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We explore ways of creating cold keV-scale dark matter by means of decays and scatterings. The main
observation is that certain thermal freeze-in processes can lead to a cold dark matter distribution in regions
with a small available phase space. In this way the free-streaming length of keV particles can be suppressed
without decoupling them too much from the Standard Model. In all cases, dark matter needs to be produced
together with a heavy particle that carries away most of the initial momentum. For decays, this simply
requires an off-diagonal dark matter (DM) coupling to two heavy particles; for scatterings, the coupling of
soft DM to two heavy particles needs to be diagonal, in particular in spin space. Decays can thus lead to
cold light DM of any spin, while scatterings only work for bosons with specific couplings. We explore a
number of simple models and also comment on the connection to the tentative 3.5 keV line.
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I. INTRODUCTION

Dark matter (DM) has been indirectly observed via its
gravitational interactions, be it in structure formation, galaxy
rotation curves or lensing. Additional couplings ofDM to the
particles of the StandardModel (SM) have been searched for
intensely but so far without an undisputed discovery.
Consequently, we have little information about the properties
of DM beyond its average abundance, apparent stability, and
ability to form structures. The latter implies that DM should
be sufficiently cold, i.e. nonrelativistic, in order to not wash
out the observed small structures in the Universe. For DM
particles motivated by the so-called WIMP (weakly interact-
ing massive particle) miracle this happens quite naturally for
DM masses above GeV. Persistent negative results in both
direct and indirect detection are, however, puttingpressure on
the standard WIMP paradigm and have led to an increase in
alternative DM scenarios.
One popular class here are models with DM particles

around the keV scale. For fermion DM, keV corresponds to
the smallest mass that still allows to form the small structures
that we observe in our Universe; this Tremaine-Gunn bound
[1,2] follows from Fermi-Dirac statistics and holds inde-
pendently of the DM production mechanism. No such strict
lower bound exists for bosonicDM,withmanymodels going
far below the keV scale, most prominently discussed for
axion DM [3]. Still, if keV-scale DM of any spin is produced
thermally in the broadest sense, one has to worry about the
formation of small structures. Particles of this kind are then
candidates for warm DM, meaning they possess a sizable
free-streaming length λfs of the order of 0.1Mpc that washes
out structures below λfs but behave similar to cold DM on
larger scales. This might be a better description of our

Universe than cold DM, which possibly predicts too many
small structures, judging by state-of-the-art simulations.
Reconcilement with observations might lie in the inclusion
of baryons in the simulations, which is an ongoing effort in
several groups [4]. While N-body simulations might hint at
an Oð0.1 MpcÞ free-streaming length, there are competing
constraints on structures of this size from Lyman-α data [5];
the inclusion of higher-resolution data from HIRES and
MIKE telescopes [6] leads to particularly strong bounds, but
they have to be interpreted with care in view of potential
astrophysical effects [7,8]. More simulations and data are
necessary to settle this point, but for now it seems that DM
free-streaming lengths slightly below the Lyman-α bounds
could still play a role in solving some of the structure-
formation issues that cold DM faces.
Besides structure formation, keV-scale DM also offers

interesting indirect detection signatures. Since only pho-
tons and neutrinos are possible final states for a decay, it
typically does not take absurdly small couplings to make
keV particles stable on cosmological scales. Compared to
WIMPs, it is therefore often not necessary to impose an
artificial stabilizing symmetry. X-ray photons from such
decaying DM can then be searched for in astrophysical
objects with large DM density and feature a different
morphology than photons from annihilating DM.
Interestingly, a linelike signal at the photon energy Eγ ≃
3.55 keV was observed in 2014 independently by two
different groups [9,10]. While the significance and mere
existence of this line is heavily debated, there is no clear
consensus as of now in the community. We will consider
this tantalizing excess as an interesting benchmark point in
this article but stress that our work is applicable in a more
general context. Taking the 3.55 keV line seriously in the
context of two-body DM decay, updated Lyman-α con-
straints disfavor or even exclude almost all currently
proposed production mechanisms for 7 keV DM [11,12],
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providing ample motivation for the ideas discussed in the
following.
KeV-scale fermion DM is most prominently discussed in

the context of sterile-neutrino DM—exhaustively reviewed
in Refs. [13–17]—while bosonicDM is often envisioned as
the pseudo-Goldstone boson of an approximate global
symmetry; in this way, huge radiative corrections to the
scalar DM mass can be avoided. Examples here are
Majorons [18–24], connected to the lepton symmetry
Uð1ÞL [25,26], familons [22], connected to family sym-
metries [27,28], and axion (or axionlike) particles [29,30],
connected with the Peccei-Quinn symmetry Uð1ÞPQ [31].
In order to not violate Lyman-α constraints, the production
mechanism of any keV-scale DM is required to be always
out of thermal equilibrium. The constraints are in fact
becoming so strong that even many out-of-equilibrium
mechanisms are already excluded, forcing the DM to be
increasingly weakly coupled, e.g. by successive freeze-in
mechanisms [32–34].
In this article we are going to present new ways to

produce keV-scale DM from thermal processes without
violating Lyman-α bounds by making use of kinematical
features in the way discussed at length below. A key aspect
of our mechanisms is that the parent particle(s) from which
DM is produced by decays or scattering can be at thermal
equilibrium with the SM during DM production. This
generically makes DM more testable than other existing
mechanisms (see however Refs. [35,36]) to produce cold
enough keV DM based, for instance, on a double freeze-in
of both DM and the parent particle. While the latter
typically requires very small couplings of both DM and
the parent particle to the SM, the mechanisms discussed
below allow (or even require, in some explicit models)
large couplings of the parent particle(s) with the SM, thus
making this testable at current or future experiments.
The rest of the article is structured as follows: in Sec. II

we discuss Lyman-α limits, which give the most important
constraints on the keV-scale DM scenarios under consid-
eration here. Section III lists the Boltzmann equations
necessary for our discussion and provides useful formulas
for DM observables. Our main ideas for cold light DM are
illustrated in Sec. IV with some simple toy models, while
more realistic scenarios are discussed in Sec. V. In Sec. VI
we finally discuss DM decays in connection with the
3.5 keV line, and conclude our work in Sec. VII.
Appendix A gives technical details about the Boltzmann
equations we employ in the main text, while Appendix B
lists some of the cross sections relevant for our discussion.

II. SMALL-SCALE STRUCTURE CONSTRAINTS

keV-scale DM has been discussed extensively in the
literature and is often motivated as a warm DM candidate. It
must be stressed, however, that keV DM particles do not
automatically form warm DM, because the ability to form
structures depends not on the mass but on the actual

momentum distribution fðp; TÞ of the particle. This, in
turn, depends strongly on the DM production mechanism
and the details of the following cosmological evolution.
Since fðp; TÞ can be arbitrarily complicated, it is nontrivial
to constrain its form from astrophysical data [37]. As an
approximation, it is often sufficient to define a simple free-
streaming length that contains the momentum average of
fðp; TÞ. Limits from small-scale structure observations are
typically given for two benchmark scenarios of keV-scale
fermion DM, which subsequently need to be translated to
bosonic DM and more general production mechanisms of
interest to us.

(i) Thermal relic (TR) DM, which was in thermal
equilibrium down to a decoupling temperature
TD ≫ keV.—The momentum distribution is then
simply Fermi-Dirac (FD), but with an entropy-
diluted temperature

TDM ¼
�

g�ðTÞ
g�ðTDÞ

�
1=3

T: ð1Þ

This momentum distribution gives a free-streaming
length [38]

λfs ∼Mpc

�
keV
mTR

��
g�ðTνÞ
g�ðTDÞ

�
1=3

ð2Þ

and DM abundance

ΩDMh2 ≃
�
g�ðTνÞ
g�ðTDÞ

��
mTR

94 eV

�
; ð3Þ

where g�ðTνÞ ¼ 10.75 is the entropy number of
degrees of freedom before neutrino decoupling,
which arises when translating the well-known neu-
trino abundance [39] to a different species. The
decoupling temperature TD can be eliminated from
λfs using ΩDM, which results in a characteristic
scaling λfs ∝ m−4=3

TR . For ΩDMh2 ≃ 0.12, Lyman-α
analyses (including high-resolution data [6]) give a
constraint of mTR ≳ 4.65 keV on this scenario [5,8],
which would in turn require an entropy factor
g�ðTDÞ≳ 4400 to obtain the correct relic abundance.
Seeing as the SM can only provide for
g�ðT > 200 GeVÞ ¼ 106.75, this would necessitate
an enormously large number of new particles at
higher temperatures (or another form of entropy
release after DM decoupling [40,41]). While not
impossible, this scenario is clearly disfavored, thus
forcing keV DM particles to be out of equilibrium.
Note that Ref. [42] gives an even stronger bound,
mTR ≳ 5.3 keV, but we will not use it here to stay
somewhat conservative. The impact of warm DM on
the ionization history of our Universe was recently

JULIAN HEECK and DANIELE TERESI PHYSICAL REVIEW D 96, 035018 (2017)

035018-2



studied in Ref. [43] but does not yet provide
competitive constraints on mTR.

(ii) Nonresonant production (NRP) [44], where the
sterile neutrino is produced out of equilibrium at
temperatures Oð100Þ MeV from oscillations of ac-
tive neutrinos with a FD distribution fðp; ð4=11Þ13TÞ
that is suppressed by the active-sterile mixing angle
[38,44].—The relic abundance is then effectively
a free parameter, and the free-streaming length is
simply

λfs ∼Mpc
�
keV
mNRP

�
: ð4Þ

Current limits on this scenario are mNRP ≳ 28.8 keV
[5]. Fixing the relic abundanceΩDMh2 ≃ 0.12 allows
one to derive a relation between mNRP and mTR that
leads to the same free-streaming length [38],

mNRP ≃ 4.5 keV
�
mTR

keV

�
4=3

: ð5Þ

Together with mTR ≳ 4.65 keV this gives a similar
bound on mNRP as a full analysis [5]. The limited
discrepancy is due to the fact that (5) does not take
into account the change in the number of degrees of
freedom during the QCD phase transition [45,46].
Note that this mechanism, too, is disfavored when
combined with x-ray limits [17].

The bounds onmTR ormNRP cannot, strictly speaking, be
translated to models with different production mechanisms,
for which a complete reanalysis with the full momentum
distribution fðp; TÞ is required. This is beyond the scope of
this work, since we will explore a multitude of different
production mechanisms and thus need a quicker way to
assess their resulting phenomenology. As such, we will
make the simplifying assumption that the free-streaming
length of our keV-scale DM particles is similar to Eq. (4),
but weighted by the average DM momentum over temper-
ature hp=Ti, which is given by its value at production time,
times the usual entropy dilution factor, defined by the
production or decoupling temperature TD,

�
p
T

�
¼

�
p
T

�
prod

�
g�ðTÞ
g�ðTDÞ

�
1=3

: ð6Þ

The limits onmNRP can then be approximately translated to
other production mechanisms using [16,47,48]

mDM ¼ hp=TimNRP

hpNRP=Ti
¼ hp=Tiprod

3.15

�
10.75
g�ðTDÞ

�1
3

mNRP: ð7Þ

Notice that mNRP in this formula should be as given by (5),
i.e. without the modifications due to the QCD phase
transition mentioned above, since here g� at neutrino

decoupling has been fixed to the value 10.75. A lower
bound on the DM mass can then be obtained given the
average DM momentum at production temperature TD.
Alternatively, an upper bound on hp=Tiprod can be derived
for a given DM mass:

�
p
T

�
prod

≲ mDM

5.1 keV

�
g�ðTDÞ
106.75

�1
3

�
4.65 keV

mTR

�4
3

: ð8Þ

This is a particularly convenient constraint on the DM
production mechanism if the DM mass is fixed by other
means, e.g. from indirect detection. Assuming, for exam-
ple, the DM to be produced above the electroweak phase
transition (EWPT), a 7 keV DM particle needs to be
produced with an average momentum

hp=Tiprod ≲ 1.4 ð9Þ

to satisfy the Lyman-α bound mTR ≳ 4.65 keV. This is far
below the thermal FD value of hp=TiFDthermal ≃ 3.15 or the
value 2.45 one obtains by DM production via decays of
heavy thermalized scalars S → DM DM [47,48]. See
Refs. [14–17,49] for other models under consideration in
the literature. Below, we will explore various production
mechanisms that can indeed yield such low momenta and
are thus capable of accommodating much lighter DM than
in other models.
An important remark is at order: Equation (7) is accurate

only if the momentum distribution has a meaningful mean
value hp=Ti to begin with. If fðp; TÞ looks highly non-
thermal, e.g. with two components peaked at momenta that
differ by one or more orders of magnitude, the proper way
to estimate Lyman-α constraints is to go back to the transfer
function and evaluate everything numerically [15,50] or
even to consider directly structure-formation simulations
with nonthermal spectra [37]. We will come back to this
issue in future work; for the purposes of this article it will
be sufficient to work at the level of average momen-
tum hp=Ti.

III. BOLTZMANN EQUATIONS

In this section, we will discuss how to obtain the
momentum distribution f of light DM produced by decays
and/or scatterings.
In the cases of interest here, all but the DM particle are

thermalized, so that the system can be described by just the
Boltzmann equation for the DM. This corresponds to the
freeze-in scenario, where we assume a negligible initial DM
abundance [51–53]. In order to obtain Boltzmann equations
in a simple form, for instance expressed in terms of
scattering cross sections, we will approximate the distri-
bution functions as given by classical statistics, i.e.
Maxwell-Boltzmann (MB) distributions. Thus, for a ther-
malized particle the thermal average for the momentum is
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hp=TiMB
thermal ¼ 3. Also, notice that the very form of the

Boltzmann equations below would be modified in the
presence of a sizable number density of particles in the final
state if quantum statistics were to be used. As we are going
to show later on, the usage of classical statistics introduces
an uncertainty of a few percent on the momentum averages
obtained below. We will also neglect the change in the
number of relativistic degrees of freedom g� during DM
production. These issues may be addressed elsewhere in a
more elaborate numerical study, together with the other
uncertainties present in our calculation. However, these are
not expected to affect the conclusions of the analysis given
here. Further details about the derivation of these
Boltzmann equations are given in Appendix A.

A. Scatterings

We consider the 2 → 2 scattering of two thermalized
particles AB → C DM, where the particles involved can be
bosons or fermions. Since the keV-scale DM candidate is
produced by freeze-in, the Boltzmann equation depends only
on the distribution functions of the (thermalized) particles,
which we take to be MB distributions in the approximation
of classical statistics. We denote by mX the mass of
X ∈ fA; B;Cg, which we envision to be around or above
the electroweak scale. The DM particle on the other hand is
approximated as massless in comparison, having in mind
keV-scale DM. We introduce the dimensionless variables

r≡mH

T
; x≡ jpj

T
; aX ≡ m2

X

m2
H
; X ∈ fA; B;Cg;

ð10Þ

where p is the 3-momentum of the DM particle with
magnitude jpj≡ p. For bookkeeping purposes we have
introduced the reference mass scale mH, the Higgs-boson
mass, which will of course drop out of physical quantities.
We find the Boltzmann equation for the DM distribution
function fðx; rÞ relevant for scattering processes AB → C
DM as

∂f
∂r ¼ 1

16π2
M0

mH

1

x2

Z
∞

y�
dyσ̂

�
m2

Hy
r2

��
1 −

aCr2

y

�
−1

× exp

�
−x

�
1 −

aCr2

y

�
−1

−
y − aCr2

4x

�
; ð11Þ

where M0 ≡MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45=ð4π3g�Þ

p
. Here, σ̂ðsÞ is the reduced

cross section [54] for the process AB ↔ C DM,1 summed
over the initial- and final-state internal degrees of freedom,
and

y� ≡ r2 × maxfð ffiffiffiffiffi
aA

p þ ffiffiffiffiffiffi
aB

p Þ2; aCg ð12Þ

defines the kinematic threshold for the process. An analytic
integration of Eq. (11) is not possible for a general
cross section, so let us simply state how to calculate the
relevant quantities once fðx; rÞ has been obtained, for
example numerically. The DM abundance is obtained by
integrating the distribution function over momentum, i.e.R
d3pfðp;∞Þ, and normalizing to the entropy density in the

standard way [55],

ΩDMh2 ¼
s0mDM

ρcrit=h2

�
45=ð4π4Þ
g�ðTprodÞ

Z
∞

0

dxx2fðx;∞Þ
�
; ð13Þ

where the quantity in brackets is the yield and the DM
distribution is evaluated at r → ∞, i.e. today. For a definition
of the entropy density s0 and critical density ρcrit we refer to
the standard literature, e.g. Ref. [55]. The average DM
momentum at production is given by the first moment of the
distribution function, i.e.

�
p
T

�
prod

¼
R
d3pjpjfðp;rprodÞR
d3pfðp;rprodÞ

¼
R
∞
0 dxx3fðx;rprodÞR
∞
0 dxx2fðx;rprodÞ

: ð14Þ

Since our calculations assume a constant g�, we may take the
limit rprod → ∞; notice, however, that the average DM
momentum today, which is instead defined in Eq. (6),
involves also the entropy dilution after DM production.
The DM couplings to the SM are assumed to be small by

construction, but one could imagine DM being coupled
more strongly to other particles, a full dark sector.
Thermalization within that sector would then convert the
DM distribution f obtained via freeze-in into a standard
thermal distribution, albeit with a different temperature than
the SM. The mean momentum of Eq. (14) then trivially
reduces back to a thermal value. Discussions of such
scenarios can be found in Refs. [53,56–58]; we will not
consider this further but rather assume that the DM
distribution is entirely determined by the freeze-in process.

B. Decays

Let us now consider the two-body decay of a thermalized
particle A → B DM under the same assumptions and
definitions as above. The DM particle is again approximated
asmassless, and in particular alsomuch lighter than themass
difference of A and B, i.e. mDM ≪ mA −mB ≤ mA. We
introduce the additional variable

Δ≡ 1 −
m2

B

m2
A
; ð15Þ

which is a measure of the phase-space closure in the decay
and takes on values between 0 and 1. We find the evolution
equation for the DM distribution fðx; rÞ as

1In obtaining Eq. (11) we have neglected possible CP violation
in the process, so that the reduced cross section is T invariant and
does not depend on the direction of the reaction.
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∂f
∂r ¼ gASΓM0

ffiffiffiffiffi
aA

p
m2

HΔ
r2

x2

Z
∞

x
Δþr2

4
Δ
xaA

dξfA

�
E
T
¼ ξ

�
ð16Þ

!MB gASΓM0

ffiffiffiffiffi
aA

p
m2

HΔ
r2

x2
exp

�
−
x
Δ
−
r2

4

Δ
x
aA

�
; ð17Þ

whereΓ is the partial decay width of the processA → BDM,
gA counts the internal degrees of freedom of A, and S is the
symmetry factor of the decay, equal to 2 if B ¼ DM and 1
otherwise. Equation (16) generalizes the known result
for the S → NN decay [47,59]. In Eq. (17) we have used
the MB form for the equilibrium distribution function of
A, fAðEÞ ¼ expð−E=TÞ.
From Eq. (16) we see that the DM momentum always

appears in the combination x=Δ, except for the overall
normalization of f. As a result, the mean hxi of Eq. (14)
always scales linearly with the phase-space suppression
factor Δ, independent of the distribution of the mother
particle A. The prefactor of this scaling, however, depends
on fA and can be calculated as

�
p
T

�
MB

prod
¼ 5

2
Δ ¼ 2.5Δ; ð18Þ

�
p
T

�
BE

prod
¼ π6

378ζð5ÞΔ≃ 2.45Δ; ð19Þ

�
p
T

�
FD

prod
¼ 31π6

11340ζð5ÞΔ≃ 2.53Δ; ð20Þ

for the three distribution functions of interest, MB, FD, and
Bose-Einstein (BE). This linear scaling holds for mDM ≪
mA −mB but breaks down once the DM mass becomes
non-negligible.
Equation (17) can be easily integrated analytically for the

MB distribution, leading in particular to the DM distribu-
tion function today,

fðx;∞Þ ¼ 2
ffiffiffi
π

p
gASΓM0

m2
AΔ3

ffiffiffiffi
Δ
x

r
exp

�
−
x
Δ

�
; ð21Þ

which gives the DM abundance via Eq. (13):

ΩDMh2 ¼
135

8π3g�ðTprodÞ
s0mDM

ρcrit=h2
gASΓM0

m2
A

∼ 0.08gA

�
mDM

7 keV

��
1 TeV
mA

��
SΓ=mA

10−17

�
: ð22Þ

Using instead the BE distribution for fA increases the
abundance by ζð5Þ≃ 1.037 [60], whereas it is lowered by
15
16
ζð5Þ≃ 0.972 in the FD case. Equation (22) matches

Refs. [52,60,61] in their cases of interest. We stress that the
total lifetime of A is not restricted to be long, as it is only

the partial width A → B DM that enters Eq. (22) and
therefore has to be small.
Finally, let us mention that most of the DM abundance of

Eq. (22) is created around mA=T ∼ 3–5 [22,52], but it takes
until mA=T ∼ 10 to reach the average-momentum plateau
hp=Ti≃ 2.5Δ, meaning that the hottest part of the spec-
trum is created the latest.

C. Multiple production processes

In the case of several (decay and/or scattering) processes,
their effect on fðx; rÞ is simply additive, since we are in the
freeze-in regime for DM where the inverse processes
depending on fðx; rÞ do not give sizable contributions.
This implies that the effect is also linear for the DM
abundanceΩDMh2 [Eq. (13)], whereas the impact on hp=Ti
[Eq. (14)] is more complicated and can even make the
usefulness of an average momentum questionable. As a
simple example, let us consider two competing decays
A → Bj DM, j ¼ 1, 2, with branching ratios BRj and
phase-space suppression factors Δj¼1−m2

Bj
=m2

A. For def-

initeness, let us assume Δ1 ≪ Δ2 ≃ 1, so that BR2=BR1

determines the ratio of hot to cold DM. If there is a
large hierarchy between BR1 and BR2, the mean x is a
sensible measure for the impact on small-scale structure;
however, for

BR2

BR1

≃ Δ2

Δ1

≫ 1; ð23Þ

the relevant function x2fðxÞ has two maxima of the same
height, potentially rendering the mean x useless. This is
illustrated in Fig. 1. In such cases, the impact on structure
formation should be determined by calculating the transfer
function [15,37,38,50]; this is left for future work.

103

102

101

100

BR2

BR1

10 1

10 3 10 2 10 1 100 101 102
10 5

10 4

10 3

10 2

10 1

100

101

102

103

x p T

x2
f

x,
a.

u.

1 10 2 and 2 1

FIG. 1. DM distribution x2fðx; r → ∞Þ in arbitrary units for
the case of two competing decays A → Bj DM, j ¼ 1, 2, with
branching ratios BRj and phase-space suppression factors Δj ¼
1 −m2

Bj
=m2

A.
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IV. TOY MODELS

To illustrate the key ideas for the generation of suffi-
ciently cold keV DM, let us first discuss a number of toy
models. We will mostly restrict ourselves to interactions of
scalars and fermions but will briefly generalize the concepts
to interactions with higher-spin particles.

A. Decays involving two particles

Let us start our discussion with the decay of one real
scalar S, governed by the Lagrangian (always omitting
kinetic terms in the following)

LS ¼ −
1

2
m2

SS
2 −

1

2
m2

JJ
2 − μSJJ; ð24Þ

assuming J to be the DM candidate with keV-scale mass
mJ ≪ mS. If S is in thermal equilibrium with the SM, the
dimensionful coupling μ has to be taken sufficiently small to
not thermalize J, which will then be produced only through
the decay S → JJ [51]. This mechanism yields hp=Tiprod ¼
5=2 [Eq. (18)] and hence a lower mass limitmJ ≳ 12.9 keV
from Eq. (7), taking the conservative case of production
above the electroweak scale. In this simple case one can take
into account the quantum BE statistics of the parent particle,
obtaining the slightly smaller value hp=Tiprod ¼ 2.45 [see
(19)] and, correspondingly, the slightly weaker bound
mJ ≳ 12.6 keV, which also shows that corrections from
quantum statistics are at the few percent level.
Thevery same discussion can bemade for a fermionicDM

candidate N, replacing μSJJ → λSN̄N. This has been
discussed extensively in the literature [47,48,59,60,62,63].
One obtains, again, just hp=Tiprod ¼ 5=2 from our Eq. (18),
if the decays occur when S is still at equilibrium, but larger
values if S freezes out before it decays. In all cases above, a
7 keV DM candidate is in strong tension with Lyman-α
bounds.
A popular alternative to lower the hotness of sterile-

neutrino DM produced by particle decays S → NN is to
assume, instead, that S itself is produced via freeze-in [32],
i.e. nonthermally, so that the DMmomentum depends on the
lifetime of S: for a long-lived S, the resulting hp=Ti becomes
large, seeing as p ∼mS=2 can be much larger than the
temperature when S eventually decays; if the decay is
sufficiently fast, on the other hand, values of hp=Ti down
to 1 become possible and henceDMmasses down to≈5 keV
without violatingLyman-α constraints.While this scenario is
certainly attractive, this double freeze-in requires both the
couplings of S andN to the SM to be very small,≲10−8, thus
making the mechanism very hard to probe experimentally.
Therefore, we now go beyond this simple scenario.

B. Decays involving three particles

Extending the particle content gives rise to qualitatively
different results. Take three scalars,

LS ¼ −
1

2
m2

1S
2
1 −

1

2
m2

2S
2
2 −

1

2
m2

JJ
2 − μ12S1S2J; ð25Þ

with mass hierarchy mJ ≪ mJ þm2 < m1. Assuming μ12
to be small enough to not thermalize the DM particle J, it
will still be produced via the freeze-in decay S1 → S2J,
with partial width

ΓðS1 → S2JÞ ¼
μ212
8πm2

1

jpRFJ j; ð26Þ

and J momentum in the S1 rest frame (RF)

jpRFJ j≃m1

2

�
1 −

m2
2

m2
1

�
; ð27Þ

having set mJ ≃ 0. For m2 ≪ m1, nothing changes com-
pared to the S → JJ discussion from above; for m2 → m1

on the other hand, the decay rate becomes phase-space
suppressed and the momentum of J in the rest frame of S1
goes to zero. In the thermal-bath (TB) frame, the DM
momentum is boosted with a γ factor γ ¼ E1=m1 ¼
ð1 − vTBÞ−1=2, vTB being the velocity of S1. The energy
E1 is thermally distributed and thus never much larger than
the temperature; in particular, γ is not much larger than 1
around the time of DM production. This boost increases the
momentum to

jpTBJ j ¼ γjpRFJ j þ vTB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

J þ jpRFJ j2
q

; ð28Þ

which is parametrically suppressed by jpRFJ j and mJ. The
former can be made arbitrarily small for m2 → m1, while
the latter only leaves a tiny contribution hxi ∼mJ=m1,
fairly irrelevant for the mass scales of interest. This
confirms our result from Eq. (18), meaning the light J
actually becomes arbitrarily cold for m2 → m1. In turn, this
means Lyman-α constraints can be evaded even for DM
particle with mass much below the keV scale; see Eq. (7).
Taking the concrete case of a 7 keV DM particle, we
can calculate the necessary mass splitting between S1
and S2 to satisfy the Lyman-α constraints of Eq. (9) as
m1 > m2 ≳ 0.66m1. This can hardly be considered fine-
tuning and shows the importance of even a mild phase-
space closure. Staying with this example, the correct relic
abundance is obtained for the coupling

μ12 ≃ 44 keV

�
m1

TeV

�
3=2

�
p
T

�
−1=2

prod
; ð29Þ

assuming m1 sufficiently high above the electroweak scale.
An upper limit of order tens of PeV for m1 can be obtained
by demanding μ12 to be small enough to not thermalize J
via scattering processes.
A similar discussion can be made for decays involving

fermions, taking for example the Lagrangian
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LF ¼ −
m2

S

2
S2 −m1F̄1F1 −m2F̄2F2 − ðλF̄1F2Sþ H:c:Þ:

ð30Þ

For m1 ≪ m1 þm2 ≲mS, the decay S → F1F2 [64] will
produce cold light F1 DM; for m1 þmS ≲m2, the decay
F2 → F1S will produce cold light F1 DM (if m1 ≪ mS) or
cold light S DM (if mS ≪ m1).

2 Since the argument
essentially relies purely on kinematics, it does not matter
whether the fermions are Majorana or Dirac nor what the
precise Lorentz structure of the coupling is. In fact, this
mechanism works for particles of arbitrary spin.
In conclusion, slow decays in which the daughter

particles are near the phase-space closure will give a cold
spectrum even if one of the daughters has keV mass.
Clearly, in a full model there will be competing processes
that have to be compared to determine the actual coldness
of DM, but the basic idea is incredibly simple and
straightforward.

C. Scatterings from scalars

As we have seen above, keV particles can be pro-
duced arbitrarily cold via phase-space-suppressed decays.
Extending this idea to phase-space-suppressed scatterings,
AB → C DM, is not trivial, mainly due to the thermal
distribution of the initial particles. We will show nonethe-
less that it is possible to create cold DM in this way, the
degree of coldness being again determined by kinematics.
We restrict ourselves to the interactions of three different
particles, as this already features the basic ideas.
Let us focus on the pure scalar case, i.e. three real scalars

S1, S2, J, with one quartic interaction term,

Lquartic ¼ −
m2

1

2
S21 −

m2
2

2
S22 −

m2
J

2
J2 − λJ112JS21S2; ð31Þ

and DM candidate J, mJ ≪ m2 ≤ 2m1. Assuming that
S1 and S2 are in thermal equilibrium with the SM, J is
produced by the freeze-in scatterings S1S1 → S2J (Fig. 2)
and S1S2 → S1J. The cross sections for these processes are
given in Appendix B and can be readily used to calculate
the DM distribution function f via Eq. (11) and the average
momentum via Eq. (14). For a keV range mJ, one finds a
warm spectrum, hp=Ti ∼ 2, independently of the S1;2
masses (Fig. 3). This conclusion also holds for processes
such as SiSj → JJ: quartic interactions cannot give cold
keV DM and have to be suppressed, with couplings at most
Oð10−8Þ for mSi;j ∼ 100 GeV.

With quartic interactions sufficiently suppressed, let us
focus on two sets of some cubic interactions:

Lcubic;1 ¼ −
1

2
m2

1S
2
1 −

1

2
m2

2S
2
2 −

1

2
m2

JJ
2

− μ112S21S2 − μJ11JS21 ð32Þ

and

Lcubic;2 ¼ −
1

2
m2

1S
2
1 −

1

2
m2

2S
2
2 −

1

2
m2

JJ
2

− μ112S21S2 − μJ22JS22: ð33Þ

The full DM production cross sections for all cases are
given in Appendix B, assuming for simplicity that μJii ≪
μ112 in order to neglect SiSj → JJ processes which lead to
rather warm DM. The channel of interest to produce the
light DM candidate J is S1S1 → S2J, either via t or s
channel (see Fig. 2). In Fig. 3 we compare the S1S1 → S2J
cross sections with quartic and cubic interactions; the cubic
interactions decrease much faster than the quartic one for
large s,

σquartic →
1

s
; σcubic;1 →

1

s2
; σcubic;2 →

1

s3
; ð34Þ

and are dominated by low s close to the phase-space
closure, s≃maxfm2

2; 4m
2
1g. Writing s ¼ ðp2 þ pJÞ2 ¼

m2
2 þOðpJÞ, it is then clear that the cubic cross sections

are dominated by small J momentum pJ ≪ p2 if
m2

2 > 4m2
1, which just means that the emission of a cold

J is preferred. This is shown in the right panel of Fig. 3,
where the solid lines denote hp=Tiprod for the quartic and
cubic cases above, as a function of the mass ratio m2=m1.
As can be seen in Fig. 3 (right), all S1S1 → S2J

scattering processes lead to hp=Tiprod ¼ 5=2 in the limit
m2 ≪ m1, but a nonzero m2 cools down the DM due to
phase-space effects. For the cubic interactions, m2 > 2m1

even leads to hp=Tiprod ≃ 0.1, i.e. very cold light DM. This
allows for DM masses down to 0.5 keV without violating
Lyman-α constraints [Eq. (7)].
The reason for this surprising behavior can be traced

back to the low-s peak of the corresponding cross sections
[Fig. 3 (left)] but can also be understood at the amplitude
level as near resonances. Looking, for example, at the

FIG. 2. Production processes for J DM via the process S1S1 →
S2J for three different models: quartic interaction [Eq. (31)] and
the cubic interactions of Eq. (32) and (33).

2Phase-space-suppressed decays as a means to obtain colder
light DM was also noted in Ref. [65] when comparing π → μDM
and π → e DM. The ratio of the resulting free-streaming lengths
is precisely the phase-space suppression factor 1 −m2

μ=m2
π.
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t-channel amplitude for S1S1 → S2J via S21S2 and S21J
couplings [Fig. 2 (middle)],

M ∝
μ112μJ11

m2
1 − ðp1 − pJÞ2

; ð35Þ

it is clear that the exchanged particle S1 goes on shell
for pJ → 0, signaling an infrared divergence. Energy-
momentum conservation at the second vertex requires
m2 > 2m1 to allow S1 to be on shell, and one can identify
the divergence as soft for mJ → 0 rather than collinear.
For a nonzero mJ, the virtual particle can never actually
hit the resonance but comes closer and closer the smaller
pJ becomes. Thus, the production of cold light J is
preferred quite dramatically as a result of a near t-channel
resonance. For the other cubic coupling [Fig. 2 (right)],
the process is enhanced by a near s-channel resonance,
with the virtual S2 getting closer to the resonance the
smaller pJ becomes.
An alternative interpretation of Fig. 3 (right) is that a

vanishing DM momentum pJ ¼ 0 reduces the cubic
scattering S1S1 → S2J to an inverse decay S1S1 → S2,
provided that m2 > 2m1. This 2 → 1 process is parametri-
cally fast compared to the 2 ↔ 2 scattering one has for the
emission of a hard J. For m2 > 2m1, phase space thus
prefers to emit cold light DM, whereas m2 < 2m1 always
leads to 2 → 2 scatterings with rather warm DM.
We have identified S1S1 → S2J as a promising process to

produce cold light DM with cubic interactions; to not
thermalize J, we expect a coupling hierarchy μ112 ≫ μJii,
which then typically puts S2 in equilibrium. This opens up
the scattering channel S1S2 → S1J, which could easily
endanger the coldness of J. The results including this
process, assuming thermalized S1 and S2, are shown by
dashed lines in Fig. 3. We see that the new process plays no
role for the cubic interactions in the region of interest

m2 > 2m1, still giving cold DM. For smaller m2, the new
process actually helps to cool down the momentum. This
effect is strongest for the cubic interactions of Eq. (33)
(red in Fig. 3), as the t-channel exchange exhibits both a
near soft and a near collinear divergence for mJ, m2 → 0,
leading to hp=Tiprod ¼ 1. No collinear divergence is
obtained for the second (Compton-like) cubic process (blue
in Fig. 3), which is then more inefficient in cooling down
the DM.
As far as the time of DM production goes, we can

interpret the center-of-mass energy s in Fig. 3 (left) as the
bath temperature, which decreases with time. For the cubic
interactions with m2 > 2m1, the highly peaked cross
sections then ensure that DM will be produced almost
resonantly around the temperature T ∼m2=3. The relic
abundance in the cold regime of interest, 2m1 ≪ m2, is then
approximately given by

ΩDMh2 ≃ 3.4

�
mDM

7 keV

��
TeV
m2

�
3
�
GeV
m1

�
2
�

μ112μJ11
ð10 MeVÞ2

�
2

;

ð36Þ

ΩDMh2 ≃ 1.5 × 10−2
�
mDM

7 keV

��
TeV
m2

�
5
�

μ112μJ22
ð100 MeVÞ2

�
2

;

ð37Þ

for the two different cubic interactions. Here, we assumed a
DM production time above the electroweak scale and also
the hierarchy μJii ≪ μ112.
All in all, we can see from Fig. 3 (right) that light DM

can be produced with hp=Tiprod ¼ 2.5–Oð0.1Þ depending
on the mass spectrum of the additional scalars. For very
cold DM, the requirement for the cubic couplings is that
pDM → 0 leads back to a valid inverse decay process.

quartic
J112

cubic
112 J22

cubic
112 J11

101 102 103
10 7

10 6

10 5

10 4

10 3

10 2

10 1

s GeV2

S 1
S 1

S 2
J

a.
u.

m1 1 GeV, m2 3 GeV, mJ 7 keV

112 J11

112 J22

J112

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

FIG. 3. Left: Cross sections σðS1S1 → S2JÞ obtained from quartic interactions (31) and two different cubic interactions, Eqs. (32) and
(33). Right: Resulting hp=Tiprod for these three processes as a function of the S1;2 mass ratio m2=m1. The dashed lines are the results
including also the S1S2 → S1J process, active when S2 is also thermalized.
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D. Scatterings from fermions

Figure 3 (right) illustrates how to obtain cold light DM in
the scatterings of scalars by picking the right coupling
structure and mass hierarchy. Contrary to the decay case
discussed in Sec. IV B, the extension of this mechanism to
particles with nonzero spins is not trivial. Consider for
example the interactions of a Dirac fermion Ψ with a scalar
S and a pseudoscalar A:

LΨ ¼ −
1

2
m2

SS
2 −

1

2
m2

AA
2 −mΨΨ̄Ψ

− Ψ̄ðySSþ yAAiγ5ÞΨ: ð38Þ

For mS ≪ 2mΨ < mA, one obtains a very cold hp=Ti ¼
Oð0.1Þ for S from the inverse-decay-like process
Ψ̄Ψ → SA, in complete analogy to the pure scalar case
discussed above. Flipping S ↔ A changes the picture
dramatically, though: for mA ≪ 2mΨ < mS, the process
Ψ̄Ψ → SA does not produce cold A, but rather hp=Ti≃ 2.
This can be understood at the amplitude level, which for
soft S ¼ DM takes the form

M≃ ySyAv̄ðpΨ̄Þiγ5
pΨ − pDM þmΨ

m2
Ψ − ðpΨ − pDMÞ2

uðpΨÞ

⟶
pDM→0

ySyAv̄ðpΨ̄Þiγ5
2mΨ

2pΨpDM − p2
DM

uðpΨÞ; ð39Þ

whereas a soft A ¼ DM is heavily suppressed by pDM=mΨ
in comparison,

M≃ ySyAv̄ðpΨ̄Þ
pΨ − pDM þmΨ

m2
Ψ − ðpΨ − pDMÞ2

iγ5uðpΨÞ

⟶
pDM→0

ySyAv̄ðpΨ̄Þiγ5
pDM

2pΨpDM − p2
DM

uðpΨÞ: ð40Þ

The amplitude above does not vanish in the soft limit due to
the competing propagator divergence, resulting in a finite
expression [66]. Our cubic interactions thus evade Adler’s
zero [67], which would otherwise lead to a vanishing
amplitude for the emission of one soft Goldstone boson. It
is not relevant for us whether the amplitude goes to zero or
not; the main point here is that the emission of a soft
pseudoscalar is suppressed compared to a soft scalar.
On a conceptual level, one can understand this by noting

that Ψ̄Ψ → SA does not reduce to the inverse decay Ψ̄Ψ →
S no matter how soft A is, because the γ5 changes the spin
of the involved Ψ, so Ψ̄Ψ → SA is always a true 2 → 2
process that does not enjoy the 2 → 1 enhancement we
found for a light cold S. This argument goes through for
other processes as well; for example, emitting a light scalar
from an inverse decay via the CP-even coupling to vector
bosons SFμνFμν gives indeed a cold S, whereas the
emission of a light pseudoscalar A via AFμν

~Fμν does not
give a cold A.

The above discussion has the far-reaching implication
that it is not possible to create a cold light pure
pseudoscalar via scatterings.3 This is of course unfortunate
considering that a major motivation for light bosonic DM
comes in the form of pseudo-Goldstone bosons, i.e. pseu-
doscalars, whose mass is protected by a global symmetry.
Nevertheless, depending on the UV completion of the
model, one can of course have CP violation that endows
the pseudoscalar with some CP-even coupling, which can
then be used to produce cold DM. This is precisely the
route that we will follow in Secs. V C and VD.

E. Scatterings with vector DM

At last, let us mention spin-1 DM. From the arguments
above, it is clear that a light vector boson V can be made
cold by emitting it from an inverse decay, as long as the
diagonal coupling of the soft V does not change the spin of
the heavy particle. This is the case, for example, for a Ψ̄γμΨ
coupling to Dirac fermions,4 as can be verified using the
Gordon decomposition identity in the limit of small
momentum transfer:

ūðpÞγμuðpþ qÞ ¼ pμ

mΨ
ūðpÞuðpÞ þO

�
q
mΨ

�
: ð41Þ

In this case, V is produced essentially via initial- or final-
state radiation, both of which are famously infrared
divergent. It is precisely this divergence that makes this
process dominant and leads to a cold V. In contrast to QED,
our DM vector boson is necessarily massive, so the
divergence is automatically regulated; furthermore, the
DM coupling is required to be tiny, in particular compared
to Sudakov logs such as logðmheavy=mDMÞ, so there is no
need to calculate loop corrections or sum over additional
soft DM emissions.

F. What we have learned

Let us briefly summarize the main lessons so far to
obtain cold light DM from decays and scatterings in a more
general setup:

3A loophole to the statement above can be found in the
scalar case by extending the particle content: if the DM
interaction is JS1S2 with degenerate S1;2, there is no decay
and one can once again create cold DM by attaching J to an
inverse decay, e.g. S3S3 → S1, so that S3S3 → S2J with spectrum
mJ ≪ 2m3 < m1 ¼ m2. If S1;2 are merely the real and imaginary
part of one complex scalar, the interaction JS1S2 does not violate
CP for a pseudoscalar J and we have managed to create a cold
pure pseudoscalar via scattering. Note that the JS1S2 coupling
breaks the Uð1Þ symmetry J is a Goldstone of; otherwise, S1 and
S2 could not be degenerate and the main production channel
would again be decay, e.g. S2 → S1J.

4Coupling V to an axial current leads to a spin-flip amplitude
for soft V and hence no cold V, analogous to the pseudoscalar
case discussed above.
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(i) The decay A → BDM of a thermalized A can lead to
DM momenta from hp=Tiprod ¼ 2.5 down to tiny
OðmDM=mAÞ, depending only onmB=mA. The spins
of the particles involved do not matter, nor does the
Lorentz structure of the coupling.

(ii) The scattering process AB → C DM can lead to
hp=Tiprod ¼ 2.5 down to Oð0.1Þ. At the lower end,
this requires a mass hierarchy mA þmB < mC and
bosonic DM with a cubic coupling to either A, B or
C that is diagonal in spin space (at least for small
momentum transfer). In the presence of more par-
ticles, this cubic coupling could also be to two
different, but degenerate, particles.

An alternative formulation can be given as follows: one can
obtain cold DM from scattering processes that have a soft
infrared divergence in the limit pDM,mDM → 0. Despite this
near divergence, the DM production is actually not sensitive
to the light DM mass due to the thermal environment.

V. APPLICATION TO FULL MODELS

Having identified promising coupling structures to pro-
duce cold keV-scale DM via decays and scatterings, let us
connect them to some popular models. We focus here to the
case of (pseudo)scalar keV-scale DM J. Differently from
the case of sterile right-handed neutrinos, in the pseudoscalar
case the lightness of keV DM can originate dynamically,
rather than being imposed by hand, from J being the pseudo-
Goldstone boson of an approximate continuous symmetry
[22]. Examples for this are the axion [Peccei-Quinn Uð1Þ]
[68–70], Majoron [lepton number Uð1ÞL or Uð1ÞB−L]
[25,26], and familons (lepton family number symmetries)
[27,71]. Recently, relaxion models have been put forward
that could also be taken as a motivation for a new pseudo-
scalar (see for example Refs. [72,73]). Motivated by the
tantalizinghint for a 3.5 keV linewe fix themass ofJ to 7 keV
in this section. In Sec. VI we will then discuss how the line
could be generated by the radiative decay of the pseudo-
Goldstone boson J.

A. Right-handed neutrino decay in the singlet
Majoron model: N1 → N2J

To produce cold keV-scale DM from a decay A → B DM
requires an off-diagonal coupling of DM to two moderately
degenerate heavy particles A and B. Since the SM does not
provide any useful candidates for A and B, new heavy
particles have to be introduced. A simple example comes in
the form of singlet-Majoron models [25,26], where heavy
right-handed neutrinos N are introduced to generate see-
saw-suppressed neutrino masses and the Majoron mass
itself is protected by Uð1ÞB−L and thus naturally small. The
Majoron’s only tree-level couplings are to neutrinos, so the
Ni → NjJ decays of the heavy neutrinos seem promising
for our purpose. Explicitly, the partial widths of neutrino
decays into a (massless) Majoron are

ΓðNi → νjJÞ≃ M3
N;i

16πf2
jΘ†

ijj2; ð42Þ

ΓðNi → NjJÞ≃ M3
N;i

16πf2
jðΘ†ΘÞijj2

�
1 −

M2
N;j

M2
N;i

�3

; ð43Þ

Γðνi → νjJÞ≃ M3
ν;i

16πf2
jðΘΘ†Þijj2

�
1 −

M2
ν;j

M2
ν;i

�3

; ð44Þ

with Θ≡U†mDM−1
N and the B − L breaking scale f. The

decay of active neutrinos in Eq. (44) has already been
discussed long ago in Ref. [26], where it was realized that
the rates are unobservably small, but this is of course not
relevant for the keV Majoron that we have in mind. Of
interest for us are only the Ni → NjJ decays of Eq. (43),
which are at first sight less suppressed; however, since the
matrix Θ corresponds to the small seesaw expansion
parameter, it is clear that ΓðNi → NjJÞ ≪ ΓðNi → νJÞ,
so that only a tiny fraction of the keV Majoron DM can be
produced cold. To be more precise, electroweak precision
data conservatively restricts the entries ofΘ to be below 0.1
[74], which is enough to suppress the cold DM part below
the percent level. We are then precisely in the scenario of
Fig. 1, where hot and cold DM are mixed and require a
more sophisticated discussion than just looking at hp=Ti.
An evaluation of the Lyman-α bounds on this mixed
scenario has to be left for future work.
Let us nevertheless comment on DM production via

N → νJ decay, with N in equilibrium, which has hp=Ti ¼
2.5 and thus works for mJ ≳ 13 keV. Summing over all
neutrino channels and replacing f by the unavoidable DM
decay rate ΓðJ → ννÞ [75] [see Eq. (73)], we obtain an
expression that is independent of mJ:

Ωh2 ≃ 0.13

�
1018 s
τJ→νν

� ð0.1 eVÞ2P
m2

ν

trðmDM−1
N m†

DÞ
MeV

: ð45Þ

A sufficiently stable DM abundance from N → νJ thus
requires trðmDM−1

N m†
DÞ ∼MeV while keeping

jtrðmDM−1
N mT

DÞj ≤
X
ν

mν < eV: ð46Þ

This is possible but requires fine-tuned matrix cancellations
and typically Yukawa couplings close to the perturbativity
limit. For mJ > MeV, the lifetime needs to be even longer
in order to satisfy limits from searches for monochromatic
neutrinos [75], thus requiring an even larger trace. We will
not discuss this case further.

B. Right-handed neutrino decay in extended
Majoron models

As we have seen above, the standard singlet-Majoron
model is probably incapable of producing sufficiently cold
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keV-scale Majoron DM. It is however straightforward to
identify minor modifications that are viable, i.e. models
where J has a larger off-diagonal coupling to two heavy
right-handed neutrinos. A sufficient condition for this is
½MN; λ� ≠ 0, where MN is the mass matrix of N and λ the
coupling to the Majoron. In the singlet Majoron model, one
could achieve this by simply introducing some explicit
Uð1ÞL breaking terms in MN together with the sponta-
neously generated entries. Since lepton number is then no
longer a good symmetry of the Lagrangian, the Majoron
also acquires a mass that can be expressed in terms of the
neutrino masses [22]. Depending on the structure of the
explicit Uð1ÞL breaking terms, it is in some cases still
possible to identify a family symmetry Uð1ÞX, which upon
spontaneous breaking gives rise to a massless familon,
which then plays the role of DM for us. Switching theUð1Þ
lepton number for some family number to obtain larger off-
diagonal couplings is actually a rather old idea that was
developed in the context of neutrino decay [76]. Let us
outline a couple of interesting cases.

1. Flavor symmetries

As is well known, the SM has the global symmetry group

Uð1ÞBþL ×Uð1ÞB−L ×Uð1ÞLμ−Lτ
×Uð1ÞLμþLτ−2Le

; ð47Þ

of which Bþ L is broken at the nonperturbative level [77]
but the remaining Uð1Þ3 is anomaly-free once three right-
handed neutrinos are introduced [78]. For the standard
Majoron model, one breaks B − L spontaneously and the
other two Uð1Þ symmetries explicitly. Since this is not
useful to obtain cold keV pseudo-Goldstone DM, let us
instead break a different linear combination Uð1ÞX ⊂
Uð1ÞB−L ×Uð1ÞLμ−Lτ

× Uð1ÞLμþLτ−2Le
spontaneously and

the orthogonal two explicitly. Even if only one complex
scalar is introduced to break the Uð1ÞX, there are many
choices that lead to a viable neutrino mass matrix; some
cases (e.g. X ¼ Bþ Le − 3Lμ − Lτ) even feature testable
texture zeros [78]. The three choices X ¼ Lμ − Lτ,
B − 3Le, and Bþ 3ðLe − Lμ − LτÞ are of particular inter-
est, because they correspond to the symmetries in Mν for
quasidegenerate, normal, and inverted neutrino hierarchies,
respectively [79,80]. For example, the Dirac mass matrix
mD is diagonal in the Lμ − Lτ case, while the right-handed
neutrinos have a mass matrix that consists of one bare mass
term Msym

N and one term that arises from the vacuum
expectation value (VEV) of a Lμ − Lτ ¼ 1 scalar
σ1 ¼ hσ1i þ ðσ01 þ iJÞ= ffiffiffi

2
p

,

MN ¼Msym
N þhσ1iλ¼

0
B@
A 0 0

0 0 B

0 B 0

1
CAþhσ1i

0
B@

0 λ1 λ2

λ1 0 0

λ2 0 0

1
CA;

ð48Þ

resulting in an active-neutrino mass matrix Mν ≃
−mDM−1

N mT
D with two vanishing minors [78] and typically

quasidegenerate neutrinos [81]. The off-diagonal couplings
of the Lμ − Lτ Goldstone boson J to the heavy neutrinos
are then given by λj, whereas the decayN → νJ depends on
mD. The latter can thus be suppressed, making Ni → NjJ
the dominant (cold) DM production channel. Note that two
of the right-handed neutrinos are degenerate in the limit
Msym

N ≫ hσ1i, i.e. form a pseudo-Dirac pair, which makes
them ideal candidates for the phase-space-suppressed
N1 → N2J decays we want to exploit for cold DM.
As a second example, let us look at the global symmetry

Bþ 3ðLe − Lμ − LτÞ, where one has again a bare mass
term that is Uð1Þ0 invariant and a term that is induced by a
scalar σ6 ¼ hσ6i þ ðσ06 þ iJÞ= ffiffiffi

2
p

with Uð1Þ0 charge 6:

MN ¼ Msym
N þ hσ6iλ

¼

0
B@

0 A B

A 0 0

B 0 0

1
CAþ hσ6i

0
B@

λ1 0 0

0 λ2 λ3

0 λ3 λ4

1
CA: ð49Þ

This leads to an approximately Le symmetric Mν ≃
−mDM−1

N mT
D in the limit Msym

N ≫ hσ6i and thus normal
hierarchy [80]. The discussion is completely analogous to
the Lμ − Lτ case above: the Goldstone boson J can once
again have large off-diagonal couplings λ to the heavy mass
eigenstate neutrinos. Here, two of the right-handed neu-
trinos are again naturally degenerate, while the third one is
considerably lighter, being massless in theUð1Þ0 symmetric
limit. All the ingredients for cold keV pseudo-Goldstone
DM are present, nicely incorporated into a viable and well-
motivated flavor-symmetric model.

2. Extended seesaw mechanisms

Instead of charging SM families under the global Uð1Þ
that leads to the Goldstone boson of interest, one can also
introduce more singlet fermions and identify a family
charge among them. A well-known example here is the
inverse seesaw mechanism, used early on to enhance
neutrino decay [82]. To avoid confusion, it is convenient
to denote some of the right-handed singlet fermions by N
and some by S. The inverse seesaw mass matrix in the basis
ðνcL; N; SÞ is then of the form

MISS ¼

0
B@

0 mD 0

mT
D 0 M

0 MT μ

1
CA; ð50Þ

with μ ≪ mD ≪ M. Similar to the flavor-symmetric cases
discussed above, the inverse seesaw provides quasidegen-
erate heavy mass eigenstates, perfectly suited for our
purpose. In the model of Ref. [82] it is the μ entry that
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is generated by spontaneous Uð1Þ breaking and hence
provides the Majoron coupling; in simpler models, one
would also generate a small MISS

22 entry, without much
impact on the resulting phenomenology. Explicitly, one can
assign a B − L charge þ1 to S to obtain the leading order
MISS, with small MISS

22 and MISS
33 being induced sponta-

neously from a scalar VEV with B − L ¼ 2.
This is not the only charge assignment of interest for

us; picking instead ðB − LÞðSÞ ¼ 0 and a scalar σ1 with
ðB − LÞðσ1Þ ¼ 1 gives MISS from above, only that μ is
now a bare mass term and M ∝ hσ1i, so the Majoron
couplings are given by a different term. These are of course
only the simplest cases of interest, with many more
conceivable scenarios.
The above discussion should be sufficient to illustrate the

necessary model building to obtain cold keV-scale pseudo-
Goldstone DM from the decays of right-handed neutrinos.
In flavor-symmetric scenarios or the extended seesaw
model one can easily make Ni → NjJ the dominant decay
mode, thus ensuring that the resulting keV-scale DM will
be sufficiently cold and abundant. A detailed quantitative
study of these scenarios will be given elsewhere, seeing as
it requires a dedicated analysis of active neutrinos and
lepton flavor violation as well.

C. Heavy mediator scalar: HH̄ → SJ

We now discuss how to obtain a cold-enough 7 keV
DM J by making use of the scattering processes discussed
in Sec. IV C. For production above the EWPT, the
minimal way to do this is to make use of the Higgs
boson H, a real singlet S and the DM J, the latter
potentially being the pseudo-Goldstone boson of a
Uð1Þ symmetry. Notice that this model has the same
number of beyond-the-SM degrees of freedom as the
model with right-handed neutrino DM N produced by
S → NN decays, discussed in Sec. IVA. Remarkably, the
main advantage here is that, differently from the double
freeze-in S → NN model, where all the beyond-Standard-
Model fields are feebly coupled to the SM, here S is
required to have large couplings with the Higgs doublet,
so that the mechanism yields interesting phenomenology
at current and future experiments. Moreover, as mentioned
above, the lightness of a pseudoscalar J can originate
dynamically from a Nambu-Goldstone mechanism.
Therefore, let us mimic Eq. (33) by setting S1 → H,

S2 → S, J still being our DM candidate:

L ¼ −
m2

S

2
S2 −

m2
J

2
J2 − μHHSjHj2S − μSSJS2J: ð51Þ

If J is the Goldstone boson of some Uð1Þ symmetry, the
parameters mJ and μSSJ break the symmetry and are
therefore expected to be small or at least technically natural
small. The trilinear coupling μSSJ also break CP, as
discussed in Sec. IV C. For mS far above the electroweak

scale, and a coupling hierarchy μHHS ≫ μSSJ, the relevant
processes will be HH̄ → SJ and HS → HJ. By solving
numerically the Boltzmann equations (11) for these proc-
esses, we find a very cold spectrum hp=Tiprod ≃ 0.1, in
complete analogy to the toy model. The correct relic
density of J is obtained for the couplings

μHHSμSSJ
TeVkeV

≃ 30

�
mS

TeV

�
5=2

for mJ ¼ 7 keV: ð52Þ

We have thus managed to obtain very cold keV-scale DM
by freeze-in scattering, simply by coproducing the light
DM particle together with a much heavier particle that
absorbs most of the scattering momentum.
Below the EWPT, S and H will acquire vacuum expect-

ation values that also depend on the other couplings in the
scalar potential that are irrelevant for the DM production.
The unavoidable mixing of S and the CP-even neutral
scalar h contained in H thus becomes model dependent;
however, assuming that μHHS dominates the portal, we may
obtain a mixing angle α:

sin α cos α ¼ sin 2α
2

¼ μHHSv
m2

S −m2
H
: ð53Þ

In this case, we may trade the parameter μHHS for the
mixing angle α. The results for the value of α necessary to
obtain the correct relic density are given in Fig. 4 for
different values of μSSJ. There, we also show constraints on
this mixing angle that arise from electroweak precision data
(EWPD) and corrections to the W mass [83,84]. Since the
production temperature is above the EWPT, we have
included the effect of the Higgs-doublet one-loop thermal
mass (see e.g. [85]), although the discrepancy with respect

1000 10000500 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

mS GeV

W mass

EWPD

10 keV 20 keV
50 keV 100 keV

FIG. 4. The mixing angle α, as given by (53), that gives the
correct relic density for different values of μSSJ . For the value
μSSJ ¼ 50 keV we also plot the result obtained by neglecting the
thermal mass of the Higgs doublet (dot-dashed line), setting it to
mH ¼ 125 GeV. The existing limits on the scalar mixing angle
are taken from [83,84]. The dotted parts denote the most
conservative naive extrapolation of the given limits to larger
values ofmS. Note that we have 7 keV DMwith hp=Tiprod ≃ 0.1.
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to using the T ¼ 0 Higgs-boson mass is found to be small,
as also shown in the same figure.
From Fig. 4 we see a numerical coincidence that makes

this scenario (and the one below) particularly attractive: since
the coupling μSSJ contributes to the mass of J (via a self-
energy diagram involving an S loop) by an amountOðμSSJÞ,
the requirement of not having large cancellations with the
other possible sources ofmJ ¼ 7 keV fixes the scale of μSSJ
to be at most in the tens of keV range. In turn, formS ≫ mH

one naturally has sin α≲m2
H=m

2
S (barring again large

cancellations), so that the correct relic density is obtained
for mS ≲OðTeVÞ and sizable mixing angle. Thus, in these
scenarios the requirement of not having large cancellations
implies that the scalar S must be in the phenomenologically
interesting range, with observable mixing with H.
As for the quartic DM couplings not included in the

Lagrangian (51), they need to be ≲Oð10−8Þ as already
discussed in Sec. IV C. Notice that these small values do
not imply the presence of fine-tuning [86], since their
radiative corrections are always significantly smaller than
their tree-level value. For instance, the one-loop contribu-
tion to the couplings SSJJ and H†HJJ is of the order of
μ2SSJ=ð16π2m2

SÞ ∼ 10−16. Finally, the potential interaction
H†HJ needs to have a coupling smaller than μSSJ in order
to not contribute significantly to the production of J. Its role
in the decay of J, that could generate the putative 3.5 keV
line, will be discussed in Sec. VI A.
Lowering mS below 500 GeV puts the DM production

temperature near the EWPT, which severely complicates
the analysis due to the dependence on the full scalar
potential. We will not discuss this region in detail, whereas
we pass to discuss the case in which the production is
mostly below the EWPT.

D. Light mediator scalar: Decay and scattering

If DM is produced below the EWPT, a convenient
parametrization for the required couplings is given by

V ¼ λH

�
H†H −

v2

2

�
2

þ 1

2
μ2SS

2
0 þ

1

2
m2

JJ
2 ð54Þ

þ μHHS0

�
H†H −

v2

2

�
S0 þ μS0S0JS

2
0J; ð55Þ

where we neglected cubic and quartic couplings that are not
of interest for the cold production of J. As above, the
coefficientsmJ and μS0S0J break the Uð1Þ symmetry explic-
itly (the latter also breaking CP) and are hence expected to
be small. We assume hS0i ¼ 0, which in any case is just a
redefinition of parameters for a real singlet scalar. In the
unitary gauge, we haveH ¼ ð0; ðh0 þ vÞ= ffiffiffi

2
p ÞT , and h0 and

S0 mix into themass eigenstates h and Swithmixing angle α
defined via

sin α cos α ¼ sin 2α
2

¼ μHHS0v

m2
S −m2

H
: ð56Þ

Wewill replace λH, μS, andμHHS0 by the physical parameters
mH, mS, and α in the following. The mixing changes the
cubic interactions of interest to

V ⊃ μSSJS2J þ μhhJh2J þ μShJShJ ð57Þ

þ μhSShS2 þ μhhSh2Sþ μSSSS3 þ μhhhh3; ð58Þ

with coefficients

μSSJ ¼ μS0S0J cos
2 α; ð59Þ

μhhJ ¼ μS0S0J sin
2 α; ð60Þ

μShJ ¼ −μS0S0J sin 2α; ð61Þ

μhSS ¼
ðm2

H þ 2m2
SÞ

2v
cos α sin2 α; ð62Þ

FIG. 5. Average momentum of the dark matter (left panel) and value of the S − h mixing angle α that gives the correct relic density
(right panel) in scenario D with mS > mH . The latter is given for different values of the coupling μS0S0J . The existing limits on α (gray
area) are taken from Ref. [83]. The gray region in the left panel is excluded by the Lyman-α bound mTR > 4.65 keV when applied to a
7 keV DM mass; cf. (9).
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μhhS ¼
ðm2

S þ 2m2
HÞ

2v
cos2 α sin α; ð63Þ

μSSS ¼
3m2

S

2v
sin3 α; ð64Þ

μhhh ¼
3m2

H

2v
cos3 α: ð65Þ

To leading order in α, when mS > mH, DM is produced
via the decay S → hJ and the scattering processes
XS → XJ, XX → SJ, with X ∈ fh;W; Z; tg. In Fig. 5
we show the results for hp=Tiprod (left panel) and the
mixing α that gives the correct relic density, the latter for
various values of μS0S0J ¼ Oð10Þ keV. The 7 keV DM is
sufficiently cold to satisfy the bound (9) for 125 GeV≲
mS ≲ 190 GeV. In this region, DM is mainly produced by
decays, and its coldness stems from the partial phase-space
closure of the decay S → hJ. Scattering would make DM
cold for mS > 2mX, but it turns out that the contribution
of decays, which give hot DM for larger mS, is rather
dominant. For mS ≳ 350 GeV DM is produced in part
below and in part above the EWPT, and a more sophis-
ticated analysis would be needed.
When mS < mH, the relevant decay process becomes

h → SJ and the results are plotted in Fig. 6. For relatively
heavy mS decays still dominate, whereas for light mS
scattering processes become dominant. Cold enough DM is
obtained for mS ≲ 10 GeV or 85 GeV≲mS ≲ 125 GeV,
dominantly from scattering and decays, respectively.
Finally, we point out that the discussion given in Sec. V C
about the scale of μS0S0J and the other couplings also applies
to the regime discussed here.

VI. RADIATIVE DECAY—THE 3.5 KEV LINE

In the previous sections we have presented several
mechanisms to generate sufficiently cold keV-scale DM
from in-equilibrium processes to satisfy Lyman-α con-
straints. The motivation comes in part from the tantalizing

3.55 keV x-ray line observed in many different astrophysi-
cal objects, including Andromeda, Perseus, and the
Galactic center [9,10,87,88]. Nonobservation in stacked
spectra of dwarf spheroidal satellites, on the other hand,
puts severe limits on the flux [89]. Our aim is not to enter
the discussion about the significance of this observation—
see Ref. [16] for that—but rather to take it as an interesting
benchmark value. Several explanations of this line in terms
of DM exist, arguably the simplest one being the two-body
decay of either a 7.1 keV DM fermion F or boson B with
lifetime [16]

τðF → νγÞ≃ 7 − 16 × 1027 s; ð66Þ

τðB → γγÞ≃ 14 − 32 × 1027 s: ð67Þ

As we have seen above, a DMmass of 7 keV requires rather
nonstandard production mechanisms in order to satisfy
Lyman-α constraints [11]. Even if a viable production
mechanism for DM is in place, for example the ones
presented in the previous sections, the DM couplings to the
SM necessary for the DM decay can lead to additional
constraints on the model and need to be discussed.
We start our discussion with the well-known example of

sterile-neutrino DM N. In the simplest model, based on a
tree-level coupling yL̄HN, the relevant partial width can be
calculated in terms of an active-sterile mixing angle θν:

ΓðN → νγÞ≃ 9α

2048π4
m5

N

v4
sin22θν

≃ 1

11 × 1027 s

�
mN

7.1 keV

�
5
�

θν
3 × 10−6

�
2

:

ð68Þ

The mixing angle couples N to the electroweak gauge
bosons, but since the required angle is small, this does not
lead to many other observable effects, so it is possible to
accommodate the line in this way. One relevant effect is that
a nonzero θν implies that a subcomponent of N is

FIG. 6. The same as Fig. 5 but for mS < mH. In the right panel, the exclusion limits come either from direct searches or Higgs-boson
coupling measurements, the latter excluding jsin αj≳ 0.44 for mS < 120 GeV [83].
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unavoidably produced nonresonantly à la Dodelson-
Widrow, i.e. with a slightly hotter temperature, although
this is typically not dangerous. Since this kind of sterile-
neutrino DM has been discussed at length in the literature
[16], we will not go into any more details.
Focusing instead on bosonic DM J, we will distinguish

three qualitatively different ways to obtain the decay into
two photons. It is, of course, possible to have more than one
mechanism operative.

A. Mixing with the SM scalar

If our DM J mixes with the SM scalar h with an angle θh
(thus violating CP if J is a pseudoscalar), it will inherit all
of its couplings, in particular the one-loop coupling
JFμνFμν that leads to diphoton decay, which for mJ ≪
me takes the simple form

ΓðJ→ γγÞ≃ 121α2

2304π3
m3

J

v2
sin2θh

≃ 1

14×1027 s

�
mJ

7.1 keV

�
3
�

θh
3×10−13

�
2

: ð69Þ

Note that the rate scales with θ2m3
DM=v

2, so a much smaller
mixing angle is required compared to the sterile neutrino
case, where an extra suppression m2

DM=v
2 is present. At the

Lagrangian level, the J − h mixing can arise from the
coupling μhhJðH†H − v2=2ÞJ in the scalar potential, with
μhhJ ≃ 6 × 10−3 eVðθh=10−13Þ. The coupling to e.g. elec-
trons is then given by Jēeθhme=v, which is sufficiently small
to not lead to additional signals beyond the x-ray signal from
J → γγ. A detailed discussion of the resulting phenomenol-
ogy can be found in Ref. [73] in the context of relaxion
models, where such a mixing with the Higgs is a crucial
ingredient. In particular, the additional couplings are too
small to thermalize J in the early Universe or even freeze in a
relevant amount of J, in compatibility with the discussion
in Sec. V.

B. Mixing with Z

For a CP-odd scalar, an effective mixing θZ with the
longitudinal component of the Z boson, i.e. the would-be
Goldstone boson GZ, can exist without violating CP. This
generically occurs in Majoron models and leads to a decay
rate [75]

ΓðJ → γγÞ≃ α2θ2Z
9216π3

m7
J

v2m4
e

≃ 1

18 × 1027 s

�
mJ

7.1 keV

�
7
�

θZ
3 × 10−8

�
2

ð70Þ

for mJ ≪ me. Note that the amplitude for this process
vanishes in the limit mJ → 0 on account of anomaly free-
dom, which results in the additional suppression m4

DM=m
4
e

compared to the J − hmixing, necessitating a larger mixing
angle. In the singlet-tripletMajoronmodel, the angle arises at
tree level:

θZ ≃ 2v2T
vf

≃ 1.5 × 10−9
�

vT
3 GeV

�
2
�
5 × 107 GeV

f

�
; ð71Þ

vT (f) being the VEVof the triplet (singlet) [21,26]; in the
pure singlet-Majoron case, it arises at loop level as

θZ ≃ trðmDm
†
DÞ

16π2vf

≃ 4 × 10−7
�
trðmDm

†
DÞ

4πv2

��
5 × 107 GeV

f

�
; ð72Þ

mD being the standard Dirac mass matrix used in the seesaw
mechanism. See Ref. [75] for the assumptions behind this
result. As shown in Ref. [90], the matrixmDm

†
D can be used

to parametrize the high-energy part of the seesawmechanism
and is in particular independent of the measured low-energy
neutrino data. In our case it can be seen as a free parameter
that determines the Majoron coupling to charged fermions
and photons; see Ref. [75] for more details.
One of the unique features of Majoron models is the tree-

level decay rate into active neutrinos,

ΓðJ → ννÞ≃ mJ

16πf2
X
ν

m2
ν: ð73Þ

For sub-MeV Majoron masses it would be incredibly
difficult to directly detect such monochromatic neutrinos
[75], but the lifetime can still be constrained from cosmol-
ogy to be above 160 Gyr for cold DM [91] (potentially up
to 170 Gyr depending on the data set used [92]). This
implies a lower bound on the Uð1ÞL breaking scale of f >
5 × 107 GeV for a 7 keV Majoron, which holds for the
normal neutrino mass hierarchy and becomes even stronger
for inverted or quasidegenerate spectra. Together with the
upper bound on the triplet VEVof vT ≲ 3 GeV (at 3σ) from
the electroweak-precision parameter ρ≃ 1–2v2T=v

2 [3], this
makes it difficult to have mixing angles θZ above 10−9 in
the triplet-singlet Majoron model. This differs from the
conclusion in Refs. [23,24], in part because we use slightly
stronger limits on ΓðJ → ννÞ. In the singlet model, on the
other hand, trðmDm

†
DÞ can be as large as 4πv2 before

reaching the nonperturbative regime, which allows J − Z
mixing angles as high as θZ ∼ 4 × 10−7, an order of
magnitude above the value required for the 3.5 keV line.
This could, of course, be considered as fine-tuning.
In all Majoron models, the mixing θZ also induces

couplings to e.g. electrons, given by iJēγ5eθZme=v.
Such couplings have been discussed in the context of
axions, with typical limits from stellar cooling around θZ ∼
10−7 [93], not dangerous for us.
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This still leaves the question whether these small cou-
plings could have an impact on theDMabundance via freeze
in. The strongest coupling here is to the heaviest particle,
namely the top quark: iJt̄γ5tθZmt=v. Due to the large mass,
this coupling is of order 10−8 in the region of interest,
Eq. (70). This could potentially play a role in cosmology, but
a detailed discussion goes beyond the scope of this work.

C. Anomalies

If J is the pseudo-Goldstone boson of a Uð1Þ symmetry
that is anomalous with respect to electromagnetism, a
coupling to the pseudoscalar density ~FμνFμν is generated:

L ⊃
αE
8πf

J ~FμνFμν; ð74Þ

where f is the Uð1Þ breaking scale, ~Fμν ≡ 1
2
ϵμνλρFλρ the

dual field-strength tensor, and E ¼ P
XQ

2
XQ

global
X is the

anomaly coefficient, summed over all chiral fermions X
with electric (global) charge QX (Qglobal

X ). The decay rate is
then given as [3]

ΓðJ → γγÞ ¼ α2E2

256π3
m3

J

f2

≃ 1

25 × 1027 s

�
mJ

7.1 keV

�
3
�
3 × 1014 GeV

f=E

�
2

:

ð75Þ

Axions are a prominent example here, with E ≠ 0 typically
induced when making the Uð1Þ anomalous with respect to
color in order to solve the strong CP problem. In principle,
arbitrary values for E can be obtained by introducing
particles beyond the SM, as long as they can either decay
back into SM particles sufficiently fast to not modify
cosmology or are too heavy to be produced at reheating
[94,95]. For the simplest invisible axion models, QCD
leads to a relation of axion mass and breaking scale of the
form ma ∝ mπfπ=fa, so ma ≃ 7 keV would require a very
low Peccei-Quinn breaking scale fa ≃ 0.8 TeV. This in
turn leads to a large K− → π−a rate in conflict with

experiments [31], even if we were tempted to fine-
tune E≃ 10−12.
Since f andmJ are only directly linked in minimal axion

models, we can simply pick a high scale f and E ¼ Oð1Þ
for our 7 keV DM [29,30]. Note that this is the only decay
mechanism so far that does not rely on DM-SM mixing; as
such, the DM particle does not inherit any additional
couplings beyond J ~FμνFμν, at least as long as we neglect
the anomaly-inducing fermions and higher loop correc-
tions. A small amount of (rather hot) DM will unavoidably
be produced thermally by the Primakoff process SMγ →
SMJ but will be suppressed if the reheating temperature is
below the grand unified theory scale [30].
Taking the 3.5 keV x-ray line seriously requires a DM

decay rate that can be realized in several ways. As we have
shown above, the required couplings or mixing angles are
typically small enough to not produce too much DM. The
DM decay can then often be separated from the DM
production mechanism, for which we have provided new
mechanisms that lead to cold enough light DM.

VII. CONCLUSION

Dark matter with mass in the keV range is an interesting
alternative to the standard WIMP scenario because it can
lead to suppressed small-scale structures. The impact on
structure formation depends however not simply on the DM
mass but rather its momentum distribution.
In this article we have put forward several freeze-in

production mechanisms that lead to rather cold keV-scale
DM, essentially decoupling the DM mass from its average
momentum. In its simplest realization, one can obtain
arbitrarily cold DM from the decay A → B DM if
mA ∼mB ≫ mDM, A being in equilibrium with the SM.
This merely requires the DM particle to have an off-
diagonal coupling to two moderately degenerate heavy
particles, easily found in many models.
A second class of processes that lead to cold light

bosonic DM can be identified by starting with an inverse
decay AB → C with mA þmB < mC and emitting a DM
particle from any of the particles involved. This requires a
spin-diagonal coupling of the soft DM to one of the heavy
particles A, B or C in order to obtain a resonant enhance-
ment, which can in particular work for scalar or vector DM.

TABLE I. Models that can yield light cold DM J. The first column shows the main DM production process and the second the possible
range of hp=Tiprod. In the third column we impose the Lyman-α bound from Eq. (8) for a 7 keV DM particle and derive the constraints
on the heavy masses. In all cases, a decay J → γγ can be induced by the mechanisms of Sec. VI.

(Main) process hp=Tiprod Lyman-α for mDM ¼ 7 keV Comments

N1 → N2J OðmJ=m1Þ − 2.5 0.7 < m2=m1 < 1 Family symmetry or inverse seesaw (Sec. V B)
HH̄ → SJ Oð0.1Þ 500 GeV ≲mS New scalar S with α ∼ 0.1 (Sec. V C)
S → hJ OðmJ=mSÞ − 2.5 125 GeV ≲mS ≲ 190 GeV New scalar S with α ∼ 0.1 (Sec. V D)
h → SJ OðmJ=mhÞ − 2.5 85 GeV ≲mS ≲ 125 GeV New scalar S with α ∼ 0.1 (Sec. V D)
XS → XJX¼ft;h;W;Zg 1–2.5 mS ≲ 10 GeV New scalar S with α ∼ 0.1 (Sec. V D)
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In Sec. V we have discussed example models for a 7 keV
bosonic DM candidate J that satisfies the Lyman-α bounds
by making use of these mechanisms. A summary of our
findings is given in Table I. Note that the degree of coldness
is determined by kinematical features, so that the structure-
formation constraints translate into ones for the mass
spectrum of the involved particles. We stress again that
the mechanisms discussed in Sec. IV are more general than
this and can be applied to other models.
All of these processes are of the freeze-in type, requiring

a Oð10−8Þ coupling of the DM particle, but the other new
particles are in equilibrium with the SM. This is markedly
different from the other production mechanism that is not in
tension with Lyman-alpha data: the popular double freeze-
in scenario for keV sterile-neutrino DM, where cold light
DM is produced by the decay of a feebly interacting particle
that is itself frozen in. As a result, in our setup it is possible
to search for the mediator particles to the light DM.
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APPENDIX A: DETAILS ON
BOLTZMANN EQUATIONS

Let us give further details on the derivation of the
Boltzmann equations in Sec. III. In an expanding back-
ground, the Boltzmann equation for the DM distribution
function fðp; tÞ≡P

d:o:f:fDMðjpDMj; tÞ, where the sum is
over the internal degrees of freedom, is

� ∂
∂t −Hp

∂
∂p

�
fðp; tÞ ¼ CðpÞ; ðA1Þ

where H ¼ T2=M0 is the Hubble parameter in the radia-
tion-dominated epoch, with M0 ≃MPl=ð1.66g1=2� Þ. For a
decay process A → B DM, the collision term is

CðpÞ ¼ 1

2EDM

Z
d3pA

2EAð2πÞ3
Z

d3pB

2EBð2πÞ3
× ð2πÞ4δð4ÞðpA − pB − pDMÞjMj2fAðEAÞ; ðA2Þ

where EX ≡ EXðpXÞ and jMj2 is the squared matrix
element summed over initial and final degrees of freedom,
following the conventions of Ref. [54]. Notice that the
above expression, without additional factors of 2, is valid
even if B ¼ DM. In writing down (A2) we have neglected
quantum-statistics effects, which would instead give, in
general, an additional dependence of C on fB and f. This
dependence could be neglected, while retaining a quantum-
statistics treatment, only if both fB, f ≪ 1, which would

often not occur in the cases of interest in this work.
Therefore, we adopt the classical statistics approximation
systematically throughout the calculation.
Most of the integrals in Eq. (A2) can be performed either

by symmetry or by conservation of 4-momentum,
obtaining

CðpÞ ¼ jMj2
16πp2

Z
∞

E�
dEAfAðEAÞ; ðA3Þ

where we have exploited the fact that the invariant matrix
element is a function of the masses and number of degrees
of freedom only and E� is the kinematical threshold for the
process with a given p, i.e.

E� ≡m2
A −m2

B

4p
þ m2

A

m2
A −m2

B
p; ðA4Þ

obtained by setting mDM → 0. We can now switch to the
variables r≡mH=T and x≡ p=T. For bookkeeping pur-
poses we have introduced the reference mass scale mH, the
Higgs-boson mass, which will of course drop out of
physical quantities. Neglecting the change in g� during
the time of production, one has

∂
∂t −Hp

∂
∂p ¼ m2

H

M0r
∂
∂r

				
x¼const:

: ðA5Þ

Combining this with (A1) and (A3) one finally finds the
Eq. (16) we employ in the main text.
For the scattering process AB → C DM, the collision

term is similarly given by

CðpÞ ¼ 1

2EDM

Z
d3pA

2EAð2πÞ3
Z

d3pB

2EBð2πÞ3
Z

d3pC

2ECð2πÞ3
× ð2πÞ4δð4ÞðpA − pB − pC − pDMÞ
× jMj2fAðEAÞfBðEBÞ: ðA6Þ

Thanks to the classical-statistics approximation, we may
rewrite this in a factorized form:

CðpÞ ¼ 1

2EDM

Z
d4P
ð2πÞ4

e−P0=T

2EC
ð2πÞδðEC þ EDM − P0Þ

×
Z

d3pA

2EAð2πÞ3
Z

d3pB

2EBð2πÞ3
× ð2πÞ4δð4ÞðpA − pB − PÞjMj2: ðA7Þ

The second and third lines are, up to a phase-space integral,
the reduced cross section σ̂ðsÞ [54] for the process
CDM → AB, with s ¼ P2, summed over initial and final
degrees of freedom. Neglecting possible CP-violating
effects, this is the same as σ̂ðsÞ for the original process
AB → C DM. We thus find, setting also mDM → 0,

COLD KEV DARK MATTER FROM DECAYS AND SCATTERINGS PHYSICAL REVIEW D 96, 035018 (2017)

035018-17



CðpÞ ¼ 1

16π2p2

Z
∞

smin

ds
σ̂ðsÞ

ð1 − m2
C
s Þ

Z
∞

P�
0

dP0e−
P0
T ; ðA8Þ

with the threshold energy (for a given p)

P�
0 ≡

�
1 −

m2
C

s

�
−1
pþ s −m2

C

4p
; ðA9Þ

and smin ¼ maxfðmA þmBÞ2; m2
Cg. Performing the P0

integral, switching again to the variables r and x and
combining with (A1) and (A5), we finally obtain our main-
text Eq. (11).

APPENDIX B: SCATTERING CROSS SECTIONS

In this Appendix we give the scattering cross sections for
the toy models of Sec. IV C, for simplicity in the limit

mJ ¼ 0. The quartic interaction of Eq. (31) gives the cross
sections

σðS1S1 → S2JÞ ¼
λ2J112ðs −m2

2Þ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3ðs − 4m2

1Þ
p ; ðB1Þ

σðS1S2 → S1JÞ ¼
λ2J112ð1 −m2

1=sÞ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

2 − sÞ2 þm4
1 − 2m2

1ðm2
2 þ sÞ

p :

ðB2Þ

For the cubic interactions of Eq. (32) we assume μJ11 ≪ μ112
in order to neglectSiSj → JJ processes, leaving onlySiSj →
SkJ scatterings:

σðS1S1 → S2JÞ ¼
2μ2112μ

2
J11

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

1Þ
p

− 2m2
1 log

� ffiffi
s

p
−

ffiffiffiffiffiffiffiffiffiffi
s−4m2

1

p
ffiffi
s

p þ
ffiffiffiffiffiffiffiffiffiffi
s−4m2

1

p
��

πm2
1sðs − 4m2

1Þðs −m2
2Þ

; ðB3Þ

σðS1S2 → S1JÞ ¼
μ2112μ

2
J11

πm2
1sðs −m2

1Þððm2
2 − sÞ2 þm4

1 − 2m2
1ðm2

2 þ sÞÞ
�
ðm2

1 þ sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

2 − sÞ2 þm4
1 − 2m2

1ðm2
2 þ sÞ

q

þ2m2
1s log

�
m2

1 −m2
2 þ s −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

2 − sÞ2 þm4
1 − 2m2

1ðm2
2 þ sÞ

p
m2

1 −m2
2 þ sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

2 − sÞ2 þm4
1 − 2m2

1ðm2
2 þ sÞ

p
��

: ðB4Þ

For the cubic interactions of Eq. (33) we similarly
assume μJ22 ≪ μ112, leaving us with the processes

σðS1S1 → S2JÞ ¼
μ2112μ

2
J22

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3ðs − 4m2

1Þ
p

ðs −m2
2Þ
; ðB5Þ

σðS1S2 → S1JÞ ¼
μ2112μ

2
J22

πm2
2ðs −m2

1Þ
×

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

2 − sÞ2 þm4
1 − 2m2

1ðm2
2 þ sÞ

p :

ðB6Þ

The reduced cross sections relevant for the Boltzmann
equations of interest can in all cases be obtained via

σ̂ðSiSj → SkJÞ ¼ 2
λðs;m2

i ; m
2
jÞ

s
σðSiSj → SkJÞ; ðB7Þ

with the well-known Källén function λða; b; cÞ≡ a2þ
b2 þ c2 − 2ab − 2ac − 2bc. If the particles involved in
the scattering carry spin or other internal degrees of
freedom, they must be summed over in Eq. (B7).
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