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We consider radiative corrections to false vacuum decay within the framework of quantummechanics for
the general potential of the form 1

2
Mϕ2ðϕ − AÞðϕ − BÞ, whereM, A and B are arbitrary parameters. For this

type of potential we provide analytical results for Green function in the background of a corresponding
bounce solution together with a one loop expression for false vacuum decay rate. Next, we discuss the
computations of higher order corrections for false vacuum decay rates and provide numerical expressions
for two and three loop contributions.
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I. INTRODUCTION

First-order phase transitions driven by scalar fields play an
important role in high-energy, astro-particle physics and
cosmology. Such first order phase transitions go through the
nucleation of new phase bubbles, often around impurities,
which subsequently expand. A well known example, which
attracted recently a lot of attention, is the possible metasta-
bility1 of an electroweak vacuum at a scale around 1011 GeV
[10–17]. Next, first-order phase transitions have a potential
of producing stochastic gravitational wave backgrounds
[18–22], which could be further studied experimentally
by existing and forthcoming gravitational wave experiments
[23]. In addition, first order electroweak phase transition may
satisfy Sakharov’s conditions [24] and be responsible for the
generation of the baryon asymmetry of our Universe, see
[25,26] and references therein. The amount of produced
baryon asymmetry crucially depends on the dynamics of
phase transition. It should be noted, that in Standard Model
the electroweak phase transition is not actually first order, but
a crossover [27–30]. However, electroweak baryogenesis
could survive in its extensions, many of which include extra
dynamical scalar fields. The role of impurities catalyzing the
mentioned first-order phase transitions may be played by
small evaporating black holes or other gravitational inho-
mogeneities, see [31–34] and references therein.
The first rigorous description of the mentioned quantum

phase transition between different vacuum states appeared
in [35–38]. As is known, the false vacuum decay rate may
be related to the imaginary part of ground state energy.
However, to calculate the latter one first needs to perform
an analytical continuation of the potential so that the false
vacuum is stable. This original method was further

developed and is known now as the potential deformation
method, see for review [39–44]. Recently a more direct
way to compute tunneling probabilities using path inte-
grals appeared in [45], see also [44]. In both methods the
decay rates are given by path integrals around bounce
configurations (solutions of the Euclidean equations of
motion used to evaluate path integrals in saddle point
approximation) divided by corresponding path integrals
around static false vacuum (FV) solutions.
At one loop there is a number of different methods to

compute functional determinants arising in the evaluation of
path integrals. Among them are direct evaluations of
spectrum for solvable potentials,2 heat kernel methods
[46–49], Green function methods [50–54], and of course,
the famous Gel’fand-Yaglom method [55] and its general-
izations [56,57]. Themethods beyond one loop were mostly
developed in the study of instantons [58–60] in quantum
mechanics [61–65], the effective Euler-Heisenberg
Lagrangian [66–68], and corrections to classical string
solutions [69,70].
The purpose of this paper is to extend the methods of

[61–65] for the computation of higher order radiative
corrections to false vacuum decay in quantum mechanics.
We organized the paper as follows. In Sec. II we set up our
framework and present bounce solutions for the potential of
the most general form containing both cubic and quartic
interactions. Next, we derive analytical expressions for the
Green function in the background of the found bounce
solution. We were able to determine the one-loop false
vacuum decay rate analytically using the Gel’fand-Yaglom
method. Beyond the one loop, we used the Feynman
diagram technique on the top of false vacuum and bounce
solutions to get two and three loop corrections to the decay
rate. Finally, in Sec. III we come with our conclusion.

1For tunneling rates calculations in the Standard Model and its
extensions, see [1–9] and references therein. 2See [42] and references therein.
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II. FALSE VACUUM DECAY
IN QUANTUM MECHANICS

The perturbative vacuum obtained by small quantum
fluctuations around a false (metastable) vacuum will
eventually decay. This means that the energy of the ground
state has a small imaginary part. The most convenient way
to compute ground state energy is to consider small
temperature behavior of the thermal partition function.

ZðβÞ ¼ tre−βHðβÞ; ð1Þ

so that

E ¼ − lim
β→∞

1

β
logZðβÞ: ð2Þ

The imaginary part of the energy comes from imaginary
part of the thermal partition function3

ImE ¼ − lim
β→∞

1

β

ImZ
ReZ

: ð3Þ

To compute thermal partition function ZðβÞ we will use
its path integral representation

ZðβÞ ¼
Z

D½qðtÞ�e−SðqÞ; ð4Þ

where the Euclidean action SðqÞ is given by

SðqÞ ¼
Z

β=2

−β=2
dt

�
1

2
ð _qðtÞÞ2 þUðqÞ

�
; ð5Þ

and the path integral is taken over periodic trajectories,
such that

qð−β=2Þ ¼ qðβ=2Þ: ð6Þ

We will be interested in the general potential of the form

UðqÞ ¼ 1

2
Mq2ðq − AÞðq − BÞ ¼ m

2
q2 þ a

3
q3 þ b

4
q4; ð7Þ

where M, A and B (m, a and b) are arbitrary parameters,
such that M, A B > 0 (m > 0, a < 0, b > 0). The two sets
of parameters M, A, B and m, a, b are related to each
other via

M ¼ b
2
; A ¼ −2a

3b

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

9bm
2a2

r �
;

B ¼ −2a
3b

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

9bm
2a2

r �
: ð8Þ

This particular potential is the most general potential
having qubic and quartic interaction terms in addition to the
harmonic potential. The typical potentials generally con-
sidered in literature arise as its limiting cases. At the same
time, this particular potential is amenable to analytical
treatment similar to the well-known case of double well
potential. In Fig. 1 we plotted the potential for two specific
choices of parameters.
As we already mentioned in the Introduction, the real

part of the thermal partition function is given by the path
integral around a false vacuum, while the imaginary part is
given by the path integral around a bounce solution.4 The
bounce solution is the solution of the classical equation of
motion connecting the minima of the potential, which could
be easily found using energy conservation for the inverted
potential VðqÞ ¼ −UðqÞ:

1

2
_q2 − UðqÞ ¼ 0 ¼ Eðβ → ∞Þ; ð9Þ

where we have stressed that we are looking for the β ¼ ∞
solution corresponding to classical false vacuum energy.

FIG. 1. The potentials for two specific choices of parameters, UðqÞ ¼ 1
2
q2 − 1

3
q3 on the left and UðqÞ ¼ 1

2
q2ðq − 4Þðq − 8Þ on the

right.

3See for example [42].

4We refer interested reader for example to [44] for more
details.
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Integrating the above energy conservation condition, we get
the mentioned bounce solution parameterized by t0

qbðtÞ ¼
2AB

Aþ Bþ ðB − AÞ coshð ffiffiffiffiffiffiffiffiffiffiffi
ABM

p ðt − t0ÞÞ
: ð10Þ

Figure 2 contains an example of a bounce solution in the
limit of small b, where Uðq�Þ and q� are given by

Uðq�Þ ¼
−1
24b3

�
a4 − 6a2bmþ 6b2m2 ∓

∓ a4
�
1 −

4bm
a2

�3
2

�
ð11Þ

q� ¼ −
a
2b

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4bm
a2

r �
: ð12Þ

Next, the bounce action is independent of t0 and is given by

Sb ¼
1

12

ffiffiffiffiffi
M

p � ffiffiffiffiffiffiffi
AB

p
ð3A2 − 2ABþ 3B2Þ

− 3ðA − BÞ2ðAþ BÞarc tan h
� ffiffiffiffi

A
p
ffiffiffiffi
B

p
��

; ð13Þ

where arc tan hðxÞ ¼ 1
2
log 1þx

1−x. The original action (5) may
be further rewritten in terms of the deviation from the
classical configuration, φðtÞ≡ qðtÞ − qbðtÞ as

S ¼ Sb þ
1

2

Z
β=2

−β=2
dtφðtÞDφðtÞ

þ
Z

β=2

−β=2
dt

�
4ABM

Aþ Bþ ðB − AÞ coshðTÞ −
1

2
MðAþ BÞ

�
φ3ðtÞ þ 1

2
M

Z
β=2

−β=2
dtφ4ðtÞ; ð14Þ

where

D≡ −
d2

dt2
þ ABM

�
1 −

6B
Aþ Bþ ðB − AÞ coshðTÞ þ

6AððA − BÞ coshðTÞ − Aþ 3BÞ
ðAþ Bþ ðB − AÞ coshðTÞÞ2

�
; ð15Þ

and we have introduced the abbreviation T ¼ ffiffiffiffiffiffiffiffiffiffiffi
ABM

p
t. While making the transition to the deviations from the bounce

solution, special care should be taken due to the existence of the zero mode of operator D. The latter is given by
φ0ðtÞ ¼ −S−1=2b

d
dt0

qbðtÞ. To integrate over this zero mode, we employ a Faddeev-Popov-like trick, as in [61,62], and insert
the unity operator into our path integral, written as5

1 ¼
Z

dt0δðfðt0ÞÞ
dfðt0Þ
dt0

; ð16Þ

FIG. 2. UðqÞ on the left and corresponding bounce solution on the right.

5See also [59,60].
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where

fðt0Þ ¼
Z

φðτÞφ0ðτÞdτ ¼
Z

ðqðτÞ − qbðτÞÞφ0ðτÞdτ;

ð17Þ
dfðt0Þ
dt0

¼ S1=2b þ
Z

φðτÞ d
dt0

φ0ðτÞdτ: ð18Þ

This way we get

1 ¼
Z

dt0

�
S1=2b þ

Z
φðτÞ d

dt0
φ0ðτÞdτ

�
δðc0Þ; ð19Þ

where c0 is the coefficient in front of our zero mode in the
expansion of deviation φðτÞ in terms of eigenfunctions of
the D operator

φðτÞ ¼
X
n

cnφnðτÞ: ð20Þ

We see, that this procedure gives us an extra tadpole vertex
coming from the integration measure in addition to those
we get from the Lagrangian (14). The presented procedure
is known as a transition to collective coordinates. In the
case under consideration, the only collective coordinate
present is given by t0.

A. Green function in the background
of a bounce solution

TheGreen functionat a falsevacuumiseasy to find, and it is
given by the solution of corresponding Schrödinger equation:

GFVðt1; t2Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffi
ABM

p exp−
ffiffiffiffiffiffiffiffi
ABM

p jt1−t2j ð21Þ

or

GFVðx; yÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffi
ABM

p 1 − jx − yj − xy
1þ jx − yj − xy

; ð22Þ

where x ¼ tanh
ffiffiffiffiffiffiffiffi
ABM

p
t1

2
and y ¼ tanh

ffiffiffiffiffiffiffiffi
ABM

p
t2

2
.

The determination of the Green function in the back-
ground of a bounce solution is more involved. As we have
already seen in the previous section, the corresponding
inverse operator D has a zero mode. The inversion of the
latter is consistently defined only on the subspace of
functions orthogonal to this zero mode (Fredholm alter-
native). More concretely, the Green function we will be
looking for is defined as6

Gbðt1; t2Þ ¼
X
n;λn≠0

φnðt1Þφnðt2Þ
λn

; ð23Þ

whereDφn ¼ λnφn and the summation goes over all modes
except the zero one. It is easy to check that the equation
satisfied by this Green function is given by

DGbðt1; t2Þ ¼ δðt1 − t2Þ − φ0ðt1Þφ0ðt2Þ ð24Þ

or

∂
∂x

�
ð1 − x2Þ ∂Gbðx; yÞ

∂x
�
−
4fr4x2ð3 − 2x2Þ þ r2ð3x4 − 8x2 þ 3Þ þ ð3x2 − 2Þg

ð1 − x2Þð1 − r2x2Þ2 Gbðx; yÞ

¼ −
2ffiffiffiffiffiffiffiffiffiffiffi
ABM

p δðx − yÞ þ γxyð1 − y2Þ
ð1 − r2x2Þ2ð1 − r2y2Þ2 ; ð25Þ

where r ¼
ffiffiffi
A
B

q
and

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ABM

p

×
48r5ð1 − r2Þ2

rð3 − 2r2 þ 3r4Þ − 3ð1 − r2Þ2ð1þ r2Þtanh−1ðrÞ :

ð26Þ

The first solution of the homogeneous equation is given by
the zero mode of the operator D we found in the previous
section:

yhom;1ðxÞ ¼
xð1 − x2Þ
ð1 − r2x2Þ2 : ð27Þ

The second solution may be found using the so-called
reduction of order method. First, from Abel’s differential
equation identity, we get an equation for the Wronskian
of homogeneous solutions WðxÞ≡ yhom;1ðxÞy0hom;2ðxÞ−
y0hom;1ðxÞyhom;2ðxÞ:

dWðxÞ
WðxÞ ¼ −d logð1 − x2Þ: ð28Þ

Integrating the latter together with the subsequent first
order differential equation (obtained from known expres-
sions for Wronskian and first homogeneous solution) for
yhom;2ðxÞ, we get

6The normalization of wave functions to unity is assumed.
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yhom;2ðxÞ ¼ yhom;1ðxÞ
Z

dx
ð1 − x2Þy2hom;1ðxÞ

¼ xð1 − x2Þ
16ð1 − r2x2Þ2

�
−
16

x
− 16r8xþ 4xð1 − r2Þ4

ð1 − x2Þ2 þ 2ð1 − r2Þ3ð7þ 9r2Þx
1 − x2

þ 3ð1 − r2Þ2ð5þ 6r2 þ 5r4Þ log 1þ x
1 − x

�
:

The particular solution of the nonhomogeneous solution is then found by the variation of constants and is given by

ynonhomðxÞ ¼ yhom;2ðxÞ
Z

yhom;1ðxÞfðxÞ
WðxÞ dx − yhom;1ðxÞ

Z
yhom;2ðxÞfðxÞ

WðxÞ dx; ð29Þ

where

fðxÞ ¼ γxyð1 − y2Þ
ð1 − x2Þð1 − r2x2Þ2ð1 − r2y2Þ2 : ð30Þ

The integrals in the above expression could be evaluated
in terms of polylogarithms. However, the expressions we
get are quite lengthy, and we put them in the mathematica
file accompanying this article (see Supplemental Material

[71]). Here, we will present analytical expressions only for
two particular cases. In the limit7 b → 0 we get

ynonhomðx; yÞ ¼
3xyð1 − y2Þ

4

�
1þ 1

3ð1 − x2Þ
�

ð31Þ

and in the case r ¼
ffiffiffi
A
B

q
¼ 1ffiffi

2
p the particular solution takes

the form:

ynonhomðx; yÞ ¼ y0ðx; yÞ
�
183 − 89x2 − 72x4

96ðx2 − 1Þ2 −
37

256
ð44þ 9

ffiffiffi
2

p
logð3 − 2

ffiffiffi
2

p
ÞÞ logð1 − xÞ

þ 37

256
ð−44þ 9

ffiffiffi
2

p
logð3þ 2

ffiffiffi
2

p
ÞÞ logð1þ xÞ þ 407

64
logð2 − x2Þ

−
3ð128 − 273x2 þ 135x4 þ 8x6Þ

64
ffiffiffi
2

p
xðx2 − 1Þ2 log

�
2 −

ffiffiffi
2

p
x

2þ ffiffiffi
2

p
x

�
þ 2 log

�
x2 − 1

x2 − 2

�

−
333

128
ffiffiffi
2

p ½Li22ðð1 −
ffiffiffi
2

p
Þðx − 1ÞÞ − Li22ðð1þ

ffiffiffi
2

p
Þðx − 1ÞÞ

þ Li22ðð
ffiffiffi
2

p
− 1Þð1þ xÞÞ − Li22ð−ð1þ

ffiffiffi
2

p
Þð1þ xÞÞ�

�
; ð32Þ

where

y0ðx; yÞ ¼
γjr¼1=

ffiffi
2

p xyð1 − x2Þð1 − y2Þ
ð2 − x2Þ2ð2 − y2Þ2 : ð33Þ

The Green function in the background of the bounce
solution is then given by

Gðx; yÞ ¼ C1ðyÞyhom;1ðxÞ þ C2ðyÞyhom;2ðxÞ
þ ynonhomðx; yÞ; ð34Þ

with C1ðyÞ and C2ðyÞ, which are some arbitrary func-
tions of variable y. The latter are determined from the
conditions:
(1) Gðx; yÞ is finite for x → �1 (t1 → �∞);
(2) Gðx; yÞ is continuous at x ¼ y (t1 ¼ t2);
(3) Gðx; yÞ is orthogonal to the zero mode yhom;1ðxÞ (27)

(we accounted for the Jacobian of transition from t1
to x, J ¼ 2

1−x2):

Z
1

−1

dx
1 − x2

yhom;1ðxÞGðx; yÞ ¼ 0: ð35Þ

Using the first two conditions together with the fact
that the Green function is symmetric with respect to the7One should take a limit and not just set b to zero.
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exchange of variables x ↔ y, we were able to determine the
Green function analytically up to one unknown constant.
The latter could be found using the third condition numeri-
cally. The resulting expression for the Green function is too
lengthy and could be found in the accompanying mathe-
matica file. In the limit b → 0, the analytical expression is

quite short and the corresponding Green function is given
by (bma2 ≪ 1 or A

B ≪ 1)

Gðx; yÞ ¼ G0ðx; yÞ þ bG1ðx; yÞ þOðb2Þ; ð36Þ
where

G0ðx; yÞ ¼
1

2m1=2

�
g0ðx; yÞ

�
ðx2 þ y2Þð6xy − 4Þ þ 3xyð4 − 5xyÞ

−
1

4
jx − yjð8 − 55xyþ 15x2y2 þ 8ðx2 þ y2ÞÞ

�

þ 15

8
xyð1 − x2Þð1 − y2Þ

�
log ðg0ðx; yÞÞ −

31

15

��
; ð37Þ

G1ðx; yÞ ¼
9m1=2

16a2

�
3xyðx2 þ y2 − x4 − y4Þ − xy

�ð1 − y2Þ2
1 − x2

þ ð1 − x2Þ2
1 − y2

�

þ jx − yj
2

�
xyð6 − 5ðx2 þ y2ÞÞ þ þ26x2y2 − 10ðx2 þ y2 − x4 − y4Þ − 15x2y2ðx2 þ y2Þ

þ 2ðxþ yÞ
�
xð1 − x2Þ
1 − y2

þ yð1 − y2Þ
1 − x2

��

þ 3

28
xyð1 − x2Þð1 − y2Þ

�
35ðx2 þ y2Þ

�
log ðg0ðx; yÞÞ −

217

105

�
− 30 log ð1 − jx − yj − xyÞ

− 2 log ð1þ jx − yj − xyÞ − 242

5
þ 64 log 2

��

and

g0ðx; yÞ ¼
1 − jx − yj − xy
1þ jx − yj − xy

: ð38Þ

Finally, Figs. 3 and 4 contain plots of Green functions
in the background of the bounce solution for two
sets of parameters m ¼ 1, b ¼ 0 and M ¼ 1, A ¼ 4,
B ¼ 8.

FIG. 3. The Green function in the background of the bounce solution for m ¼ 1, b ¼ 0: (left)—values of Green function at y ¼ 0
(solid line), y ¼ 0.5 (dot-dashed line), y ¼ 0.8 (dashed line), (right)—the Green function as a function of x, y variables

M. A. BEZUGLOV and A. I. ONISHCHENKO PHYSICAL REVIEW D 96, 036001 (2017)

036001-6



B. One loop expression

At one loop, the real and imaginary parts of our thermal
partition function are given by8 (ZFV is the partition
function evaluated by the expansion at false vacuum):

ReZ ¼ ZFVðβÞ ð39Þ

ImZ ¼ 1

2i
ZFVðβÞ lim

β→∞

�
−

det0D
detDFV

�
−1=2 βS1=2bffiffiffiffiffiffi

2π
p e−Sb ð40Þ

so, that for imaginary part of energy we get

ImE ¼ S1=2b

2
ffiffiffiffiffiffi
2π

p lim
β→∞

�
−

det0D
detDFV

�
−1=2

e−Sb : ð41Þ

The easy way to derive an expression for the ratio
of functional determinants is to use the formalism of
Gel’fand and Yaglom [55], see also [42,49]. Within the
latter, given a Schödinger operator defined on the interval
t ∈ ½− β

2
; β
2
� with eigenfunctions satisfying Dirichlet9 boun-

dary conditions

LψðtÞ ¼ ½−∂2
t þUðtÞ�ψðtÞ ¼ k2ψðtÞ;

ψ

�
−
β

2

�
¼ ψ

�
β

2

�
¼ 0; ð42Þ

its determinant is found as a solution of the auxiliary
problem

½−∂2
t þ UðtÞ�ϕðtÞ ¼ 0; ϕ

�
−
β

2

�
¼ 0; _ϕ

�
−
β

2

�
¼ 1;

ð43Þ

so that

det ½−∂2
t þ UðtÞ� ¼ ϕ

�
β

2

�
: ð44Þ

In general, the above determinants diverge, so one gen-
erally considers their ratio

detL1

detL2

¼ ϕ1ðβ2Þ
ϕ2ðβ2Þ

: ð45Þ

This result could be straightforwardly obtained using the
contour integration technique of Kirsten and McKane
[56,57]. Indeed, writing the eigenvalue problem as

ðLj − k2Þuj;kðtÞ ¼ 0; uj;k

�
−
β

2

�
¼ 0; _uj;k

�
−
β

2

�
¼ 1

ð46Þ
and noting that if uj;kðtÞ satisfies the Dirichlet boundary
conditions on both sides of the interval, i.e., if also

uj;k

�
β

2

�
¼ 0; ð47Þ

then k2 becomes the eigenvalue of Lj, and the sum of
chosen powers of all eigenvalues of the latter could be
conveniently represented by the following contour integral

ζLj
ðsÞ ¼

X∞
n¼1

1

k2sn
¼ 1

2πi

Z
γ
k−2s

d
dk

ln uj;k

�
β

2

�
dk; ð48Þ

FIG. 4. Green function in the background of bounce solution for M ¼ 1, A ¼ 4, B ¼ 8: (left)—values of Green function at y ¼ 0
(solid line), y ¼ 0.5 (dot-dashed line), y ¼ 0.8 (dashed line), (right)—Green function as a function of x, y variables

8See for example [42,44].
9In the zero temperature case considered here, it is enough to

consider Dirichlet boundary conditions.
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where the contour runs counterclockwise and we used the
fact that in the vicinity of the eigenvalue kn

d
dk

ln uj;k

�
β

2

�
≈

1

k − kn
: ð49Þ

The logarithmic derivative converges10 as jkj → ∞, and the
integration contour could be deformed as we wish.
Deforming the latter to imaginary axis we get

ζL1
ðsÞ − ζL2

ðsÞ ¼ sinðπsÞ
π

Z
∞

0

k−2s
d
dk

ln
u1;ikðβ2Þ
u2;ikðβ2Þ

dk: ð50Þ

Recalling now that the operator determinants could be
expressed as exponentials of the introduced zeta functions
derivatives at zero, the determinant ratio is given by

detL1

detL2

¼ eζ
0
L2
ð0Þ−ζ0L1 ð0Þ ¼ u1;0ðβ2Þ

u2;0ðβ2Þ
: ð51Þ

The presented derivation is valid if the considered operators
do not contain zero modes. In our case, L1 does actually
have a zero mode due to the time translation invariance, and
the above contour deformation is ill defined as u1;kðβ2Þ is
zero at k ¼ 0. To overcome this difficulty, we need to know
the behavior of u1;kðβ2Þ for small k to eliminate the pole in
the integrand. Integrating by parts, the left-hand side of

Z β
2

−β
2

dtu1;0ðtÞ�L1u1;kðtÞ

¼ k2
Z β

2

−β
2

dtu1;0ðtÞ�u1;kðtÞ≡ k2hu1;0ju1;ki ð52Þ

gives

½ _u1;0ðtÞ�u1;kðtÞ − _u1;kðtÞ�u1;0ðtÞ�
β
2

−β
2

þ
Z β

2

−β
2

dtu1;kðtÞðL1u1;0ðtÞÞ� ¼ k2hu1;0ju1;ki: ð53Þ

Using the boundary conditions for u1;0ðtÞ and u1;kðtÞ,
we get11

u1;k

�
β

2

�
¼ k2hu1;0ju1;ki

_u1;0ðβ2Þ
≡ −k2f1;k: ð54Þ

It is easy to see that due to the orthogonality of the
eigenfunctions, f1;k vanishes for all values of k2 except

at k ¼ 0, where it remains nonzero. A function which
behaves as u1;kðβ2Þ for large k but is nonzero for k ¼ 0 is
given by ð1 − k2Þf1;k, so the contour integral associated
with the determinant of L1 is given by

1

2πi

Z
γ
k−2s

d
dk

lnð1 − k2Þf1;kdk

¼ ζL1
ðsÞ þ 1

2πi

Z
γ
k−2s

d
dk

lnð1 − k2Þdk; ð55Þ

where the zero mode from ζL1
ðsÞ was omitted. The second

integral on the right-hand side is easily taken by a residue at
simple pole k ¼ 1 and we get

ζL1
ðsÞ − ζL2

ðsÞ

¼ sinðπsÞ
π

Z
∞

0

k−2s
d
dk

ln

�ð1þ k2Þf1;ik
u2;ikðβ2Þ

�
− 1: ð56Þ

The expression for the corresponding determinant ratio is
then given by

det0L1

detL2

¼ eζ
0
L2
ð0Þ−ζ0L1 ð0Þ ¼ f1;0

u2;0ðβ2Þ
¼ −

hu1;0ju1;0i
_u1;0ðβ2Þu2;0ðβ2Þ

; ð57Þ

where det0 denotes the determinant with the zero eigenvalue
omitted. The expression for the u1;0ðxÞ function in the case
of the functional determinant around the bounce solution
could be easily found using the methods presented in the
previous section and is given by

u1;0ðtÞ ¼ _qbð−β=2Þ _qbðtÞ
Z

t

−β
2

dt0

ð _qbðt0ÞÞ2
: ð58Þ

Here, we assumed that the parameter t0 of the bounce
solution was chosen, so that q̈bð− β

2
Þ ¼ 0. This result could

be easily generalized for more complicated boundary
conditions, both with and without zero modes [56,57].
Finally, in our particular case we get

lim
β→∞

det0 Lb

detLFV
¼ lim

β→∞

det0 D
detDFV

¼ −
ð1 − r2Þ2

32r7B5M3=2 Sb; ð59Þ

so that the imaginary part of energy is given by

ImE ¼ 2AB
B − A

M3=4A3=4B3=4ffiffiffi
π

p e−Sb : ð60Þ

We have checked that the same expression is reproduced
using the formula presented in [50,51]. Moreover, it could
also be obtained using slight modification of the derivation
presented in [42] for the case of U00ð0Þ ¼ ω2 ≠ 1. The
above determinant ratio in this case is given by

10At large k, the potential in the Scrödinger operator could be
neglected and we have uj;k ≈ sinðkxÞ½1þOðk−1Þ�.

11We dropped the � as we are dealing with real solutions only.
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lim
β→∞

det0D
detDFV

¼ −
Sb

2ωq20
exp

�
−2

Z
q0

0

dx

�
ωffiffiffiffiffiffiffiffiffiffiffiffi
2VðxÞp −

1

x

��
;

ð61Þ

where q0 is the zero of potential and the turning point for
the bounce solution. In our case, q0 ¼ A. The correspond-
ing imaginary part of energy is then found with

ImE ¼ ω
3
2q0

2
ffiffiffi
π

p exp

�Z
q0

0

dx

�
ωffiffiffiffiffiffiffiffiffiffiffiffi
2VðxÞp −

1

x

��
e−Sb ð62Þ

C. Non-Gaussian effects

To calculate higher order corrections, we are following
[61–65] and use the Feynman diagram technique on top of
the false vacuum and bounce solution. The first is used to
calculate higher order contributions to the real part of the
thermal partition function, while the latter is for higher
order radiative corrections to its imaginary part. The
corresponding Feynman rules are easy to derive and they
are given by

V3;FV ¼ 3MðAþ BÞ; V4;FV ¼ −12M;

V3;b ¼ 3M

�
Aþ B −

4ABð1 − x2Þ
B − Ax2

�
; V4;b ¼ −12M;

V tad ¼
A2ðA − BÞB2Mð1 − x2ÞðB − 3ðB − AÞx2 − Ax4Þ

2SbðAx2 − BÞ3 :

ð63Þ

Note, that Feynman diagrams on top of bounce solution
may contain single tadpole vertex coming from the
Jacobian of transition to collective coordinate (19). Such
diagrams appear only for the expansion on top of the
bounce solution and are absent in the case of a false

vacuum. The Green functions for the cases of the false
vacuum and bounce solution were given in the previous
subsection. Figures 5, 6, and 7 contain two and three loop
diagrams containing only cubic vertexes, tadpole vertexes,
and extra quartic vertexes, correspondingly. The diagram
expressions, with account for symmetry factors, are con-
structed as how they usually done in quantum field theory.
For example, the expression for the Feynman diagram b22
(see Fig. 6) is given by:

Ib22 ¼
1

4

Z
1

−1
dx

Z
1

−1
dy

Z
1

−1
dz

Z
1

−1
dwJ4VtadðxÞV3;bðyÞ

× V3;bðzÞV3;bðwÞGðx; yÞG2ðy; zÞGðz; wÞGðw; wÞ;
ð64Þ

where Jn ¼
Q

n
i¼1 2=ð1 − x2i Þ is the Jacobian of transition

from t1; t2;…tn to x; y;…; w variables.
Diagrams without tadpole vertexes are present both in

corrections to real and imaginary parts of thermal partition
function. As the imaginary part of energy, what we are
interested in is defined by their ratio, and it is convenient to
combine these contributions, so that for example, the
difference of the corresponding diagrams c24 for the
bounce and false vacuum solutions is given by:

Ic24 ¼
1

12

Z
1

−1
dx

Z
1

−1
dy

Z
1

−1
dzJ3ðV3;bðxÞV4;bðyÞV3;bðzÞGðx; xÞGðx; yÞG3ðy; zÞ

− V3;FVðxÞV4;FVðyÞV3;FVðzÞGFVðx; xÞGFVðx; yÞG3
FVðy; zÞÞ: ð65Þ

FIG. 5. Two and three loop Feynman diagrams with only cubic
interaction vertexes.

FIG. 6. Two and three loop Feynman diagrams with tadpole
vertexes.

FIG. 7. Two and three loop Feynman diagrams with quartic in
addition to cubic interaction.
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To calculate two and three loop corrections to the false
vacuum decay rate for arbitrary values of parameters A, B,
M, one may use the mathematica notebook accompanying
this article, where required numerical integrations are

performed with the help of CUBA library [72]. Here we
will only present the results for two particular cases used
throughout this paper. In the limit b → 0, the imaginary
part of energy up to a three-loop accuracy is given by

ImE ¼ 2AB
B − A

M3=4A3=4B3=4ffiffiffi
π

p e−Sb
�
1þ I02 þ b

a2 I
1
2 þOðb2a4Þ
Sb

þ I03 þ b
a2 I

1
3 þOðb2a4Þ
S2b

þOð1=S3bÞ
�
; ð66Þ

where in this case, Sb ¼ 6
5a2 þ 4131

560
b
a4 þOðb2Þ and Ii2 are two

loop and Ii3—three loop contributions (see Tables I and II)

I02 ¼ I0a11 þ I0a12 þ I0b11;

I03 ¼
X5
k¼1

I0a2k þ
X3
k¼1

I0b2k þ I02contr; ð67Þ

with

I02contr ¼
1

2
ðI0a11 þ I0a12Þ2

þ I0b11ðI0a11 þ I0a12Þ ≈ 0.106 ð68Þ

and

I02 ¼ −1.4083307� 7.58 × 10−6;

I12 ¼ −9.66805� 5.2 × 10−5;

I03 ¼ −1.543� 0.0045:

In the case of M ¼ 1, A ¼ 4, B ¼ 8, the corresponding
corrections are given by (see Tables III and IV for the
contributions of individual diagrams):

TABLE II. Linear in b corrections to all two-loop diagram
contributions in the case of UðqÞ ¼ 1

2
q2 þ a

3
q3 þ b

4
q4 potential.

Here, s is the symmetry factor, i—diagram label, and Ii—the
diagram numerical value with absolute error (c11 is calculated
exactly).

i s I1i

a11 1=12 −0.748447� 1.5 × 10−5

a12 1=8 −0.981144� 4.8 × 10−5

b11 1=2 −8.338409� 1.2 × 10−5

c11 1=8 6159=15400

TABLE I. Contributions of all two ant three loop diagrams in
the case of UðqÞ ¼ 1

2
q2 þ a

3
q3, potential. Here, s is the symmetry

factor, i—diagram label and Ii—the diagram numerical value
with absolute error (b11 is calculated exactly).

i s I0i

a11 1=12 −0.162143� 1.97 × 10−6

a12 1=8 0.0847623� 7.32 × 10−6

b11 1=2 −559=420
a21 1=16 0.4497� 1.5 × 10−4

a22 1=24 −0.01245� 1.5 × 10−5

a23 1=16 0.100874� 4 × 10−5

a24 1=8 0.03801� 1.6 × 10−4

a25 1=48 0.3942� 0.0042
b21 1=4 −0.4297� 6.2 × 10−4

b22 1=4 −0.9156� 1.2 × 10−4

b23 1=8 −1.2745� 0.0016

TABLE III. Two loop contributions for the caseM ¼ 1, A ¼ 4,
B ¼ 8

i s Ii=Sb

a11 1=12 −0.0023081� 1.1 × 10−6

a12 1=8 −0.0310804� 2.5 × 10−6

b11 1=2 −0.0365297� 1.6 × 10−6

c11 1=8 0.00692251� 1.8 × 10−7

TABLE IV. Three loop contributions for the case M ¼ 1,
A ¼ 4, B ¼ 8. Here I2loop ¼ 1

2
ðIa11 þ Ia12 þ Ic11Þ2 þ

Ib11ðIa11 þ Ia12 þ Ic11Þ
i s Ii=S2b

a21 1=16 0.0000995� 2.2 × 10−6

a22 1=24 −0.00001402� 2.3 × 10−7

a23 1=16 0.00012921� 6.1 × 10−7

a24 1=8 0.0000343� 2.5 × 10−6

a25 1=48 −0.0000647� 1.1 × 10−6

c21 1=16 −0.000037825� 9 × 10−9

c22 1=8 0.00010217� 5 × 10−7

c23 1=8 −0.0002733� 3 × 10−7

c24 1=12 −0.00031362� 3.8 × 10−7

c25 1=48 0.00018471� 1 × 10−8

c26 1=8 −0.00009389� 2 × 10−7

c27 1=16 0.00020214� 2.6 × 10−7

b21 1=4 −0.0007047� 1.1 × 10−6

b22 1=4 −0.0014675� 1.6 × 10−6

b23 1=8 −0.0011163� 2.2 × 10−6

d21 1=4 0.0003165� 4.2 × 10−7

d22 1=4 0.00086871� 2.9 × 10−7

d23 1=6 0.00029151� 2.4 × 10−7

I2loop=S2b - 0.00131702� 1.1 × 10−7
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ImE ¼ 2M3=4A7=4B7=4ffiffiffi
π

p ðB − AÞ e−Sb
�
1þ I2

Sb
þ I3
S2b

�
; ð69Þ

where

I2=Sb ¼ −0.0629957� 3.2 × 10−6; ð70Þ

and

I3=S2b ¼ −0.0005401� 4.7 × 10−6; ð71Þ

We see that in the case with M ¼ 1, A ¼ 4, B ¼ 8, the
higher order corrections are small and could be safely
neglected. On the other hand, in the limit b → 0, the
radiative corrections could be sizeable if Sb ∼Oð1Þ, and
thus, should be taken into account.

III. CONCLUSION

In this paper, we considered the calculation of a false
vacuum decay rate for the case of an arbitrary potential

containing both cubic and quartic interactions in the
framework of quantum mechanics. We obtained analytical
expressions for both the Green functions in the background
of bounce solutions as well as for a one-loop false vacuum
decay rate. Besides, we provided numerical results for two
and three-loop contributions to the decay rate together with
a mathematica notebook, which could be used to evaluate
two and three-loop radiative corrections for arbitrary values
of cubic and quartic couplings. The presented techniques
could be further generalized to the case of quantum field
theory, which will be our next step.
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