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We comprehensively evaluate renormalized Higgs boson couplings at one-loop level in nonminimal
Higgs models such as the Higgs singlet model (HSM) and the four types of two Higgs doublet models
(THDMs) with a softly broken Z, symmetry. The renormalization calculation is performed in the on-shell
scheme improved by using the pinch technique to eliminate the gauge dependence in the renormalized
couplings. We first review the pinch technique for scalar boson two-point functions in the standard model
(SM), the HSM and the THDMs. We then discuss the difference in the results of the renormalized Higgs
boson couplings between the improved on-shell scheme and the ordinal one with a gauge dependence
appearing in mixing parameters of scalar bosons. Finally, we widely investigate how we can identify the
HSM and the THDMs focusing on the pattern of deviations in the renormalized Higgs boson couplings

from predictions in the SM.
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I. INTRODUCTION

In spite of the success of the standard model (SM), there
are many reasons to introduce new physics beyond the
SM from both experiments and theory considerations. At
the LHC a Higgs boson has been found, but no new particle
has been found yet. It is expected that current and future
collider experiments will find something new, namely
either discovering direct evidence of new particles or
detecting deviations from the SM predictions.

Although the Higgs boson was found, the structure of the
Higgs sector remains unknown. The current data indicate
that the observed Higgs boson behaves like the SM one [1].
Still, there is no compelling reason for the minimal Higgs
sector of the SM, and there are many possibilities for
nonminimal structures in the Higgs sector.

It is actually very important to clarify the structure of the
Higgs sector from the viewpoint of exploring new physics
beyond the SM. The strength of the interaction, multiplet
structures, and symmetries of the Higgs sector are closely
related to specific scenarios of new physics beyond the SM.
Therefore, the Higgs sector is a probe of new physics.

Nonminimal structures of the Higgs sector can be
explored by directly discovering additional scalar particles
at current and future experiments. Once we discover such a
new particle, we can reconstruct the structure of the Higgs
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sector by measuring masses and couplings of these particles
in detail. However, it is not clear whether such new particles
can be in the reach of direct searches in the near future.

In a complementary way, there is a possibility to
indirectly discover evidence of new physics beyond the
SM by detecting deviations from the predictions in the SM.
In particular, with the new observables after the discovery
of the Higgs boson, such as the coupling constants with the
Higgs boson A(125), deviations in these coupling constants
can make a specific pattern, by which we can fingerprint
models with nonminimal Higgs sectors [2].

Current magnitudes of the precision for the Higgs cou-
plings measurements are typically the order of 10% level or
worse at the LHC experiments [1]. They will be improved in
the near future at future experiments such as LHC Run-II and
High-Luminosity LHC (HL-LHC) [3,4], and those at e™ e~
colliders, e.g., the International Linear Collider (ILC) [5], the
Compact Linear Collider (CLIC) [6] and the Future e*e™
Circular Collider. For example at the HL-LHC (at the initial
phase of the ILC), the hZZ, hbb and hrr couplings will
be measured with 2%—-4% (0.58%), 4%—7% (1.5%) and
2%—-5% (1.9%) at 1o [5,7], respectively. Obviously, theory
predictions for the Higgs boson couplings must be evaluated
with more accuracy than those experimental errors, namely,
we need to go beyond the tree level calculation. Therefore,
it is important to systematically prepare the calculation of
various Higgs boson couplings at loop levels. In addition,
these calculations should be systematically performed in
various kinds of extended Higgs sectors.

So far, one-loop corrections to the Higgs boson cou-
plings have been investigated in various models. In the SM,

© 2017 American Physical Society


https://doi.org/10.1103/PhysRevD.96.035014
https://doi.org/10.1103/PhysRevD.96.035014
https://doi.org/10.1103/PhysRevD.96.035014
https://doi.org/10.1103/PhysRevD.96.035014

KANEMURA, KIKUCHI, SAKURAI and YAGYU

one-loop corrections to the AVV (V = W, Z) couplings
were calculated in Refs. [8—10]. For the hff couplings,
one-loop QCD and electroweak corrections were respec-
tively computed in Refs. [11-14] and [8,15]. These
calculations have been established since the early 1990s
mainly based on the electroweak on-shell renormalization
scheme [16-18]. After that, one-loop corrected Higgs
boson couplings have also been calculated in various
models beyond the SM. For example, in the minimal
supersymmetric SM (MSSM), one-loop corrections to
the hff couplings have been intensively studied in
Refs. [19-23], because of the sizable amount of the
supersymmetric QCD corrections. In addition, in
Refs. [24,25] the Higgs boson self-coupling #hh has been
calculated at one-loop level in the MSSM. In (nonsuper-
symmetric) two Higgs doublet models (THDMs), one-loop
corrected hZZ [26], hhh [26,27] and hff [28] couplings
have been studied. In Ref. [29], an improved fingerprinting
identification of THDMs has been discussed using the
one-loop renormalized hVV (V. =2, W), h f]_‘ and hhh
couplings. In the other extended Higgs sectors, such
calculations are also found in Refs. [30,31] for the Higgs
singlet model (HSM), in Refs. [32,33] for the inert doublet
model, and in Refs. [34,35] for the Higgs triplet model.

However, it has been known that gauge dependence
appears in the renormalization of mixing parameters among
fields, e.g., fermions [36-39] or scalar bosons [36,40,41]
based on the on-shell scheme, which is proven by using
the Nielsen identity [42]. Fortunately, the way to remove
such gauge dependence by using the pinch technique is
already known [43—48], and the gauge invariant scheme has
been constructed in various models, e.g., in the MSSM
[41,49,50], the HSM [51], and the THDM [52-54].

In this paper, we comprehensively calculate one-loop
corrections to Higgs boson couplings based on the on-shell
renormalization scheme improved by using the pinch
technique (the so-called pinched tadpole scheme [8,52])
to remove the gauge dependence. In particular, as important
examples of extended Higgs sectors we concentrate on the
HSM and the THDMs with a softly broken Z, symmetry
which is imposed to avoid flavor changing neutral currents
(FCNCs) at tree level [55]. For the latter models, we
consider all possible four independent types of Yukawa
interactions called type I, type II, type X and type Y
appearing due to different choices of the Z, charge assign-
ment for fermions [56-58]. We first explicitly show the
cancellation of the gauge dependence in Higgs boson two-
point functions computed in the general R; gauge by
adding pinch terms which are extracted from vertex
corrections and box diagrams of a two-fermion to two-
fermion scattering process in the SM, HSM and THDMs.
We then define the gauge independent renormalized mixing
angles based on the pinched tadpole scheme, and discuss
the difference in various one-loop corrected Higgs boson
couplings based on the pinched tadpole scheme and those
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based on the ordinal on-shell scheme with the gauge
dependence [16-18]. We then investigate how we can
identify the HSM and THDMs by “fingerprinting” various
one-loop corrected Higgs boson couplings with usage of
the gauge invariant renormalization scheme. Namely, these
extended Higgs sectors can be disentangled by looking at
the difference in the pattern of deviations in the Higgs
boson couplings from the SM prediction. In order to
concretely show how the fingerprinting works, we display
various correlations between k,—k,, k,—Kp, K,—Kk, and
kz—k,, where ky denote the normalized hXX couplings
by the SM prediction (4 being the discovered Higgs boson
with the mass of 125 GeV). As a result, if |k, — 1| is found
to be ~1% or larger, there is a possibility to distinguish
these models by the combination of the measurements of
K, Kp and k..

The originality of this paper should be the following. We
discuss how we can discriminate various Higgs sectors by
focusing on the couplings of &(125) with SM particles at
the one-loop level without gauge dependence in various
nonminimal Higgs sectors. In the previous studies [51,52],
one-loop corrected non-SM couplings with extra Higgs
bosons have been discussed in a specific nonminimal Higgs
sector. In addition, we provide details of calculations for the
part of the pinch technique explicitly, some of which have
not been shown in the literature, which might be useful for
people who try to follow the calculation.

This paper is organized as follows. In Sec. II, we give a
brief review of the HSM and THDMs, i.e., defining their
Lagrangians and giving mass formulas for Higgs bosons.
We also discuss various constraints on parameters of these
models. In Sec. III, we show the cancellation of the gauge
dependence in Higgs boson two-point functions using the
pinch technique in the SM, the HSM and the THDMs in
order. A full set of relevant Feynman diagrams giving rise
to the gauge dependence of two-point functions and those
to extract pinch terms are displayed. In Sec. IV, we discuss
the difference in the renormalized Higgs boson couplings
calculated in the pinched tadpole scheme without the gauge
dependence and in the ordinal on-shell scheme with the
gauge dependence. In Sec. V, we numerically show
predictions of various scaling factors xy in the HSM and
the THDMs. We then discuss how we can identify these
models by the difference in predictions of kx. Conclusions
are given in Sec. VL.

II. EXTENDED HIGGS SECTORS

In order to fix notation, we give a brief review of the
HSM and the THDMs with a softly broken Z, symmetry
and CP conservation.

A. HSM

The Higgs sector of the HSM is composed of an isospin
doublet field @ with the hypercharge ¥ = 1/2 and a real
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isospin singlet scalar field S with ¥ = 0. The most general
scalar potential is given by

V(®@,8) = +mg|@F + AD[* + pos|®[*S + Aos| @[S
+ 158 + m3S? + ugS® + 1S4, (1)

where the doublet and singlet fields can be parametrized by

G+
O = <u+</)+iG0>’ S=uvs+s. (2)
et

In Eq. (2), G* and G° are the Nambu-Goldstone (NG)
bosons which are absorbed into the longitudinal compo-
nents of the W+ and Z bosons, respectively. The vacuum
expectation value (VEV) v of ® is directly related to the
Fermi constant Gy by v = (v2Gp)™/2 =246 GeV. On
the other hand, the singlet VEV vg of S contributes to
neither the electroweak symmetry breaking nor generation
of fermion masses. In addition, a shift of the singlet VEV
vg — v can be absorbed by the reparametrization of
parameters in the potential [59]. Therefore, we simply take
vg = 0 in the following discussion.

The mass eigenstates of the two CP-even scalar states are

defined by
<S):R(a)(H) with R(@):(C?Se _Siw).
¢ h sind cosd
(3)

Hereafter, we introduce the shorthand notation s, = sin 8
and cy = cos 8. Their masses are calculated after imposing
the tree level tadpole conditions, i.e.,

av
¢

ov
-5 =o. 4)
o Osly

by which we can eliminate m3, and g parameters, where
|o denotes taking all the scalar fields to be O after the
derivative. The squared masses (m7, and m7) and the
mixing angle « are then expressed as

my = M3 cg + M3ys5 + Mi504, (5)
m%l - M%ls(zl + M%ZCIZl - M%2s2(17 (6)
2M?
tan 2a = 27122, (7)
Ml] - M22

where M%j are the mass matrix elements for the CP-even
scalar states in the basis of (s, ¢),
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M3y = 2m5 + v Ao, M3, = 2007, M3, = vpes.

(8)

We identify / as the discovered Higgs boson at the LHC,
so that we take m;, = 125 GeV. From Egs. (5)—(8), we can
solve (A, m2, pes) in terms of (my, my, a) as

1
A= 72 (mich + mys3),

1
2 _ 2.2 2.2 2
mg = B (mj;s5 + mycg — dosv”),

1
Hos = ;%%(m%i - m%) (9)

Consequently, we can choose the following five free
parameters as inputs:

my, a, j'S’ /LI)S? Hs- (10)

These parameters can be constrained by taking into account
the following arguments with respect to the theoretical
consistency.

First, we impose the perturbative unitarity bound [60]
defined by

, 1
labl <3, (1)

where af are the eigenvalues of the s-wave amplitude
matrix for elastic two-body to two-body scalar boson
scatterings. There are four independent eigenvalues written
in terms of dimensionless parameters in the potential in the
HSM [61], which can be rewritten in terms of the physical
parameters, e.g., my and a via Eq. (9).

Second, we require that the Landau pole does not appear
at a certain energy scale. In this paper, we impose the
following condition as the triviality bound,

|A:(u)| <4m, for Yu with my; <pu < Acyosr>  (12)

where A yofr is the cutoff of the model, and 4;(u) are the
dimensionless running parameters at the scale y, which can
be evaluated by solving the one-loop renormalization group
equations. The one-loop beta functions in the HSM are
given in Ref. [62].

Third, we require the condition to guarantee the potential
being bounded from below in any direction of the scalar
field space. The sufficient condition to avoid the vacuum
instability at any scale u up to the cutoff A, 1S given
by [63]
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As(u) 20, 20/ () As (1) + Aps(p) > 0

Au) 20, :
for Yu with my < < Ao 13)

—

Fourth, we impose the bound from conditions to avoid
wrong vacua [59,64]. Because of the existence of the scalar
trilinear couplings pg and 145, nontrivial local extrema can
appear in the Higgs potential. Therefore, we need to check
if the true extremum at (v/2(®), (S)) = (v, 0) corresponds
to the minimum of the potential. This condition can be
expressed as

Vnor(viv-xi) > 07 Vnor(oﬂxl,Z.B) > 0’ (14)

where V. is the normalized Higgs potential satisfying
Vior(0,0) = 0. The analytic formulas of the false VEVs for
the doublet field v, and those for the singlet field x, and
Xy 3 are found in Ref. [31].

Finally, we take into account the constraint from the
electroweak oblique parameters S and 7 introduced by
Peskin and Takeuchi [65]. We define new physics con-
tributions to the S and 7 parameters as AS = Syp — Ssm
and AT = TNP - TSM with SNP(SM) and TNP(SM) being the
new physics (SM) prediction to the S and 7 parameters,
respectively. From Ref. [66], the fitted values of the AS and
AT are given under AU = 0 by

AS =0.05£0.09, AT =0.08 £0.07, (15)

with the correlation factor pgyr = +0.91. We require that the
prediction of the model is within the 95% confidence level
(CL) region, which is expressed by Ay*(AS, AT) <5.99.
The analytic expressions for the new contributions AS and
AT can be found in, e.g., Ref. [67].

Before closing this subsection, let us give the trilinear
interaction terms among the Higgs bosons and weak bosons
or fermions. Because the singlet field S does not couple to
weak bosons and fermions, the singletlike Higgs boson H
couples to these SM fields only through the nonzero mixing
angle a, while the SM-like Higgs boson 4 couplings are
universally suppressed by the factor of cosa. As a result,
we obtain the following interaction Lagrangian:

h H -
Liilinear = <—ca +—sa> (Zm%VW,f WH 4 m%ZﬂZ" —meff).
v v
(16)
In Appendix B, we also give scalar trilinear couplings.

B. THDM

The Higgs sector is composed of two isospin doublets
@, and ®, with ¥ = 1/2. In order to avoid FCNCs at the
tree level, we impose a Z, symmetry in the Higgs sector,
which can be softly broken by a parameter in the potential.
We fix the Z, charge assignment for two doublets and
fermions as given in Table I. Depending on the Z, charge
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TABLE 1. Charge assignment of the Z, symmetry and the {
(f = u, d, e) factors appearing in Eq. (34) in each of four types of
Yukawa interactions.

O, ©, Op Ly ug dg er ¢, Ca o
TypeI + - + 4+ —- — — cotff cotff cotp
Type-I + - + + - 4+ + cotf —tanff —tanf
Type-X + - 4+ + — — + cotf cotff —tanf
Type-Y + - + 4+ — + — cotff —tanf cotp

assignment on right-handed fermions, we can define four
types of Yukawa interactions [56,57] called type I, type II,
type X and type Y [58].

The Higgs potential under the Z, symmetry and the CP
invariance is given by

V(@ D)) = +m|®y|? + m3|®,|* — m3(P] D, + Hec.)
1 1
+54 @ [* + 5/12|‘1’2|4 + 23| @; [P @, 2
1
+ 24| @10, + 5/15[(@;‘1)2)2 +Hel], (17)

where the two doublet fields can be parametrized as

+

w; _
(I)i = <v;+h,~+iz;)’ (l = 1’2)’

V2

(18)

with »; being the VEVs for ®,. These two VEVs can

be expressed as (v,tanf) defined by v = \/v? + v3 =
(vV2Gp)~™'/? and tan = v,/ v;.

The mass eigenstates for the scalar bosons are obtained
by the following orthogonal transformations,

(5)-s0(2)
(2)=r(5)
(Z;) —R(a)<IZ>,

where «a is the mixing angle between two CP-even scalar
states. Similar to the HSM case, we regard the £ state as the
discovered Higgs boson at the LHC.

By imposing the tree level tadpole conditions, i.e.,

(19)

ov
oh,

v

— 7] —o, 20
o (20)

0

we can eliminate the m? and m3 parameters. We then obtain
the mass formulas of the physical Higgs bosons. First, the
squared masses of H* and A are calculated as
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2
v

m?{i :Mz—?(/lél—f—/q,s), mi :M2—’l]2/15, (21)

where M describes the soft breaking scale of the Z,

symmetry defined as

2
m3

M? = (22)

S/}C/; ’

The masses for the CP-even Higgs bosons and the mixing
angle a can be expressed by

m%l = C/Zi—rlM%l + s%i—aM%Z - s2(/f—a)M%2’ (23)

m% S/%’—aM%l + szi—aM%Q + SZ(ﬂ—a)M%r (24)

2M3,

tan2(f—a) = ————-,
M3, - M3,

(25)

where M lzj (i, j = 1, 2) are the mass matrix elements for the
CP-even scalar states in the basis of (i, h,)R(f),

2
v
M%l = 1)2(/11(72 + /12.92) + ?/1345S%ﬁ’ (26)
M%Z = M2 + Uzszcé(ll + /12 - 2/1345), (27)
, v 2 oV
M12 = ESQ[f(lZS/} - llc/j) + ?Szﬂczﬁly‘s, (28)

with 1345 = 13 + 14 + 15. From Eqs (21) and (23)—(28),
the quartic couplings 4;—15 in the potential are rewritten in
terms of the physical parameters as

Av? = (miytan® B+ mj)sj_, + (mp; + mj tan® f)c_,
+ 2(my; — m3)Sp_oCp_g tan f — M? tan® §,

v = (my cot® f 4 my)s;_, 4 (my; + mj cot® f)cg_,
—2(m}y; — m3)$p_oCp_q tan f — M? cot® B,

/131)2 = (m%I - m%)[c/zi—a - S%’—a + (tanﬁ - COtﬂ)sﬁ—aCﬁ—a]

—|—2mzi - M?,
/14222 =M?+ mf‘ — Zm%#,
Asv? = M?* — m3. (29)

From the above discussion, we can choose the following
six free parameters as inputs,
My, my, Mmye, S, tanp, M. (30)
As we discussed in the previous subsection, we can
constrain these parameters by taking into account bounds
from the perturbative unitarity, the triviality, the vacuum
stability and the S and 7T parameters. The 12 independent
eigenvalues aj) of the s-wave amplitude matrix are given in
Refs. [68-72]. The sufficient condition for the vacuum

stability [73-76] at an arbitrary scale y is given by
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M) =0, A(u) >0,
VA () Ao (p) + A3 (1) +MIN[O, g () £ As5()] = 0,
for Yu with my < < Ao (31)

The beta functions for the five dimensionless couplings can
be found in Ref. [77]. In addition, the analytic expressions
for the new contributions AS and AT are given in
Refs. [78-82].

Apart from the discussion of the potential, let us consider
the Yukawa Lagrangian. Under the Z, symmetry [55], the
general form of the Yukawa Lagrangian is given by

Ey = —YMQLl.qu);MR - YdQLCDddR — YeI:L(I)eeR + H.C.,
(32)

where @, ;. are either @ or ®,. Then, we can extract the
trilinear interaction terms among the Higgs bosons and
weak bosons or fermions as

2m2 m2
[’Lrilinea.r = (S/;'_ah + Cﬂ—aH) <TW WHH W; +TZZMZM>

- Z %(Chffjfh+§Hff}fH_2iIfo]75fA)
f=ud.e

V2

—T[Vudfl(dedPR—muCuPL)dH+
+m,{ ,0PreH" +H.c.], (33)

where I, represents the third component of the isospin of a
fermion f; ie., I, = +1/2 (=1/2) for f = u(d,e), and
Cnrp and Cpypp are defined by

Chff = Spa t CrCpas Crpp = Cpoa —CrSpq-  (34)

In the above expression, the {; factor is either cotf or
—tan f# depending on the fermion type and type of Yukawa
interactions as given in Table I. In Appendix B, we also
give scalar trilinear couplings.

III. GAUGE INVARIANT SCALAR BOSON
TWO-POINT FUNCTIONS

In the previous section, we gave the tree level formulas of
the Higgs boson couplings with weak bosons and fermions.
By focusing on the difference in various correlations of
the deviation in the 2VV and Aff couplings from the SM
prediction, we can discriminate HSM and the THDM with
four types of Yukawa interactions as it has been clearly
shown in Ref. [2]. Currently, the Higgs boson couplings,
e.g., hZZ, hWWW, hyy and hf f (f = t, b, 7) are measured to
be typically order of 10% level or even worse particularly
for the Yukawa couplings at the LHC Run-I experiment [1].
However, the accuracy of the Higgs boson coupling
measurements is expected to be significantly improved
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at future collider experiments such as the HL-LHC [3,4]
and future et e~ colliders [5,6]. Therefore, to compare such
precise measurements, we need to calculate the Higgs
boson coupling at loop levels.

In order to obtain finite predictions of one-loop corrected
observables, renormalization of the Lagrangian parameters
has to be done. Among various renormalization schemes,
the on-shell scheme [16—18] provides a clear definition of
the renormalized parameters; namely, renormalized masses
do not receive any corrections at their on shell. By this
requirement, we can determine counterterms of the
Lagrangian parameters which cancel the ultraviolet (UV)
divergence appearing from one-loop diagrams. Although
the on-shell scheme has the aforementioned nice feature, it
has been known that gauge dependence appears in the
renormalization of mixing parameters between scalar
bosons as mentioned in the introduction.

In this section, we discuss the cancellation of the gauge
dependence in scalar boson two-point functions by using
the pinch technique [43—48] in the three models, i.e., the
SM, the HSM and the THDM. We adopt the general R;
gauge to the following calculation in order to explicitly
show how the gauge dependence is canceled. In the R
gauge, a propagator of a gauge boson V¥ (V =W, Z, y) is
expressed in terms of the gauge parameter &y as

H oV
A = g (1) 2T

(35)
P2 - m%, Pz —Eymy,

We note that for V = W(Z), &ym3, (£,m%) corresponds to
the squared mass of the associated NG boson G* (G°) and
the Faddeev-Popov ghost field ¢* (c). In order to simply
express the difference between an amplitude calculated in
the R; gauge and that in the ’t Hooft-Feynman gauge, i.e.,
¢w =&z = ¢, = 1, we introduce the following symbol,

AéME Z ACVMV

V=W.Zy

with A.fVMV = MV - MV|§V=19 (36)

where M, denotes an amplitude with a dependence on &y,.
In the following, diagrams providing a &y&p (V # V')
dependence do not appear, so that we can separate the
amplitude in the way shown in Eq. (36). Furthermore, we
introduce the following shorthand notations of the
Passarino-Veltman functions' [83],

Co(p*;A.B) = [Bo(p*: A, A) — By(p*; B, B)],

2 2
my —mpg

(37)

"These functions given in Egs. (37) and (38) are also
expressed in terms of the usual C, function as Cy(p*; A, B) =
Co(0, p.primy, mg, my) + CO(PZ’ 0, p*mp, my, mg) and
Co(p*;A, B, C) = Cy(0, p?, p*s my, mg, me).
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Co(p* A, B,C) = [Bo(p*; A, C) = Bo(p*; B, C)],

2 2
my —mp

(38)

where By(p?, X,Y) = By(p?, my, my) with my and my
being masses of X and Y, respectively.

A. SM

As a first example, we review the cancellation of the
gauge dependence of the Higgs boson two-point function
in the SM according to Ref. [84]. The Feynman diagrams
for the Higgs boson two-point functions providing the
gauge dependence are shown in Fig. 1, where h; ; = h in
the SM. By summing all these diagrams, we obtain

AT, (q?)
g2
) (1=¢w)(q* —mp)
x [(q* + m})Co(q* W, G*) = 2By(0; W, GF)]
2
—2B,(0,Z,GY), (39)

where g, = g/ cos 0y, with 6 being the weak mixing
angle and ¢* is the four momentum of the Higgs boson.
We see that the &, dependence appears in front of the factor
of (¢*> — m?), which manifestly shows satisfaction of the
Nielsen identity [42]. Therefore, the gauge dependence in
the renormalization of the Higgs boson mass vanishes in
the on-shell scheme. We however explicitly show how this
dependence can be canceled by the pinch technique, by
which we can easily extend this result to the case for the
nonminimal Higgs sectors.

In order to show the cancellation of the gauge depend-
ence, we consider the uit — uit scattering process, where u
(&) are an (anti) up-type quark, as a toy process. We note
that the cancellation does not depend on the choice of the
external fermions. In the uit — uii process, the contribution
from the Higgs boson self-energy is calculated from
Eq. (39) by

A:Myy,
2
g 1-¢
T 64’ g’ — r:zvi [(q> +m})Colq* W.G¥)
— 2By (0; W, G*)]
+ [(g.mw, Ews W.G*) = (92/2.m7,62:Z,G°).

(40)

Here, we define the reduced amplitude M as
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FIG. 1.
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w c*
+ . D S . —————
G [/ c ‘
\\y, >
L < /‘—(\\\
. / +
cocto v G
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Gauge dependent Feynman diagrams for the two-point function of CP-even Higgs bosons #; and /;. Here, we only show the

diagrams depending on &,. Those depending on &, are obtained by replacing (W, G*, ¢*) with (Z, G°, ¢).

M= M(””‘>2(uu) x (). (41)

v

As shown in Fig. 2 (h; = h), there are not only the
contribution from the self-energy diagram but also vertex
corrections, box diagrams and wave function renormaliza-
tions. The important thing is that we can extract the “self-
energy-like” contribution from these diagrams by “pinching”

|

the internal fermion propagator. This procedure can be done
by using the loop momentum ¥ which comes from the gauge
boson propagator and/or the scalar-scalar-gauge-type vertex
(after contracting with the Dirac y# matrix). Such a term
extracted from vertex correction diagrams, box diagrams and
the wave function renormalization is the so-called pinch term.

From the vertex correction diagrams, we can extract the
pinch term for the &y, part as

2 2
Vi Vi g 1 q ,
Afw (MW—I + MW—Z) - 167[2 qz — m]% |:_<1 + 2m%v> BO(qzv W, W)
qz q2
+ (1 - é:W + _2> Bo(qz; W, Gi) + (éw - 2—2>Bo(q2, G:t, Gi):| 5 (42)
mW mW

2

A§W (MW—3 + MW—4) - 3242 6]2 _ m121

2

1
J [Bo<q2;W, W) - (1 & +rz—2>30(q2;W, G*)

w

2
= (= B 67, G4+ (1= ) Ba0: .6, 3)
w
D, (My_s + My_g) = Bg, (My 3+ My_a), (44)

where — denotes the extraction of the pinched part. The total contribution from the vertex correction is expressed by

N .7 P i 12
§W.716 Y 6mt 2 — m2
=1,

2
{BO(O; W,G*) — %co(q% i Gi)] . (45)

The corresponding contribution to &, is obtained from the diagrams (Z — 1)—(Z — 6), and its expression is obtained by
replaCing (g7 my, §W’ W’ Gi) with (gZ/z’ Mg, éZ’ Za GO) in Eq (45)

The box diagrams give the following pinch terms:

__ 1 92
Ag, My—7 — PP [Bo(g* W, W) =2By(q* W, G*) + By(q* G*,GF)], (46)
w
Ag, (My_s + My_o) = E [Bo(q* W.GF) = By(q*; G*,G*)]. (47)

Thus, the total contribution from the box diagrams is expressed by
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FIG. 2. Feynman diagrams giving pinch terms for two-point functions of CP-even Higgs bosons in the uii — u scattering, where £; is
a CP-even Higgs boson. The diagrams (W-10) and (Z—14) denote the contribution to the &y, and £, dependence from the wave function

renormalization of the external quark, respectively.

o 2
Bgy > Muy-i = &4 (1= &w)Colg: W.G5). (48)

i=7.9

The corresponding contribution to &, is obtained from
the diagrams (Z-7)—(Z-11), and its expression is given by
replacing (g, my, &w; W, GF) with (g,/2,my, &4 Z,GY)
in Eq. (48).

Finally, the contribution from the wave function
renormalization (W — 10) is calculated from the fermion
two-point function Il;;. The pinched part of AIlf,
which comes from W¥, Z' and y* loop diagrams, is
expressed by

92
322
(1~ )
T A vy +agys)(p—my)

x (vy —apys)By(0: Z,G°)

Al (p) — (1= &y)pPBy(0: W,GF)

2
e
~ 162 G = &)= mp)Bo(0:y.7),
(49)
where v, = (I —2sin* 0y Q;)/2 and a; = 1;/2 with Q;

being the electric charge of a fermion f. The wave function
renormalization factor 6Z ; for a fermion f is then obtained by
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5zf:—é%nﬁgﬁ. (50)
Thus, the contribution from (W — 10) is calculated as
Ag, Myy—10 =4 (— 2 : 2> (Asw 5Zf>
q- —my, 2
& =8 p 0w, Gh (51)

327% ¢* — m?

The corresponding contribution to &, is obtained from
the diagrams (Z — 12)—(Z — 14), and again its expression
is given by replacing (g, my,Ew; W,GF)  with
(92/2.mz,E2;Z,GY) in Eq. (51). We note that the v, part
in Eq. (49) is canceled by the diagrams (Z — 12) and
(Z — 13). In addition, the £, dependence in Eq. (49) is also
canceled by the diagrams (Z — 12) and (Z — 13) with the
replacement of Z — y. By adding Egs. (45) and (51), we
obtain the following expression,

2
i i g 1=¢y )

A E 4 - -————T7"X

§W< My_i+ My 10> 32”2(]2_ % V(q

i=1,6

; W,0),

(52)
where the function Xy, is defined as

Xy (g2 V. $) = By(0:V. Gy)

—(¢* = m3)Co(q* V, Gy, §),

with Co(qz, W, Gv, O) = Co(qz, W, Gv) (53)

In Eq. (53), V and Gy are a gauge boson and its associated
NG boson, respectively.
|

7 (1- cfw)CzCz
647° (¢* — my, )(q* — mj, )

AfWMhihj -

x [(g* = mj mj )Co(p?*: W.G*) =

where i, j = 1, 2 with

(hl,gl) = (h1 C(l)

and

PHYSICAL REVIEW D 96, 035014 (2017)

Consequently, the total contributions to the pinch term
(A,":MPT) are given by

2
Vi g 1-¢w
AeMer = 3272 g* —m?

q+

x | By(0; W, GF) — hco( 2 W,G*)

+ [(g.mw. Ews W.G*) = (g2/2.mz. E4,Z,GO)],

(54)

which exactly cancels Eq. (40), i.e., A:(M,,, + Mpr) = 0.
This means that the Higgs boson two-point function
calculated with a fixed gauge parameter becomes gauge
independent by adding the pinch term calculated with the
same fixed gauge parameter. In Appendix A, we present the
expression of the pinch term calculated in the ’t Hooft-
Feynman gauge, in which the diagrams (W — 3)—(W — 6)
and (Z — 3)—(Z — 6) give the nonzero contribution.

B. HSM

We discuss the cancellation of the gauge dependence in
two-point functions for CP-even Higgs bosons in the HSM.
We here discuss only the &y dependence, since the &,
dependence is obtained by the simple replacement of
(g, my, Ew; W, GF) with (g,/2,my, E,,Z, GY) as we have
seen it in the previous subsection. Similar to the SM, the
diagrams which give the gauge dependence in the two-
point functions of the CP-even Higgs bosons are shown in
Fig. 1, where h; and h; can be either & or H. The gauge
dependent part of the self-energy-type diagrams in the

uit — uii process (Agwﬂhih/) is calculated by

(2¢% = m}, = m3 )Bo(0, W, G*)], (55)

(hy.85) = (H. 5q). (56)

The pinch term can be extracted from the diagram shown in Fig. 2, where h; = h or H. Similar to the case in the SM, each

diagram gives the following pinch term:

2 2 2
— - g Sy Cy
ASW(ZMW—i—i_MW_IO) _)ﬁ( §W)XV(q w, O) (q _m%+q2_mi)’

i=1,6

Bg, > My~

A2
i=79 64

The total pinch term is then expressed by

( —&w)Colg*s W.G¥).

(57)
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FIG. 3.
(= h or H) in the THDM.

2

Ag, Mpr =55 (1= é’w){

2
Ca

2 2
q- —mj
52

a
+ 2 2

|:BO (0, W, Gi)
q- —my

We can correctly share the above pinch term by splitting
the trigonometric functions as c¢2 = c% +c2s2 and
52 = sg + cZs2. Namely, the ¢}, s and s2c3 parts exactly
cancel Az My, Az Mpyy and Az (Mpy, + M,y), re-

spectively. After adding the A, part, we can confirm

A My + My + My + My + Mpr] = 0. (59)
In Appendix A, we give the expression of the pinch term
for the two-point functions of h—h, H—H and H-h in the
’t Hooft-Feynman gauge.

C. THDM

We discuss the cancellation of the gauge dependence
not only in the two-point function for the CP-even Higgs
bosons, but also that for the CP-odd and the singly charged
scalar bosons. For the CP-odd (charged) scalar sector, we
show the cancellation in the two-point function of A—A and
A-G° (H*—H* and H*~G%). The cancellation for the NG

|

2 2
q-+m
_72 HCo(qz;W, Gi):| }

PHYSICAL REVIEW D 96, 035014 (2017)

z G
/-\\
/” AN
/ L
""" A T T
N L’ . A ¢

Additional diagrams giving the &y and £, dependence in the two-point function for the CP-even Higgs bosons h; and #;

q* +m;,

R R ]

(58)

boson two-point functions G°-G° and G*—G* has been
discussed in Ref. [43], so that we do not deal with these
two-point functions in this paper.

1. CP-even sector

The contribution to the uit — uii process from the self-
energy-type diagram is calculated in a similar way to the
case in the HSM. However, we need to add new contri-
butions shown in Fig. 3 in addition to the diagrams shown
in Fig. 1 with h; and h; being h or H, in which the physical
charged Higgs boson H* or the CP-odd Higgs boson A is
running in the loop. Again, we only show the & dependent
part since the &, dependent part is obtained by the
replacement of the (g, my,&y; W,G*, HY) part with
(97/2,my, &, Z,G°, A). Taking into account these new
contributions, the £ dependence of the contribution to the
uii — uit process from the self-energy-type diagrams is
calculated as follows:

2 2
A4 g C uu . .
Agthh = _647r2 q2 i m%l (1- 5W){S§—a(qz + mlzz)CO(q27 w, Gi) —2By(0; W, Gi)
+2¢5_o(q* + mj, = 2m3, ) Co(q*s W, G*, HF)}, (60)
— 7
Ay Mun =15 7 _—M:;,l% (1= &w{cju(a® +my)Colg®s W.G*) = 2By(0; W. G¥)
253, (q* + my - 2m2,. ) Colq%s W.G=, HF)}. (61)
2
- g ghuuCHuuSﬁ—aCﬁ—a 4 2.2 2 +
A: My, = 1 - - C W, G
Ew Hh 647[2 (qz _ m%l)(qz _ m%]) ( gW){(q mhmH) O(q )
=2[(¢* = my)? = (my. —m)(m3. — mp)|Co(q* HE, W, G*)}, (62)

where Afwmh H= AéwﬂHh, and ¢}, and {y,, are given in Eq. (34). We note that Egs. (60)—(62) are consistent with those

presented in the independent work given in Ref. [85].

The pinch terms can be extracted from the diagram shown in Fig. 2 (h; = h or H) with the additional diagrams which are

obtained by the replacement G* — H*. Thus, each diagram involving G*, i.e., (W — 3)—(W

—6) and (W —8)—(W —9)

should be understood as the sum of G* and H* loop contributions. We then obtain the following pinch-term contributions:
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2
(1) [Bo(0:.6%) - o w. 69| (e o et

Py 162 q°- —m;, q* —m%
2
g gu 2 + Cﬁ—az:huu sﬁ—aCHuu
1- X W, H - , 63
(1= s ) (St e (63)
e
AngMw 7 6an 2( —fw)co(qz§W,Gi)+32 2(1 —5W)C0(612§W’ GivHi% (64)
=79 4
i g %l é’%-l +
A: My — 1- L YW )By(0; W,G*), 65
ev/Mw-10 = 322( 5W)< —m%l+q2—m%,> ol ) (65)

where the second term of the right-hand side (rhs) in Eqgs. (63) and (64) is the contribution from the charged Higgs boson

loop. The total pinch term is then expressed by

92 1—5W

6472 g
-2(¢* + mh
g cfw

64r° q2

Ag, Mpr =

[2€HuuBO (O w, Gi)

[2ChuuBO<O W, Gi) - (q +mh>s/3 (lghuuCO(q w, Gi_)

- zmHi)C/)’—aCuZ:huuCO(q W, Giv Hi)]

(6]2 + mlzﬁl)cﬂ—aCHuuCO(qz; W, Gi)

+ 2(q + mH - 2mi1i)sﬂ—aé’uCHuuC0(q2; W7 Gi7 Hi)] (66)

The following sum rule is useful to obtain the above
expression:

sﬂ—aghuu + Cﬁ—aCHuu =1, Cﬁ—aghltu - Sﬁ—aCHuu = i:u'

(67)

In Eq. (66), we can correctly split this expression into the
pinch term for h—h, H—H and H—h in the following way.
First, we rewrite sg_qCp, = s/Z,_aC,Zmu + Sp—aCp-alhuul Huu
and  cp_oCulpuu = C%;_,,C%m, = Sp—aCp-aChuulHuu 10 the
first term of the rhs of Eq. (66). Second, we rewrite
Cp—al Huu ICﬁ_aCin +54-aCp-al nuul Huu AN $p_6C0C =
~C S patCnunl HuuS p-aCp—q in the second term of the ths
of Eq. (66). After that, Eq. (66) is written by the terms
proportional to (2 . & and &l and each of

them respectively gives the pinch term for the two-point
|

[
functions of h—h, H—H and H—h. By adding the A part,
we can confirm the cancellation of the gauge dependence,

Af(ﬂhh + MHH + MHh + MhH + MP’T) - 0 (68)

2. CP-odd sector

Next, we see the cancellation of the gauge dependence
in the two-point functions for the CP-odd scalar bosons
A-A and A-G°, where the relevant Feynman diagrams are
shown in Figs. 4 and 5, respectively. We note that in the
A-G® mixing, the &, dependence appears from tadpole
diagrams and a seagull diagram with the G* loop, but these
contributions are exactly canceled with each other. As a
result, only the £, dependence remains. The contribution
from the self-energy-type diagrams to the uit — uit scatter-
ing is expressed by

2
i g 1-¢
AgMAA:@q il (:2[( +m3 —2m2.)Co(q*: W.G* H*) = By(0; W, G*)]

+ 9 1_52 alch_o(q* +my = 2m})Co(q* Z, G, h)
642 2 —m 5[ g Ty = ant )ColqgTs £, G

+55_q(0° + mi —2my;)Co(q* 2, G, H) = By(0; G%, Z)], (69)

2
AA g ( ) —(ICM
AcMago = 35577 g é)ﬂ( 2 A){[q (g% = 2mj) + mim3]Co(q* Z.G°. h)

— [4*(¢* = 2m;) + mym3]Co(q*: Z, G°. H) }, (70)

035014-11



KANEMURA, KIKUCHI, SAKURAI and YAGYU PHYSICAL REVIEW D 96, 035014 (2017)

q q N

— — w { Y

O ) =
......... Pmmmmadaool ‘\ H+ ’/'

A

------------------------------------------------

.................

FIG. 4. Gauge dependent part of the Feynman diagrams for the two-point function of A.

where mZG0 = ¢,m%. In this subsection, the reduced amplitude M is defined by

M = —ﬂ(%)Q(ﬁySM) x (aysu). (71)

The pinch terms are extracted from the diagrams shown in Fig. 6. We obtain

o o 2
A Y (M + M) = {1y o s G (5 W. 1)

£ 162% g
9% 1-¢2 2 2
3272 q272 [Sﬂ—az:hquV<q i Z, h) + Cﬂ—az:HquV<q 2, H)]
gz ¢z ¢ [Cﬂ Ch Xv(q Z, h>_sﬂ Ch Xv(q Z, H)] (72)
32]_[ q 2 u a uu —a uu
Aé( My_i + Z—i> - @(1 - Ew)CaColg®: W, G+, H*)
i=5.6 =58
72
+ 64 ) (1 - 52)[€huuco(q Z, GO ) + é,zHuuCO(qz;Z’ GO’H)]’ (73)
As( My_7 + Z My ) = —Li g (1= &w)Bo(0; W, GF) + gz(l —¢2)Bo(0;Z,GY) . (74)
¢ et ! 327% ¢* — m? 2
g q ------- e \
— —> Z ’ GO N / \
NG CT N s W o W
Q ____________________ '\ h/H /’ A - /S
wH o e TR
+ {G:} + ‘: ¢ :," + 4 cz
L i 1k I

................................................

FIG. 5. Gauge dependent part of the Feynman diagrams for the A-G° mixing.
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FIG. 6. Feynman diagrams giving pinch terms for the two-point functions of A—A and A—G? in the uit — uit scattering. The diagrams
(W—T7) and (Z—11) denote the contribution to the &y, and £, dependence from the wave function renormalization of the external quark,
respectively.

The total pinch term A;Mpr can be classified by the power of the §, factor, i.e., {2, £} and {9, where the terms with ¢ and
¢! denoting Aéﬂé{? and AEM@‘?U, respectively, give the pinch terms for A—A and A-G°. These are expressed as

Agﬂé% = _AfﬂAAv (75 )

P
0 g
AMpY = 32—22 (1- gz)s/}—ac/)‘—acu{Cb(qz;Z, G% h) - Cy(¢*:Z2.G° . H)

1 1

(o o )0l 2~ Xt 2. 1) (76)
q-— Mg g — My

For AscMé?O, this pinch term is used not only to cancel AéﬂAGo but also the gauge dependence of the A—Z mixing. In order

to correctly share the pinch term of Aé/\/lé? 0, we use the following identity:

quGO

2
GO

A = - imZA’E(AZ)Wq”, (77)

q>—m
where Ago and A% are the #uG° and #uZ* vertices, respectively, expressed as
m
AGO = _714127/5147 A/é = igZuy”(vu - au?S)u' (78)

In Eq. (77), the first term of the rhs can be used for the pinch term of the A~G° mixing. Using this identity, we can construct
the correct pinch term for the A-G° mixing from Eq. (76) as

1 1 > < 1 ¢#-m 1 q* ) 2¢% — m3
+ Apo = + Ago+--- = Ago + -+,
<q2—méo P-mi) N\ -mi P —mh P -mig?—m) O (> —m2)(g* —m3) "¢

(79)
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FIG. 7. Gauge dependent part of the Feynman

where the - - - part comes from the second termin Eq. (77). We
can confirm that after replacing the factor [(¢* — mZ,)™" +
(¢ —m3)~'] with (2¢% — m})[(¢* — mu)(¢* — m3)]™" in

Eq. (76), we obtain A, Mad" = —A M, g0.

3. Charged sector

The Feynman diagrams which provide gauge depend-

ence in the two-point functions H*—H* and H*-G* are
|

2

Wi g 1 - &y
AeMirn- T 64l g —m,
H

diagrams for the two-point function of H*.

shown in Figs. 7 and 8, respectively. We note that for the
H*-G* mixing, the £, dependence appears from tadpole
diagrams and a seagull diagram with the G° loop, but these
contributions are exactly canceled with each other. As a
result, only the &y, dependence remains.

For the charged Higgs sector, we consider the ud — ud
process instead of uit — uit process. The self-energy-type
diagram contributions to the ud — ud process are calcu-
lated as

[(¢? + miy. —2m3)Co(q* W, G*, A) + cj_o(q* + m}y. = 2m)Co(q* W, G*, h)

2C2 1— 5
+ S/Zi’—a(qz + m%,i —2my)Co(q*s W, G*, H) = 2By(0, W,G*)] — 9z 23“ %XV(C]%Z H*)
64r° q° —my,.
e 1-¢ . 2 2 2 2. +
- 16ﬂ2m[30(0,%7) —(g* =my.)Co(0. 4%, ¢ 7.y, HY). (80)
H
Vi g 1-¢w 4 2 2 2 2. +
AMir e = g @ —mt (g = miy el — B =y Jmi) Cola s W, G5 )
H G
+(q* = (247 = mj. )m3y)Co(q* W. G*, H)), (81)
q q m e
e - w £GTN
H - - G = + : b
Q . ISR S Y v/
wHo e
WH
+ ; + + N N o +
VG E v/
S B :

FIG. 8.

Gauge dependent part of the Feynman diagrams for the H*-G* mixing.
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FIG.9. Feynman diagrams giving pinch terms for charged scalar two-point functions in the ud — ud scattering. The diagrams (W —4)
and (Zy—11) denote the contribution to the ¢y and &, dependence from the wave function renormalization of the external quark,
respectively.

where mZ, = &ym3,. In this subsection, the reduced amplitude M is defined by
—2m2 - _
M - M?(dPRu) X (MPLd), (82)

where we neglect the down quark mass to make expressions simpler, and it does not change expressions for pinch terms
given below.
The pinch terms are extracted from diagrams shown in Fig. 9 as follows:

As z (My_; + MZ}/—:’)

i=14
gz 1- éW 2 2 2
- 327[2 L]Z—TCIA [Cﬂ—aChquV(q W, h) - sﬂ—agHuthV(q W, H) + CMXV(q ’WvA)]
Hi
2 2 2
g 1-iy . . gzcw 1-&2 .
22 —m, [$p-alnuaXv(@®s W h) + ool Xy (q* W, H)| + 372 mCﬁXv(qz,Z’ H)
e 1-¢ 2 2 2 2 2 +
+@m§u[30(4 2ry) = (g7 = my)Co(0.g%. g%y v HY)) (83)
Hi
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Ag Z (My_i + Mz,;)

i=5.8
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2

- —6Zﬂ2 (1= &w)GhuCola*s W, G*, h) + {31, Colq*s W, G, H) + (iCo(g%: W, G, A))]
95w 2 2 0 o+ e’ 2 ) +
+ 2 (] —fz)CuCO(CI 12,67 H )+ 2(1 _éy) uCO(O!q »q ;%%H )’ (84)
64r 167
Ag <MW—9 + Z ﬂzm)
i=9.11
1 2

2 2

u 9z¢

= ——— 5" | (1 = &y)Bo(0; W. GF) + ZE2W (1 — £,)By(0; Z, G°) + 2¢*(1 = &,)By (0;7.7) | (85)
32r° g~ —my. 2

Similar to the case for the CP-odd sector, we can separate the total pinch-term contribution Agmﬂ into the three parts

by the power of ¢, factor. The term proportional to {3 (A, M) and ¢} (A, ME; ") can be used as the pinch terms for
H*—H* and H*-G™, respectively. These are expressed as

AMGE - = =AMy, (86)

92

AMT =2
SV HYG 30

1
+ +
(qz - m%{i qz - szi

As in the A-G° mixing, we need to correctly share the
pinch term for the G*—H* mixing and the W*—H* mixing.
Similar to Eq. (77), we have the following identity:

quGJr u v
A+ = > 2 — mWAW(AW)ﬂyq > (88)
q- — mGi

where Ag- and A}, are the #dG" and adW™ vertex,
respectively. These are given by

A, = i\%wmd. (89)
In Eq. (88), the first term of the rhs can be used for the
pinch term of the G*—H* mixing. From this identity, we
can construct the correct pinch term for the G*—H* mixing
by repeating the similar procedure done in Eq. (79).

2
A = i~ im,P,d,
v

IV. RENORMALIZED HIGGS BOSON COUPLINGS
WITH GAUGE INVARIANCE

We compute the renormalized Higgs boson couplings at
the one-loop level based on the pinched tadpole scheme

2 (1 - fw)S/;_aC/}_aé:u{[Co(qz; W, Gi7 h) - CO(qZ; W, Gi’ H)]

) Xy (% W) — Xy (% W, H)]}- (87)

|
[8,52], in which the gauge dependence in the scalar boson
mixing is successfully removed by using the pinch tech-
nique as discussed in the previous section. We then clarify
the difference in the renormalized Higgs boson couplings
calculated in the pinched tadpole scheme and those
calculated in the ordinal on-shell scheme with the gauge
dependence. For the latter, we adopt the scheme defined in
Ref. [26], and we call this the KOSY scheme. In this
section, all the calculations are done in the 't Hooft-
Feynman gauge.

In the pinched tadpole scheme, nonrenormalized two-
point functions for particles i and j which can be a scalar
boson, a gauge boson or a fermion are defined as follows:

I;(p?) = P (p?) + T + IEF(p?)., (90)

where IT}" denotes the contribution from conventional one-
particle irreducible (1PI) diagrams (the first diagram of the
ths in Fig. 10), IT}* represents the contribution from the
tadpole graph (the second diagram of the rhs in Fig. 10),
and IT; shows the pinch-term contribution (the third

FIG. 10. Nonrenormalized two-point functions in the pinched tadpole scheme.
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diagram of the rhs in Fig. 10). In the ’t Hooft-Feynman
gauge, all the analytic expressions of the pinch terms
for scalar boson two-point functions are presented in
Appendix A in the SM, the HSM and the THDM.
Thanks to adding the pinch terms, the two-point function
defined in Eq. (90) is gauge invariant. We note that tadpole
diagrams should be added not only to two-point functions
but also to three-point functions such as AVV and hhh,
so that we further introduce T} which denote tadpole
inserted diagrams to the tree level vertices I';;;. We also
note that the wave function renormalization factors are not
changed from the KOSY scheme, because ITj* do not
depend on the external momentum, and the pinch-term
corrections are not applied to the wave function renorm-
alization factors.

At one-loop level, the renormalized ¢pV* V¥ (V =W, Z)
and ¢ ff' vertices with ¢ being a scalar field are expressed
in terms of the following form factors:

H o v
[ ~1 P1P> ro
r’c;ﬁl;/V(p%’ P%, q2) = 9””F¢,VV + FF(/)VV

Vv

pl/)pZa &3
——Iy, 91
m%/ vV ( )

+ e

r 2 .2 2y _ S A v v
Corp(P1s P2 @7) = Uggp 75Uy + 0000 + 220450
+ 71 st‘;_}f/ + ﬂz}’sf‘;_zﬁf/
+ ol + rsihe. (92)

where pf and p) (¢*) are incoming momenta for gauge
bosons or fermions (the Higgs boson). Each of the above
form factors is also the function of (p?, p3, ¢*), but we do
not explicitly denote it here. In the THDM, Higgs-Higgs-
gauge-type vertices also appear, i.e., htH*W, and hAZ, in
addition to the above vertices. Their renormalized vertices
can be expressed by

0 v (Ph 03 %) = =i(py = p2)' Ty gy (93)

where p/ and p} are the incoming momenta for ¢; and ¢,
respectively, and ¢ is that for a gauge boson V¥. In
Appendixes B and C, we present all the relevant renor-
malized Higgs boson couplings and counterterms calcu-
lated in the pinched tadpole scheme, respectively.

For later convenience, we introduce the following
symbol:

ASC[' : } - [ ’ ']TP - [ ’ ']KOSY’ (94)

where the first (second) term of the rhs denotes the quantity
calculated in the pinched tadpole (KOSY) scheme.

PHYSICAL REVIEW D 96, 035014 (2017)
A. SM

We calculate the difference in the renormalized gauge
(hVV), Yukawa (hff) and Higgs-self (hhh) couplings
calculated in the pinched tadpole scheme and those in the
KOSY scheme in the SM. As it is shown below, there is no
difference between the two schemes in the three couplings,

R 2m? sm%  Sv
Ascljyy = TV Agc (m_zv - ?> + Ty

4
HTad
= =4 =0, (95)
. m om; Ov
AcefS,. = T A (22 97
scl nyr L, osc ( m, v
m., /T1kad [1Tad
:__f<i_L;V> =0, (96)
v\ my 2my

. 3m? dm?  Sv
_ h h Tad
Agclypn = —— Age 5 —— | T Lo
v m, v

2 Tad 1PI Tad

LA N R A U 4+rTad —

a m? vm?  2m? hin ==

h h w

v

97)

where T} is the 1PI tadpole diagram for /. In the following,
we use the generic symbol 7" to express the 1PI tadpole
diagram for a CP-even Higgs boson /;. We note that there
are the following relations among T}" and TT[*:

Tad Tad
1_IVV _ _Hhh

2~ 2
2my, 3my,

Tad
mE o
=L b (og)
mf vm

Thus, in the SM the tadpole contribution in a two-point
function HiTjad is canceled by that from the other two-point
function and/or the tadpole inserted contribution in the
three-point function I'}.

B. HSM

In the HSM, the difference in the renormalized A/VV and
hff coupling is calculated by

R 2m? Sm? S
Asclhyy = Tv CAsc (m_zv - 7) + Ty

14
HTad
= ca— m T =0, (99)
N omy  Sv
AgclS,, = — Ao —L-=
sct nfr Ca sc(mf ﬂ)
M HTad HTad
= ——fca<i—24§> =0. (100)
v my my,
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Similarly, we can show that there is no difference in the
HVYV and Hff couplings.

In contrast to the Higgs boson couplings with weak
bosons or fermions, we find nonzero differences in the
hhh and Hhh couplings as follows:

Ascl i = 6Asc (8, + Apnda) + L

— 4l4gs3 (—Cg TP - T“")
my m; Fin

2
§4C
- 7 + T (mi)],

4v

(XT3, (m (101)

Asclamn = Dsc[28Amm, + Sz — 64 )5a] + TS,

c s

_ 2 a pipl _ Sa 7Pl

= —4!/15saca< > Ty ——T, )
My my Fin

C3q — 5¢
8v

[HZE( h) + HHh(mH)] (102)

where (- ), shows the finite part of the quantity (- - ).
These differences vanish when we take the no mixing limit,
ie., a— 0.

C. THDM

In the THDM, the difference in the renormalized hVV
coupling is calculated by

N 2m dmi  Sv
Asclyy = Asc [S/f a < v —> + Cﬁ—aéﬁ:| +T55-
my v
(103)
Differently from the previous two models, the counterterm

of also contributes to the difference. We can calculate
Agcop as follows:

TIPI TlPl
Agedfp =55 ,— Ly,
scop = g 7 Sp m’ Cp
1
=3z MEG(n3) + IO (104)
Using the above result, we obtain
| my PT (2 PT
Asclyy = _Tvcﬂ—a[nAG(mA) +1(0)].  (105)

A

Similar to the case in the SM and the HSM, the dependence

of T} is exactly canceled among the counterterms and

FZ?,dV, but the nonvanishing contribution comes from §p.

This effect, however, vanishes when we take the alignment
limit sg_, — 1. All the differences in the other gauge and
Yukawa couplings also come from Agcf as follows:

PHYSICAL REVIEW D 96, 035014 (2017)
2

Acllyy =+ oyl () + IO, (100
Asclyy = —;;’—,jlichffcf[n}:z(m@ FIEL0). (107)
Asclyy =~ gt Cugey MGG (n3) + TEE(O), - (108

Asclh, = +i11j‘7m§‘c%[rl}§2(mi> LI (109)
Bl 0, = = 5 o GG () + T O)L. (110

Asclhn o = é; : SML(m3) + TEEL(0)). (111)

We note that in the Yukawa couplings for A and H*, we
extract the different form factor with respect to those for the
CP-even Higgs bosons, because of the difference in the tree
level coupling structure (see Appendix B).

For the hH*W,[ and hAZ, couplings, we have

Ascthiw¥ - ASCf‘hAZ =0. (112)
This simply follows Agc[dm3/(2m3,) — Sv/v] = 0.

Finally, the difference in the renormalized hhh and Hhh
vertices is calculated as

12M?c 2/JCa+/3C/23_a
2

ASCl—‘hhh ==

2
v 834

<T1PI TIPI
X C/} a = Sﬂ )
mj, my Fin

3Ch_aSn
S )+ T )

_3F,

> [5G (m3) + IG(0)], (113)

mA

4M2 C2ﬂcﬂ—a
2 2
SZ/}

(TIPI TIPI
X Cﬂ —a Sﬂ )
mj, my Fin

C3a—ﬂ 5Ca+ﬂ PT 2
_— +IT m
4 Uszﬁ ) Hh ( H)]

Asclapn = = (354Cq — SpCp)

v
(XT3 (7

Gy
_ HPT
mA [ AG(

m) + IG(0)], (114)

where
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FIG. 11. Difference in the renormalized hZZ coupling between
the pinched tadpole scheme and the KOSY scheme as a function
of 545, in the THDM. The black, blue and red curve show the
case for mg(= mpy: = my = my) =300, 500 and 700 GeV,
respectively. We take tan = 1.5, M/mg = 0.8 and c4_, > 0.

Cp_,
Fp= 25; [(2 + 2¢24C2p = $20825) (M — M?) — S%ﬂMZ]’

2p
(115)
Gy = S2a 3 3 2 2 2
=2 (Cac/x - Sasﬂ)( mj, + mi;)
vs3
+ ngﬁ [s%ﬁsﬂ_a - 6sza(cac[33 - sas?})]Mz. (116)

In Fig. 11, we show the scheme difference in the
renormalized hZZ coupling as a function of sz_, in the
THDM. Here, we take tanf =15, M/mgy =0.8
(me = my+= = my = my)and cz_, > 0, but the result does
not depend on these parameters so much in this plot. The
typical magnitude of the difference is seen to be 0(0.01)%.

In Fig. 12, we show the scheme difference in the
renormalized hhh coupling as a function of s;_, in the

70 — — —

wbh — M=m, \ cos(B—ar) > 07

-—=-M=08%mg \
\

O M = 0.6*m, \ ]
— r ® \ i
R 40+ \ T
> o _ \
éé 30k Hld)—SOOGCV \ |
[ | \
s 20+ . \\ _|
[_C L N i

N
2 10k - -
< I ~.\..\'
0 .

-10

ol ‘ \ ‘ ! ‘ ! ‘ \ ‘

2(()).95 0.96 0.97 0.98 0.99 1

sin(B—or)
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THDM with tanf = 1.5 and cs_, > 0 (left panel) or
Cp—q < 0 (right panel). We only show results allowed by
bounds from the perturbative unitarity [68—72] and the
vacuum stability [73-76], which were discussed in Sec. II.
The typical magnitude of the difference is found to be
O(10 — 100)%. Such a large difference comes from the
nonvanishing tadpole contribution 7,7, in Eq. (113).

In Fig. 13, we also evaluate the value of Ak, defined in
Eq. (117) calculated in the two different schemes. The solid
and dashed curves show the results in the pinched tadpole
scheme and in the KOSY scheme, respectively. The upper-
left, upper-right, lower-left and lower-right panels are the
results in cases with (mg =300 GeV, ¢z, > 0),
(mg = 300 GeV, cp_, <0), (mgp =500 GeV, cz_, > 0)
and (mg = 500 GeV, cs_, < 0), respectively. We here take
tanf = 1.5 and M/mg =1 (black), 0.8 (red) and 0.6
(blue). Similar to Fig. 12, we only show results allowed
by bounds from the perturbative unitarity and the vacuum
stability. As we saw in the previous figure, a larger
difference is given in the case with a large value of
1 — s3_, and/or mge. In addition, a larger value of Ak, is
obtained when we take a larger (smaller) value of mg
(mg/M). A large value of Ak, also is given in the
alignment limit s;_, — 1, e.g., Ak, ~+10(70)% in the
case of cs_, < 0, M/mg = 0.6 and mq, = 300(500) GeV.

V. NUMERICAL RESULTS

In this section, we numerically show the one-loop
corrected Higgs boson couplings based on the pinched
tadpole scheme discussed in the previous section. We
discuss how we can discriminate the HSM and the
THDMs with four different types of Yukawa interactions
by looking at the pattern of the deviation in the Higgs boson
couplings. In addition, we clarify how the tree level results
can be changed by taking into account their one-loop
corrections.

0 T T T p——— ——
__:_”_,______:H‘____,._._.J_ _____ T///
1n¢:300GeV REAAd
7z
-50 R -
— ’ // .
IS ’ _
= 100k ;7 mg,=500GeV |
2= /
&
z
l—b—150* —
& cos(B-o) <0
200 --- M=08*m, -
T e M =0.6*m
: ‘ ! ‘ ! ‘ ! ‘ ! ‘
258.95 0.96 0.97 0.98 0.99 1

sin(B—o)

FIG. 12. Difference in the renormalized hhh coupling between the pinched tadpole scheme and the KOSY scheme as a function of
$p_q in the THDM with tan # = 1.5. The left and right panels show the case for c¢;_, > 0 and c4_, < 0, respectively. We only show
results allowed by bounds from the perturbative unitarity and the vacuum stability.
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Ak, calculated in the pinched tadpole scheme (solid lines) and the KOSY scheme (dashed lines) in the THDM with

tan # = 1.5. Top-left, top-right, bottom-left and bottom-right panels are results for (mq, = 300 GeV, c;_, > 0), (mg = 300 GeV,
Cpgq < 0), (mg = 500 GeV, cs_, > 0) and (mg = 500 GeV, cp_, < 0), respectively. We only show results allowed by bounds from the

perturbative unitarity and the vacuum stability.

In order to discuss the deviation in the Higgs boson
couplings from the SM prediction, we introduce the
renormalized scaling factors xy for the hXX couplings
as follows:

= Chyv(md, (my + my)?, m3) sy
Ky = Iigff(m]z" m%, m%l)NP 7
Fhff(mjzf» mjzf m%)SM
P lfhhh(m%lv mj,, 4mj; ) ’
Uy (i, i, A ) sy
x, = I'(h— 77)NP’ (117)
L(h = 77)sm

where I'(h — yy) is the decay rate of the 7 — yy mode. We
also define Axy =y — 1.

For the one-loop level calculation, we scan the param-
eters in the HSM as

my>300GeV, —044<sina<0.44, |lps|<3, (118)
with g = Ag = 0. In the THDMs, we scan the parameters

as

mg > 300 GeV, 0.90 <sp_, <1,

[Aown] < 3, 1 <tanp < 10, (119)
where Agoy=(m%—M?)/v?* and meo=my:(=my=my).
For both models, we require A o =3 TeV for the
triviality and vacuum stability bounds (see Sec. II).

First of all in Fig. 14, we show the allowed region on the
my—Ak, plane in the HSM and that on the mg—Ak, plane
in the THDMs. We note that the dependence on the type
of Yukawa interactions in the THDM is negligible in this
plot. In both models, we can see the decoupling behavior;
namely the large mass limit can be taken in the limit of
Akz — 0. It is also seen that the speed of the decoupling is
quite different between these two models. This result
suggests the existence of the upper limit on the mass of
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FIG. 14. Allowed parameter region under the constraints from the perturbative unitarity, the vacuum stability, the triviality and the S, T
parameters on the Axz—my plane and the Axy—mg plane in the HSM (left) and THDM (right), respectively.

the extra Higgs bosons once a nonzero deviation in the
hV'V couplings is measured at future collider experiments,
and the upper limit quite depends on the structure of the
Higgs sector. For example, if |Ak,| ~ 1% is given, the mass
of H can be up to 2 TeV in the HSM, while mg, can be up to
only about 800 GeV in the THDM.

Next, we discuss various correlations among deviations
in the Higgs boson couplings. In Fig. 15, we show the
correlation between Akz—Ak, in the THDMs and in the
HSM. The left and right panels show the results at the tree
level and at the one-loop level, respectively. Here, we also
display the current 95% CL limit® on the values of Ak and
Ak, from combined ATLAS and CMS analyses using the
data at the LHC Run-I experiment [1]. In the left panel,
predictions of the type-I and type-Y THDMs are shown by
the blue curves, while those of the type-II and type-X
THDMs are shown by the red curves. The dashed and
dotted curves show the cases with tanf = 1.5 and 3,
respectively. For tan = 1, all the THDMs have the same
prediction denoted by the purple solid curve after scanning
the sign of c;_, and the value of s;_, [see Eq. (34)]. The
black dot-dashed curve denotes the prediction of the HSM.
From the result shown in the left panel, we can see that the
value of Ak, approaches 0 in the limit of Ax; — 0 in all the
five models, which correspond to s;_, — 1 in the THDMs
and s, — 0 in the HSM at the tree level. Thus, in this limit
it is difficult to distinguish these models by looking at
the correlation between Ak, and Ak,.. In contrast, once
Ak # 0 is given, the five models can be separated into the
three categories assuming tanf > 1. Namely, models
belonging to the first (type-I and type-Y THDMs), the
second (type-II and type-X THDMs) and the third (HSM)

*This limit is simply given by taking two times the error bar
from each measured central value of Ak, and Ax, without taking
into account a chi-square fit or a correlation factor.

categories give the prediction inside the purple curve,
outside the purple curve and of Ak, = Ak, respectively.

In the right panel, we show the prediction allowed by the
constraints explained in Sec. II at the one-loop level. The
black and blue (red) dots denote the prediction in the HSM
and the type-I and type-Y (type-II and type-X) THDMs,
respectively. We note that the white region, e.g., 20% <
Ak, £30% and —=95% < Ak, < —50% at Ak; = —10%, is
excluded by either the vacuum stability bound or the triviality
bound. Although the behavior is quite similar to the tree level
result after scanning the value of tan 3, the important differ-
ence is seen in the region with |Ak;| < 1%, in which
predictions of all the five models are overlapping with each
other. This is mainly due to the fact that O(—1)% of Ak, can
be explained by the loop effects of the extra Higgs bosons
with sz_, = 1. Therefore, taking into account the one-loop
result, we can conclude that the five models can be distin-
guished into the three categories in the case of |Ak,| = 1%.

In Fig. 16, we show the correlation between Ax;—Ax, in
the THDMs for a fixed value of tan . Here, we show the
expected 1o accuracies for the measurement of (Ax,, Ax,)
at the HL-LHC (2%,2%) [7] and at the ILC with the full
data set (0.31%,0.9%) [S]. We see that the one-loop results
tend to be inside the tree level curve with a small width
(a few percent level). Such a small width can be detected by
using the accuracy at the ILC.

In order to further distinguish models belonging to the
same category explained in the above, we need to use
other observables such as Ak,. In Fig. 17, we show the
correlation between Ak, and Ak, in the five models. The
left (right) panels show the tree (one-loop) level results.
The top, middle and bottom panels display the cases with
Axky = —-1+0.58%, -2+058% and -3 +0.58%,
respectively, where 0.58% corresponds to the expected
lo uncertainty for the measurement of Ak, by the initial
phase of the ILC program [5]. We here display the expected
lo accuracies for the measurements of (Axy, Ak,) at the
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Correlation between Akz—Ax, in the HSM and THDMs. The left (right) panel shows the result at the tree (one-loop) level. In

the left panel, the solid, dashed and dotted curves are the results in the THDM with tan # = 1, 1.5 and 3, respectively. The black dot-
dashed curve is the result in the HSM. In the right panel, the blue, red and black dots are the results in the type-I (Y) THDM, type-II (X)
THDM and HSM, respectively. The region inside the green box is allowed with the 95% CL from the measurement of the Higgs boson

coupling at the LHC Run-I experiment.
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FIG. 16. Correlation between Ax,—Ak, in the type-1,-Y THDM (left) and type-II,-X THDM (right) at one-loop level. The black, blue
and red dots show the cases for tan # = 1, 1.5 and 3, respectively. The tree level predictions are also shown as the dashed curves. The
blue (magenta) box denotes the expected 1o accuracies for the measurement of Ak, and Ak, at the HL-LHC (ILC), where their central

values are not reflected in the current measurements at the LHC.

HL-LHC (4%,2%) [7] denoted by the blue box and those at
the ILC with the full data set (0.7%,0.9%) [5] denoted by
the magenta box.

Let us first discuss the tree level results (left panels). The
predictions of the type-I and type-Il THDMs are given on
the line with Ak, = Ax,. On the other hand, those of the
type-X and type-Y THDMs are given as a region filled
by magenta and blue color, respectively. Furthermore, the
point denoted by x* is the prediction of the HSM.> We
note that there is no overlapping region between type-I and

3Strictly speaking, the prediction of the HSM is not the
pointlike shown as * in this figure, but is a line segment with

the length of 21/2 x 0.58.

type-II THDMs and that between type-X and type-Y
THDMs, because we take tanf > 1. For the case with
larger |Axy|, predictions of four THDMs tend to go more
away from the SM prediction, i.e., (Ak,, Ax,) = (0,0).
Next, by looking at the right panels, we can see how the
one-loop correction changes the prediction at the tree level.
The biggest difference can be seen by comparing the top-
left and top-right panels. Namely, at the tree level the
predictions of the four THDMs are well separated, but at
the one-loop level there appear overlapping regions at
around (Axy, Ax,) = (0,0). Such behavior happens when
Spq = 1, in which the tree level difference in the pattern
of (Ax,,Axk,) among four THDMs becomes very small. In
contrast, for the case with larger |Ak,|, the area of the
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FIG. 17. Correlation between Ak,—Ak, in the HSM and THDMs. The left (right) panels show the tree (one-loop) level results. The
upper, middle and lower panels respectively show the case with Ak; = —1 £ 0.58%, —2 £ 0.58% and —3 £ 0.58%. The region inside
the green box is allowed with the 95% CL from the measurement at the LHC Run-I experiment. The blue (magenta) box denotes the
expected 1o accuracies for the measurement of Ax; and Ax, at the HL-LHC (ILC), where their central values are fixed to be those

measured at the LHC Run-I experiment.

overlapping region is reduced as we can see from the
middle-right and bottom-right panels.

Therefore, combining the results given in Figs. 15
and 17, we conclude that the five models can be well
distinguished by measuring Akx,, Ax, and Ak, as long
as |Axz| 2 1%.

In Fig. 18, we show the correlation between Ak, and Ax,
in a similar way to Fig. 17. Here, we display the expected
lo accuracies for the measurements of (Ak,, Ax,) at the
HL-LHC (7%,2%) [7] denoted by the blue box and those at
the ILC with the full data set (1.2%,0.9%) [5] denoted by
the magenta box. In this plane, the predictions of the type-I
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Correlation between Ax,—Ak, in the HSM and THDMs. The left (right) panels show the tree (one-loop) level results. The

upper, middle and lower panels respectively show the case with Ax; = —1 £ 0.58%, —2 + 0.58% and —3 % 0.58%. The blue (magenta)
box denotes the expected 1o accuracies for the measurement of Ak, and Ak, at the HL-LHC (ILC), where their central values are not
reflected in the current measurements at the LHC.

and type-Y (type-II and type-X) THDMs are the same as

each other.

Finally, we show the correlation between Ak and Ak,
in Fig. 19. We here only display the results of the type-I
THDM and the HSM. The results of the other three types of

THDMs are almost the same as the result of the type-I
THDM. The green lines denote the current 95% limit on the
Ak, measured by the LHC Run-I experiment [1]. The blue
and magenta boxes denote the expected 1o accuracies for
the measurement of (Akz, Ak,) at the HL-LHC (2%,2%)
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FIG. 19. Correlation between Ak, and Ak, is expressed by
black (red) in the HSM (type-I THDM). The region inside two
green lines is allowed with the 95% CL from the measurement at
the LHC Run-I experiment. The blue (magenta) box denotes the
expected 1o accuracies for the measurement of Ak, and Ak, at
the HL-LHC (ILC), where their central values are not reflected in
the current measurements at the LHC.

[7] and at the ILC with the full data set (0.31%,2%) [5],
where the accuracy of Ak, at the ILC is referred to that
given at the HL-LHC, because of its better accuracy.

We can see that even in the region with |Axy| < 1%,
predictions in the THDMs can be largely different from
those in the HSM. This is because of the fact that the
charged Higgs boson loop effect on the hyy vertex in
the THDM can be significant, which does not appear in the
HSM. In addition, the tree level values of k, and x, are
generally different in the THDMs as seen in Egs. (33) and
(34), while these are commonly ¢, in the HSM. As a result,
in the HSM Ak, is simply given by ¢, —1, and the
prediction is given around the line with Ax; = Ax,.
Thus, this result is quite useful to distinguish the
THDMs and the HSM even in the case with
|Ak,| < 1%, in which it is difficult to separate these models
only by using Aky and Ak;.

VI. CONCLUSIONS

We have computed one-loop corrected Higgs boson
couplings based on the improved on-shell renormalization
scheme without gauge dependence in the nonminimal
Higgs sectors, i.e., the HSM and the THDMs with the
softly broken Z, symmetry. The pinch technique is adopted
to remove gauge dependence in Higgs boson two-point
functions, which give rise to the gauge dependence in the
renormalized mixing parameters between Higgs bosons.
We have explicitly shown the cancellation of the gauge
dependence in the general R; gauge in the nonminimal
Higgs sectors. We then have calculated the difference in

PHYSICAL REVIEW D 96, 035014 (2017)

various renormalized Higgs boson couplings calculated in
the previous on-shell scheme with gauge dependence and
those calculated in the improved scheme without gauge
dependence.

Having the gauge invariant one-loop corrected coup-
ling constants, we have investigated how we can identify
the HSM and the THDMs by looking at the difference
in the pattern of deviations in the renormalized Higgs
boson couplings from predictions in the SM. We
have shown correlations between Ak,—Ax,, Ax,—Akp,
Ax,~Ax, and Akz—Axk,. We can distinguish these models
by the combination of the measurements of «,, k;, and k, if
|Akz| is measured to be ~1% or larger at future collider
experiments.
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APPENDIX A: PINCH TERM IN THE
’t HOOFT-FEYNMAN GAUGE

We present the analytic expressions for the pinch-
term contribution to the scalar boson two-point fun-
ctions in the ’t Hooft-Feynman gauge. As expressed in
Eq. (90), the gauge invariant two-point function for scalar
bosons @; ; is obtained in the pinched tadpole scheme as
follows:

Hfﬂi(ﬂf(qz) = H!lﬂ]jllﬂ_f(qz)lfvil + H;?((ﬂjjlfvil + HZT(”_f(qZ)'fV:l'
(A1)

In the following subsections, we give the explicit formulas
for Y, (¢*)|,—, in the SM, the HSM and the THDM

Pip;j
in order. Hereafter, we do not explicitly write the
symbol | _;.

1. SM

The pinch term for the Higgs boson /& two-point function
is given as

2

g
W) =~ 1L (47~ m) Bl W, W)
9%

2. HSM

The pinch terms for the two-point functions for the
CP-even Higgs bosons h;—h; are given as
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R 2
g g
Hﬁj(qz) =32 (2¢* - m%,l_ - mij)gingo(q2§ W, W) - 6422

where ¢; ; and h;; (i, j = 1, 2) are defined in Eq. (56).

(2q° - m%,l. - m%j)gingO(q2; Z,7), (A3)

3. THDM
The pinch terms for the two-point functions for the CP-even Higgs bosons h—h, H-H and H—h are given as

2

5 (q%) = 12” (4 = m3)[s5_Bo(q*: W. W) + c3_,Bo(q* H . W))]
- 3322 (q% = m})[53_Bo(q*: 2. Z) + ¢} Bo(q*:A. Z)] (Ad)
2
Y (q%) = lgn’ (¢* —mH)[cﬁ Bo(dZ W, W)Jrsﬂ Bo(q% HE, W)
- 3%:2 (¢* - m?;)[f%,»_aBo(qz;Z, Z)+ sg,_aBO(q%A, Z)]. (AS)

P
g
I, (q%) = 72 ——(2¢* — mj, — m§;)sp_qCp_q[Bo(q*s HE, W) — Bo(q*: W, W)]
&

+ m (247 — mj, — myy)sp-aCp-o[Bo(4*: A, Z) = Bo(q*: 2, Z)] (A6)

where IT'E (¢?) = IIET (%). For the CP-odd scalar bosons A-A and A-G°, we obtain

g2

A (4°) = =16 (47 = m3)Bo(q*s W, H)
2
g
— 352 (@ = mA)leh Bo(a% 7 h) + s Bo(q* Z. H)], (A7)
9%
GU (q ) 647 2 (2q2 - mf\)s/i—ac,[}'—a[BO(qz; Z’ H) - 30(6122 Za h)]y (AS)
where T175  (¢%) = "7, (¢*). For the charged scalar bosons H*H~ and HG"~, we obtain
g g
5L, (0%) = =55 (6% = m3)[55_,Bo(¢% W, H) + ¢j_Bo(q* W, h)] = 22— (¢* — m3,.)Bo(q*; W, A)
3272 327
2 2
9
(12532~ VBl 2, HE) = (42 = ) By 7, HE), (49)
&
HZEG (q2) 3 2n 2 S (lcﬂ—(l(zq - m )[BO(q w, H) BO(qz;W7h)]’ (A]O)

where ITFL,_(¢?) = IIPL. ._(¢?). We note that Eqs. (A4)—(A6), (A8) and (A10) are consistent with those presented in the
independent work given in Ref. [85].

APPENDIX B: RENORMALIZED HIGGS BOSON VERTICES IN THE PINCHED TADPOLE SCHEME

In this Appendix, we give the expressions for the renormalized Higgs boson vertices in the pinched tadpole scheme in the
SM, the HSM and the THDM in order. The expressions for the counterterms 6X appearing in these vertices are given in
Appendix C.
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1. SM
The renormalized hVV, hf f and hhh vertices are given by

. 2m? omi v 1 |
Chyy :—V 1+ <—mv——+5zv+ 6Zh>
L \% _
+ Ty + This (BI)
_my [ Smy  Sv 1 |
By =——F 1+ (mf —+0Zy + 562, ) | + T
(B2)
3m? om; ov 3
Do = —Th [1 + <m—"——+252hﬂ + D+ i
h
(B3)
2. HSM

The renormalized h,VV, h;ff and h;hh (hy = h and

h, = H) vertices are given by
A 2m? om? v o0z,
Oy =—>¢ {1 + ( v — +C;5Ch+5Zv+—>}
i v mi 2
+ iy + s (B4)
- oms Sv
05, =- fgi[1+<f—+g15ch+5zf )]
mg
e, B5)
R ) 3
thh = 6/1hhh |:1 + i + = 5Zh + H—hh (5Ch -+ 5(1):|
Awin 2 Anhi
+ D+ Dt (B6)
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oz 32
1—‘Hhh =2 |1 +06Z;, + CH + hhh
2 /thh

SAnn

/IHhh

(5C;, - 5ar)

22
+ ZCHER (5C), 4 Sa) +
AHhh

1PT Tad
+ I_‘Hhh + 1—‘Hhh’

(B7)

where ¢; (i =1, 2) are defined in Eq. (56), and ; =
to(1/t,) for i =1 (2). For the hhh and Hhh vertices,
the relevant scalar boson trilinear couplings defined as

L= +2,0,0,Pi®Pxc - are given by

3

A = —g—amﬁ - Sé(caﬂcbsv — Sqlls) (B8)
v
) ’ S4C  Spdost ’
Agpn =—(2mj; +my) v +T(1 +3¢24) = 355Caktss
(B9)
c(ls(zl /1<I>Sv

Ay = —(mj +2m3;) (Ca+3¢3q) + 3CEs 15

20 4
(B10)

The explicit formulas for the 1PI diagram contributions are
given in Refs. [30,31].

3. THDM

First, we give the renormalized 2VV and HV'V vertices,

. 2m? om3y,  Sv o7
Chyy = TV [s,j_a <1 +— -  HOZy+ 7’*) + ¢4_o(8Cy + 5ﬂ)] + Ty + T (B11)
my
. 2m? om3,  Sv 67
Chvy = TV [Cﬁ—a <1 +——— + 6Zy + 2H> + $p-a(6C), — 5ﬂ)] + iy + iy (B12)
my
where the explicit formulas for F}zVV are given in Ref. [31].
Second, the renormalized Yukawa couplings are given by
s, =-" omy 8 + 62, St 5, ) + TR B13
hff__TChff +————§f b+ +—+C n) T Laggs (B13)
my hff
my dm; v i
B = == Llugs |1+~ == op 4+ 6z) + =57+ 26, ) + T Bl4
Hff S §H.f.f( + my rop + +2 5 2+ Zay O Hif (B14)
. m oms 6w 6Z, 6C
Ff,’ff = 2;7f§f1f< +—ff ———(0p+ (Szf +TA+C—fA) +F}§If, (B15)
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Ua,ae =

~ \/Em om
FﬁﬂszL = v : gu (1 + -
u

+ S s+
mgy v
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13
— - Lop+
v

§Zyp + 62, 6Zpe  SCye
; 2H . (:: + F}f}hdk, (B16)

0Zy + 07, 0L+ OC 4+
dL - R 2H CH ) F}ﬂukdy (B17)

where 'L — lA“IS# £ + lA“szf/. The {4rr (¢ = h, H) and { factors are respectively given in Eq. (34) and in Table I.

H+ff/ -
The explicit formulas for I';}'; are given in Ref. [31].

Third, the renormalized hH*W, and hAZ, vertices are given by

. My [ omE, Sv 1
Porew =F i cpo |1+ o= 4~ (5Z), + 6Zyy+ + 6Zy) + tan(f — @) (8Cyy= — 6C,) |, (B18)
v L 2my v 2
R m [ om% Sv 1
FhAZ — — Zcﬂ—a 1 —l—ﬁ—?—'—z(ézh +6ZA +5ZZ) —I—tan(ﬁ—a)(5CA _5Ch):| (Blg)
z
I
Finally, the renormalized scalar trilinear vertices I, ov :l 53, — e Myw(m3,) il’lzz(m%)
and [y, are expressed by the same form as those given 20 sk mi, sy, m%
in Egs. (B6) and (B7) in the HSM, where the explicit d
expression for I'}P! is given in Ref. [29]. In addition, the - ﬁnyy(PZN p2=0:|7 (C2)
ih . . p
relevant scalar trilinear couplings are given by
"2 M2 — m2 d 2(c2, — 2,) TIF(0)
My = ——Lg, +—0 Mg 2 67, — ——— TP p2)] , ~ — Z\“W = W) 72y
hhh 21}2 p a2 p—aCp—a Z dpz 7y (P )|p2—0 Cwsw m%
M2 —
+ 2—1}’"}!6‘2_&<C0t/} - tanﬁ>7 (BZO) C%V ; S%V |:H]Z];I(2’n%) _ H‘l/‘]/’{‘/(zm%/):| ) (C3)
s m m
(14 z (14
Cp
Ahn = _2ﬁ [(2m3 4 m3;)s2q + M2 (525 — 3524)],
vs,) IPHo
4 57 :_inlpl(pzﬂ , _ZC_W Zr( )
(B21) w dp* " p==0 Sw m%
2 HIPI(mZ) HIPI (Wl2 )
Sp-q Cw |Hizzmz) Lyw(My
b = 0 0 20 )52, = M5y + 3s2,)) (B22) [ -] ()

APPENDIX C: COUNTERTERMS

We present the explicit formulas for the relevant counter-
terms appearing in the previous subsection, which are
determined in the pinched tadpole scheme [8,52]. We also
explain the way to obtain the counterterms determined in
the KOSY scheme [26].

1. SM
Counterterms for the gauge boson masses §m?, the VEV
ov and the wave function renormalizations of weak gauge
bosons 6Zy, are given by

omi, = Tyy (my), (C1)

where II;; are the gauge invariant two-point functions
defined in Eq. (90), and IT;;" are the part of the 1PI
diagram contribution to the two-point functions.
Counterterms for fermion masses om, and the wave

function renormalization of fermions (52{} and 52‘/’;) are
given by

smy = my[Mysy(m3) + s s(m3)], (Cs)

&)
S}

d
52, = =Ty o)~ T, =2 |, )

d
1PI 2
TS|
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d
87} =~ (m3) — T, 4 2m2 d—pzn}% (P*)] =2
(C7)

where I/ v, I1;; 4 and I1 g are the vector, the axial vector
and the scalar parts of the fermion two-point functions,

We note that the wave function renormalizations for left-
handed (5Z{) and right-handed (5ZJ1;) fermions are related
to (SZ{, and 5Z£ as follows,

§Z) = 67}, + 67, 67} =67l - 57, (C9)

Counterterms for the Higgs boson mass ém; and the
wave function renormalization for the Higgs boson 6Z,, are
expressed as

d
5Zh = _H}lgl(pz) |p2=mi :

5’"%, = Iy, (m%,) dp2

(C10)

In the following, we also present the expressions for the
counterterms in the KOSY scheme [26], which are neces-
sary to calculate the scheme difference discussed in Sec. IV.
In the KOSY scheme, two-point functions for fermions,
gauge bosons and scalar bosons are respectively given as
follows:

Hij(p2)|KOSY = H}})I(Pz)v

(i,j) for fermions, (C11)
I;(p?)kosy = H}})I(P2> + HZT(P2)7
(i,j) for gauge bosons, (C12)

mj,
_ 3 2
OApnn = ( Ca — Mqascasa> v

20

s(l
S = 5 [(2my, + my;)cg 4 v*Ags(1 + 3¢2,)]

2v

where

2
FHSM _ 3s,C

C v
G(l)—zlSM == (Zs(21 - C(ZI) (21’)’!}21 + m%—]) - Zj'd)S(ca - 9C3(1) + SﬂSsrl(sfzz - 26(%)

2v
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IT;(p?)kosy = H}})I(PZ) + 6T jlkosy>
(i.J)
We note that the pinch term for gauge boson two-point
functions is necessary to add in order to cancel the UV

divergent in one-loop corrected Higgs boson couplings. In
the SM, we have

(C13)

for scalar bosons.

1

ST pilkosy = — o T (C14)

2. HSM

We give the expressions for the counterterms appearing
in Appendix B 2. The explicit formulas for the relevant 1PI
diagram contributions to one-point and two-point functions
are given in Refs. [30,31].

Counterterms for the masses of weak bosons and
fermions, and their wave function renormalizations are
the same form as the corresponding one in the SM. Those
for 5m%¢,~ and 6Z;, (h; = h and h, = H) are given by

d
oL, = ——=
h; dp2

1 (52)] e -

5]”1%1_ = Hh[h[(m%l),
(C15)

Those for mixing parameters of the CP-even Higgs bosons
are given by

31 = 5y I O) = T3] (€16
ba = [My(2) + Mga(m3)). (C17)

2(mjy — mj)
Finally, we give the explicit forms of 04, and 61y, which

appear in the renormalized hhh and Hhh couplings given
in Egs. (B6) and (B7), respectively,

ov

3
o ;—Zamﬁ + FHSMgy 1 G, (C18)
SV 54Cq 2 2 HSM /
o - S 28m + i) + GHMba + oM (C19)
: m%, + ”/Lbssa(sg - 203) + 3s5Catts, (C20)
v
(C21)

We note that SM and 6M’ are linear combinations of the counterterms Sug and SAgg [31]. Their explicit forms are given as

follows:
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52 2NLm? 23 3
v = - [; 0 D= 2 (2 ) = > A (2 + )
4—i¢s(110 + C3q) + 2 }wbsc Sa + 40205 (345 + Aos)cq — 36psAsSy | Agiys (C22)
Nlm 2 2mt 4+ md 3(2m2, + m2 3m2
Sy m m m m m
6M' = 162 [Ef: » Las(1+3c,) —%Cﬁ(cza -3) —%}@5(1 + 3¢24) +—vh/1<1>sf7§(3 + €2q)
2
- ﬂlmssg + 2005 (34s + Aos) (1 + 3¢2q) — 108usdscasy | Agivs (C23)
I
where Ag;, expresses the UV divergent part of the loop 1
integral and N/ is the color factor; i.c., N& = 3(1) for f op = Tom2 2 [Myg0(m3) + My0(0)]. (C30)

being quarks (leptons).

In the KOSY scheme, Sa, m?, and 6m3; are given in the
same way as those given in Egs. (C15), (C16) and (C17),
but we should use the scalar two-point functions defined in
Eq. (C13), where each 6T;;|kosy is given by

2

C
0T wilxosy = —f(saT}im + ¢, i, (C24)
§2
0T uplkosy = —f (saTH" + ¢, T3, (C25)
saca 1PI 1PI
8T hulkosy = ’ —(sqTy + ¢, T;7).  (C26)

3. THDM

We give the expressions for the counterterms appearing
in Appendix B 3. The explicit formulas for the relevant 1PI
diagram contributions to one-point and two-point functions
are given in Refs. [29].

Counterterms for the masses of weak bosons and
fermions, and their wave function renormalizations are
the same form as the corresponding one in the SM. Those
for masses of Higgs bosons ¢(= h, H,A, H*) and their
wave function renormalizations are expressed as

d

m2), 82, = _d—pzng;l(p2)|p2:mé.

(C27)

Counterterms for the mixing parameters for the CP-odd
scalar bosons and those for the singly charged scalar bosons
are given by

1
5Cr = =3 e (n3) ~TUL ). (C28)
1 1PI 1PI 2’”A 1PI
6Cps = =5 HAGO( 3) + I (0) = S5A T (0),
Hi
(C29)

We note that 6C;, and da take the same form as given in
Egs. (C16) and (C17), respectively. In the THDMSs, 64,
and 84y, are expressed as

SV C3q-p+ 3¢
Sl = ~hpi = = L 5

41)Szﬁ
4 FTHDMs, | F 5/;+M5M . (C31)
US2ﬂ
OV $24Cp_q
St =~ — = — —— (26m}, + omj
Hhh Hih 20857 (26my, + omy)
3¢ —a a 1
+ GG 4 Guop + 1 Zpa <s2 >6M2,
2v SZ[)’ 3
(C32)
where
c a N a
FTHOM _ ; {3 2% (m2 — M?) +M2}, (C33)
v Szﬂ
Sp—q C20Ch—a
GHDM _ P 2P 02 w2, —3M?),  (C34)
C/}—a USZﬁ

and Fy and Gy are given in Egs. (115) and (116),
respectively. The expression for SM? is given by

oM 1 2> NIm3C3 + AM? - 2m?,.
M2 167202 - 1o f H
52
_mA +S_22<m%1_m%> 3<2nllW_|—’nZ) Ad1v7

(C35)

where (' are given in Table L.

Similar to the case in the HSM, in the KOSY scheme,
scalar two-point functions II;; are defined in Eq. (C13),
where each of the counterterms of the tadpole is given by
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GAUGE INVARIANT ONE-LOOP CORRECTIONS TO HIGGS ...

1

0T hilxosy = ——

[_sacac/)’—aTIl'JPI + (S?IS/; - Cgcﬂ)T}lPI]’
’US/;C[)’

(C36)

1
’US/}C/}

[—(spca + cpsi) TH + 54CaSp—aT )]

6T uplkosy =

’

(C37)

S, C
0T hlkosy = ﬁ ($p—aTH" = cpoal ). (C38)

PHYSICAL REVIEW D 96, 035014 (2017)
5TAA|K05Y = 5TH+H-|KOSY

1
= T uspe, [(casy + 5ac))Th"

+ (cach = 5asp) T}, (C39)

1
5TAG|KOSY = 5TH+G’|KOSY = (S/J—aTg) ' Cﬂ—aTilzPI)-

(C40)
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