using
instead of T⋆ a small value of the temperature, T ¼ 0.05T⋆.
If we denote by M̂2ðQÞ the analytic continuation of M̂2

EðQEÞ,

the pole mass of the external propagator corresponds to
M̂2

p ¼ M̂2ðM̂2
pÞ.

The generalization of Eq. (28) to the Oð4Þ case is
straightforward. To get the approximated M̂2

L;EðQÞ and
M̂2

T;EðQÞ in the corresponding longitudinal and transverse
external propagators, one can use the expressions given in
Eq. (15) of Ref. [22], subtract from the right-hand side the
zero-momentum expression, and add the corresponding
curvature mass determined numerically using Eq. (16) of
that reference. We emphasize that the approximated expres-
sions are the same in the two-loop and Oðλ2Þ truncations,
but the internal propagators entering the integrals are
different in the two cases.

B. Quality of the curvature mass-based
parametrization of the O(4) model

We now turn to the analytic continuation of the N ¼ 4
Euclidean results obtained inRefs. [21,22] at a small value of
the temperature,T ¼ 0.05T⋆. Applying themethod based on
Padé approximants, we find similar results in the two
investigated truncations for any parameters where the cur-
vature masses (zero-momentum masses of the external
propagator) are physical. The main result is that, although
the difference between the pole masses of the longitudinal
external and internal propagators can be of 40%, the differ-
ence between the pole and zero-momentum mass of a given
propagator (internal or external) is only within 1%. For the
transverse mode, the differences are typically smaller, which
is in line with the results of Refs. [13,23] obtained using the
FRG approach. We already knew from previous studies that
the difference between M̂L and M̄L could be more than 30%
for some parameters (see Fig. 3 of Ref. [22]), and nowwe see
that both M̄L=T − M̄L=T;p and M̂L=T − M̂L=T;p are very small
in both truncations, for parameters where the curvature
masses are physical. For such parameters, the pole of the
analytically continued sigma propagator becomes complex.
Based on the study presented in Sec. III. B, we interpret this
pole as being the physical pole on the second Riemann sheet.
Unfortunately, the imaginary part of the pole is almost zero;
the ratio between real and imaginary part is ∼10−3. We
illustrate this for a typical parameter set of the two-loop
truncation in Fig. 6, where the plots are obtained by
continuing the Euclidean external longitudinal propagator
calculated with the approximation described above.
The smallness of the imaginary part of the complex σ

pole is in line with the findings of Ref. [44], where it turned
out that at leading order in a 1=N expansion its ratio to the
real part of the pole only starts to grow for larger values of
the coupling and becomes physically acceptable for
λ ∈ ð300; 400Þ. We mention that, taking into account the
scaling by N ¼ 4 used in Refs. [21,22], the coupling of
Ref. [35] (also used in Sec. III. B) corresponds to λ ¼ 292.
Even for such a big value of the coupling constant,
MLðQ ¼ 0Þ is only 1.7% larger than ML;p given in
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Sec. III. B. Such a large value of the coupling, which is by a
factor of 5 larger than the largest coupling used for para-
metrization in Refs. [21,22], cannot be reached in our 2PI
investigations because the closeness of theLandau pole to the
physical scales makes the solution of the propagator equa-
tion, if accessible at all iteratively, highly cutoff sensitive.

C. Infrared sensitivity of the pole mass in the two-loop
SI2PI approximation

In Ref. [25], we investigated the SI2PI formalism of
Ref. [24] at two-loop order, using various types of UV
regulators. In particular, we pointed out that, for generic
smooth regulators, the solution for the internal propagator of
the SI2PI framework possesses an untamed infrared sensi-
tivity in the broken phase that leads to a loss of solution for
large enough volumes. Thismay not be a problem, though, in
cases inwhich the volume at which the solution disappears is
manyorder ofmagnitudes higher than the physical volumeof
the system under study and in which the quantity under
scrutiny presents a plateau behavior for a large range of
volumes below the volume at which the solution is lost. In
Ref. [25], we tested this scenario on the zero-momentum
mass of the Higgs propagator in the model of Ref. [24], and
we observed sensible changes with the volume as we also
illustrate in Fig. 7.However, as pointed out to us byD. Teresi,
in the same model, the Higgs pole mass should be (almost)
insensitive to the volume. This insensitivity was reported in
Ref. [45], and it is expected based on the fact that the Higgs
pole mass is not related to the zero-momentum behavior of
the propagator,which is the only regionwhere the propagator
is infrared sensitive in our case. However, we note that it is
not clear which type of UV regulator was used in
Refs. [24,45], so one couldapriori think that the insensitivity
could also originate from the use of a sharp regulator that
tames artificially the IR sensitivity, as explained in Ref. [25].

We can now test these scenarios using the Padé continuation
techniquewith various types of UV regulators. The result for
the Higgs pole mass is compared to the zero-momentum
Higgs mass in Fig. 7. Imposing the constraint of the SI2PI
formalism as M̄TðjKEj ¼ κÞ ¼ 0, we observe that, even with
a smooth UV regulator, for which the internal Higgs
propagator ceases to exist beyond some volume, the corre-
sponding pole shows a plateau behavior over a large range
of volumes.

FIG. 6. The result of the analytic continuation of Euclidean data for the external propagator obtained with a two-loop truncation for a
typical parameter set (m2 ¼ 0.23; λ ¼ 28.257; h ¼ 0.62). Left panel: the spectral function in the sigma channel. Right panel: the zero-
contour lines of the real and imaginary parts of the inverse σ propagator showing the complex sigma pole with a very small imaginary
part.

FIG. 7. Infrared sensitivity of the zero-momentum and pole
“Higgs” masses in an Oð2Þ model using the symmetry improved
2PI framework. The solution is in principle lost if one insists on
removing the infrared regulator κ (which is inversely proportional
to the typical linear size of the system). However, before this
happens, the pole mass presents a plateau behavior that allows us
to define the mass of the particle in a very accurate way. We used
the parameters of Ref. [24] and the nonequidistant grid of
Ref. [25] with Ns ¼ 151 points. All these points in the

ffiffiffi
s

p
∈

½κ;Λ� range, with Λ ¼ 5 TeV, were used to construct the Padé
approximant.
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V. CONCLUSIONS

We searched for broken phase Minkowski space sol-
utions in the ðm2; λÞ parameter space of the one-component
φ4 model at zero temperature using the 2PI effective action
truncated at two-loop level. Since the Euclidean solution
can be obtained from the spectral function, we could use the
Minkowskian solution as a benchmark for the analytic
continuation of the Euclidean propagator with the method
based on multipoint Padé approximants. The various tests
we performed show that at zero temperature the Padé
analytic continuation is an efficient tool to obtain not only
the spectral function but also the complex pole of the
propagator on the second Riemann sheet. However, it is
expected that, as the temperature grows, the applicability of
the method is limited by the decreasing number of available
Matsubara modes in a given frequency interval, as we have
argued in Sec. III A.
We applied the Padé analytic continuation on previously

determined practically zero temperature Euclidean propa-
gators of the Oð4Þ model and studied the relation between
the pole and the gap mass at vanishing external momentum
of both the internal and external 2PI propagators. We have
searched for real poles of the transverse propagator and for
complex poles of the longitudinal propagator on the second
Riemann sheet. For parameters where the longitudinal
curvature mass (gap mass at vanishing external momentum
of the external propagator) is physical, the real part of the
corresponding pole is within 1% of the curvature mass,
both at two-loop and at Oðλ2Þ level truncations of the 2PI
effective action. This shows that the error of the para-
metrization of Refs. [21] and [22], where the curvature
masses were used instead of the pole masses, is smaller
than 1%. However, with the parameters determined in these
references, the imaginary part of the pole of the longi-
tudinal external propagator turns out to be very small,
although it increases with the value of the coupling
constant. Unfortunately, the presence of the Landau pole
prevents us from accessing regions of the parameter space
with larger values of the coupling, as the solution of the
model, which is increasingly difficult to find with an
iterative method, becomes highly cutoff sensitive.
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APPENDIX A: RENORMALIZATION

As mentioned in the Introduction above Eq. (6), we
now discuss how to obtain the counterterms with a

renormalization at T ¼ 0, in a way that resembles the
renormalization prescriptions at T ¼ T⋆ which were used
in some of our previous works. Since there is no physical
renormalization condition giving exactly the counterterms
determined in Ref. [27], we definem2

0 andm
2
2 by absorbing

those quadratic and logarithmic divergences which arise
when expanding the propagator Ḡ around G0ðQÞ ¼ i=
ðQ2 −M2

0 þ iεÞ and do not depend on the environment (ϕ
or T F½Ḡ�). One has

m2
0 ¼ m2 −

λ0
2
T div½Ḡ�; ðA1Þ

m2
2 ¼ m2 −

λ0
2
T div½Ḡ� −

λ2

6
Sdiv½Ḡ�; ðA2Þ

where the environmental free divergences of the tadpole
and setting-sun integrals are given by

T div½Ḡ� ¼ T ½G0� þ ðm2 −M2
0ÞI ½G0�; ðA3Þ

Sdiv½Ḡ� ¼ S½G0� þ 3ðm2 −M2
0Þ½TðIÞ

d þ I2½G0��; ðA4Þ

with TðIÞ
d ¼ −i

R
Q G2

0ðQÞIF½G0�ðQÞ.
In order to renormalize the couplings, we proceed as

usual at ϕ ¼ 0 (see Ref. [26] for details) and introduce the
2PI kernels and the related four-point functions but
formally replace in them, and in the equations they satisfy,
Ḡϕ¼0 by G0. One has for instance

V̄0 ¼ Λ̄0 þ
1

2
V̄0Λ̄0I ½G0�; ðA5Þ

V0ð0; KÞ ¼ Λ0ð0; KÞ − i
2

Z
Q
Λ0ð0; QÞG2

0ðQÞV̄0; ðA6Þ

where at the present order of truncation

Λ̄0 ≡ 4
δ2γint
δGδG

����
ϕ¼0;Gϕ¼0→G0

¼ λ0; ðA7Þ

Λ0ð0; KÞ≡ 2
δ3γint

δϕδϕδGðKÞ
����
ϕ¼0;Gϕ¼0→G0

¼ λ2 þ λ2I ½G0�ðKÞ:

ðA8Þ

λ0 is obtained from the condition V̄0 ¼ λ in the form λ−10 ¼
λ−1 þ I ½G0�=2, while λ2 is obtained from the condition
V0ð0; KÞ ¼ λ, which gives after a few lines of algebra

λ2 ¼ λ0 − λ2I ½G0� − λ2λ0T
ðIÞ
d =2. The counterterm δλ4 is

obtained from the condition V̂0 ¼ λ, using the equation for

V̂0 ≡ δ4γ

δϕ4

����
ϕ¼0;Gϕ¼0→G0

: ðA9Þ
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APPENDIX B: DISPERSION RELATIONS
AND SOME USEFUL EXPRESSIONS

Let us start by recalling here Eqs. (9) and (10), which can
be understood from the sole assumption of the existence of
an analytic propagator GðQ2Þ for complex values of Q2

away from the positive real axis (in the first Riemann
sheet), that decreases as 1=Q2 at large Q2 and which gives
back the Minkowski propagator when approaching the
positive real axis: GðQÞ ¼ GðQ2 þ iϵÞ with Q2 > 0.
Indeed, with the propagator GðQ2Þ being analytic away
from the positive real axis, one can apply the Cauchy
formula to a small circle not intersecting this axis and
centered around a certainQ2. Deforming this contour into a
large circle CR of which the radius R tends to infinity and a
contour BR with two parallel branches on each side and
close to the positive real axis, one obtains

GðQ2Þ ¼
Z
CR

ds
2πi

GðsÞ
s −Q2

þ
Z

R

0

ds
2πi

Gðsþ iϵÞ − Gðs − iϵÞ
s −Q2

:

ðB1Þ

Owing to the assumed behavior of GðsÞ at large s, the first
term goes to 0 as R → ∞. The second term can be
expressed in terms of the spectral function, and we finally
obtain

GðQÞ≡
Z

∞

0

ds
2π

iρðsÞ
Q2 − s

; ðB2Þ

which provides a spectral representation for the analytic
propagator that leads to Eq. (9) when approaching the
positive real axis. The sum rule is obtained in a similar
fashion by applying the argument to the function
ðs −Q2ÞGðsÞ instead of GðsÞ. In this case, the integral
over the contour CR does not vanish and gives the 1 in the
right-hand side of Eq. (10).
The previous argument can be repeated for any function

F ðQ2Þ analytic inQ2 away from the positive real axis. In the
casewhereF ðsÞ does not go to zero fast enough, one should
apply the argument to F ðsÞ −Pn

p¼0F
ðpÞðs0Þðs − s0Þp=p!

with n high enough, such that the integral over CR vanishes
as R → ∞. For instance, if F ðsÞ grows logarithmically, we
apply the argument to F ðsÞ − F ðs0Þ with s0 ¼ Q2

0 away
from the positive real axis. We obtain, for any Q2 and Q2

0

away from the positive real axis,

F ðQ2Þ − F ðQ2
0Þ ¼

Z
∞

0

ds
π

ðQ2 −Q2
0ÞℑFðsÞ

ðs −Q2Þðs −Q2
0Þ
: ðB3Þ

In particular, if one is interested inFðQÞ≡ F ðQ2 þ iϵÞ, one
has for Q2 and Q2

0 real,

FðQÞ − FðQ0Þ ¼
Z

∞

0

ds
π

ðQ2 −Q2
0ÞℑFðsÞ

ðs −Q2 − iϵÞðs −Q2
0 − iϵÞ :

ðB4Þ

The previous formula applies in particular to the finite
bubble integral considered in the present work. Indeed,
using the spectral representation and its sum rule,

IF½G�ðQÞ ¼
Z

∞

0

ds1
2π

Z
∞

0

ds2
2π

ρðs1Þρðs2ÞI0;F½G1; G2�ðQÞ;

ðB5Þ

from which it follows that this is analytic in the variable
Q2 away from the positive real axis. Moreover, since the
finite bubble grows like lnQ2, we need to apply the once-
subtracted formula.
Let us now derive some other useful results [8]. We start

from the identity ḠðQÞḠ−1ðQÞ ¼ 1 and derive two expres-
sions for the finite wave-function renormalization constant
Z, the expression for the continuum part of the spectral
function and the sum rule it satisfies. For ḠðQÞ, we use its
spectral representation (9), while for the inverse propagator,
we use the expression Ḡ−1ðQÞ ¼ −iðQ2 − M̄2ðQÞ þ iεÞ.
The gap mass is a complex valued function, and ℜM̄2ðQÞ
and ℑM̄2ðQÞ can be read off from (6a), remembering that
only the bubble integral has an imaginary part. Using the
form of the spectral function given in (16) and the relation

1

Q2 − sþ iε
¼ P

1

Q2 − s
− iπδðQ2 − sÞ; ðB6Þ

one obtains from GG−1 ¼ 1 two equations, one for the real
part and one for the imaginary part. With some algebraic
manipulations, one derives from them the usual expression
for the continuum part of the spectral function

σðQ2Þ ¼ −2
ℑM̄2ðQÞ

ðQ2 −ℜM̄2ðQÞÞ2 þ ðℑM̄2ðQÞÞ2 ðB7Þ

and the equation (sth ¼ 4M̄2
p)

Z þ ðQ2 − M̄2
pÞP

Z
∞

sth

ds
2π

σðsÞ
Q2 − s

¼ ðQ2 − M̄2
pÞðQ2 −ℜM̄2ðQÞÞ2

ðQ2 −ℜM̄2ðQÞÞ2 þ ðℑM̄2ðQÞÞ2 : ðB8Þ

Taking the limit Q → ∞ in (B8), one obtains

Z þ
Z

∞

sth

ds
2π

σðsÞ ¼ 1; ðB9Þ

which is the sum rule for a spectral function of the form
(16), while taking the limit Q → M̄p, one obtains
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Z ¼
�
1 −

dℜM̄2ðQÞ
dQ

����
Q¼M̄p

�−1
; ðB10Þ

which is the residue of the pole Q ¼ M̄p of the propagator.

APPENDIX C: NUMERICAL ALGORITHM
AND ITS IMPLEMENTATION

In this Appendix, we describe the steps of the iterative
process applied to solve sequentially the explicitly finite
coupled field and gap Eqs. (6) and present the numerical
implementation of these steps.
Being interested in broken symmetry phase solutions, we

start froman initial propagator Ḡð0Þ and express the nontrivial
ðϕ̄2Þð1Þ from the field equation. Then, using both ϕ̄ð1Þ and
Ḡð0Þ, we evaluate ðM̄2Þð1Þ from (6a), which in turn gives us
Ḡð1ÞðQÞ. These steps are repeated until the relative change
from one iteration to the next of both ϕ̄ and the pole mass M̄2

p

obtained from (17) is less than our stopping parameter,
chosen to be 10−7. If ðϕ̄2Þðiþ1Þ < 0, we leave ϕ̄ðiþ1Þ ¼ ϕ̄ðiÞ.
When for five consecutive iterative steps ϕ̄2 is negative, we
stop the iteration and say that no broken phase solution was
found for the given parameters and/or initial values.
The explicit steps for one full iteration (from the ith to

iþ 1th) are the following; the propagator GðiÞ is used to
denote a given quantity in the ith iteration, even though it is
clear from Sec. II B that the spectral function of the form
(16) is the central object of the entire iterative procedure:

(i) Using (7) and (8), evaluate SF½ḠðiÞ
E � and T F½ḠðiÞ

E �,
and update ϕ̄ðiþ1Þ from (6b).

(ii) Evaluate ℑI ½ḠðiÞ�ðQÞ using (11) and then
ℜIF½ḠðiÞ�ðQÞ using the dispersion relation (18).

(iii) Determine ðM̄2
pÞðiþ1Þ solving the pole Eq. (17) and

update σðiþ1ÞðsÞ using its expression given in (B7);
then, update Z using the sum rule (B9).8

We initialize ϕ̄ with some crude nonzero estimate of the
solution (e.g. the classical value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2=λ

p
) and choose the

initial spectral function to contain only a pole part with unit
residue, with the pole at M̄H, defined as the solution of the
gap equation in the Hartree approximation

M̄2
H ¼ m2 þ λ

2
ðϕ̄2 þ T F½ḠH�Þ; ðC1Þ

with ḠHðQÞ ¼ i=ðQ2 − M̄2
H þ iεÞ.

We note that one can introduce a reparametrization of
the Eqs. (6) in terms of the mass parameter

M2 ¼ M̄2
ϕ¼ϕ̄

ðQ ¼ 0Þ; ðC2Þ

that is the zero-momentum value of the self-energy. While
this introduces some intricacy connected to the fact thatM2

depends on the a priori unknown solution ϕ̄, it has several
advantages. First, by fixing the local part of the self-energy,
the number of iterations required for convergence is greatly
reduced. Also, the tadpole diagram (2), one of the main
sources of numerical error, only has to be evaluated to obtain
m2 corresponding to the fixed value of M2. Second, this
allows the introduction of an under-relaxation parameter α as

ðϕ̄ðiþ1Þ
α Þ2 ¼ αðϕ̄ðiþ1ÞÞ2 þ ð1 − αÞðϕ̄ðiÞÞ2: ðC3Þ

This is needed to achieve convergence in parameter regions
where otherwise our iterative method fails. This, combined
with the good initial guess provided byM2, allowed us to find
the unphysical solution shown in Fig. 2.

1. Numerical implementation

In the iterative method described above, we have to store
ϕ̄; M̄2

p, and a discretized version of σðsÞ. For the latter, we
use a grid of Ns points (typically, we use Ns ¼ 500)
defined actually in the transformed variable t ¼ s

1þs.
Starting from tðs ¼ sthÞ and ending in 1, one has

ti ¼ κ þ i3 × Δ; i ¼ 0…Ns − 1; ðC4Þ

with κ ¼ sth
sthþ1

and Δ ¼ 1−κ
ðNs−1Þ3. The property tðs ¼ ∞Þ ¼ 1

allows us to carry out the s-integrals of Sec. II B without
introducing an explicit numerical cutoff.
We follow below the order of the iterative steps described

above and give some technical details concerning the
evaluation of the integrals.
The explicitly finite expression of the two local Euclidean

integrals, the tadpole T F½ḠE� and SF½ḠE�, is given in
Appendix D, in (D1) and (D2)–(D3), respectively, in terms
of the Euclidean propagator (19). The integral of (19) is
evaluated on a rather complicated-looking momentum grid
defined as

qi ¼ iαðiÞ × ΔðiÞ; i ¼ 0…Ns − 1;

αðiÞ ¼ 2þ 2

π
atan

�
sinh

�
5 −

10i
Ns − 1

��
; ðC5Þ

with ΔðiÞ ¼ Λ=ðNs − 1ÞαðiÞ, where Λ is an appropriate
numerical cutoff for which we typically use values in the
range (50–200).9 The reason for using such a grid is to sample
with sufficient accuracy the Euclidean propagator in both the
IR and UV regions. For integration, we need to know GE in

8Note that, by changing M̄2
p in each iteration, sth also changes.

Due to the structure of the bubble integral, ðsthÞðiþ1Þ ¼ 4ðM̄2
pÞðiÞ.

9In principle, we could also use a transformed variable similar to
(C4) and integrate up to infinity since the integrals are finite.
However, the integrands of (D1) and (D2)–(D3) only decrease fast
enough due to cancellations, which break down when numerical
number representation errors are comparable to the results.
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between the grid points, but in order to improve on the UV
behavior, we subtract 1=ðq2i þM2

0Þ from GEðqiÞ and fit the
difference with a Steffen spline.10 This proves to be accurate
enough in the UV to see the apparent convergence of the
integrals with increasing Λ. The spline is evaluated in the
integrand called by the CQUAD adaptive integration routine
of Gnu Scientic Library (GSL) library [46].
To compute ℑI ½Ḡ�ðQÞ, we use (16) in (11). This leads to

δ × δ, δ × σ, and σ × σ type terms, which start giving a
nonvanishing contribution for Q > 2M̄p, Q > 3M̄p, and
Q > 4M̄p, respectively. Since ℑI ½Ḡ�ðQÞwill be used in the
dispersion relation (18) giving ℜIF½Ḡ�ðQÞ, we spline it in
order to be able to evaluate it anywhere. We use the grid
introduced for σ in (C4) in the same transformed coor-
dinates. However, a spline interpolation cannot reproduce
a functional form with infinite derivatives, such as
ℑI ½Ḡ�ðQÞ, which behaves as a square root function around
Q ¼ 2M̄p. Therefore, in order to avoid this problem, we
chose to fit with a cubic spline the function ðℑI ½Ḡ�ðQÞÞ2.
ℜIF½Ḡ�ðQÞ is evaluated from the dispersion relation

(18). In order to circumvent the problem of numerically
computing integrals with a principal value prescription
when s ¼ Q2 > 4M̄2

p, we rewrite them with the usual
method (see e.g. Ref. [47]). First, we split the interval of
integration by introducing the point 2s − 4M̄2

p; then, we
add and subtract an appropriate term in the integrand of the
resulting integral over the interval ½4M̄2

p; 2s − 4M̄2
p�,

exploiting the fact that P
R
2b−a
a dx=ðx − bÞ ¼ 0. In this

way, we obtain

P
Z

∞

4M̄2
p

ds0
ℑI ½Ḡ�ð ffiffiffiffi

s0
p Þ

s0ðs0 − sÞ

¼ P
Z

2s−4M̄2
p

4M̄2
p

ds0

s0 − s

�
ℑI ½Ḡ�ð ffiffiffiffi

s0
p Þ

s0
−
ℑI ½Ḡ�ð ffiffiffi

s
p Þ

s

�

þ
Z

∞

2s−4M̄2
p

ds0
ℑI ½Ḡ�ð ffiffiffiffi

s0
p Þ

s0ðs0 − sÞ : ðC6Þ

Actually, the integrand of the first integral on the rhs is
continuous at s0 ¼ s, so that the principal value prescription
can be omitted when integrating it numerically with the
CQUAD routine.
We end this part by mentioning two numerical intrica-

cies. The first is encountered when fitting σ with a spline on
the grid (C4). σ grows out at the threshold as a square root
function, similarly to ℑI ½Ḡ�. However, contrary to ℑI ½Ḡ�,
which enters integrals which decrease fast enough in the
UV [see the suppression by powers of s in (C6)], the
convergence of the integrals with σ [see e.g. (11) and (B9)]
is assured by the UV behavior of σ, which has to be

preserved by the fit. This time, fitting σ2 would not be
enough because when computing integrals using the trans-
formed variable t [see the definition in the paragraph before
(C4)] the Jacobian JðtÞ ¼ ð1 − tÞ−2 of the transformation is
divergent as t → 1. This would lead in the integrals
involving σ to a blowing-up of the oscillations of the
spline when t → 1. Since limt→1JðtÞσðtÞ is finite, the way
out is to fit the function ðJðtÞσðtÞÞ2 with a spline on the grid
introduced in (C4). In this way, the spline respects the
requirements of having appropriate behaviors around the
threshold and in the UV.
The second intricacy is related to the coefficient Z of the

pole part of the spectral function. This has to be evaluated
from iteration to iteration either from the sum rule (B9) or as
the residue of the pole (B10).While in principle the twoways
of computing Z are equivalent, numerical differences could
occur, as we show in Fig. 8. There, we present the value of Z
computed in the above-mentioned two ways at the end of
the iterative method. It turned out that for the iterations to
converge it is actually very important to ensure that the sum
rule is satisfied iteration by iteration, since this guarantees the
proper asymptotic behavior of the propagator, which was
also used to renormalize the real part of the bubble (see
Sec. II B). Hence, when solving the equations, Z is always
evaluated from the sum rule (B9). The difference seen in
Fig. 8 has purely a numerical reason. Increasing the precision
of the numerical integration substantially reduces the differ-
ence which grows with increasing λ.

APPENDIX D: EXPLICIT FORM OF
SOME INTEGRALS

In this Appendix, we give the expression of the finite
Euclidean tadpole (7a) and setting-sun (7c) integrals
after analytically performing as many of their angular

FIG. 8. We show, as a function of the coupling λ, the difference
between the two ways of determining the coefficient Z of the
singular, pole part of the spectral function: when calculated from
(B10) as the residue of the pole, it is denoted by Zd, and when
obtained from the sum rule (B9), as done during the iterations, it
is denoted by Zs. See the text for more details.

10This is used because Steffen’s method leads to an interpo-
lation function which is monotonic between the given data points.
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integrals as possible. The cutoff regularization used is
such that an integral involving at least two propagators
is invariant with respect to shifts of the loop momenta
(see e.g. Appendix D of Ref. [32]). The parts contain-
ing Gr, that is (7a) and the third term of (7c), read
(q ¼ jQEj)

T F½GE� ¼
1

8π2

Z
Λ

0

dqq3Gr;EðqÞ; ðD1Þ

Z
QE

Gr;EðQEÞBF½G0;E�ðQEÞ

¼ 1

8π2

Z
Λ

0

dqq3BF½G0;E�ðqÞGr;EðqÞ; ðD2Þ

where

Gr;EðqÞ ¼ δGEðqÞ

þ
�
M2

l −M2
0 −

λ2

2
ϕ2BF½G0;E�ðqÞ

�
G2

0;EðqÞ;

with δGEðqÞ¼GEðqÞ−G0;EðqÞ and G0;EðqÞ¼ðq2þM2
0Þ−1.

Observing that the other two terms of (7c) can be com-
bined, one obtains

SE½δGE�þ3SE½δGE;δGE;G0;E�

¼ 1

64π5

Z
Λ

0

dkkδGEðkÞ
Z

Λ

0

dppδGEðpÞ

×
Z

minðΛ;kþpÞ

jk−pj
dqq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λðq2;k2;p2Þ

q
ðGEðqÞþ2G0;EðqÞÞ;

ðD3Þ
with λðq2; k2; p2Þ defined after (11).
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