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We comprehensively evaluate renormalized Higgs boson couplings at one-loop level in nonminimal
Higgs models such as the Higgs singlet model (HSM) and the four types of two Higgs doublet models
(THDMs) with a softly broken Z2 symmetry. The renormalization calculation is performed in the on-shell
scheme improved by using the pinch technique to eliminate the gauge dependence in the renormalized
couplings. We first review the pinch technique for scalar boson two-point functions in the standard model
(SM), the HSM and the THDMs. We then discuss the difference in the results of the renormalized Higgs
boson couplings between the improved on-shell scheme and the ordinal one with a gauge dependence
appearing in mixing parameters of scalar bosons. Finally, we widely investigate how we can identify the
HSM and the THDMs focusing on the pattern of deviations in the renormalized Higgs boson couplings
from predictions in the SM.
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I. INTRODUCTION

In spite of the success of the standard model (SM), there
are many reasons to introduce new physics beyond the
SM from both experiments and theory considerations. At
the LHC a Higgs boson has been found, but no new particle
has been found yet. It is expected that current and future
collider experiments will find something new, namely
either discovering direct evidence of new particles or
detecting deviations from the SM predictions.
Although the Higgs boson was found, the structure of the

Higgs sector remains unknown. The current data indicate
that the observed Higgs boson behaves like the SM one [1].
Still, there is no compelling reason for the minimal Higgs
sector of the SM, and there are many possibilities for
nonminimal structures in the Higgs sector.
It is actually very important to clarify the structure of the

Higgs sector from the viewpoint of exploring new physics
beyond the SM. The strength of the interaction, multiplet
structures, and symmetries of the Higgs sector are closely
related to specific scenarios of new physics beyond the SM.
Therefore, the Higgs sector is a probe of new physics.
Nonminimal structures of the Higgs sector can be

explored by directly discovering additional scalar particles
at current and future experiments. Once we discover such a
new particle, we can reconstruct the structure of the Higgs

sector by measuring masses and couplings of these particles
in detail. However, it is not clear whether such new particles
can be in the reach of direct searches in the near future.
In a complementary way, there is a possibility to

indirectly discover evidence of new physics beyond the
SM by detecting deviations from the predictions in the SM.
In particular, with the new observables after the discovery
of the Higgs boson, such as the coupling constants with the
Higgs boson hð125Þ, deviations in these coupling constants
can make a specific pattern, by which we can fingerprint
models with nonminimal Higgs sectors [2].
Current magnitudes of the precision for the Higgs cou-

plings measurements are typically the order of 10% level or
worse at the LHC experiments [1]. They will be improved in
the near future at future experiments such as LHCRun-II and
High-Luminosity LHC (HL-LHC) [3,4], and those at eþe−
colliders, e.g., the International Linear Collider (ILC) [5], the
Compact Linear Collider (CLIC) [6] and the Future eþe−
Circular Collider. For example at the HL-LHC (at the initial
phase of the ILC), the hZZ, hbb̄ and hττ couplings will
be measured with 2%–4% (0.58%), 4%–7% (1.5%) and
2%–5% (1.9%) at 1σ [5,7], respectively. Obviously, theory
predictions for the Higgs boson couplings must be evaluated
with more accuracy than those experimental errors, namely,
we need to go beyond the tree level calculation. Therefore,
it is important to systematically prepare the calculation of
various Higgs boson couplings at loop levels. In addition,
these calculations should be systematically performed in
various kinds of extended Higgs sectors.
So far, one-loop corrections to the Higgs boson cou-

plings have been investigated in various models. In the SM,
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one-loop corrections to the hVV (V ¼ W, Z) couplings
were calculated in Refs. [8–10]. For the hff̄ couplings,
one-loop QCD and electroweak corrections were respec-
tively computed in Refs. [11–14] and [8,15]. These
calculations have been established since the early 1990s
mainly based on the electroweak on-shell renormalization
scheme [16–18]. After that, one-loop corrected Higgs
boson couplings have also been calculated in various
models beyond the SM. For example, in the minimal
supersymmetric SM (MSSM), one-loop corrections to
the hff̄ couplings have been intensively studied in
Refs. [19–23], because of the sizable amount of the
supersymmetric QCD corrections. In addition, in
Refs. [24,25] the Higgs boson self-coupling hhh has been
calculated at one-loop level in the MSSM. In (nonsuper-
symmetric) two Higgs doublet models (THDMs), one-loop
corrected hZZ [26], hhh [26,27] and hff̄ [28] couplings
have been studied. In Ref. [29], an improved fingerprinting
identification of THDMs has been discussed using the
one-loop renormalized hVV (V ¼ Z, W), hff̄ and hhh
couplings. In the other extended Higgs sectors, such
calculations are also found in Refs. [30,31] for the Higgs
singlet model (HSM), in Refs. [32,33] for the inert doublet
model, and in Refs. [34,35] for the Higgs triplet model.
However, it has been known that gauge dependence

appears in the renormalization of mixing parameters among
fields, e.g., fermions [36–39] or scalar bosons [36,40,41]
based on the on-shell scheme, which is proven by using
the Nielsen identity [42]. Fortunately, the way to remove
such gauge dependence by using the pinch technique is
already known [43–48], and the gauge invariant scheme has
been constructed in various models, e.g., in the MSSM
[41,49,50], the HSM [51], and the THDM [52–54].
In this paper, we comprehensively calculate one-loop

corrections to Higgs boson couplings based on the on-shell
renormalization scheme improved by using the pinch
technique (the so-called pinched tadpole scheme [8,52])
to remove the gauge dependence. In particular, as important
examples of extended Higgs sectors we concentrate on the
HSM and the THDMs with a softly broken Z2 symmetry
which is imposed to avoid flavor changing neutral currents
(FCNCs) at tree level [55]. For the latter models, we
consider all possible four independent types of Yukawa
interactions called type I, type II, type X and type Y
appearing due to different choices of the Z2 charge assign-
ment for fermions [56–58]. We first explicitly show the
cancellation of the gauge dependence in Higgs boson two-
point functions computed in the general Rξ gauge by
adding pinch terms which are extracted from vertex
corrections and box diagrams of a two-fermion to two-
fermion scattering process in the SM, HSM and THDMs.
We then define the gauge independent renormalized mixing
angles based on the pinched tadpole scheme, and discuss
the difference in various one-loop corrected Higgs boson
couplings based on the pinched tadpole scheme and those

based on the ordinal on-shell scheme with the gauge
dependence [16–18]. We then investigate how we can
identify the HSM and THDMs by “fingerprinting” various
one-loop corrected Higgs boson couplings with usage of
the gauge invariant renormalization scheme. Namely, these
extended Higgs sectors can be disentangled by looking at
the difference in the pattern of deviations in the Higgs
boson couplings from the SM prediction. In order to
concretely show how the fingerprinting works, we display
various correlations between κZ–κτ, κτ–κb, κτ–κc and
κZ–κγ , where κX denote the normalized hXX couplings
by the SM prediction (h being the discovered Higgs boson
with the mass of 125 GeV). As a result, if jκZ − 1j is found
to be ∼1% or larger, there is a possibility to distinguish
these models by the combination of the measurements of
κτ, κb and κc.
The originality of this paper should be the following. We

discuss how we can discriminate various Higgs sectors by
focusing on the couplings of hð125Þ with SM particles at
the one-loop level without gauge dependence in various
nonminimal Higgs sectors. In the previous studies [51,52],
one-loop corrected non-SM couplings with extra Higgs
bosons have been discussed in a specific nonminimal Higgs
sector. In addition, we provide details of calculations for the
part of the pinch technique explicitly, some of which have
not been shown in the literature, which might be useful for
people who try to follow the calculation.
This paper is organized as follows. In Sec. II, we give a

brief review of the HSM and THDMs, i.e., defining their
Lagrangians and giving mass formulas for Higgs bosons.
We also discuss various constraints on parameters of these
models. In Sec. III, we show the cancellation of the gauge
dependence in Higgs boson two-point functions using the
pinch technique in the SM, the HSM and the THDMs in
order. A full set of relevant Feynman diagrams giving rise
to the gauge dependence of two-point functions and those
to extract pinch terms are displayed. In Sec. IV, we discuss
the difference in the renormalized Higgs boson couplings
calculated in the pinched tadpole scheme without the gauge
dependence and in the ordinal on-shell scheme with the
gauge dependence. In Sec. V, we numerically show
predictions of various scaling factors κX in the HSM and
the THDMs. We then discuss how we can identify these
models by the difference in predictions of κX. Conclusions
are given in Sec. VI.

II. EXTENDED HIGGS SECTORS

In order to fix notation, we give a brief review of the
HSM and the THDMs with a softly broken Z2 symmetry
and CP conservation.

A. HSM

The Higgs sector of the HSM is composed of an isospin
doublet field Φ with the hypercharge Y ¼ 1=2 and a real
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isospin singlet scalar field S with Y ¼ 0. The most general
scalar potential is given by

VðΦ; SÞ ¼ þm2
ΦjΦj2 þ λjΦj4 þ μΦSjΦj2Sþ λΦSjΦj2S2

þ tSSþm2
SS

2 þ μSS3 þ λSS4; ð1Þ

where the doublet and singlet fields can be parametrized by

Φ ¼
� Gþ

vþϕþiG0ffiffi
2

p

�
; S ¼ vS þ s: ð2Þ

In Eq. (2), Gþ and G0 are the Nambu-Goldstone (NG)
bosons which are absorbed into the longitudinal compo-
nents of the Wþ and Z bosons, respectively. The vacuum
expectation value (VEV) v of Φ is directly related to the
Fermi constant GF by v ¼ ð ffiffiffi

2
p

GFÞ−1=2 ≃ 246 GeV. On
the other hand, the singlet VEV vS of S contributes to
neither the electroweak symmetry breaking nor generation
of fermion masses. In addition, a shift of the singlet VEV
vS → v0S can be absorbed by the reparametrization of
parameters in the potential [59]. Therefore, we simply take
vS ¼ 0 in the following discussion.
The mass eigenstates of the twoCP-even scalar states are

defined by

�
s

ϕ

�
¼ RðαÞ

�
H

h

�
with RðθÞ ¼

�
cos θ − sin θ

sin θ cos θ

�
:

ð3Þ

Hereafter, we introduce the shorthand notation sθ ¼ sin θ
and cθ ¼ cos θ. Their masses are calculated after imposing
the tree level tadpole conditions, i.e.,

∂V
∂ϕ

����
0

¼ ∂V
∂s

����
0

¼ 0; ð4Þ

by which we can eliminate m2
Φ and tS parameters, where

j0 denotes taking all the scalar fields to be 0 after the
derivative. The squared masses (m2

H and m2
h) and the

mixing angle α are then expressed as

m2
H ¼ M2

11c
2
α þM2

22s
2
α þM2

12s2α; ð5Þ

m2
h ¼ M2

11s
2
α þM2

22c
2
α −M2

12s2α; ð6Þ

tan 2α ¼ 2M2
12

M2
11 −M2

22

; ð7Þ

where M2
ij are the mass matrix elements for the CP-even

scalar states in the basis of ðs;ϕÞ,

M2
11 ¼ 2m2

S þ v2λΦS; M2
22 ¼ 2λv2; M2

12 ¼ vμΦS:

ð8Þ

We identify h as the discovered Higgs boson at the LHC,
so that we take mh ¼ 125 GeV. From Eqs. (5)–(8), we can
solve (λ, m2

S, μΦS) in terms of (mh, mH, α) as

λ ¼ 1

2v2
ðm2

hc
2
α þm2

Hs
2
αÞ;

m2
S ¼

1

2
ðm2

hs
2
α þm2

Hc
2
α − λΦSv2Þ;

μΦS ¼
1

v
sαcαðm2

H −m2
hÞ: ð9Þ

Consequently, we can choose the following five free
parameters as inputs:

mH; α; λS; λΦS; μS: ð10Þ

These parameters can be constrained by taking into account
the following arguments with respect to the theoretical
consistency.
First, we impose the perturbative unitarity bound [60]

defined by

jai0j ≤
1

2
; ð11Þ

where ai0 are the eigenvalues of the s-wave amplitude
matrix for elastic two-body to two-body scalar boson
scatterings. There are four independent eigenvalues written
in terms of dimensionless parameters in the potential in the
HSM [61], which can be rewritten in terms of the physical
parameters, e.g., mH and α via Eq. (9).
Second, we require that the Landau pole does not appear

at a certain energy scale. In this paper, we impose the
following condition as the triviality bound,

jλiðμÞj ≤ 4π; for ∀μ with mZ ≤ μ ≤ Λcutoff ; ð12Þ

where Λcutoff is the cutoff of the model, and λiðμÞ are the
dimensionless running parameters at the scale μ, which can
be evaluated by solving the one-loop renormalization group
equations. The one-loop beta functions in the HSM are
given in Ref. [62].
Third, we require the condition to guarantee the potential

being bounded from below in any direction of the scalar
field space. The sufficient condition to avoid the vacuum
instability at any scale μ up to the cutoff Λcutoff is given
by [63]
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λðμÞ ≥ 0; λSðμÞ ≥ 0; 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðμÞλSðμÞ

p
þ λΦSðμÞ ≥ 0;

for ∀μ with mZ ≤ μ ≤ Λcutoff : ð13Þ

Fourth, we impose the bound from conditions to avoid
wrong vacua [59,64]. Because of the existence of the scalar
trilinear couplings μS and μΦS, nontrivial local extrema can
appear in the Higgs potential. Therefore, we need to check
if the true extremum at ð ffiffiffi

2
p hΦi; hSiÞ ¼ ðv; 0Þ corresponds

to the minimum of the potential. This condition can be
expressed as

Vnorðv�; x�Þ > 0; Vnorð0; x1;2;3Þ > 0; ð14Þ
where Vnor is the normalized Higgs potential satisfying
Vnorðv; 0Þ ¼ 0. The analytic formulas of the false VEVs for
the doublet field v� and those for the singlet field x� and
x1;2;3 are found in Ref. [31].
Finally, we take into account the constraint from the

electroweak oblique parameters S and T introduced by
Peskin and Takeuchi [65]. We define new physics con-
tributions to the S and T parameters as ΔS≡ SNP − SSM
and ΔT ≡ TNP − TSM with SNPðSMÞ and TNPðSMÞ being the
new physics (SM) prediction to the S and T parameters,
respectively. From Ref. [66], the fitted values of the ΔS and
ΔT are given under ΔU ¼ 0 by

ΔS ¼ 0.05� 0.09; ΔT ¼ 0.08� 0.07; ð15Þ
with the correlation factor ρST ¼ þ0.91. We require that the
prediction of the model is within the 95% confidence level
(CL) region, which is expressed by Δχ2ðΔS;ΔTÞ ≤ 5.99.
The analytic expressions for the new contributions ΔS and
ΔT can be found in, e.g., Ref. [67].
Before closing this subsection, let us give the trilinear

interaction terms among the Higgs bosons and weak bosons
or fermions. Because the singlet field S does not couple to
weak bosons and fermions, the singletlike Higgs boson H
couples to these SM fields only through the nonzero mixing
angle α, while the SM-like Higgs boson h couplings are
universally suppressed by the factor of cos α. As a result,
we obtain the following interaction Lagrangian:

Ltrilinear¼
�
h
v
cαþ

H
v
sα

�
ð2m2

WW
þ
μ W−μþm2

ZZμZμ−mff̄fÞ:

ð16Þ

In Appendix B, we also give scalar trilinear couplings.

B. THDM

The Higgs sector is composed of two isospin doublets
Φ1 and Φ2 with Y ¼ 1=2. In order to avoid FCNCs at the
tree level, we impose a Z2 symmetry in the Higgs sector,
which can be softly broken by a parameter in the potential.
We fix the Z2 charge assignment for two doublets and
fermions as given in Table I. Depending on the Z2 charge

assignment on right-handed fermions, we can define four
types of Yukawa interactions [56,57] called type I, type II,
type X and type Y [58].
The Higgs potential under the Z2 symmetry and the CP

invariance is given by

VðΦ1;Φ2Þ ¼ þm2
1jΦ1j2 þm2

2jΦ2j2 −m2
3ðΦ†

1Φ2 þ H:c:Þ

þ 1

2
λ1jΦ1j4 þ

1

2
λ2jΦ2j4 þ λ3jΦ1j2jΦ2j2

þ λ4jΦ†
1Φ2j2 þ

1

2
λ5½ðΦ†

1Φ2Þ2 þ H:c:�; ð17Þ

where the two doublet fields can be parametrized as

Φi ¼
� wþ

i
viþhiþiziffiffi

2
p

�
; ði ¼ 1; 2Þ; ð18Þ

with vi being the VEVs for Φi. These two VEVs can
be expressed as (v; tan β) defined by v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
¼

ð ffiffiffi
2

p
GFÞ−1=2 and tan β ¼ v2=v1.

The mass eigenstates for the scalar bosons are obtained
by the following orthogonal transformations,

�
w�
1

w�
2

�
¼ RðβÞ

�
G�

H�

�
;

�
z1
z2

�
¼ RðβÞ

�
G0

A

�
;

�
h1
h2

�
¼ RðαÞ

�
H

h

�
; ð19Þ

where α is the mixing angle between two CP-even scalar
states. Similar to the HSM case, we regard the h state as the
discovered Higgs boson at the LHC.
By imposing the tree level tadpole conditions, i.e.,

∂V
∂h1

����
0

¼ ∂V
∂h2

����
0

¼ 0; ð20Þ

we can eliminate them2
1 andm

2
2 parameters. We then obtain

the mass formulas of the physical Higgs bosons. First, the
squared masses of H� and A are calculated as

TABLE I. Charge assignment of the Z2 symmetry and the ζf
(f ¼ u, d, e) factors appearing in Eq. (34) in each of four types of
Yukawa interactions.

Φ1 Φ2 QL LL uR dR eR ζu ζd ζe

Type-I þ − þ þ − − − cot β cot β cot β
Type-II þ − þ þ − þ þ cot β − tan β − tan β
Type-X þ − þ þ − − þ cot β cot β − tan β
Type-Y þ − þ þ − þ − cot β − tan β cot β
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m2
H� ¼ M2 −

v2

2
ðλ4 þ λ5Þ; m2

A ¼ M2 − v2λ5; ð21Þ

where M describes the soft breaking scale of the Z2

symmetry defined as

M2 ¼ m2
3

sβcβ
: ð22Þ

The masses for the CP-even Higgs bosons and the mixing
angle α can be expressed by

m2
H ¼ c2β−αM

2
11 þ s2β−αM

2
22 − s2ðβ−αÞM2

12; ð23Þ
m2

h ¼ s2β−αM
2
11 þ c2β−αM

2
22 þ s2ðβ−αÞM2

12; ð24Þ

tan 2ðβ − αÞ ¼ −
2M2

12

M2
11 −M2

22

; ð25Þ

whereM2
ij (i, j ¼ 1, 2) are the mass matrix elements for the

CP-even scalar states in the basis of ðh1; h2ÞRðβÞ,

M2
11 ¼ v2ðλ1c4β þ λ2s4βÞ þ

v2

2
λ345s22β; ð26Þ

M2
22 ¼ M2 þ v2s2βc

2
βðλ1 þ λ2 − 2λ345Þ; ð27Þ

M2
12 ¼

v2

2
s2βðλ2s2β − λ1c2βÞ þ

v2

2
s2βc2βλ345; ð28Þ

with λ345 ≡ λ3 þ λ4 þ λ5. From Eqs. (21) and (23)–(28),
the quartic couplings λ1–λ5 in the potential are rewritten in
terms of the physical parameters as

λ1v2 ¼ ðm2
H tan2 β þm2

hÞs2β−α þ ðm2
H þm2

h tan
2 βÞc2β−α

þ 2ðm2
H −m2

hÞsβ−αcβ−α tan β −M2 tan2 β;

λ2v2 ¼ ðm2
H cot2 β þm2

hÞs2β−α þ ðm2
H þm2

h cot
2 βÞc2β−α

− 2ðm2
H −m2

hÞsβ−αcβ−α tan β −M2 cot2 β;

λ3v2 ¼ ðm2
H −m2

hÞ½c2β−α − s2β−α þ ðtan β − cot βÞsβ−αcβ−α�
þ 2m2

H� −M2;

λ4v2 ¼ M2 þm2
A − 2m2

H� ;

λ5v2 ¼ M2 −m2
A: ð29Þ

From the above discussion, we can choose the following
six free parameters as inputs,

mH; mA; mH� ; sβ−α; tan β; M2: ð30Þ
As we discussed in the previous subsection, we can

constrain these parameters by taking into account bounds
from the perturbative unitarity, the triviality, the vacuum
stability and the S and T parameters. The 12 independent
eigenvalues ai0 of the s-wave amplitude matrix are given in
Refs. [68–72]. The sufficient condition for the vacuum
stability [73–76] at an arbitrary scale μ is given by

λ1ðμÞ ≥ 0; λ2ðμÞ ≥ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðμÞλ2ðμÞ

p
þ λ3ðμÞ þMIN½0; λ4ðμÞ � λ5ðμÞ� ≥ 0;

for ∀μ with mZ ≤ μ ≤ Λcutoff : ð31Þ
The beta functions for the five dimensionless couplings can
be found in Ref. [77]. In addition, the analytic expressions
for the new contributions ΔS and ΔT are given in
Refs. [78–82].
Apart from the discussion of the potential, let us consider

the Yukawa Lagrangian. Under the Z2 symmetry [55], the
general form of the Yukawa Lagrangian is given by

LY ¼ −YuQ̄Liσ2Φ�
uuR − YdQ̄LΦddR − YeL̄LΦeeR þ H:c:;

ð32Þ
where Φu;d;e are either Φ1 or Φ2. Then, we can extract the
trilinear interaction terms among the Higgs bosons and
weak bosons or fermions as

Ltrilinear¼ðsβ−αhþcβ−αHÞ
�
2m2

W

v
WþμW−

μ þ
m2

Z

v
ZμZμ

�

−
X

f¼u;d;e

mf

v
ðζhfff̄fhþζHfff̄fH−2iIfζff̄γ5fAÞ

−
ffiffiffi
2

p

v
½VudūðmdζdPR−muζuPLÞdHþ

þmeζeν̄PReHþþH:c:�; ð33Þ

where If represents the third component of the isospin of a
fermion f; i.e., If ¼ þ1=2 ð−1=2Þ for f ¼ uðd; eÞ, and
ζhff and ζHff are defined by

ζhff ¼ sβ−α þ ζfcβ−α; ζHff ¼ cβ−α − ζfsβ−α: ð34Þ
In the above expression, the ζf factor is either cot β or
− tan β depending on the fermion type and type of Yukawa
interactions as given in Table I. In Appendix B, we also
give scalar trilinear couplings.

III. GAUGE INVARIANT SCALAR BOSON
TWO-POINT FUNCTIONS

In the previous section, we gave the tree level formulas of
the Higgs boson couplings with weak bosons and fermions.
By focusing on the difference in various correlations of
the deviation in the hVV and hff̄ couplings from the SM
prediction, we can discriminate HSM and the THDM with
four types of Yukawa interactions as it has been clearly
shown in Ref. [2]. Currently, the Higgs boson couplings,
e.g., hZZ, hWW, hγγ and hff̄ (f ¼ t, b, τ) are measured to
be typically order of 10% level or even worse particularly
for the Yukawa couplings at the LHC Run-I experiment [1].
However, the accuracy of the Higgs boson coupling
measurements is expected to be significantly improved
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at future collider experiments such as the HL-LHC [3,4]
and future eþe− colliders [5,6]. Therefore, to compare such
precise measurements, we need to calculate the Higgs
boson coupling at loop levels.
In order to obtain finite predictions of one-loop corrected

observables, renormalization of the Lagrangian parameters
has to be done. Among various renormalization schemes,
the on-shell scheme [16–18] provides a clear definition of
the renormalized parameters; namely, renormalized masses
do not receive any corrections at their on shell. By this
requirement, we can determine counterterms of the
Lagrangian parameters which cancel the ultraviolet (UV)
divergence appearing from one-loop diagrams. Although
the on-shell scheme has the aforementioned nice feature, it
has been known that gauge dependence appears in the
renormalization of mixing parameters between scalar
bosons as mentioned in the introduction.
In this section, we discuss the cancellation of the gauge

dependence in scalar boson two-point functions by using
the pinch technique [43–48] in the three models, i.e., the
SM, the HSM and the THDM. We adopt the general Rξ

gauge to the following calculation in order to explicitly
show how the gauge dependence is canceled. In the Rξ

gauge, a propagator of a gauge boson Vμ (V ¼ W, Z, γ) is
expressed in terms of the gauge parameter ξV as

Δμν
V ¼ 1

p2 −m2
V

�
gμν − ð1 − ξVÞ

pμpν

p2 − ξVm2
V

�
: ð35Þ

We note that for V ¼ WðZÞ, ξWm2
W (ξZm2

Z) corresponds to
the squared mass of the associated NG boson G� (G0) and
the Faddeev-Popov ghost field c� ðcZÞ. In order to simply
express the difference between an amplitude calculated in
the Rξ gauge and that in the ’t Hooft-Feynman gauge, i.e.,
ξW ¼ ξZ ¼ ξγ ¼ 1, we introduce the following symbol,

ΔξM≡ X
V¼W;Z;γ

ΔξVMV

with ΔξVMV ≡MV −MV jξV¼1; ð36Þ
whereMV denotes an amplitude with a dependence on ξV .
In the following, diagrams providing a ξVξV 0 (V ≠ V 0)
dependence do not appear, so that we can separate the
amplitude in the way shown in Eq. (36). Furthermore, we
introduce the following shorthand notations of the
Passarino-Veltman functions1 [83],

C0ðp2;A; BÞ≡ 1

m2
A −m2

B
½B0ðp2;A; AÞ − B0ðp2;B;BÞ�;

ð37Þ

C0ðp2;A; B;CÞ≡ 1

m2
A −m2

B
½B0ðp2;A;CÞ − B0ðp2;B;CÞ�;

ð38Þ

where B0ðp2; X; YÞ ¼ B0ðp2; mX;mYÞ with mX and mY
being masses of X and Y, respectively.

A. SM

As a first example, we review the cancellation of the
gauge dependence of the Higgs boson two-point function
in the SM according to Ref. [84]. The Feynman diagrams
for the Higgs boson two-point functions providing the
gauge dependence are shown in Fig. 1, where hi;j ¼ h in
the SM. By summing all these diagrams, we obtain

ΔξΠhhðq2Þ

¼ g2

64π2
ð1 − ξWÞðq2 −m2

hÞ
× ½ðq2 þm2

hÞC0ðq2;W;G�Þ − 2B0ð0;W;G�Þ�

þ g2Z
128π2

ð1 − ξZÞðq2 −m2
hÞ½ðq2 þm2

hÞC0ðq2;Z;G0Þ
− 2B0ð0;Z;G0Þ�; ð39Þ

where gZ ≡ g= cos θW with θW being the weak mixing
angle and qμ is the four momentum of the Higgs boson.
We see that the ξV dependence appears in front of the factor
of ðq2 −m2

hÞ, which manifestly shows satisfaction of the
Nielsen identity [42]. Therefore, the gauge dependence in
the renormalization of the Higgs boson mass vanishes in
the on-shell scheme. We however explicitly show how this
dependence can be canceled by the pinch technique, by
which we can easily extend this result to the case for the
nonminimal Higgs sectors.
In order to show the cancellation of the gauge depend-

ence, we consider the uū → uū scattering process, where u
ðūÞ are an (anti) up-type quark, as a toy process. We note
that the cancellation does not depend on the choice of the
external fermions. In the uū → uū process, the contribution
from the Higgs boson self-energy is calculated from
Eq. (39) by

ΔξMhh

¼ g2

64π2
1 − ξW
q2 −m2

h

½ðq2 þm2
hÞC0ðq2;W;G�Þ

− 2B0ð0;W;G�Þ�
þ ½ðg;mW; ξW ;W;G�Þ → ðgZ=2; mZ; ξZ;Z;G0Þ�:

ð40Þ

Here, we define the reduced amplitude M as

1These functions given in Eqs. (37) and (38) are also
expressed in terms of the usual C0 function as C0ðp2;A; BÞ ¼
C0ð0; p2; p2;mA;mB;mAÞ þ C0ðp2; 0; p2;mB;mA;mBÞ and
C0ðp2;A; B; CÞ ¼ C0ð0; p2; p2;mA;mB;mCÞ.
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M ¼ M
�
mu

v

�
2

ðūuÞ × ðūuÞ: ð41Þ

As shown in Fig. 2 (hi ¼ h), there are not only the
contribution from the self-energy diagram but also vertex
corrections, box diagrams and wave function renormaliza-
tions. The important thing is that we can extract the “self-
energy-like” contribution from these diagrams by “pinching”

the internal fermion propagator. This procedure can be done
by using the loop momentum k which comes from the gauge
boson propagator and/or the scalar-scalar-gauge-type vertex
(after contracting with the Dirac γμ matrix). Such a term
extracted from vertex correction diagrams, box diagrams and
thewave function renormalization is the so-called pinch term.
From the vertex correction diagrams, we can extract the

pinch term for the ξW part as

ΔξW ðMW−1 þMW−2Þ →
g2

16π2
1

q2 −m2
h

�
−
�
1þ q2

2m2
W

�
B0ðq2;W;WÞ

þ
�
1 − ξW þ q2

m2
W

�
B0ðq2;W;G�Þ þ

�
ξW −

q2

2m2
W

�
B0ðq2;G�; G�Þ

�
; ð42Þ

ΔξW ðMW−3 þMW−4Þ →
g2

32π2
1

q2 −m2
h

�
B0ðq2;W;WÞ −

�
1 − ξW þ q2

m2
W

�
B0ðq2;W;G�Þ

−
�
ξW −

q2

m2
W

�
B0ðq2;G�; G�Þ þ ð1 − ξWÞB0ð0;W;G�Þ

�
; ð43Þ

ΔξW ðMW−5 þMW−6Þ → ΔξW ðMW−3 þMW−4Þ; ð44Þ

where → denotes the extraction of the pinched part. The total contribution from the vertex correction is expressed by

ΔξW

X
i¼1;6

MW−i →
g2

16π2
1 − ξW
q2 −m2

h

�
B0ð0;W;G�Þ − q2

2
C0ðq2;W;G�Þ

�
: ð45Þ

The corresponding contribution to ξZ is obtained from the diagrams ðZ − 1Þ–ðZ − 6Þ, and its expression is obtained by
replacing ðg;mW; ξW ;W;G�Þ with ðgZ=2; mZ; ξZ;Z;G0Þ in Eq. (45).
The box diagrams give the following pinch terms:

ΔξWMW−7 →
1

64π2
g2

m2
W
½B0ðq2;W;WÞ − 2B0ðq2;W;G�Þ þ B0ðq2;G�; G�Þ�; ð46Þ

ΔξW ðMW−8 þMW−9Þ →
1

32π2
g2

m2
W
½B0ðq2;W;G�Þ − B0ðq2;G�; G�Þ�: ð47Þ

Thus, the total contribution from the box diagrams is expressed by

FIG. 1. Gauge dependent Feynman diagrams for the two-point function of CP-even Higgs bosons hi and hj. Here, we only show the
diagrams depending on ξW . Those depending on ξZ are obtained by replacing ðW;G�; c�Þ with ðZ;G0; cZÞ.
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ΔξW

X
i¼7;9

MW−i →
g2

64π2
ð1 − ξWÞC0ðq2;W;G�Þ: ð48Þ

The corresponding contribution to ξZ is obtained from
the diagrams ðZ–7Þ–ðZ–11Þ, and its expression is given by
replacing ðg;mW; ξW ;W;G�Þ with ðgZ=2; mZ; ξZ;Z;G0Þ
in Eq. (48).
Finally, the contribution from the wave function

renormalization (W − 10) is calculated from the fermion
two-point function Πff. The pinched part of ΔξΠff,
which comes from Wμ, Zμ and γμ loop diagrams, is
expressed by

ΔξΠffðpÞ → −
g2

32π2
ð1 − ξWÞpPLB0ð0;W;G�Þ

−
g2Z
16π2

ð1 − ξZÞðvf þ afγ5Þðp −mfÞ
× ðvf − afγ5ÞB0ð0;Z;G0Þ

−
e2

16π2
Q2

fð1 − ξγÞðp −mfÞB0ð0; γ; γÞ;
ð49Þ

where vf ¼ ðIf − 2 sin2 θWQfÞ=2 and af ¼ If=2 with Qf

being the electric charge of a fermion f. The wave function
renormalization factor δZf for a fermion f is then obtained by

FIG. 2. Feynman diagrams giving pinch terms for two-point functions ofCP-even Higgs bosons in the uū → uū scattering, where hi is
a CP-even Higgs boson. The diagrams (W–10) and (Z–14) denote the contribution to the ξW and ξZ dependence from the wave function
renormalization of the external quark, respectively.
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δZf ¼ −
d
dp

ΠffðpÞ: ð50Þ

Thus, the contribution from (W − 10) is calculated as

ΔξWMW−10 ¼ 4 ×

�
−

1

q2 −m2
h

�
×

�
ΔξW

δZf

2

�

→ −
g2

32π2
1 − ξW
q2 −m2

h

B0ð0;W;G�Þ: ð51Þ

The corresponding contribution to ξZ is obtained from
the diagrams ðZ − 12Þ–ðZ − 14Þ, and again its expression
is given by replacing ðg;mW; ξW ;W;G�Þ with
ðgZ=2; mZ; ξZ;Z;G0Þ in Eq. (51). We note that the vf part
in Eq. (49) is canceled by the diagrams (Z − 12) and
(Z − 13). In addition, the ξγ dependence in Eq. (49) is also
canceled by the diagrams (Z − 12) and (Z − 13) with the
replacement of Z → γ. By adding Eqs. (45) and (51), we
obtain the following expression,

ΔξW

�X
i¼1;6

MW−iþMW−10

�
→

g2

32π2
1−ξW
q2−m2

h

XVðq2;W;0Þ;

ð52Þ

where the function XV is defined as

XVðq2;V;ϕÞ≡ B0ð0;V;GVÞ
− ðq2 −m2

ϕÞC0ðq2;V;GV;ϕÞ;
with C0ðq2;W;GV; 0Þ≡ C0ðq2;W;GVÞ: ð53Þ

In Eq. (53), V and GV are a gauge boson and its associated
NG boson, respectively.

Consequently, the total contributions to the pinch term
(ΔξMPT) are given by

ΔξMPT ¼
g2

32π2
1− ξW
q2 −m2

h

×

�
B0ð0;W;G�Þ− q2 þm2

h

2
C0ðq2;W;G�Þ

�
þ ½ðg;mW;ξW ;W;G�Þ→ ðgZ=2;mZ; ξZ;Z;G0Þ�;

ð54Þ

which exactly cancels Eq. (40), i.e.,ΔξðMhh þMPTÞ ¼ 0.
This means that the Higgs boson two-point function
calculated with a fixed gauge parameter becomes gauge
independent by adding the pinch term calculated with the
same fixed gauge parameter. In Appendix A, we present the
expression of the pinch term calculated in the ’t Hooft-
Feynman gauge, in which the diagrams ðW − 3Þ–ðW − 6Þ
and ðZ − 3Þ–ðZ − 6Þ give the nonzero contribution.

B. HSM

We discuss the cancellation of the gauge dependence in
two-point functions for CP-even Higgs bosons in the HSM.
We here discuss only the ξW dependence, since the ξZ
dependence is obtained by the simple replacement of
ðg;mW; ξW ;W;G�Þ with ðgZ=2; mZ; ξZ;Z;G0Þ as we have
seen it in the previous subsection. Similar to the SM, the
diagrams which give the gauge dependence in the two-
point functions of the CP-even Higgs bosons are shown in
Fig. 1, where hi and hj can be either h or H. The gauge
dependent part of the self-energy-type diagrams in the
uū → uū process ðΔξWMhihjÞ is calculated by

ΔξWMhihj →
g2

64π2
ð1 − ξWÞζ2i ζ2j

ðq2 −m2
hi
Þðq2 −m2

hj
Þ

× ½ðq4 −m2
hi
m2

hj
ÞC0ðp2;W;G�Þ − ð2q2 −m2

hi
−m2

hj
ÞB0ð0;W;G�Þ�; ð55Þ

where i, j ¼ 1, 2 with

ðh1; ζ1Þ ¼ ðh; cαÞ and ðh2; ζ2Þ ¼ ðH; sαÞ: ð56Þ
The pinch term can be extracted from the diagram shown in Fig. 2, where hi ¼ h orH. Similar to the case in the SM, each

diagram gives the following pinch term:

ΔξW

�X
i¼1;6

MW−i þMW−10
�

→
g2

32π2
ð1 − ξWÞXVðq2;W; 0Þ

�
s2α

q2 −m2
H
þ c2α
q2 −m2

h

�
;

ΔξW

X
i¼7;9

MW−i →
g2

64π2
ð1 − ξWÞC0ðq2;W;G�Þ: ð57Þ

The total pinch term is then expressed by
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ΔξWMPT ¼ g2

32π2
ð1 − ξWÞ

�
c2α

q2 −m2
h

�
B0ð0;W;G�Þ − q2 þm2

h

2
C0ðq2;W;G�Þ

�

þ s2α
q2 −m2

H

�
B0ð0;W;G�Þ − q2 þm2

H

2
C0ðq2;W;G�Þ

�	
: ð58Þ

We can correctly share the above pinch term by splitting
the trigonometric functions as c2α ¼ c4α þ c2αs2α and
s2α ¼ s4α þ c2αs2α. Namely, the c4α, s4α and s2αc2α parts exactly
cancel ΔξWMhh, ΔξWMHH and ΔξW ðMHh þMhHÞ, re-
spectively. After adding the ΔξZ part, we can confirm

Δξ½Mhh þMHH þMHh þMhH þMPT� ¼ 0: ð59Þ

In Appendix A, we give the expression of the pinch term
for the two-point functions of h–h, H–H and H–h in the
’t Hooft-Feynman gauge.

C. THDM

We discuss the cancellation of the gauge dependence
not only in the two-point function for the CP-even Higgs
bosons, but also that for the CP-odd and the singly charged
scalar bosons. For the CP-odd (charged) scalar sector, we
show the cancellation in the two-point function of A–A and
A–G0 (H�–H� and H�–G�). The cancellation for the NG

boson two-point functions G0–G0 and G�–G� has been
discussed in Ref. [43], so that we do not deal with these
two-point functions in this paper.

1. CP-even sector

The contribution to the uū → uū process from the self-
energy-type diagram is calculated in a similar way to the
case in the HSM. However, we need to add new contri-
butions shown in Fig. 3 in addition to the diagrams shown
in Fig. 1 with hi and hj being h or H, in which the physical
charged Higgs boson H� or the CP-odd Higgs boson A is
running in the loop. Again, we only show the ξW dependent
part since the ξZ dependent part is obtained by the
replacement of the ðg;mW; ξW ;W;G�; H�Þ part with
ðgZ=2; mZ; ξZ;Z;G0; AÞ. Taking into account these new
contributions, the ξW dependence of the contribution to the
uū → uū process from the self-energy-type diagrams is
calculated as follows:

ΔξWMhh ¼
g2

64π2
ζ2huu

q2 −m2
h

ð1 − ξWÞfs2β−αðq2 þm2
hÞC0ðq2;W;G�Þ − 2B0ð0;W;G�Þ

þ 2c2β−αðq2 þm2
h − 2m2

H�ÞC0ðq2;W;G�; H�Þg; ð60Þ

ΔξWMHH ¼ g2

64π2
ζ2Huu

q2 −m2
H
ð1 − ξWÞfc2β−αðq2 þm2

HÞC0ðq2;W;G�Þ − 2B0ð0;W;G�Þ

þ 2s2β−αðq2 þm2
H − 2m2

H�ÞC0ðq2;W;G�; H�Þg; ð61Þ

ΔξWMHh ¼
g2

64π2
ζhuuζHuusβ−αcβ−α

ðq2 −m2
hÞðq2 −m2

HÞ
ð1 − ξWÞfðq4 −m2

hm
2
HÞC0ðq2;W;G�Þ

− 2½ðq2 −m2
H�Þ2 − ðm2

H� −m2
hÞðm2

H� −m2
HÞ�C0ðq2;H�;W;G�Þg; ð62Þ

whereΔξWMhH ¼ ΔξWMHh, and ζhuu and ζHuu are given in Eq. (34). We note that Eqs. (60)–(62) are consistent with those
presented in the independent work given in Ref. [85].
The pinch terms can be extracted from the diagram shown in Fig. 2 (hi ¼ h orH) with the additional diagrams which are

obtained by the replacement G� → H�. Thus, each diagram involving G�, i.e., ðW − 3Þ–ðW − 6Þ and ðW − 8Þ–ðW − 9Þ
should be understood as the sum of G� and H� loop contributions. We then obtain the following pinch-term contributions:

FIG. 3. Additional diagrams giving the ξW and ξZ dependence in the two-point function for the CP-even Higgs bosons hi and hj
(¼ h or H) in the THDM.
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ΔξW

X
i¼1;6

MW−i →
g2

16π2
ð1 − ξWÞ

�
B0ð0;W;G�Þ − q2

2
C0ðq2;W;G�Þ

��
sβ−αζhuu
q2 −m2

h

þ cβ−αζHuu

q2 −m2
H

�

þ g2ζu
16π2

ð1 − ξWÞXVðq2;W;H�Þ
�
cβ−αζhuu
q2 −m2

h

−
sβ−αζHuu

q2 −m2
H

�
; ð63Þ

ΔξW

X
i¼7;9

MW−i →
g2

64π2
ð1 − ξWÞC0ðq2;W;G�Þ þ g2ζ2u

32π2
ð1 − ξWÞC0ðq2;W;G�; H�Þ; ð64Þ

ΔξWMW−10 → −
g2

32π2
ð1 − ξWÞ

�
ζ2huu

q2 −m2
h

þ ζ2Huu

q2 −m2
H

�
B0ð0;W;G�Þ; ð65Þ

where the second term of the right-hand side (rhs) in Eqs. (63) and (64) is the contribution from the charged Higgs boson
loop. The total pinch term is then expressed by

ΔξWMPT ¼ g2

64π2
1 − ξW
q2 −m2

h

½2ζ2huuB0ð0;W;G�Þ − ðq2 þm2
hÞsβ−αζhuuC0ðq2;W;G�Þ

− 2ðq2 þm2
h − 2m2

H�Þcβ−αζuζhuuC0ðq2;W;G�; H�Þ�

þ g2

64π2
1 − ξW
q2 −m2

H
½2ζ2HuuB0ð0;W;G�Þ − ðq2 þm2

HÞcβ−αζHuuC0ðq2;W;G�Þ

þ 2ðq2 þm2
H − 2m2

H�Þsβ−αζuζHuuC0ðq2;W;G�; H�Þ�: ð66Þ

The following sum rule is useful to obtain the above
expression:

sβ−αζhuu þ cβ−αζHuu ¼ 1; cβ−αζhuu − sβ−αζHuu ¼ ζu:

ð67Þ
In Eq. (66), we can correctly split this expression into the
pinch term for h–h, H–H and H–h in the following way.
First, we rewrite sβ−αζhuu ¼ s2β−αζ

2
huu þ sβ−αcβ−αζhuuζHuu

and cβ−αζuζhuu ¼ c2β−αζ
2
huu − sβ−αcβ−αζhuuζHuu in the

first term of the rhs of Eq. (66). Second, we rewrite
cβ−αζHuu¼c2β−αζ

2
Huuþsβ−αcβ−αζhuuζHuu and sβ−αζuζHuu¼

−ζ2Huus
2
β−αþζhuuζHuusβ−αcβ−α in the second term of the rhs

of Eq. (66). After that, Eq. (66) is written by the terms
proportional to ζ2huu, ζ2Huu and ζhuuζHuu, and each of
them respectively gives the pinch term for the two-point

functions of h–h, H–H and H–h. By adding the ΔξZ part,
we can confirm the cancellation of the gauge dependence,

ΔξðMhh þMHH þMHh þMhH þMPTÞ ¼ 0: ð68Þ

2. CP-odd sector

Next, we see the cancellation of the gauge dependence
in the two-point functions for the CP-odd scalar bosons
A–A and A–G0, where the relevant Feynman diagrams are
shown in Figs. 4 and 5, respectively. We note that in the
A–G0 mixing, the ξW dependence appears from tadpole
diagrams and a seagull diagram with theG� loop, but these
contributions are exactly canceled with each other. As a
result, only the ξZ dependence remains. The contribution
from the self-energy-type diagrams to the uū → uū scatter-
ing is expressed by

ΔξMAA ¼ g2

32π2
1 − ξW
q2 −m2

A
ζ2u½ðq2 þm2

A − 2m2
H�ÞC0ðq2;W;G�; H�Þ − B0ð0;W;G�Þ�

þ g2Z
64π2

1 − ξZ
q2 −m2

A
ζ2u½c2β−αðq2 þm2

A − 2m2
hÞC0ðq2;Z;G0; hÞ

þ s2β−αðq2 þm2
A − 2m2

HÞC0ðq2;Z;G0; HÞ − B0ð0;G0; ZÞ�; ð69Þ

ΔξMAG0 ¼ g2Z
64π2

ð1 − ξZÞsβ−αcβ−αζu
ðq2 −m2

G0Þðq2 −m2
AÞ

f½q2ðq2 − 2m2
hÞ þm2

hm
2
A�C0ðq2;Z;G0; hÞ

− ½q2ðq2 − 2m2
HÞ þm2

Hm
2
A�C0ðq2;Z;G0; HÞg; ð70Þ
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where m2
G0 ¼ ξZm2

Z. In this subsection, the reduced amplitude M is defined by

M ¼ −M
�
mu

v

�
2

ðūγ5uÞ × ðūγ5uÞ: ð71Þ

The pinch terms are extracted from the diagrams shown in Fig. 6. We obtain

Δξ

X
i¼1;4

ðMW−i þMZ−iÞ →
g2

16π2
1 − ξW
q2 −m2

A
ζ2uXVðq2;W;H�Þ

þ g2Z
32π2

1 − ξZ
q2 −m2

G0

½sβ−αζhuuXVðq2;Z; hÞ þ cβ−αζHuuXVðq2;Z;HÞ�

þ g2Z
32π2

1 − ξZ
q2 −m2

A
ζu½cβ−αζhuuXVðq2;Z; hÞ − sβ−αζHuuXVðq2;Z;HÞ�; ð72Þ

Δξ

�X
i¼5;6

MW−i þ
X
i¼5;8

MZ−i

�
→

g2

32π2
ð1 − ξWÞζ2uC0ðq2;W;G�; H�Þ

þ g2Z
64π2

ð1 − ξZÞ½ζ2huuC0ðq2;Z;G0; hÞ þ ζ2HuuC0ðq2;Z;G0; HÞ�; ð73Þ

Δξ

�
MW−7 þ

X
i¼9;11

MZ−i

�
→ −

1

32π2
ζ2u

q2 −m2
A

�
g2ð1 − ξWÞB0ð0;W;G�Þ þ g2Z

2
ð1 − ξZÞB0ð0;Z;G0Þ

�
: ð74Þ

FIG. 5. Gauge dependent part of the Feynman diagrams for the A–G0 mixing.

FIG. 4. Gauge dependent part of the Feynman diagrams for the two-point function of A.
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The total pinch term ΔξMPT can be classified by the power of the ζu factor, i.e., ζ2u, ζ1u and ζ0u, where the terms with ζ2u and

ζ1u denoting ΔξM
AA
PT and ΔξM

AG0

PT , respectively, give the pinch terms for A–A and A–G0. These are expressed as

ΔξM
AA
PT ¼ −ΔξMAA; ð75Þ

ΔξM
AG0

PT ¼ g2Z
32π2

ð1 − ξZÞsβ−αcβ−αζu
�
C0ðq2;Z;G0; hÞ − C0ðq2;Z;G0; HÞ

þ
�

1

q2 −m2
G0

þ 1

q2 −m2
A

�
½XVðq2;Z; hÞ − XVðq2;Z;HÞ�

	
: ð76Þ

ForΔξM
AG0

PT , this pinch term is used not only to cancelΔξMAG0 but also the gauge dependence of the A–Zmixing. In order

to correctly share the pinch term of ΔξM
AG0

PT , we use the following identity:

ΛG0 ¼ q2ΛG0

q2 −m2
G0

− imZΛ
μ
ZðΔZÞμνqν; ð77Þ

where ΛG0 and Λμ
Z are the ūuG0 and ūuZμ vertices, respectively, expressed as

ΛG0 ¼ −
mu

v
ūγ5u; Λμ

Z ¼ igZūγμðvu − auγ5Þu: ð78Þ

In Eq. (77), the first term of the rhs can be used for the pinch term of the A–G0 mixing. Using this identity, we can construct
the correct pinch term for the A–G0 mixing from Eq. (76) as�

1

q2 −m2
G0

þ 1

q2 −m2
A

�
ΛG0 ¼

�
1

q2 −m2
G0

q2 −m2
A

q2 −m2
A
þ 1

q2 −m2
A

q2

q2 −m2
G0

�
ΛG0 þ � � � ¼ 2q2 −m2

A

ðq2 −m2
G0Þðq2 −m2

AÞ
ΛG0 þ � � � ;

ð79Þ

FIG. 6. Feynman diagrams giving pinch terms for the two-point functions of A–A and A–G0 in the uū → uū scattering. The diagrams
(W�7) and (Z�11) denote the contribution to the ξW and ξZ dependence from the wave function renormalization of the external quark,
respectively.
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where the � � � part comes from the second term inEq. (77).We
can confirm that after replacing the factor ½ðq2 −m2

G0Þ−1 þ
ðq2 −m2

AÞ−1� with ð2q2 −m2
AÞ½ðq2 −m2

G0Þðq2 −m2
AÞ�−1 in

Eq. (76), we obtain ΔξM
AG0

PT ¼ −ΔξMAG0 .

3. Charged sector

The Feynman diagrams which provide gauge depend-
ence in the two-point functions H�–H� and H�–G� are

shown in Figs. 7 and 8, respectively. We note that for the
H�–G� mixing, the ξZ dependence appears from tadpole
diagrams and a seagull diagram with the G0 loop, but these
contributions are exactly canceled with each other. As a
result, only the ξW dependence remains.
For the charged Higgs sector, we consider the ud̄ → ud̄

process instead of uū → uū process. The self-energy-type
diagram contributions to the ud̄ → ud̄ process are calcu-
lated as

ΔξMHþH− ¼ g2

64π2
1 − ξW

q2 −m2
H�

½ðq2 þm2
H� − 2m2

AÞC0ðq2;W;G�; AÞ þ c2β−αðq2 þm2
H� − 2m2

hÞC0ðq2;W;G�; hÞ

þ s2β−αðq2 þm2
H� − 2m2

HÞC0ðq2;W;G�; HÞ − 2B0ð0;W;G�Þ� − g2Zc
2
2W

64π2
1 − ξZ

q2 −m2
H�

XVðq2;Z;H�Þ

−
e2

16π2
1 − ξγ

q2 −m2
H�

½B0ð0; γ; γÞ − ðq2 −m2
H�ÞC0ð0; q2; q2; γ; γ; H�Þ�; ð80Þ

ΔξMHþG− ¼ g2

64π2
1 − ξW

ðq2 −m2
H�Þðq2 −m2

G�Þ sβ−αcβ−α½ðq
4 − ð2q2 −m2

H�Þm2
hÞC0ðq2;W;G�; hÞ

þ ðq4 − ð2q2 −m2
H�Þm2

HÞC0ðq2;W;G�; HÞ�; ð81Þ

FIG. 7. Gauge dependent part of the Feynman diagrams for the two-point function of H�.

FIG. 8. Gauge dependent part of the Feynman diagrams for the H�–G� mixing.
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where m2
G� ¼ ξWm2

W . In this subsection, the reduced amplitude M is defined by

M ¼ M
2m2

u

v2
ðd̄PRuÞ × ðūPLdÞ; ð82Þ

where we neglect the down quark mass to make expressions simpler, and it does not change expressions for pinch terms
given below.
The pinch terms are extracted from diagrams shown in Fig. 9 as follows:

Δξ

X
i¼1;4

ðMW−i þMZγ−iÞ

→
g2

32π2
1 − ξW

q2 −m2
H�

ζu½cβ−αζhuuXVðq2;W; hÞ − sβ−αζHuuXVðq2;W;HÞ þ ζuXVðq2;W;AÞ�

þ g2

32π2
1 − ξW

q2 −m2
G�

½sβ−αζhuuXVðq2;W; hÞ þ cβ−αζHuuXVðq2;W;HÞ� þ g2Zc
2
2W

32π2
1 − ξZ

q2 −m2
H�

ζ2uXVðq2;Z;H�Þ

þ e2

8π2
1 − ξγ

q2 −m2
H�

ζ2u½B0ðq2; γ; γÞ − ðq2 −m2
H�ÞC0ð0; q2; q2; γ; γ; H�Þ�; ð83Þ

FIG. 9. Feynman diagrams giving pinch terms for charged scalar two-point functions in the ud̄ → ud̄ scattering. The diagrams (W�4)
and (Zγ�11) denote the contribution to the ξW and ξZ;γ dependence from the wave function renormalization of the external quark,
respectively.
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Δξ

X
i¼5;8

ðMW−i þMZγ−iÞ

→
g2

64π2
ð1 − ξWÞ½ζ2huuC0ðq2;W;G�; hÞ þ ζ2HuuC0ðq2;W;G�; HÞ þ ζ2uC0ðq2;W;G�; AÞ�

þ g2Zc
2
2W

64π2
ð1 − ξZÞζ2uC0ðq2;Z;G0; H�Þ þ e2

16π2
ð1 − ξγÞζ2uC0ð0; q2; q2; γ; γ; H�Þ; ð84Þ

Δξ

�
MW−9 þ

X
i¼9;11

MZγ−i

�

→ −
1

32π2
ζ2u

q2 −m2
H�

�
g2ð1 − ξWÞB0ð0;W;G�Þ þ g2Zc

2
2W

2
ð1 − ξZÞB0ð0;Z;G0Þ þ 2e2ð1 − ξγÞB0ð0; γ; γÞ

�
: ð85Þ

Similar to the case for the CP-odd sector, we can separate the total pinch-term contribution ΔξMPT into the three parts

by the power of ζu factor. The term proportional to ζ2u (ΔξM
HþH−

PT ) and ζ1u (ΔξM
HþG−

PT ) can be used as the pinch terms for
H�–H� and H�–G�, respectively. These are expressed as

ΔξM
PT
HþH− ¼ −ΔξMHþH− ; ð86Þ

ΔξM
PT
HþG− ¼ g2

32π2
ð1 − ξWÞsβ−αcβ−αζu

�
½C0ðq2;W;G�; hÞ − C0ðq2;W;G�; HÞ�

þ
�

1

q2 −m2
H�

þ 1

q2 −m2
G�

�
½XVðq2;W; hÞ − XVðq2;W;HÞ�

	
: ð87Þ

As in the A–G0 mixing, we need to correctly share the
pinch term for theG�–H� mixing and theW�–H� mixing.
Similar to Eq. (77), we have the following identity:

ΛGþ ¼ q2ΛGþ

q2 −m2
G�

−mWΛ
μ
WðΔWÞμνqν; ð88Þ

where ΛGþ and Λμ
W are the ūdGþ and ūdWþμ vertex,

respectively. These are given by

ΛGþ ¼ i

ffiffiffi
2

p

v
ūmuPLd; Λμ

W ¼ i
gffiffiffi
2

p ūγμPLd: ð89Þ

In Eq. (88), the first term of the rhs can be used for the
pinch term of the G�–H� mixing. From this identity, we
can construct the correct pinch term for the G�–H� mixing
by repeating the similar procedure done in Eq. (79).

IV. RENORMALIZED HIGGS BOSON COUPLINGS
WITH GAUGE INVARIANCE

We compute the renormalized Higgs boson couplings at
the one-loop level based on the pinched tadpole scheme

[8,52], in which the gauge dependence in the scalar boson
mixing is successfully removed by using the pinch tech-
nique as discussed in the previous section. We then clarify
the difference in the renormalized Higgs boson couplings
calculated in the pinched tadpole scheme and those
calculated in the ordinal on-shell scheme with the gauge
dependence. For the latter, we adopt the scheme defined in
Ref. [26], and we call this the KOSY scheme. In this
section, all the calculations are done in the ’t Hooft-
Feynman gauge.
In the pinched tadpole scheme, nonrenormalized two-

point functions for particles i and j which can be a scalar
boson, a gauge boson or a fermion are defined as follows:

Πijðp2Þ ¼ Π1PI
ij ðp2Þ þ ΠTad

ij þ ΠPT
ij ðp2Þ; ð90Þ

whereΠ1PI
ij denotes the contribution from conventional one-

particle irreducible (1PI) diagrams (the first diagram of the
rhs in Fig. 10), ΠTad

ij represents the contribution from the
tadpole graph (the second diagram of the rhs in Fig. 10),
and ΠPT

ij shows the pinch-term contribution (the third

FIG. 10. Nonrenormalized two-point functions in the pinched tadpole scheme.
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diagram of the rhs in Fig. 10). In the ’t Hooft-Feynman
gauge, all the analytic expressions of the pinch terms
for scalar boson two-point functions are presented in
Appendix A in the SM, the HSM and the THDM.
Thanks to adding the pinch terms, the two-point function
defined in Eq. (90) is gauge invariant. We note that tadpole
diagrams should be added not only to two-point functions
but also to three-point functions such as hVV and hhh,
so that we further introduce ΓTad

ijk which denote tadpole
inserted diagrams to the tree level vertices Γijk. We also
note that the wave function renormalization factors are not
changed from the KOSY scheme, because ΠTad

ij do not
depend on the external momentum, and the pinch-term
corrections are not applied to the wave function renorm-
alization factors.
At one-loop level, the renormalized ϕVμVν (V ¼ W, Z)

and ϕff̄0 vertices with ϕ being a scalar field are expressed
in terms of the following form factors:

Γ̂μν
ϕVVðp2

1; p
2
2; q

2Þ ¼ gμνΓ̂1
ϕVV þ pμ

1p
ν
2

m2
V

Γ̂2
ϕVV

þ iϵμνρσ
p1ρp2σ

m2
V

Γ̂3
ϕVV; ð91Þ

Γ̂ϕff0 ðp2
1; p

2
2; q

2Þ ¼ Γ̂S
ϕff0 þ γ5Γ̂P

ϕff0 þ p1Γ̂
V1

ϕff0 þ p2Γ̂
V2

ϕff0

þ p1γ5Γ̂
A1

ϕff0 þ p2γ5Γ̂
A2

ϕff0

þ p1p2Γ̂T
ϕff0 þ p1p2γ5Γ̂PT

ϕff0 ; ð92Þ

where pμ
1 and pμ

2 (qμ) are incoming momenta for gauge
bosons or fermions (the Higgs boson). Each of the above
form factors is also the function of ðp2

1; p
2
2; q

2Þ, but we do
not explicitly denote it here. In the THDM, Higgs-Higgs-
gauge-type vertices also appear, i.e., hH�W∓

μ and hAZμ in
addition to the above vertices. Their renormalized vertices
can be expressed by

Γ̂μ
ϕ1ϕ2V

ðp2
1; p

2
2; q

2Þ ¼ −iðp1 − p2ÞμΓ̂ϕ1ϕ2V; ð93Þ

where pμ
1 and p

μ
2 are the incoming momenta for ϕ1 and ϕ2,

respectively, and qμ is that for a gauge boson Vμ. In
Appendixes B and C, we present all the relevant renor-
malized Higgs boson couplings and counterterms calcu-
lated in the pinched tadpole scheme, respectively.
For later convenience, we introduce the following

symbol:

ΔSC½� � �� ¼ ½� � ��TP − ½� � ��KOSY; ð94Þ

where the first (second) term of the rhs denotes the quantity
calculated in the pinched tadpole (KOSY) scheme.

A. SM

We calculate the difference in the renormalized gauge
(hVV), Yukawa (hff̄) and Higgs-self (hhh) couplings
calculated in the pinched tadpole scheme and those in the
KOSY scheme in the SM. As it is shown below, there is no
difference between the two schemes in the three couplings,

ΔSCΓ̂1
hVV ¼ 2m2

V

v
ΔSC

�
δm2

V

m2
V
−
δv
v

�
þ ΓTad

hVV

¼ ΠTad
VV

v
þ ΓTad

hVV ¼ 0; ð95Þ

ΔSCΓ̂S
hff ¼ −

mf

v
ΔSC

�
δmf

mf
−
δv
v

�

¼ −
mf

v

�ΠTad
ff

mf
−
ΠTad

WW

2m2
W

�
¼ 0; ð96Þ

ΔSCΓ̂hhh ¼ −
3m2

h

v
ΔSC

�
δm2

h

m2
h

−
δv
v

�
þ ΓTad

hhh

¼ −
3m2

h

v

�
ΠTad

hh

m2
h

þ T1PI
h

vm2
h

−
ΠTad

WW

2m2
W

�
þ ΓTad

hhh ¼ 0;

ð97Þ

where T1PI
h is the 1PI tadpole diagram for h. In the following,

we use the generic symbol T1PI
hi

to express the 1PI tadpole
diagram for a CP-even Higgs boson hi. We note that there
are the following relations among T1PI

h and ΠTad
ij :

ΠTad
VV

2m2
V
¼ −

ΠTad
hh

3m2
h

¼ ΠTad
ff

mf
¼ −

T1PI
h

vm2
h

: ð98Þ

Thus, in the SM the tadpole contribution in a two-point
function ΠTad

ij is canceled by that from the other two-point
function and/or the tadpole inserted contribution in the
three-point function ΓTad

ijk .

B. HSM

In the HSM, the difference in the renormalized hVV and
hff̄ coupling is calculated by

ΔSCΓ̂1
hVV ¼ 2m2

V

v
cαΔSC

�
δm2

V

m2
V
−
δv
v

�
þ ΓTad

hVV

¼ cα
ΠTad

VV

v
þ ΓTad

hVV ¼ 0; ð99Þ

ΔSCΓ̂S
hff ¼ −

mf

v
cαΔSC

�
δmf

mf
−
δv
v

�

¼ −
mf

v
cα

�ΠTad
ff

mf
−
ΠTad

VV

2m2
V

�
¼ 0: ð100Þ
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Similarly, we can show that there is no difference in the
HVV and Hff̄ couplings.
In contrast to the Higgs boson couplings with weak

bosons or fermions, we find nonzero differences in the
hhh and Hhh couplings as follows:

ΔSCΓ̂hhh ¼ 6ΔSCðδλhhh þ λHhhδαÞ þ ΓTad
hhh

¼ 4!λSs3α

�
cα
m2

H
T1PI
H −

sα
m2

h

T1PI
h

�
Fin

−
sαc2α
4v

½ΠPT
Hhðm2

hÞ þ ΠPT
Hhðm2

HÞ�; ð101Þ

ΔSCΓ̂Hhh ¼ ΔSC½2δλHhh þ ð4λHHh − 6λhhhÞδα� þ ΓTad
Hhh

¼ −4!λSs2αcα
�
cα
m2

H
T1PI
H −

sα
m2

h

T1PI
h

�
Fin

þ c3α − 5cα
8v

½ΠPT
Hhðm2

hÞ þ ΠPT
Hhðm2

HÞ�; ð102Þ

where ð� � �ÞFin shows the finite part of the quantity (� � �).
These differences vanish when we take the no mixing limit,
i.e., α → 0.

C. THDM

In the THDM, the difference in the renormalized hVV
coupling is calculated by

ΔSCΓ̂1
hVV ¼

2m2
V

v
ΔSC

�
sβ−α

�
δm2

V

m2
V
−
δv
v

�
þcβ−αδβ

�
þΓTad

hVV:

ð103Þ

Differently from the previous two models, the counterterm
δβ also contributes to the difference. We can calculate
ΔSCδβ as follows:

ΔSCδβ ¼ T1PI
H

vm2
H
sβ−α −

T1PI
h

vm2
h

cβ−α

−
1

2m2
A
½ΠPT

AGðm2
AÞ þ ΠPT

AGð0Þ�: ð104Þ

Using the above result, we obtain

ΔSCΓ̂1
hVV ¼ −

m2
V

m2
Av

cβ−α½ΠPT
AGðm2

AÞ þ ΠPT
AGð0Þ�: ð105Þ

Similar to the case in the SM and the HSM, the dependence
of T1PI

hi
is exactly canceled among the counterterms and

ΓTad
hVV , but the nonvanishing contribution comes from δβ.

This effect, however, vanishes when we take the alignment
limit sβ−α → 1. All the differences in the other gauge and
Yukawa couplings also come from ΔSCδβ as follows:

ΔSCΓ̂1
HVV ¼ þ m2

V

vm2
A
sβ−α½ΠPT

AGðm2
AÞ þ ΠPT

AGð0Þ�; ð106Þ

ΔSCΓ̂S
hff ¼ −

mf

2vm2
A
ζhffζf½ΠPT

AGðm2
AÞ þ ΠPT

AGð0Þ�; ð107Þ

ΔSCΓ̂S
Hff ¼ −

mf

2vm2
A
ζHffζf½ΠPT

AGðm2
AÞ þ ΠPT

AGð0Þ�; ð108Þ

ΔSCΓ̂P
Aff ¼ þi

Ifmf

vm2
A
ζ2f½ΠPT

AGðm2
AÞ þ ΠPT

AGð0Þ�; ð109Þ

ΔSCΓ̂R
HþūLdR

¼ −
mdffiffiffi
2

p
vm2

A

ζ2d½ΠPT
AGðm2

AÞ þ ΠPT
AGð0Þ�; ð110Þ

ΔSCΓ̂L
HþūRdL

¼ muffiffiffi
2

p
vm2

A

ζ2u½ΠPT
AGðm2

AÞ þ ΠPT
AGð0Þ�: ð111Þ

We note that in the Yukawa couplings for A and H�, we
extract the different form factor with respect to those for the
CP-even Higgs bosons, because of the difference in the tree
level coupling structure (see Appendix B).
For the hH�W∓

μ and hAZμ couplings, we have

ΔSCΓ̂hH�W∓ ¼ ΔSCΓ̂hAZ ¼ 0: ð112Þ

This simply follows ΔSC½δm2
V=ð2m2

VÞ − δv=v� ¼ 0.
Finally, the difference in the renormalized hhh and Hhh

vertices is calculated as

ΔSCΓ̂hhh ¼ −
12M2

v2
c2βcαþβc2β−α

s22β

×

�
T1PI
h

m2
h

cβ−α −
T1PI
H

m2
H
sβ−α

�
Fin

−
3cβ−αs2α
4vsβcβ

½ΠPT
hHðm2

hÞ þ ΠPT
hHðm2

HÞ�

−
3Fβ

m2
A
½ΠPT

AGðm2
AÞ þ ΠPT

AGð0Þ�; ð113Þ

ΔSCΓ̂Hhh ¼ −
4M2

v2
c2βcβ−α
s22β

ð3sαcα − sβcβÞ

×

�
T1PI
h

m2
h

cβ−α −
T1PI
H

m2
H
sβ−α

�
Fin

þ c3α−β − 5cαþβ

4vs2β
½ΠPT

Hhðm2
hÞ þ ΠPT

Hhðm2
HÞ�

−
Gβ

m2
A
½ΠPT

AGðm2
AÞ þ ΠPT

AGð0Þ�; ð114Þ

where
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Fβ ¼
cβ−α
2vs22β

½ð2þ 2c2αc2β − s2αs2βÞðm2
h −M2Þ − s22βM

2�;

ð115Þ

Gβ ¼
s2α
vs22β

ðcαc3β − sαs3βÞð2m2
h þm2

HÞ

þ 1

2vs22β
½s22βsβ−α − 6s2αðcαc3β − sαs3βÞ�M2: ð116Þ

In Fig. 11, we show the scheme difference in the
renormalized hZZ coupling as a function of sβ−α in the
THDM. Here, we take tan β ¼ 1.5, M=mΦ ¼ 0.8
(mΦ ¼ mH� ¼ mA ¼ mH) and cβ−α > 0, but the result does
not depend on these parameters so much in this plot. The
typical magnitude of the difference is seen to beOð0.01Þ%.
In Fig. 12, we show the scheme difference in the

renormalized hhh coupling as a function of sβ−α in the

THDM with tan β ¼ 1.5 and cβ−α > 0 (left panel) or
cβ−α < 0 (right panel). We only show results allowed by
bounds from the perturbative unitarity [68–72] and the
vacuum stability [73–76], which were discussed in Sec. II.
The typical magnitude of the difference is found to be
Oð10 − 100Þ%. Such a large difference comes from the
nonvanishing tadpole contribution T1PI

h;H in Eq. (113).
In Fig. 13, we also evaluate the value of Δκh defined in

Eq. (117) calculated in the two different schemes. The solid
and dashed curves show the results in the pinched tadpole
scheme and in the KOSY scheme, respectively. The upper-
left, upper-right, lower-left and lower-right panels are the
results in cases with (mΦ ¼ 300 GeV, cβ−α > 0),
(mΦ ¼ 300 GeV, cβ−α < 0), (mΦ ¼ 500 GeV, cβ−α > 0)
and (mΦ ¼ 500 GeV, cβ−α < 0), respectively. We here take
tan β ¼ 1.5 and M=mΦ ¼ 1 (black), 0.8 (red) and 0.6
(blue). Similar to Fig. 12, we only show results allowed
by bounds from the perturbative unitarity and the vacuum
stability. As we saw in the previous figure, a larger
difference is given in the case with a large value of
1 − sβ−α and/or mΦ. In addition, a larger value of Δκh is
obtained when we take a larger (smaller) value of mΦ
ðmΦ=MÞ. A large value of Δκh also is given in the
alignment limit sβ−α → 1, e.g., Δκh ∼þ10ð70Þ% in the
case of cβ−α < 0, M=mΦ ¼ 0.6 and mΦ ¼ 300ð500Þ GeV.

V. NUMERICAL RESULTS

In this section, we numerically show the one-loop
corrected Higgs boson couplings based on the pinched
tadpole scheme discussed in the previous section. We
discuss how we can discriminate the HSM and the
THDMs with four different types of Yukawa interactions
by looking at the pattern of the deviation in the Higgs boson
couplings. In addition, we clarify how the tree level results
can be changed by taking into account their one-loop
corrections.
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FIG. 11. Difference in the renormalized hZZ coupling between
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In order to discuss the deviation in the Higgs boson
couplings from the SM prediction, we introduce the
renormalized scaling factors κX for the hXX couplings
as follows:

κV ≡ Γ̂1
hVVðm2

V; ðmV þmhÞ2; m2
hÞNP

Γ̂1
hVVðm2

V; ðmV þmhÞ2; m2
hÞSM

;

κf ≡
Γ̂S
hffðm2

f; m
2
f; m

2
hÞNP

Γ̂S
hffðm2

f; m
2
f; m

2
hÞSM

;

κh ≡ Γ̂hhhðm2
h; m

2
h; 4m

2
hÞNP

Γ̂hhhðm2
h; m

2
h; 4m

2
hÞSM

;

κγ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðh → γγÞNP
Γðh → γγÞSM

s
; ð117Þ

where Γðh → γγÞ is the decay rate of the h → γγ mode. We
also define ΔκX ≡ κX − 1.
For the one-loop level calculation, we scan the param-

eters in the HSM as

mH ≥300GeV; −0.44≤ sinα≤0.44; jλΦSj≤3; ð118Þ

with μS ¼ λS ¼ 0. In the THDMs, we scan the parameters
as

mΦ ≥ 300 GeV; 0.90 ≤ sβ−α ≤ 1;

jλΦΦhj ≤ 3; 1 ≤ tan β ≤ 10; ð119Þ
where λΦΦh≡ðm2

Φ−M2Þ=v2 and mΦ¼mH�ð¼mA¼mHÞ.
For both models, we require Λcutoff ≥ 3 TeV for the
triviality and vacuum stability bounds (see Sec. II).
First of all in Fig. 14, we show the allowed region on the

mH–ΔκZ plane in the HSM and that on the mΦ–ΔκZ plane
in the THDMs. We note that the dependence on the type
of Yukawa interactions in the THDM is negligible in this
plot. In both models, we can see the decoupling behavior;
namely the large mass limit can be taken in the limit of
ΔκZ → 0. It is also seen that the speed of the decoupling is
quite different between these two models. This result
suggests the existence of the upper limit on the mass of
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FIG. 13. Δκh calculated in the pinched tadpole scheme (solid lines) and the KOSY scheme (dashed lines) in the THDM with
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the extra Higgs bosons once a nonzero deviation in the
hVV couplings is measured at future collider experiments,
and the upper limit quite depends on the structure of the
Higgs sector. For example, if jΔκZj ∼ 1% is given, the mass
ofH can be up to 2 TeV in the HSM, whilemΦ can be up to
only about 800 GeV in the THDM.
Next, we discuss various correlations among deviations

in the Higgs boson couplings. In Fig. 15, we show the
correlation between ΔκZ–Δκτ in the THDMs and in the
HSM. The left and right panels show the results at the tree
level and at the one-loop level, respectively. Here, we also
display the current 95% CL limit2 on the values of ΔκZ and
Δκτ from combined ATLAS and CMS analyses using the
data at the LHC Run-I experiment [1]. In the left panel,
predictions of the type-I and type-Y THDMs are shown by
the blue curves, while those of the type-II and type-X
THDMs are shown by the red curves. The dashed and
dotted curves show the cases with tan β ¼ 1.5 and 3,
respectively. For tan β ¼ 1, all the THDMs have the same
prediction denoted by the purple solid curve after scanning
the sign of cβ−α and the value of sβ−α [see Eq. (34)]. The
black dot-dashed curve denotes the prediction of the HSM.
From the result shown in the left panel, we can see that the
value of Δκτ approaches 0 in the limit of ΔκZ → 0 in all the
five models, which correspond to sβ−α → 1 in the THDMs
and sα → 0 in the HSM at the tree level. Thus, in this limit
it is difficult to distinguish these models by looking at
the correlation between ΔκZ and Δκτ. In contrast, once
ΔκZ ≠ 0 is given, the five models can be separated into the
three categories assuming tan β > 1. Namely, models
belonging to the first (type-I and type-Y THDMs), the
second (type-II and type-X THDMs) and the third (HSM)

categories give the prediction inside the purple curve,
outside the purple curve and of ΔκZ ≃ Δκτ, respectively.
In the right panel, we show the prediction allowed by the

constraints explained in Sec. II at the one-loop level. The
black and blue (red) dots denote the prediction in the HSM
and the type-I and type-Y (type-II and type-X) THDMs,
respectively. We note that the white region, e.g., 20%≲
Δκτ ≲ 30% and −95%≲ Δκτ ≲ −50% at ΔκZ ¼ −10%, is
excluded by either the vacuum stability bound or the triviality
bound. Although the behavior is quite similar to the tree level
result after scanning the value of tan β, the important differ-
ence is seen in the region with jΔκZj≲ 1%, in which
predictions of all the five models are overlapping with each
other. This is mainly due to the fact thatOð−1Þ% ofΔκZ can
be explained by the loop effects of the extra Higgs bosons
with sβ−α ≃ 1. Therefore, taking into account the one-loop
result, we can conclude that the five models can be distin-
guished into the three categories in the case of jΔκZj≳ 1%.
In Fig. 16, we show the correlation between ΔκZ–Δκτ in

the THDMs for a fixed value of tan β. Here, we show the
expected 1σ accuracies for the measurement of ðΔκZ;ΔκτÞ
at the HL-LHC (2%,2%) [7] and at the ILC with the full
data set (0.31%,0.9%) [5]. We see that the one-loop results
tend to be inside the tree level curve with a small width
(a few percent level). Such a small width can be detected by
using the accuracy at the ILC.
In order to further distinguish models belonging to the

same category explained in the above, we need to use
other observables such as Δκb. In Fig. 17, we show the
correlation between Δκb and Δκτ in the five models. The
left (right) panels show the tree (one-loop) level results.
The top, middle and bottom panels display the cases with
ΔκZ ¼ −1� 0.58%, −2� 0.58% and −3� 0.58%,
respectively, where 0.58% corresponds to the expected
1σ uncertainty for the measurement of ΔκZ by the initial
phase of the ILC program [5]. We here display the expected
1σ accuracies for the measurements of ðΔκb;ΔκτÞ at the

FIG. 14. Allowed parameter region under the constraints from the perturbative unitarity, the vacuum stability, the triviality and the S, T
parameters on the ΔκZ–mH plane and the ΔκZ–mΦ plane in the HSM (left) and THDM (right), respectively.

2This limit is simply given by taking two times the error bar
from each measured central value of ΔκZ and Δκτ without taking
into account a chi-square fit or a correlation factor.
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HL-LHC (4%,2%) [7] denoted by the blue box and those at
the ILC with the full data set (0.7%,0.9%) [5] denoted by
the magenta box.
Let us first discuss the tree level results (left panels). The

predictions of the type-I and type-II THDMs are given on
the line with Δκb ¼ Δκτ. On the other hand, those of the
type-X and type-Y THDMs are given as a region filled
by magenta and blue color, respectively. Furthermore, the
point denoted by � is the prediction of the HSM.3 We
note that there is no overlapping region between type-I and

type-II THDMs and that between type-X and type-Y
THDMs, because we take tan β > 1. For the case with
larger jΔκZj, predictions of four THDMs tend to go more
away from the SM prediction, i.e., ðΔκb;ΔκτÞ ¼ ð0; 0Þ.
Next, by looking at the right panels, we can see how the

one-loop correction changes the prediction at the tree level.
The biggest difference can be seen by comparing the top-
left and top-right panels. Namely, at the tree level the
predictions of the four THDMs are well separated, but at
the one-loop level there appear overlapping regions at
around ðΔκb;ΔκτÞ ¼ ð0; 0Þ. Such behavior happens when
sβ−α ≃ 1, in which the tree level difference in the pattern
of (Δκb,Δκτ) among four THDMs becomes very small. In
contrast, for the case with larger jΔκZj, the area of the

FIG. 15. Correlation between ΔκZ–Δκτ in the HSM and THDMs. The left (right) panel shows the result at the tree (one-loop) level. In
the left panel, the solid, dashed and dotted curves are the results in the THDM with tan β ¼ 1, 1.5 and 3, respectively. The black dot-
dashed curve is the result in the HSM. In the right panel, the blue, red and black dots are the results in the type-I (Y) THDM, type-II (X)
THDM and HSM, respectively. The region inside the green box is allowed with the 95% CL from the measurement of the Higgs boson
coupling at the LHC Run-I experiment.

FIG. 16. Correlation between ΔκZ–Δκτ in the type-I,-Y THDM (left) and type-II,-X THDM (right) at one-loop level. The black, blue
and red dots show the cases for tan β ¼ 1, 1.5 and 3, respectively. The tree level predictions are also shown as the dashed curves. The
blue (magenta) box denotes the expected 1σ accuracies for the measurement of ΔκZ and Δκτ at the HL-LHC (ILC), where their central
values are not reflected in the current measurements at the LHC.

3Strictly speaking, the prediction of the HSM is not the
pointlike shown as � in this figure, but is a line segment with
the length of 2

ffiffiffi
2

p
× 0.58.
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overlapping region is reduced as we can see from the
middle-right and bottom-right panels.
Therefore, combining the results given in Figs. 15

and 17, we conclude that the five models can be well
distinguished by measuring ΔκZ, Δκτ and Δκb as long
as jΔκZj≳ 1%.

In Fig. 18, we show the correlation betweenΔκc andΔκτ
in a similar way to Fig. 17. Here, we display the expected
1σ accuracies for the measurements of ðΔκc;ΔκτÞ at the
HL-LHC (7%,2%) [7] denoted by the blue box and those at
the ILC with the full data set (1.2%,0.9%) [5] denoted by
the magenta box. In this plane, the predictions of the type-I

FIG. 17. Correlation between Δκb–Δκτ in the HSM and THDMs. The left (right) panels show the tree (one-loop) level results. The
upper, middle and lower panels respectively show the case with ΔκZ ¼ −1� 0.58%, −2� 0.58% and −3� 0.58%. The region inside
the green box is allowed with the 95% CL from the measurement at the LHC Run-I experiment. The blue (magenta) box denotes the
expected 1σ accuracies for the measurement of Δκb and Δκτ at the HL-LHC (ILC), where their central values are fixed to be those
measured at the LHC Run-I experiment.
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and type-Y (type-II and type-X) THDMs are the same as
each other.
Finally, we show the correlation between ΔκZ and Δκγ

in Fig. 19. We here only display the results of the type-I
THDM and the HSM. The results of the other three types of

THDMs are almost the same as the result of the type-I
THDM. The green lines denote the current 95% limit on the
Δκγ measured by the LHC Run-I experiment [1]. The blue
and magenta boxes denote the expected 1σ accuracies for
the measurement of ðΔκZ;ΔκγÞ at the HL-LHC (2%,2%)

FIG. 18. Correlation between Δκc–Δκτ in the HSM and THDMs. The left (right) panels show the tree (one-loop) level results. The
upper, middle and lower panels respectively show the case withΔκZ ¼ −1� 0.58%, −2� 0.58% and −3� 0.58%. The blue (magenta)
box denotes the expected 1σ accuracies for the measurement of Δκc and Δκτ at the HL-LHC (ILC), where their central values are not
reflected in the current measurements at the LHC.
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[7] and at the ILC with the full data set (0.31%,2%) [5],
where the accuracy of Δκγ at the ILC is referred to that
given at the HL-LHC, because of its better accuracy.
We can see that even in the region with jΔκZj≲ 1%,

predictions in the THDMs can be largely different from
those in the HSM. This is because of the fact that the
charged Higgs boson loop effect on the hγγ vertex in
the THDM can be significant, which does not appear in the
HSM. In addition, the tree level values of κt and κZ are
generally different in the THDMs as seen in Eqs. (33) and
(34), while these are commonly cα in the HSM. As a result,
in the HSM Δκγ is simply given by cα − 1, and the
prediction is given around the line with ΔκZ ¼ Δκγ .
Thus, this result is quite useful to distinguish the
THDMs and the HSM even in the case with
jΔκZj ≲ 1%, in which it is difficult to separate these models
only by using ΔκV and Δκf.

VI. CONCLUSIONS

We have computed one-loop corrected Higgs boson
couplings based on the improved on-shell renormalization
scheme without gauge dependence in the nonminimal
Higgs sectors, i.e., the HSM and the THDMs with the
softly broken Z2 symmetry. The pinch technique is adopted
to remove gauge dependence in Higgs boson two-point
functions, which give rise to the gauge dependence in the
renormalized mixing parameters between Higgs bosons.
We have explicitly shown the cancellation of the gauge
dependence in the general Rξ gauge in the nonminimal
Higgs sectors. We then have calculated the difference in

various renormalized Higgs boson couplings calculated in
the previous on-shell scheme with gauge dependence and
those calculated in the improved scheme without gauge
dependence.
Having the gauge invariant one-loop corrected coup-

ling constants, we have investigated how we can identify
the HSM and the THDMs by looking at the difference
in the pattern of deviations in the renormalized Higgs
boson couplings from predictions in the SM. We
have shown correlations between ΔκZ–Δκτ, Δκτ–Δκb,
Δκτ–Δκc and ΔκZ–Δκγ . We can distinguish these models
by the combination of the measurements of κτ, κb and κc if
jΔκZj is measured to be ∼1% or larger at future collider
experiments.
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APPENDIX A: PINCH TERM IN THE
’t HOOFT-FEYNMAN GAUGE

We present the analytic expressions for the pinch-
term contribution to the scalar boson two-point fun-
ctions in the ’t Hooft-Feynman gauge. As expressed in
Eq. (90), the gauge invariant two-point function for scalar
bosons φi;j is obtained in the pinched tadpole scheme as
follows:

Πφiφj
ðq2Þ ¼ Π1PI

φiφj
ðq2ÞjξV¼1 þ ΠTad

φiφj
jξV¼1 þ ΠPT

φiφj
ðq2ÞjξV¼1:

ðA1Þ
In the following subsections, we give the explicit formulas
for ΠPT

φiφj
ðq2ÞjξV¼1 in the SM, the HSM and the THDM

in order. Hereafter, we do not explicitly write the
symbol jξV¼1.

1. SM

The pinch term for the Higgs boson h two-point function
is given as

ΠPT
hhðq2Þ ¼ −

g2

16π2
ðq2 −m2

hÞB0ðq2;W;WÞ

−
g2Z
32π2

ðq2 −m2
hÞB0ðq2;Z; ZÞ: ðA2Þ

2. HSM

The pinch terms for the two-point functions for the
CP-even Higgs bosons hi–hj are given as

FIG. 19. Correlation between ΔκZ and Δκγ is expressed by
black (red) in the HSM (type-I THDM). The region inside two
green lines is allowed with the 95% CL from the measurement at
the LHC Run-I experiment. The blue (magenta) box denotes the
expected 1σ accuracies for the measurement of ΔκZ and Δκγ at
the HL-LHC (ILC), where their central values are not reflected in
the current measurements at the LHC.
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ΠPT
hihj

ðq2Þ ¼ −
g2

32π2
ð2q2 −m2

hi
−m2

hj
ÞζiζjB0ðq2;W;WÞ − g2Z

64π2
ð2q2 −m2

hi
−m2

hj
ÞζiζjB0ðq2;Z; ZÞ; ðA3Þ

where ζi;j and hi;j (i, j ¼ 1, 2) are defined in Eq. (56).

3. THDM

The pinch terms for the two-point functions for the CP-even Higgs bosons h–h, H–H and H–h are given as

ΠPT
hhðq2Þ ¼ −

g2

16π2
ðq2 −m2

hÞ½s2β−αB0ðq2;W;WÞ þ c2β−αB0ðq2;H�;WÞ�

−
g2Z
32π2

ðq2 −m2
hÞ½s2β−αB0ðq2;Z; ZÞ þ c2β−αB0ðq2;A; ZÞ�; ðA4Þ

ΠPT
HHðq2Þ ¼ −

g2

16π2
ðq2 −m2

HÞ½c2β−αB0ðq2;W;WÞ þ s2β−αB0ðq2;H�;WÞ�

−
g2Z
32π2

ðq2 −m2
HÞ½c2β−αB0ðq2;Z; ZÞ þ s2β−αB0ðq2;A; ZÞ�; ðA5Þ

ΠPT
Hhðq2Þ ¼

g2

32π2
ð2q2 −m2

h −m2
HÞsβ−αcβ−α½B0ðq2;H�;WÞ − B0ðq2;W;WÞ�

þ g2Z
64π2

ð2q2 −m2
h −m2

HÞsβ−αcβ−α½B0ðq2;A; ZÞ − B0ðq2;Z; ZÞ�; ðA6Þ

where ΠPT
hHðq2Þ ¼ ΠPT

Hhðq2Þ. For the CP-odd scalar bosons A–A and A–G0, we obtain

ΠPT
AAðq2Þ ¼ −

g2

16π2
ðq2 −m2

AÞB0ðq2;W;H�Þ

−
g2Z
32π2

ðq2 −m2
AÞ½c2β−αB0ðq2;Z; hÞ þ s2β−αB0ðq2;Z;HÞ�; ðA7Þ

ΠPT
AG0ðq2Þ ¼ g2Z

64π2
ð2q2 −m2

AÞsβ−αcβ−α½B0ðq2;Z;HÞ − B0ðq2;Z; hÞ�; ðA8Þ

where ΠPT
G0Aðq2Þ ¼ ΠPT

AG0ðq2Þ. For the charged scalar bosons HþH− and HþG−, we obtain

ΠPT
HþH−ðq2Þ ¼ −

g2

32π2
ðq2 −m2

H�Þ½s2β−αB0ðq2;W;HÞ þ c2β−αB0ðq2;W; hÞ� − g2

32π2
ðq2 −m2

H�ÞB0ðq2;W;AÞ

−
g2Z
32π2

ð1 − 2s2WÞ2ðq2 −m2
H�ÞB0ðq2;Z;H�Þ − e2

8π2
ðq2 −m2

H�ÞB0ðq2; γ; H�Þ; ðA9Þ

ΠPT
HþG−ðq2Þ ¼ g2

32π2
sβ−αcβ−αð2q2 −m2

H�Þ½B0ðq2;W;HÞ − B0ðq2;W; hÞ�; ðA10Þ

where ΠPT
GþH−ðq2Þ ¼ ΠPT

HþG−ðq2Þ. We note that Eqs. (A4)–(A6), (A8) and (A10) are consistent with those presented in the
independent work given in Ref. [85].

APPENDIX B: RENORMALIZED HIGGS BOSON VERTICES IN THE PINCHED TADPOLE SCHEME

In this Appendix, we give the expressions for the renormalized Higgs boson vertices in the pinched tadpole scheme in the
SM, the HSM and the THDM in order. The expressions for the counterterms δX appearing in these vertices are given in
Appendix C.
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1. SM

The renormalized hVV, hff̄ and hhh vertices are given by

Γ̂1
hVV ¼ 2m2

V

v

�
1þ

�
δm2

V

m2
V
−
δv
v
þ δZV þ 1

2
δZh

��
þ Γ1PI

hVV þ ΓTad
hVV; ðB1Þ

Γ̂S
hff ¼ −

mf

v

�
1þ

�
δmf

mf
−
δv
v
þ δZf

V þ 1

2
δZh

��
þ Γ1PI

hff;

ðB2Þ

Γ̂hhh ¼ −
3m2

h

v

�
1þ

�
δm2

h

m2
h

−
δv
v
þ 3

2
δZh

��
þ Γ1PI

hhh þ ΓTad
hhh:

ðB3Þ

2. HSM

The renormalized hiVV, hiff̄ and hihh (h1 ¼ h and
h2 ¼ H) vertices are given by

Γ̂1
hiVV ¼ 2m2

V

v
ζi

�
1þ

�
δm2

V

m2
V
−
δv
v
þ ζ̄iδCh þ δZV þ δZhi

2

��
þ Γ1PI

hiVV
þ ΓTad

hiVV
; ðB4Þ

Γ̂S
hiff ¼ −

mf

v
ζi

�
1þ

�
δmf

mf
−
δv
v
þ ζ̄iδCh þ δZf

V þ δZhi

2

��

þ Γ1PI
hiff

; ðB5Þ

Γ̂hhh ¼ 6λhhh

�
1þ δλhhh

λhhh
þ 3

2
δZh þ

λHhh

λhhh
ðδCh þ δαÞ

�
þ Γ1PI

hhh þ ΓTad
hhh; ðB6Þ

Γ̂Hhh ¼ 2λHhh

�
1þ δZh þ

δZH

2
þ 3λhhh

λHhh
ðδCh − δαÞ

þ 2λHHh

λHhh
ðδCh þ δαÞ þ δλHhh

λHhh

�
þ Γ1PI

Hhh þ ΓTad
Hhh; ðB7Þ

where ζi (i ¼ 1, 2) are defined in Eq. (56), and ζ̄i ¼
tαð1=tαÞ for i ¼ 1 (2). For the hhh and Hhh vertices,
the relevant scalar boson trilinear couplings defined as
L ¼ þλϕiϕjϕk

ϕiϕjϕk … are given by

λhhh ¼ −
c3α
2v

m2
h − s2αðcαλΦSv − sαμSÞ; ðB8Þ

λHhh¼−ð2m2
hþm2

HÞ
sαc2α
2v

þsαλΦSv
2

ð1þ3c2αÞ−3s2αcαμS;

ðB9Þ

λHHh ¼ −ðm2
h þ 2m2

HÞ
cαs2α
2v

−
λΦSv
4

ðcα þ 3c3αÞ þ 3c2αsαμS:

ðB10Þ

The explicit formulas for the 1PI diagram contributions are
given in Refs. [30,31].

3. THDM

First, we give the renormalized hVV and HVV vertices,

Γ̂1
hVV ¼ 2m2

V

v

�
sβ−α

�
1þ δm2

V

m2
V
−
δv
v
þ δZV þ δZh

2

�
þ cβ−αðδCh þ δβÞ

�
þ Γ1PI

hVV þ ΓTad
hVV; ðB11Þ

Γ̂1
HVV ¼ 2m2

V

v

�
cβ−α

�
1þ δm2

V

m2
V
−
δv
v
þ δZV þ δZH

2

�
þ sβ−αðδCh − δβÞ

�
þ Γ1PI

HVV þ ΓTad
HVV; ðB12Þ

where the explicit formulas for Γ1PI
hVV are given in Ref. [31].

Second, the renormalized Yukawa couplings are given by

Γ̂S
hff ¼ −

mf

v
ζhff

�
1þ δmf

mf
−
δv
v
− ζfδβ þ δZf

V þ δZh

2
þ ζHff

ζhff
δCh

�
þ Γ1PI

hff; ðB13Þ

Γ̂S
Hff ¼ −

mf

v
ζHff

�
1þ δmf

mf
−
δv
v
− ζfδβ þ δZf

V þ δZH

2
þ ζhff
ζHff

δCh

�
þ Γ1PI

Hff; ðB14Þ

Γ̂P
Aff ¼ 2i

mf

v
ζfIf

�
1þ δmf

mf
−
δv
v
− ζfδβ þ δZf

V þ δZA

2
þ δCA

ζf

�
þ Γ1PI

Aff; ðB15Þ
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Γ̂R
HþūLdR

¼ −
ffiffiffi
2

p
md

v
ζd

�
1þ δmd

md
−
δv
v
− ζdδβ þ

δZdR þ δZuL

2
þ δZH�

2
þ δCH�

ζd

�
þ Γ1PI

HþūLdR
; ðB16Þ

Γ̂L
HþūRdL

¼
ffiffiffi
2

p
mu

v
ζu

�
1þ δmu

mu
−
δv
v
− ζuδβ þ

δZdL þ δZuR

2
þ δZH�

2
þ δCH�

ζu

�
þ Γ1PI

HþūRdL
; ðB17Þ

where Γ̂R;L
Hþff0 ¼ Γ̂S

Hþff0 � Γ̂P
Hþff0 . The ζϕff (ϕ ¼ h, H) and ζf factors are respectively given in Eq. (34) and in Table I.

The explicit formulas for Γ1PI
hff are given in Ref. [31].

Third, the renormalized hH�W∓
μ and hAZμ vertices are given by

Γ̂hH�W ¼∓ i
mW

v
cβ−α

�
1þ δm2

W

2m2
W
−
δv
v
þ 1

2
ðδZh þ δZH� þ δZWÞ þ tanðβ − αÞðδCH� − δChÞ

�
; ðB18Þ

Γ̂hAZ ¼ −
mZ

v
cβ−α

�
1þ δm2

Z

2m2
Z
−
δv
v
þ 1

2
ðδZh þ δZA þ δZZÞ þ tanðβ − αÞðδCA − δChÞ

�
: ðB19Þ

Finally, the renormalized scalar trilinear vertices Γ̂hhh

and Γ̂Hhh are expressed by the same form as those given
in Eqs. (B6) and (B7) in the HSM, where the explicit
expression for Γ1PI

hhh is given in Ref. [29]. In addition, the
relevant scalar trilinear couplings are given by

λhhh ¼ −
m2

h

2v
sβ−α þ

M2 −m2
h

v
sβ−αc2β−α

þM2 −m2
h

2v
c3β−αðcot β − tan βÞ; ðB20Þ

λHhh ¼ −
cβ−α
2vs2β

½ð2m2
h þm2

HÞs2α þM2ðs2β − 3s2αÞ�;

ðB21Þ

λHHh ¼
sβ−α
2vs2β

½ðm2
h þ 2m2

HÞs2α −M2ðs2β þ 3s2αÞ�: ðB22Þ

APPENDIX C: COUNTERTERMS

We present the explicit formulas for the relevant counter-
terms appearing in the previous subsection, which are
determined in the pinched tadpole scheme [8,52]. We also
explain the way to obtain the counterterms determined in
the KOSY scheme [26].

1. SM

Counterterms for the gauge boson masses δm2
V , the VEV

δv and the wave function renormalizations of weak gauge
bosons δZV are given by

δm2
V ¼ ΠVVðm2

VÞ; ðC1Þ

δv
v

¼ 1

2

�
s2W − c2W

s2W

ΠWWðm2
WÞ

m2
W

þ c2W
s2W

ΠZZðm2
ZÞ

m2
Z

−
d

dp2
Πγγðp2Þjp2¼0

�
; ðC2Þ

δZZ ¼ −
d

dp2
Π1PI

γγ ðp2Þjp2¼0 −
2ðc2W − s2WÞ

cWsW

Π1PI
Zγ ð0Þ
m2

Z

þ c2W − s2W
s2W

�
Π1PI

ZZ ðm2
ZÞ

m2
Z

−
Π1PI

WWðm2
WÞ

m2
W

�
; ðC3Þ

δZW ¼ −
d

dp2
Π1PI

γγ ðp2Þjp2¼0 −
2cW
sW

Π1PI
Zγ ð0Þ
m2

Z

þ c2W
s2W

�
Π1PI

ZZ ðm2
ZÞ

m2
Z

−
Π1PI

WWðm2
WÞ

m2
W

�
; ðC4Þ

where Πij are the gauge invariant two-point functions
defined in Eq. (90), and Π1PI

ij are the part of the 1PI
diagram contribution to the two-point functions.
Counterterms for fermion masses δmf and the wave

function renormalization of fermions (δZf
V and δZf

A) are
given by

δmf ¼ mf½Πff;Vðm2
fÞ þ Πff;Sðm2

fÞ�; ðC5Þ

δZf
V ¼ −Π1PI

ff;Vðm2
fÞ − ΠTad

ff;V − 2m2
f

�
d

dp2
Π1PI

ff;Vðp2Þjp2¼m2
f

þ d
dp2

Π1PI
ff;Sðp2Þjp2¼m2

f

�
; ðC6Þ
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δZf
A ¼ −Π1PI

ff;Aðm2
fÞ − ΠTad

ff;A þ 2m2
f

d
dp2

Π1PI
ff;Aðp2Þjp2¼m2

f
;

ðC7Þ

whereΠff;V ,Πff;A andΠff;S are the vector, the axial vector
and the scalar parts of the fermion two-point functions,

Πff ¼ pΠff;V − pγ5Πff;A þmfΠff;S: ðC8Þ

We note that the wave function renormalizations for left-
handed (δZf

L) and right-handed (δZf
R) fermions are related

to δZf
V and δZf

A as follows,

δZf
L ¼ δZf

V þ δZf
A; δZf

R ¼ δZf
V − δZf

A: ðC9Þ

Counterterms for the Higgs boson mass δm2
h and the

wave function renormalization for the Higgs boson δZh are
expressed as

δm2
h ¼ Πhhðm2

hÞ; δZh ¼ −
d

dp2
Π1PI

hh ðp2Þjp2¼m2
h
:

ðC10Þ

In the following, we also present the expressions for the
counterterms in the KOSY scheme [26], which are neces-
sary to calculate the scheme difference discussed in Sec. IV.
In the KOSY scheme, two-point functions for fermions,
gauge bosons and scalar bosons are respectively given as
follows:

Πijðp2ÞjKOSY ¼ Π1PI
ij ðp2Þ;

ði; jÞ for fermions; ðC11Þ

Πijðp2ÞjKOSY ¼ Π1PI
ij ðp2Þ þ ΠPT

ij ðp2Þ;
ði; jÞ for gauge bosons; ðC12Þ

Πijðp2ÞjKOSY ¼ Π1PI
ij ðp2Þ þ δTijjKOSY;

ði; jÞ for scalar bosons: ðC13Þ

We note that the pinch term for gauge boson two-point
functions is necessary to add in order to cancel the UV
divergent in one-loop corrected Higgs boson couplings. In
the SM, we have

δThhjKOSY ¼ −
1

v
T1PI
h : ðC14Þ

2. HSM

We give the expressions for the counterterms appearing
in Appendix B 2. The explicit formulas for the relevant 1PI
diagram contributions to one-point and two-point functions
are given in Refs. [30,31].
Counterterms for the masses of weak bosons and

fermions, and their wave function renormalizations are
the same form as the corresponding one in the SM. Those
for δm2

hi
and δZhi (h1 ¼ h and h2 ¼ H) are given by

δm2
hi
¼ Πhihiðm2

hi
Þ; δZhi ¼ −

d
dp2

Π1PI
hihi

ðp2Þjp2¼m2
hi
:

ðC15Þ

Those for mixing parameters of the CP-even Higgs bosons
are given by

δCh ¼
1

2ðm2
H −m2

hÞ
½Π1PI

Hhðm2
hÞ − Π1PI

Hhðm2
HÞ�; ðC16Þ

δα ¼ 1

2ðm2
H −m2

hÞ
½ΠHhðm2

hÞ þ ΠHhðm2
HÞ�: ðC17Þ

Finally, we give the explicit forms of δλhhh and δλHhh which
appear in the renormalized hhh and Hhh couplings given
in Eqs. (B6) and (B7), respectively,

δλhhh ¼
�
m2

h

2v
c3α − vλΦScαs2α

�
δv
v
−
c3α
2v

δm2
h þ FHSM

α δαþ δM; ðC18Þ

δλHhh ¼
sα
2v

½ð2m2
h þm2

HÞc2α þ v2λΦSð1þ 3c2αÞ�
δv
v
−
sαc2α
2v

ð2δm2
h þ δm2

HÞ þ GHSM
α δαþ δM0; ðC19Þ

where

FHSM
α ¼ 3sαc2α

2v
m2

h þ vλΦSsαðs2α − 2c2αÞ þ 3s2αcαμS; ðC20Þ

GHSM
α ¼ cα

2v
ð2s2α − c2αÞð2m2

h þm2
HÞ −

v
4
λΦSðcα − 9c3αÞ þ 3μSsαðs2α − 2c2αÞ: ðC21Þ

We note that δM and δM0 are linear combinations of the counterterms δμS and δλΦS [31]. Their explicit forms are given as
follows:
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δM ¼ −
s2α

16π2

�X
f

2Nf
cm2

f

v
λΦScα −

2c3α
v3

ð2m4
W þm4

ZÞ −
3

v
λΦScαð2m2

W þm2
ZÞ

þm2
h

4v
λΦSð11cα þ c3αÞ þ

m2
H

v
λΦScαs2α þ 4vλΦSð3λS þ λΦSÞcα − 36μSλSsα

�
Δdiv; ðC22Þ

δM0 ¼ sα
16π2

�X
f

Nf
cm2

f

v
λΦSð1þ 3c2αÞ −

2m4
W þm4

Z

v3
c2αðc2α − 3Þ − 3ð2m2

W þm2
ZÞ

2v
λΦSð1þ 3c2αÞ þ

3m2
h

2v
λΦSc2αð3þ c2αÞ

−
3m2

H

v
λΦSs4α þ 2vλΦSð3λS þ λΦSÞð1þ 3c2αÞ − 108μSλScαsα

�
Δdiv; ðC23Þ

where Δdiv expresses the UV divergent part of the loop
integral and Nf

c is the color factor; i.e., Nf
c ¼ 3ð1Þ for f

being quarks (leptons).
In the KOSY scheme, δα, δm2

h, and δm
2
H are given in the

same way as those given in Eqs. (C15), (C16) and (C17),
but we should use the scalar two-point functions defined in
Eq. (C13), where each δTijjKOSY is given by

δThhjKOSY ¼ −
c2α
v
ðsαT1PI

H þ cαT1PI
h Þ; ðC24Þ

δTHHjKOSY ¼ −
s2α
v
ðsαT1PI

H þ cαT1PI
h Þ; ðC25Þ

δThHjKOSY ¼ −
sαcα
v

ðsαT1PI
H þ cαT1PI

h Þ: ðC26Þ

3. THDM

We give the expressions for the counterterms appearing
in Appendix B 3. The explicit formulas for the relevant 1PI
diagram contributions to one-point and two-point functions
are given in Refs. [29].
Counterterms for the masses of weak bosons and

fermions, and their wave function renormalizations are
the same form as the corresponding one in the SM. Those
for masses of Higgs bosons φð¼ h;H; A;H�Þ and their
wave function renormalizations are expressed as

δm2
φ ¼ Πφφðm2

φÞ; δZφ ¼ −
d

dp2
Π1PI

φφ ðp2Þjp2¼m2
φ
:

ðC27Þ
Counterterms for the mixing parameters for the CP-odd
scalar bosons and those for the singly charged scalar bosons
are given by

δCA ¼ −
1

2m2
A
½Π1PI

AG0ðm2
AÞ − Π1PI

AG0ð0Þ�; ðC28Þ

δCH� ¼ −
1

2m2
A

�
Π1PI

AG0ðm2
AÞ þ Π1PI

AG0ð0Þ − 2m2
A

m2
H�

Π1PI
HþG−ð0Þ

�
;

ðC29Þ

δβ ¼ −
1

2m2
A
½ΠAG0ðm2

AÞ þ ΠAG0ð0Þ�: ðC30Þ

We note that δCh and δα take the same form as given in
Eqs. (C16) and (C17), respectively. In the THDMs, δλhhh
and δλHhh are expressed as

δλhhh ¼ −λhhh
δv
v
−
c3α−β þ 3cαþβ

4vs2β
δm2

h

þ FTHDM
α δαþ Fβδβ þ

c2β−αcαþβ

vs2β
δM2; ðC31Þ

δλHhh ¼ −λHhh
δv
v
−
s2αcβ−α
2vs2β

ð2δm2
h þ δm2

HÞ

þ GTHDM
α δαþ Gβδβ þ

3cβ−α
2v

�
s2α
s2β

−
1

3

�
δM2;

ðC32Þ
where

FTHDM
α ¼ cβ−α

2v

�
3
s2α
s2β

ðm2
h −M2Þ þM2

�
; ðC33Þ

GTHDM
α ¼ sβ−α

cβ−α
λHhh−

c2αcβ−α
vs2β

ð2m2
hþm2

H−3M2Þ; ðC34Þ

and Fβ and Gβ are given in Eqs. (115) and (116),
respectively. The expression for δM2 is given by

δM2

M2
¼ 1

16π2v2

�
2
X
f

Nf
cm2

fζ
2
f þ 4M2 − 2m2

H�

−m2
A þ s2α

s2β
ðm2

H −m2
hÞ − 3ð2m2

W þm2
ZÞ
�
Δdiv;

ðC35Þ

where ζf are given in Table I.
Similar to the case in the HSM, in the KOSY scheme,

scalar two-point functions Πij are defined in Eq. (C13),
where each of the counterterms of the tadpole is given by
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δThhjKOSY ¼ 1

vsβcβ
½−sαcαcβ−αT1PI

H þ ðs3αsβ − c3αcβÞT1PI
h �;

ðC36Þ

δTHHjKOSY ¼ 1

vsβcβ
½−ðsβc3α þ cβs3αÞT1PI

H þ sαcαsβ−αT1PI
h �;

ðC37Þ

δThHjKOSY ¼ sαcα
vsβcβ

ðsβ−αT1PI
H − cβ−αT1PI

h Þ; ðC38Þ

δTAAjKOSY ¼ δTHþH− jKOSY
¼ −

1

vsβcβ
½ðcαs3β þ sαc3βÞT1PI

H

þ ðcαc3β − sαs3βÞT1PI
h �; ðC39Þ

δTAGjKOSY ¼ δTHþG− jKOSY ¼ 1

v
ðsβ−αT1PI

H − cβ−αT1PI
h Þ:
ðC40Þ
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